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Abstract. This paper gives new constructions of two-round multi-signa-
tures and threshold signatures for which security relies solely on either
the hardness of the (plain) discrete logarithm problem or the hardness
of RSA, in addition to assuming random oracles. Their signing protocol
is partially non-interactive, i.e., the first round of the signing protocol is
independent of the message being signed.

We obtain our constructions by generalizing the most efficient
discrete-logarithm based schemes, MuSig2 (Nick, Ruffing, and Seurin,
CRYPTO ’21) and FROST (Komlo and Goldberg, SAC ’20), to work
with suitably defined linear hash functions. While the original schemes
rely on the stronger and more controversial one-more discrete logarithm
assumption, we show that suitable instantiations of the hash functions
enable security to be based on either the plain discrete logarithm assump-
tion or on RSA. The signatures produced by our schemes are equivalent
to those obtained from Okamoto’s identification schemes (CRYPTO ’92).

More abstractly, our results suggest a general framework to trans-
form schemes secure under OMDL into ones secure under the plain DL
assumption and, with some restrictions, under RSA.

1 Introduction

Many novel applications, such as digital wallets [25], are re-energizing a multi-
decade agenda aimed at developing new efficient multi-signatures [33] and thresh-
old signatures [18,19] from a variety of assumptions. Threshold signatures are
also at the center of standardization efforts by NIST [42] and IETF [15]. Both
signature types are relatively straightforward to obtain from pairings (using,
e.g., BLS [13,14]); however, specific implementation constraints make pairing-
free schemes, which are based on either variants of the discrete logarithm or RSA
problems, appealing in several contexts.

This paper aims to build the best possible pairing-free multi-signatures and
threshold signatures under the weakest possible assumptions. As our main con-
tribution, we develop new two-round protocols that are secure under the (1)
discrete logarithm assumption and (2) the RSA assumption. In both cases, we
also assume the random oracle model (ROM) [10]. Our RSA multi-signatures
require a trusted setup to produce a public RSA modulus with unknown factor-
ization. The signatures produced by both schemes resemble those proposed by
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Okamoto [46]. Furthermore, our signing protocols are partially non-interactive,
i.e., the first round messages do not depend on the message being signed, which
is a desirable property in practice.
Significance. Our DL-based schemes are the first partially non-interactive 2-
round schemes based solely on the hardness of the discrete logarithm assumption.
For threshold signatures, in particular, no two-round scheme is known from only
the discrete logarithm assumption. For RSA, the landscape is more complex,
and our main contribution is to provide a viable multi-signature scheme, as all
prior solutions impose restrictions.
Our approach. Our schemes are the outcome of the same paradigm applied
to the two most efficient DL-based schemes, FROST [6,37] and MuSig2 [43]. It
is not known how to prove the security of either scheme under the plain discrete
logarithm assumption, and they are instead proved secure under the (stronger)
one-more discrete logarithm assumption (OMDL) [8], an assumption that has
been the subject of criticism [35,36]. As we explain next, our paradigm can be
seen as a general recipe to remove the OMDL assumption from these schemes.

The main ingredient of our approach are linear hash functions, which have
also been used in recent works [3,30,31] to abstract identification schemes from
which signature variants are derived. Here, we observe that both FROST ad
MuSig2 can naturally be generalized by replacing the exponentiation map x Þ
gx with a linear hash function F : D Ñ R, where D,R are S-modules for a
field S. We generically refer to these instantiations as FROST-H and MuSig2-H.
(In fact, we present two variants for FROST-H but make no distinction in the
introduction.) In particular, we require that:

– F is an epimorphism of S-modules from D to R, i.e., F is a surjection from D
to R such that for any r P S and x, y P D, F(x ` r ¨ y) “ F(x) ` r ¨ F(y) .

– F is not a monomorphism, which is equivalent to postulating that there exists
z˚ P D such that z˚ ‰ 0 and F(z˚) “ 0.

We then define a natural analogue of the OMDL assumption, which we refer to as
the Algebraic One-More Preimage Resistance (AOMPR). Roughly speaking, the
corresponding security game allows the attacker to obtain multiple challenges
Xi “ F(xi) for a random element xi Ð$ D, and the attacker also gets access to an
inversion oracle which, on input X P R, returns a element in the preimage set of
X under F. The restriction here, and hence the term algebraic, is that X must be
an affine combination of previously obtained Xi’s, and this affine combination
is given to the inversion oracle, along with X. (This makes the assumption
falsifiable since the oracle can efficiently answer such inversion queries.) To win
the game, the attacker is then asked to invert q `1 challenges after querying the
inversion oracle at most q times.

Our results then follow from the combination of the following two theorems,
which we state here informally:

Theorem (informal). The security of FROST-H and MuSig2-H follows
from the AOMPR assumption on the underlying linear hash function.
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Theorem (informal). If F is collision-resistant, then the AOMPR
assumption holds with respect to F.

The proof of the first theorem is, on its own, not particularly surprising and
mostly generalizes the prior proofs in the literature, in particular those of [43]
and [6]. Our main contribution here is to notice that these proofs, and the result-
ing schemes, can be abstracted in terms of linear hash functions. In particular,
for threshold signatures, as in [6], we consider an abstract setting with an ideal
distributed key generation, and we target the security notions of TS-SUF-2 and
TS-SUF-3, which were shown to be achieved by two variants of FROST, both
of which we model here abstractly. Since we are targeting feasibility, we are less
concerned with the concrete round complexity of distributed key generation and
could use any secure multi-party computation protocol for this task.

In contrast, the rough intuition behind a proof of the latter theorem is that
for any execution of a (wlog deterministic) adversary A playing the AOMPR
game with challenges X “ F(x), since F is not a monomorphism, there exists
another execution with challenges X “ F(x′) such that x ‰ x′, but the views
of A are identical in the two executions. Then, if A wins the game given x by
outputting y such that F(y) “ X, A also wins the game given x′ by outputting
y. Therefore, we have F(x) “ F(y) “ F(x′) ^ (x ‰ y _ x′ ‰ y), which implies
that we can find a collision in at least one of the executions. Indeed, special
cases of this technique already underlie several works, including Okamoto’s [46],
but our main challenges are to prove the concrete mapping of x′ from x and to
package this in terms of the AOMPR abstraction.

1.1 DL-Based Instantiations

To obtain an instantiation of FROST-H and MuSig2-H based on the hardness
of the discrete logarithm (DL) problem, we can use the Pedersen linear hash
function [49]

F(x1, x2) “ gx1Zx2 ,

which is well known to be collision-resistant under the hardness of DL whenever
g, Z are generators of a group with prime size p. While MuSig2 and FROST
produce valid Schnorr signatures [52], the signatures produced by our DL-based
instantiations of FROST-H and MuSig2-H are slightly less efficient, and effectively
compatible with Okamoto’s signatures [46]. Here, as in Schnorr signatures, the
secret signing key is x P Zp, and the public verification key pk “ gx, and a
signature for a message m P {0, 1}˚ has format

σ “ (R “ gaZb, a ` H(pk,m,R) ¨ x, b) ,

where H is a hash function that is modeled as a random oracle in our proofs. To
verify a signature (R, a, b), we check that gaZb “ R ¨pkH(pk,M,R). The only differ-
ence from Okamoto’s scheme [46] is that the latter uses a secret key (x1, x2) P Z

2
p,

and a signature has form (R “ gaZb, a ` c ¨ x1, b ` c ¨ x2), where c “ H(pk,m,R),
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i.e., here, we restrict the scheme to the case where (x1, x2) “ (x, 0). This opti-
mization is generic and could have been applied to Okamoto’s scheme directly;
however, it is particularly advantageous for threshold signatures since it lets us
leverage any distributed key generation protocol for Schnorr signatures. Here,
we need a trusted setup to generate Z as a random group element independent
of g, but we note that this is a minimal setup since it can be made transparent,
e.g., g, Z can be generated as outputs of a hash function.
Related work (DL). Our DL-based threshold signatures are the first two-
round scheme with security proved based solely on the discrete logarithm
assumption in the ROM. The most efficient protocol is FROST [6,37], which
is slightly more efficient than our scheme since it generates plain Schnorr sig-
natures; however, FROST relies on the stronger OMDL assumption. Though
schemes based solely on the discrete logarithm assumption exist [28,39,55], they
use more rounds. We stress that not all schemes achieve the same security goals,
and here we target the notions of [6], whereas Lindell [39] targets UC security.

Our DL-based scheme gives the first partially non-interactive two-round
multi-signatures based on plain DL and the ROM. It is almost as efficient as
MuSig2 [43], which is based on OMDL. Drijvers et al. [21] proposed a less effi-
cient two-round scheme, called mBCJ, based on DL and ROM only, and it repairs
a prior scheme by Bagherzandi, Cheon, and Jarecki [4]. mBCJ signatures, less
efficient than ours, consist of two group elements and three scalars, and public
keys also consist of one group element and two scalars. Moreover, mBCJ is not
partially non-interactive (i.e., the first round does depend on the message being
signed). Another option is the MuSig-DN scheme [44], but it relies on heavy
machinery from zero-knowledge proofs.

A more efficient DL-based alternative is the HBMS scheme by Bellare and
Dai [7], but HBMS is not partially non-interactive. Further, our security reduc-
tion is tighter than that of HBMS. Most relevant to us, Lee and Kim [38] gave
a multi-signature scheme based on Okamoto signatures that, however, is proved
secure only in the AGM [24]; their signing is also not partially non-interactive.

More recently, Pan and Wagner [47] proposed a two-round multi-signature
scheme based only on the Decisional Diffie-Hellman (DDH) assumption with a
tight reduction, but their scheme is also not partially non-interactive.

Finally, the work of Drijvers et al. [21], as well as recent ROS attacks [12],
also surfaced several security issues in earlier DL-based proposals that we do not
discuss here.

1.2 RSA-Based Instantiation

The situation with RSA is slightly more complex since the above framework,
as is, does not appear to support an RSA instantiation directly: no natural
RSA-based linear hash function realizes an appropriate S-module where S is a
field, which is of critical importance for our constructions and proofs of theorems.
However, we show that the framework can be adapted to support the RSA-based
linear hash function

F(x1, x2) “ xe
1w

x2 ,
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based on public parameters par “ (N, e,w), where N is an RSA modulus, e P ZN̊

is a prime such that gcd(e, φ(N)) “ 1 and w P ZN̊ . We refer to this linear hash
function as RLHF. Here, it is important to note that the supported scalar space
is set to S :“ Z, which is only a ring. (We refer to such hash functions as weak
linear hash functions.)
RSA-specific challenges. We now describe the problems caused by the lack
of inversion in S, and briefly explain how we fix them for the specific case of
RLHF. We stress that these fixes are very ad-hoc for RSA, and do not work in
general for weak linear hash functions.

– FROST-H generates signing keys using Shamir secret sharing [53], which
requires the scalar space to be a field in order to compute the Lagrange
coefficients. This is a common problem for RSA-based threshold schemes [16,
54], and we address it via the standard trick of multiplying the Lagrange
coefficients with a large number to make them integers.

– One place in the proof of our first informal theorem above (reducing the
security of MuSig2-H and FROST-H to AOMPR) where the scalar space needs
to be a field is to invert challenges X P Rn, given a linear equation AX “
F(b), where A in Snˆn, X in Rn, and b in Dn. Since S is a field in our
original proof, we show that A has full rank; thus, one can compute x such
that X “ F(x) by multiplying the inverse of A on both sides of the equation.
Clearly, this fails if S is not a field. Fortunately, to instantiate RLHF, we find
that this equation can be solved efficiently whenever A has full rank modulo e
(which, recall, is a prime), and we show this condition holds whenever we need
to solve the equation in the proof for the special case of RLHF. In addition, for
MuSig2-H, we require one of the prime factors of N to be a safe prime in order
to make the reduction go through. We also show how to remove this safe-prime
requirement by minimally modifying the key aggregation algorithm.

– For our second informal theorem (reducing AOMPR to the collision-resistance
of the linear hash function), we need the scalar space to be a field upon showing
that, for any matrix B P S�ˆq for � ă q, there exists u P Sq such that
1. Bu “ 0;
2. uiz

˚ ‰ 0 for some i P [q], where z˚ is an a prior fixed non-zero element in
D such that F(z˚) “ 0.

Again, if S is a ring, such an u might not exist. However, for the RSA-based
linear hash function, since S “ Z, we can always find a non-zero u P Z

q such
that Bu “ 0. Showing the second condition involves some technical details
of RLHF, but roughly, we need to show that there exists i P [q] such that
ui ı 0 mod e.

Resulting schemes. Our RSA-based instantiations of FROST-H and
MuSig2-H produce signatures that also resemble the RSA-based signatures by
Okamoto [46]. Given public parameters par “ (N, e,w), where e P ZN̊ is a prime
such that gcd(e, φ(N)) “ 1 and w P ZN̊ , the secret signing key is x P ZN̊ , and
the public verification key pk “ xe, and a signature for a message m P {0, 1}˚
has format

σ “ (R “ aewb, a ¨ xH(pk,m,R), b) .
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To verify a signature (R, s, b), one checks whether sewb “ R ¨ pkH(pk,m,R). We
give a simpler scheme that assumes that N is the product of safe primes, but we
then drop this restriction in a slightly less efficient scheme.

We note that this scheme’s drawback is that the public parameters par must
be generated honestly. In the multi-signature case, this requires a trusted setup,
whereas in the threshold signature case, par could be generated as part of the
distributed key generation process. An important open question is whether we
can remove a trusted setup, but we note that no better construction without a
trusted setup is known, as we discuss next. Another unusual aspect of our use
of the RSA assumption is that we require e to be large and prime, but this does
not appear to weaken the assumption in any way.
Related work (RSA). Threshold signatures based on RSA go back to the
work of Shoup [54], whose scheme is more efficient than ours since it is round
optimal. Shoup’s basic scheme guarantees only the inability to come up with a
signature for messages for which no party has issued a signature share. A stronger
notion would require that the only way to issue a valid signature is for sufficiently
many honest parties to contribute, i.e., if k signature shares are needed for a valid
signature to be created, and t parties can be corrupted, no valid signature should
be generated unless at least k´t parties create shares. (This notion is referred to
as TS-UF-1 in [6,11].) To achieve this stronger notion, Shoup [54] modifies the
scheme and relies on a variant of the DDH assumption, which we do not need
here. All previous works on RSA-based threshold signatures [2,16,17,22,23,26,
27,51] do not consider this stronger security goal, although some of these works
consider properties such as proactivity [2,51], robustness [23,27,51], removing
trusted dealers [16,22], and adaptive-security [2], which we do not consider.

Our RSA-based instantiation of MuSig2-H improves upon the state-of-the-
art even further. Indeed, only a few works on RSA multi-signatures, e.g., [1,20],
support fully non-interactive signing, but they all assume a trusted third party
that distributes all signing keys and that the number of signers is fixed. Oth-
ers [29,32,34,40,41,45,46,48,50] support only sequential signing, i.e., all sign-
ers engage in the signing process one by one. Another relevant line of works
addresses identity-based multi-signatures [5,9] (IBMS). IBMS can be viewed as
multi-signature schemes where each ID plays the role of the public key for each
signer. However, if used as a multi-signature scheme, these schemes require a
trusted dealer to generate the keys for each signer. Also, they do not support
key aggregation, which our scheme supports.

2 Preliminaries

2.1 Notations

For any positive integers k ă n, [n] denotes {1, . . . , n}, and [k..n] denotes
{k, . . . , n}. We use κ to denote the security parameter. For a finite set S, |S|
denotes the size of S, and x Ð$ S denotes sampling an element uniformly from
S and assigning it to x.
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2.2 Basic Algebra

Modules. For any ring R with multiplicative identity 1 and any abelian group
(M, `), we say M is an R-module if there exists an operation ¨ : R ˆ M Ñ M
such that for any a, b P R and any x, y P M , (i) a ¨ (x ` y) “ a ¨ x ` a ¨ y , (ii)
(a ` b) ¨ x “ a ¨ x ` b ¨ x, (iii) (ab) ¨ x “ a ¨ (b ¨ x), (iv) 1 ¨ x “ x. Also, we use 0 to
denote the identity of M .
Module Homomorphisms. For any R-modules M and N , a map f : M Ñ N
is a homomorphism of R-modules if for any r P R and x, y P M , f(x ` r ¨ y) “
f(x)`r ¨f(y) . We say a homomorphism f is an epimorphism if f is a surjection.
We say a homomorphism f is a monomorphism if f is an injection.
Characteristic of a Field. For any field F, the characteristic of F, denoted
by char(F), is the smallest positive number k such that k ¨1 “ ∑k

i“1 1 “ 0, where
1 denotes the multiplicative identity of F and 0 denotes the additive identity of
F. If k does not exist, we say the characteristic of F is 0.

3 Algebraic One-More Preimage Resistance

In this section, we first give the definition of linear hash functions, then define
collision resistance and algebraic one-more preimage resistance (AOMPR) of a
linear hash function family, and finally show AOMPR is implied by collision
resistance.

3.1 Linear Hash Functions

The notion of linear hash functions is introduced in [30,31], which is in turn
adapted from [3]. We adapt the definition from [30] by additionally requiring
the scalar set S to be a field and D and R to be S-modules, which is necessary
for the reduction from collision resistance to AOMPR and for our constructions
in Sect. 4 to work.

Definition 1. A linear hash function family LHF is a pair of algorithms
(PGen,F) such that

a) PGen is a randomized algorithm that takes as input the security parameter 1κ

and returns the system parameter par that defines three sets S “ S(par),D “
D(par) and R “ R(par), where S is a field, and D and R are S-modules.
Moreover, we require |S| ě 2κ, |D| ě 2κ, and |R| ě 2κ.

b) F is a deterministic function that takes as input the system parameter par and
an element x P D and returns an element in R such that F(par , ¨) : D Ñ R
is a epimorphism of S-modules. Moreover, F is not a monomorphism, which
is equivalent to there exists z˚ P D such that z˚ ‰ 0 and F(par , z˚) “ 0. For
simplicity, we omit par from the input of F from now on.
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Game CRA
LHF(κ) :

par ← PGen(1κ)
(x1, x2) Ð$ A(par)
If x1 ‰ x2 and F(x1) “ F(x2) then

Return 1
Return 0

Fig. 1. The CR security game for a linear hash family LHF “ (PGen,F).

Game AOMPRA
LHF(κ) :

par Ð$ PGen(1κ)
cid ← 0 ; � ← 0
{yi}iP[cid] ← AChal,PI(par)
If � ě cid then return 0
If ∀ i P [cid] F(yi) “ Xi then

Return 1
Return 0

Oracle Chal() :

cid ← cid ` 1
xcid Ð$ D ; Xcid ← F(xcid)
Return Xcid

Oracle PI(Y, α, {βi}iP[cid]) :

Require: Y “ F(α) ` ∑
iP[cid] βiXi

� ← � ` 1
Return α ` ∑

iP[cid] βixi

Fig. 2. The AOMPR game for a linear hash function family LHF “ (PGen,F). For the
inputs of PI, X is in R, α is in D, and each βi is in S.

Collision Resistance. Collision resistance of linear hash functions is anal-
ogous to collision resistance of cryptographic hash functions, which ensures
that it is hard to find two distinct inputs that map to the same output. The
CRA

LHF game is defined in Fig. 1. The corresponding advantage of A is defined
as AdvcrLHF(A, κ) :“ Pr

[
CRA

LHF “ 1
]
.

3.2 Algebraic One-More Preimage Resistance

We introduce the notion of algebraic one-more preimage resistance (AOMPR)
for linear hash functions, which is formally defined via the game AOMPRA

LHF,
as described in Fig. 2. It guarantees that any adversary given a description of
a linear hash function (S,D,R,F) cannot invert q ` 1 challenges X1, . . . , Xq`1,
where Xi “ F(xi) for xi Ð$ D, by making at most q queries to the PI oracle that,
on any input Y P R that is an affine combination of the challenges, outputs an
element in the preimage of Y . It is syntactically analogous to the algebraic one-
more discrete logarithm (AOMDL) problem [43], where the adversary wants to
compute the discrete logarithms of q ` 1 random challenges in G by making
at most q queries to the DLog oracle, which outputs the discrete logarithm of
the input Y only when Y is an affine combination of the challenges and the
combination is known to the adversary.
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The following theorem, our main result on AOMPR, shows that AOMPR of
a linear hash function family is implied by its collision resistance.

Theorem 1. For any linear hash function family LHF and any AOMPR adver-
sary A making at most q queries to Chal, there exists an adversary B for the
CRLHF game running in a similar running time as A such that Advaompr

LHF (A, κ) ď
2AdvcrLHF(B, κ) .

Proof. (of Theorem 1). Given an adversary A for the AOMPRLHF game, with-
out loss of generality, we assume that A is deterministic, queries Chal exactly
q times, and queries PI exactly q ´ 1 times. The construction of B is straight-
forward. After receiving par from the CRLHF game, B runs A on input par by
simulating the oracles Chal and PI exactly the same as in the AOMPRLHF

game. After A outputs {yi}iP[q], if

D i P [q] such that F(yi) “ Xi and yi ‰ xi, (1)

where xi and Xi are generated in the oracle Chal, then B outputs (xi, yi).
Otherwise, B aborts.
Analysis of B. Denote the event WINB as after A returns, the condition (1)
holds. If WINB occurs, B wins the CRLHF game since F(xi) “ Xi “ F(yi), which
implies AdvcrLHF(B, κ) “ Pr [WINB].

It is left to show that Pr [WINB] ě 1
2Adv

aompr
LHF (A, κ). Since A is deterministic,

the execution of A is fixed given the pair (par ,x), where x P Dq denotes the
randomness generated in the oracle Chal. Denote the event WINA as A wins
the AOMPRLHF game simulated by B. Since B simulate the game perfectly, we
know Pr[WINA] “ Advaompr

LHF (A, κ). For each par , denote

WA :“ {x | WINA occurs given (par ,x)} ,

WB :“ {x | WINB occurs given (par ,x)} .

Claim 1. For each par, there exists a bijection Φ : WA Ñ WA such that for
any x P WA, we have x P WB _ Φ(x) P WB.

From the above claim, we can conclude the proof since Pr [WINB] “ Pr[x P
WB] “ 1

2 (Pr[x P WB] ` Pr[Φ(x) P WB]) ě 1
2Pr[x P WB _ Φ(x) P WB] ě

1
2Pr[x P WA] “ 1

2Pr[WINA] “ 1
2Adv

aompr
LHF (A, κ). ��

Proof. (of Claim 1). We construct Φ as follows. For each x P WA, consider the
execution of A given (par ,x). Denote B P S(q´1)ˆq as the query matrix of the
execution, which is defined as follows.

Definition 2. Given an execution of an adversary A for the AOMPR game,
where A makes q queries to Chal and � queries to PI, define the query matrix
of the execution as B P S�ˆq such that Bi,j “ β

(j)
i for i P [cid(j)] and Bi,j “ 0

otherwise, where β
(j)
i and cid(j) are the values of βi and cid when A makes the

j-th query to PI.
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We now define
Φ(x) :“ x ` u(B)z˚ ,

where z˚ P D and u(B) P Sq are defined in the following claim.

Claim 2. There exists z˚ P D such that F(z˚) “ 0 and for any matrix A P S�ˆq

where 0 ă � ă q, there exists a vector u(A) P Sq and i P [q] such that

Au(A) “ 0 ^ D i P [q] : u
(A)
i z˚ ‰ 0 . (2)

Proof (of Claim 2). Since F is not a monomorphism from D to R, there exists a
non-zero element z˚ P D such that F(z˚) “ 0. Since S is a field and A has rank
at most � ă q, there exists a non-zero vector u(A) P Sq such that Au(A) “ 0.
Also, since u(A) is non-zero, there exists i P [q] such that u

(A)
i ‰ 0, and since S

is a field and z˚ ‰ 0, we have u
(A)
i z˚ ‰ 0.

Analysis of Φ. For simplicity, we use u to denote u(B) in the following analysis.
We first show that the executions of A given (par ,x) and given (par , Φ(x))
are identical. Since F(Φ(x)) “ F(x) ` u ¨ F(z˚) “ F(x) ` u ¨ 0 “ F(x), the
challenges output by Chal are the same in the two executions. For the j-th
query to PI, suppose the prior views of A are identical. Then, A must make
the same query

(
X(j), α(j), {β

(j)
i }iP[cid(j)]

)
in both executions. Since Bu “ 0, we

have α(j) ` ∑
iP[cid(j)] β

(j)
i xi “ α(j) `

(
β(j)

)T

x “ α(j) `
(
β(j)

)T

(x ` uz˚) “
α(j) `∑

iP[cid(j)] β
(j)
i (Φ(x))i, where β(j) denotes the j-th row of B. Therefore, A

receives the same value from PI in both executions. By induction, the views of
A are identical in both executions and thus A outputs the same values in both
executions, which implies Φ(x) P WA and thus Φ is a map from WA to WA.

Then, it is not hard to see that x P WB _ Φ(x) P WB. Since the executions
of A given x and Φ(x) are identical, the outputs y1, . . . , yq of A are also identical
in the two executions. Since there exists i P [q] such that uiz

˚ ‰ 0, we have either
yi ‰ xi or yi ‰ xi ` ui ¨ z˚, which means WINB occurs either in the execution
given x or Φ(x).

It is left to show that Φ is a bijection. Since both the domain and range of
Φ are WA, which is a finite set, it is enough to show that Φ is an injection. For
any x1,x2 P WA such that Φ(x1) “ Φ(x2), since the execution of A given x1

is identical to that given Φ(x1) and the execution of A given x2 is identical to
that given Φ(x2), we know the executions of A given x1 and x2 are identical,
which implies the query matrix B in the two executions are identical. Therefore,
we have Φ(x1) “ x1 ` uz˚ and Φ(x2) “ x2 ` uz˚ for the same u P Sq, which
implies x1 “ x2. This shows that Φ is an injection. ��

4 Schemes Based on Linear Hash Functions

For a cyclic group G with prime size p and generator g, we can view the descrip-
tion of a linear hash function with description (S,D,R,F) as an analogue to
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(G, p, g), where R corresponds to the group G, the preimage under the function
F corresponds to the discrete logarithm to base g, and S corresponds to the
field of scalar Zp. Also, the AOMPR game is analogous to the AOMDL game.
This suggests a general way of transforming any scheme that is secure under the
AOMDL assumption into a scheme that is constructed from linear hash func-
tions and is secure under the AOMPR assumption. In this section, we discuss
how this idea is applied to two specific examples: MuSig2 [43], a multi-signature
scheme, and FROST [37], a threshold signature scheme.

4.1 Multi-signatures

MuSig2 [43] is a two-round multi-signature scheme with key aggregation. More-
over, the first signing round is message-independent. We first give the syntax and
security definition of two-round multi-signatures following [43], then present a
new scheme MuSig2-H based on LHF that is transformed from MuSig2, and finally
show the security of the new scheme under the AOMPR assumption.
Syntax. A two-round multi-signature scheme with key aggregation is a
tuple of efficient (randomized) algorithms MS “ (Setup,KeyGen,KeyAgg,
PreSign, PreAgg,Sign,SignAgg,Ver) that behave as follows. The setup algorithm
Setup(1κ) returns a system parameter par , and we assume par is given to all
other algorithms implicitly. The key generation algorithm KeyGen() returns a
pair of secret and public keys (sk, pk). The (deterministic) key aggregation algo-
rithm KeyAgg takes as input a multiset of public keys L with size at most 2κ

and returns an aggregate public key apk. For n signers, where the i-th signer has
key-pair (ski, pki), the signing protocol between them and an aggregator node
to sign a message m P {0, 1}˚ is defined by the following experiment:

(ppi, sti) ← PreSign() , for each i P SS ,

app ← PreAgg({pp1, . . . , ppn}) ,

(out i, sti) ← Sign(sti, app, ski, pki,m, {pkj}jP[n]z{i}) , for each i P SS ,

σ ← SignAgg({out1, . . . , outn}) ,

(3)

where each signer runs the algorithms PreSign and Sign; the aggregator node runs
the algorithms PreAgg and SignAgg and outputs the signature σ. The aggregator
node can be one of the signers and is untrusted in our security model. The
(deterministic) verification algorithm Ver(apk,m, σ) outputs a bit that indicates
whether or not σ is valid for apk and m or not. We say that MS is (perfectly)
correct if, for any m P {0, 1}˚, Pr[Ver(KeyAgg({pk1, . . . , pkn}),m, σ)] “ 1, where
σ is generated in the experiment in (3) and the probability is taken over the
sampling of the system parameter par , all key-pairs {(ski, pki)}iP[n].
Security. The security notion of multi-signatures considered in the prior
work [43] is referred to as MS-UF-CMA, which guarantees that it is not pos-
sible to forge a valid multi-signature that involves at least one honest party.
The MS-UF-CMA game for a multi-signature scheme MS is defined in Fig. 3,
where MS.HF denotes the space of the hash functions used in MS from which
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Game MS-UF-CMAA
MS(κ) :

par ← Setup(1κ)
H Ð$ MS.HF
(sk, pk) Ð$ KeyGen()
sid ← 0
S ← H ; S′ ← H ; Q ← H
(L, m, σ) ← ASign,Sign′,RO(par , pk)
If pk R L ^ (L, m) R Q

^ Ver(KeyAgg(L), m, σ) “ 1 then
Return 1

Return 0

Oracle PreSign() :

sid ← sid ` 1 ; S ← S Y {sid}
(pp, st(sid)) ← PreSign()
Return pp

Oracle Sign(k, app, m, L) :

If k R S then return K
out ← Sign(st(k), app, sk, m, L)
L ← L Y {pk}
Q ← Q Y {(L, m)}
S ← Sz{k} ; S′ ← S′ Y {k}
Return out

Oracle RO(x) :

Return H(x)

Fig. 3. The MS-UF-CMA game for a mutil signature scheme MS.

the random oracle is drawn. In the game, we assume the adversary corrupts
the aggregator node and all signers except one and can engage in any num-
ber of (concurrent) signing sessions with the honest party. The corresponding
advantage of A is defined as Advms-uf-cma

MS (A, κ) :“ Pr
[
MS-UF-CMAA

MS(κ) “ 1
]
.

Our Scheme. Figure 4 shows the scheme MuSig2-H, which is transformed from
MuSig2 [43] with the parameter ν “ 4, where ν denotes the number of nonces
generated in the first round of the signing protocol. In addition to the general
transformation, we do two optimizations to MuSig2-H. First, in KeyGen(), the
secret key sk is not sampled from D but from a subset Dkey Ď D such that F is
a bijection from Dkey to R. It can reduce the size of the secret key to the size
of the public key. Also, the range of each hash function is set to Shash instead
of S, where Shash is an arbitrary subset of S with size at least 2κ. Further, we
require the characteristic of the field S to be at least 2κ.

The original paper shows the unforgeability of MuSig2 under the AOMDL
assumption. Analogous to that, the following theorem shows that the security
of MuSig2-H[LHF] is implied by AOMPR of the underlying linear hash function
family LHF in the random oracle model.

Theorem 2. For any MS-UF-CMA adversary A making at most qs queries to
PreSign and qh queries to RO, there exists an AOMPR adversary B making
at most 4qs ` 1 queries to Chal running in time roughly four times that of A
such that

Advms-uf-cma
MuSig2-H[LHF](A, κ) ď 4

√
q3 ¨ Advaompr

LHF (B, κ) ` (16q2 ` 15)/2κ ,

where q “ qh ` qs ` 1.



640 S. Tessaro and C. Zhu

Setup(1κ) :

par ← PGen(1κ)
Return par

KeyGen() :

sk Ð$ Dkey ; pk ← F(sk)
Return (sk, pk)

KeyAgg(L) :

{pk1, . . . , pkn} ← L
For i P [n] do

ai ← Hagg(L, pki)
Return apk ← ∑

iP[n] aipki

Ver(apk, m, σ) :

c ← Hsig(apk, R, m) ; (R, s) ← σ
If F(s) “ R ` capk then return 1
Return 0

PreSign() :

For j P [4] do
rj Ð$ D ; Rj ← F(rj)

pp ← (R1, . . . , R4)
st ← (r1, . . . , r4)
Return (pp, st)

PreAgg({pp1, . . . , ppn}) :

For i P [n] do
(Ri,1, . . . , Ri,4) ← ppi

For j P [4] do
Rj ← ∑

iP[n] Ri,j

Return app ← (R1, . . . , R4)

Sign(st, app, sk, pk, m, L) :

(r1, . . . , r4) ← st
L ← L Y {pk}
apk ← KeyAgg(L)
a ← Hagg(L, pk)
(R1, . . . , R4) ← app
b ← Hnon(apk, (R1, . . . , R4), m)
R ← ∑

jP[4] b
j´1Rj

c ← Hsig(apk, R, m)
s ← ∑

jP[4] b
j´1rj ` ca ¨ sk

Return out ← (R, s)

SignAgg({out1, . . . , outn}) :

(R, s) ← out1
For i P [2..n] do

(Ri, si) ← out i

If Ri ‰ R then return K
s ← s ` si

Return σ ← (R, s)

Fig. 4. The multi-signature scheme MuSig2-H[LHF], where LHF “ (PGen,F) is a linear
hash function family. We assume n ď 2κ and |L| ď 2κ. Dkey is a subset of D such
that F is a bijection from Dkey to R. Further, Hagg(¨) :“ H(1, ¨), Hnon(¨) :“ H(2, ¨),
Hsig(¨) :“ H(3, ¨), where H : {0, 1}˚ Ñ Shash, Shash Ď S, and |Shash| ě 2κ. Moreover,
we require char(S) ě 2κ.

We prove the above theorem using the same techniques as used in the security
proof of MuSig2 [43] to construct B given an adversary A. Here, we briefly
highlight the differences:

– We need to show that B simulates the MS-UF-CMAMuSig2-H[LHF] game per-
fectly when no bad event occurs and that the bad events occur with a negligi-
ble probability (Claim 3 and Lemma 2) when the secret key is sampled from
Dkey instead of Zp, and the randomness rj is sampled from D instead of Zp.

– We need to show that B can compute a preimage for each challenge (Claim 4
and Claim 5) instead of the discrete logarithm to the base element. More
precisely, the problem can be described as follows. Denote the challenges by
U1, . . . , U� P R. After the interaction with A, B computes a matrix A P S�ˆ�



Threshold and Multi-signature Schemes from Linear Hash Functions 641

ForkA(x, v1, v
′
1, . . . , vq′ , v′

q′) :

Pick the random coin ρ of A at random
h1, h

′
1, . . . , hq, h

′
q ← H

(I, J, Out) ← A(x, h1, . . . , hq, v1, . . . , vq′ ; ρ)
If I “ K or J “ K then return K
(I ′, J ′, Out′) ← A(x, h1, . . . , hI´1, h

′
I , . . . , h′

q, v1 . . . , vJ´1, v
′
J , . . . , v′

q′ ; ρ)
If I �“ I ′ or hI “ h′

I then return K
Return (I, Out, Out′)

Fig. 5. The forking algorithm built from A for Lemma 1.

and a vector b P D� such that A ¨ U “ F(b), we need to show that A has full
rank and thus B can compute a vector u “ A´1b such that F(u) “ U .

Before turning to the proof, we first recall the following variant of the forking
lemma from [43] that will be used in the proof.

Lemma 1. Let q, q′ ě 1 be integers and H,V be two sets. Let A be a random-
ized algorithm that, on input x, h1, . . . , hq, v1, . . . , vq′ , outputs a tuple (I, J,Out),
where I P {K} Y [q], J P {K} Y [q′ ` 1] and Out is a side output. Let IG be a
randomized algorithm that generates x. The accepting probability of A is defined
as acc(A) “ Pr[(I, J,Out) Ð$ A(x, h1, . . . , hq, v1, . . . , vq′) : I ‰ K ^ J ‰ K] ,
where the probability is over x Ð$ IG, h1, . . . , hq Ð$ H, v1, . . . , vq′ Ð$ V and the
random coins of A. Consider algorithm ForkA described in Fig. 5. The accepting
probability of ForkA is defined as

acc(ForkA) “ Pr[α Ð$ ForkA(x, v1, v
′
1, . . . , vq′ , v′

q′) : α ‰ K] ,

where the probability is over x Ð$ IG, v1, v
′
1, . . . , vq′ , v′

q′ Ð$ V . Then,

acc(ForkA) ě acc(A)
(

acc(A)
q ´ 1

H

)
.

Proof. (of Theorem 2). Let A be an adversary as described in the theorem.
Denote the output message-signature pair of A as (L˚,m˚, σ˚ “ (R˚, z˚)). With-
out loss of generality, we assume A always queries RO on Hsig(apk˚,m˚, R˚)
before A returns, where apk˚ “ KeyAgg(L˚), and always queries RO on
Hnon(apk, (R1, . . . , R4),m) prior to each Sign(k, (R1, . . . , R4),m,L) query,
where apk “ KeyAgg(L). (This adds up to qs ` 1 additional RO queries, and we
let q “ qh ` qs ` 1.)

We first construct an algorithm C compatible with the syntax in Lemma 1,
then construct an algorithm C′ from ForkC , and finally construct B from ForkC′

.
The adversary C. The input of C consists of par , which defines a linear hash
function (S,D,R,F), and uniformly random elements h

(agg)
1 , . . . , h

(agg)
q , h

(sig)
1 ,

. . . , h
(sig)
q , h

(non)
1 , . . . , h

(non)
q P Shash. Also, C can access oracles Chal and PI,

defined the same way as those in the AOMPRLHF game. (We can think of this
oracle as part of C in the context of the Forking Lemma.) For simplicity, when
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C makes a query (X,α, {βi}) to PI, we omit the coefficients α, {βi} whenever
they are clear from the context.

To start with, C makes 4qs ` 1 queries to Chal and denotes the challenges
as X, U1, . . . , U4qs

P D. Then, C initializes H to an empty table. In addition, it
initializes counters ctrs,ctragg, ctrsig, ctrnon to 0 and a function dt to an empty
table, which are used to record the PI query related to each Uj .

We also use a flag BadKey, initially set to false, to denote whether a bad
event occurs. Then, C sets pk ← X and runs A(par , pk) with access to the oracles

˜PreSign, S̃ign, R̃O, which are simulated as follows.

R̃O query Hagg(x): If Hagg(x) ‰ K, C returns Hagg(x). Otherwise, parse x as
(L, p̃k). If the parsing fails, or X �P L, C sets Hagg(x) Ð$ Shash and returns
Hagg(x). Otherwise, C increases ctragg by 1, sets Hagg(L,X) ← h

(agg)
ctragg and

Hagg(L, pk′) Ð$ Shash for each pk′ P L and pk′ ‰ X. Let apk ← KeyAgg(L).
If apk P K, B sets BadKey ← true. Otherwise, C sets K ← K Y {apk} and
returns Hagg(x).

R̃O query Hnon(x): If Hnon(x) ‰ K, C returns Hnon(x). Otherwise, parse x

as (ãpk, (R1, . . . , R4),m). If the parsing fails, C sets Hnon(x) Ð$ Shash and
returns Hnon(x). Otherwise, C increases ctrnon by 1 and sets Hnon(x) ←
h
(non)
ctrnon

. Also, C computes R ← ∑
iP[4](h

(non)
ctrnon

)j´1Rj . If Hsig(ãpk, R,m) “ K,

C increases ctrsig by 1 and sets Hsig(ãpk, R,m) “ h
(sig)
ctrsig . Finally, C returns

Hnon(x).
R̃O query Hsig(x): If Hsig(x) ‰ K, C returns Hsig(x). Otherwise, parse x as

(ãpk, m, R). If the parsing fails, C sets Hsig(x) Ð$ Shash and returns Hsig(x).
Otherwise, C increases ctrsig by 1 and sets Hsig(x) ← h

(sig)
ctrsig . Finally, C sets

K ← K Y {ãpk} and returns Hsig(x).
˜PreSign(i) query: Same as in the game MS-UF-CMAMuSig2-H, except in the

simulation of algorithm Sign, C first increases ctrs by 1 and sets R1,i ←
Ui`4(ctrs´1) for i P [4].

S̃ign(k, app,m,L) query: Same as in the game MS-UF-CMAMuSig2-H, except in
the simulation of algorithm Sign′, C sets s ← PI(

∑
jP[4] b

j´1Ui`4(k´1)`ca¨pk),
and sets dt(k) ← (b, c, a, s).

After receiving the output (L˚,m˚, σ˚ “ (R˚, s˚)) from A, C returns K if
BadKey “ true or A does not win the game. Otherwise, C computes apk˚ ←
KeyAgg(L˚) and:

– Isig as the index such that Hsig(apk˚,m˚, R˚) is set to h
(sig)
Isig

;
– Jsig as the value of ctrnon when Hsig(apk˚,m˚, R˚) is assigned;
– Iagg as the index such that Hagg(L˚,X) is set to h

(agg)
Iagg

;
– Jagg as the value of ctrnon when Hagg(apk˚,m˚, R˚) is assigned.

Since A wins the game by our simulation, we know such Iagg and Isig must exist.
Then, C returns (Isig, Jsig,Out), where Out consists of all variables received or
generated by C.
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Analysis of C. To use Lemma 1, we define IG as the algorithm that sets par Ð$

PGen(1κ), uniformly samples h
(agg)
1 , . . . , h

(agg)
q P Shash, and returns (par , h

(agg)
1 ,

. . . , h
(agg)
q ). Also, (h(sig)

1 , . . . , h
(sig)
q ) plays the role of (h1, . . . , hq), and (h(non)

1 ,

. . . , h
(non)
q ) plays the role of (v1, . . . , vq′).

We now show that C simulates the game MS-UF-CMA perfectly. In the real
game, sk is uniformly sampled from Dkey, and, since F is a bijection from Dkey to
S, pk is uniformly distributed over S, which is identical to the simulation. Also,
it is clear that the output distributions of each R̃O query and each ˜PreSign

query are identical to those of the real game. For the simulation of S̃ign, from
the MS-UF-CMA game, we know that C makes at most one query to PI for
each session k. Therefore, from the AOMPR game, we know s1 is uniformly
distributed over the preimage of

∑
jP[4] b

j´1Ui`4(k´1) ` ca1 ¨ pk given the view of
the adversary, which is identical to the real game.

Therefore, since C simulates the game MS-UF-CMA perfectly, acc(C) ě
Advms-uf-cma

MuSig2-H[LHF](A) ´ Pr[BadKey], where Pr [BadKey] is the probability that
BadKey “ true at the end of C’s execution. By the following claim and Lemma 1,

acc(ForkC) ě (Advms-uf-cma
MuSig2-H[LHF](A) ´ (2q2 ` 1)/2κ)2/q ´ 1

|Shash|

ě (Advms-uf-cma
MuSig2-H[LHF](A))2

q
´ 4q ` 3

2κ
.

(4)

Claim 3. Pr[BadKey] ď 2q2`1
2κ .

Proof (of Claim 3). Consider a R̃O query Hagg(L, p̃k) from A such that X P L
and Hagg(L,X) is not assigned prior to the query. The aggregated key from L

can be represented as apk “ (X)t¨h(agg)
ctragg Z, where t is the number of times X

appears in L and Z :“ ∑
pkPL,pk‰X pkHagg(L,pk), which is independent of h

(agg)
ctragg .

BadKey is set to true if and only if apk P K. We use the following lemma, which
we show later, to bound the probability that apk P K.

Lemma 2. For any X P R and any integer t, denote C(t,X) :“ {(ts) ¨ X | s P
Shash}. We say X is Good if and only if |C(t,X)| “ |Shash| for any 1 ď t ď 2κ.
Then, we have PrX Ð$ R[X is not Good] ď 1/2κ.

Suppose X is Good. Given Z, since t ď 2κ, we have that apk is uniformly
distributed over the set {Y Z | Y P C(t,X)}, which has size |Shash|. Also, from
the execution, we have that |K| ď q ` qs ď 2q, and thus the probability that
BadKey is set to true after the query is at most |K| / |Shash| ď 2q/2κ. Since
there are at most q RO queries, the probability that BadKey is set to true
during the simulation is at most 2q2/2κ. Therefore, we have that Pr[BadKey] ď
Pr[X is not Good] ` Pr[BadKey ^ X is Good] ď 2q2`1

2κ . ��
Proof (of Lemma 2). For any 1 ď t ď 2κ, s1, s2 P S, and X P R such that
s1 ‰ s2 and X ‰ 0, since char(S) ě 2κ, we know that t ¨ (s1 ´ s2) ‰ 0 and thus
t ¨(s1 ´s2) ¨X ‰ 0, which implies ts1 ¨X ‰ ts2 ¨X. Therefore, |C(t,X)| “ |Shash|,
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which means that X is Good. Thus, we have that PrX←R[X is not Good] ď
PrX←R[X “ 0] “ 1

|R| ď 1/2κ. ��

Construct C′
from ForkC

. The input of C′ consists of par , which defines a lin-
ear hash function (S,D,R,F) and uniformly random elements h

(agg)
1 , . . . , h

(agg)
q

h
(non)
1 , h

(non)
1

′
, . . . , h

(non)
q , h

(non)
q

′ P Shash. Also, C′ can access oracles Chal

and PI defined the same way as those in the AOMPR game. To begin, C′ runs
ForkC(par , h

(agg)
1 , . . . , h

(agg)
q , h

(non)
1 , h

(non)
1

′
, . . . , h

(non)
q , h

(non)
q

′
). All queries to ora-

cle Chal from the first execution of C′ are relayed by B to its own Chal oracle,
and for all Chal queries from the second execution of C′, B answers them with
the same challenges as in the first execution. All PI queries from ForkC′

are
relayed by B to its own PI oracle.

After ForkC returns (Isig, Jsig,Out,Out′), by the following claim, C′ computes
x̃ such that F(x̃) “ apk˚ and returns (Iagg, Jagg, (x̃,Out,Out′)), where Iagg, Jagg,
and apk˚ are from Out.

Claim 4. If ForkC returns (Isig, Jsig,Out,Out′), C′ can compute x̃ such that
F(x̃) “ apk˚, where apk˚ is from Out.

Proof (of Claim 4). We directly use the notations in the description of
C to denote the variables in Out and use (¨)′ to denote the variables in
Out′. Since ForkC does not return K, we have Hsig(apk˚,m˚, R˚) “ hI ‰
h′

I “ H′
sig(apk

˚,m˚, R˚). Since the two executions of C are identical before
Hsig(apk˚,m˚, R˚) is assigned hI , we know (apk˚,m˚, R˚) “ (apk˚′

,m˚′, R˚′).
Therefore, we have F(s˚) “ R˚ ` hIapk

˚ and F(s˚′) “ R˚ ` h′
Iapk

˚, and C′

computes x̃ ← s˚´s˚′
hI ´h′

I
. ��

Analysis of C′
. To use Lemma 1, we define IG as the algorithm that sets

par Ð$ PGen(1κ) and returns par . Also, (h(agg)
1 , . . . , h

(agg)
q ) plays the role of

(h1, . . . , hq), and ((h(non)
1 , h

(non)
1

′
), . . . , (h(non)

q , h
(non)
q

′
)) plays the role of (v1, . . .

, vq′). It is clear that acc(C′) “ acc(ForkC). Therefore, by Lemma 1 and (4),
acc(ForkC′

) ě (acc(ForkC))2/q ´ 1
|Shash| ě (Advms-uf-cma

MuSig2-H[LHF](A))4/q3 ´ 15
2κ .

Construct B from ForkC′
. We now give a construct of the AOMPR adver-

sary B using ForkC′
and the available Chal and PI oracles. To start with, B

receives par from the AOMPRLHF game and uniformly samples h
(non)
1 , h

(non)
1

′
,

h
(non)
1

′′
, h

(non)
1

′′′
, . . . , h

(non)
q , h

(non)
q

′
, h

(non)
q

′′
, h

(non)
q

′′′ P Shash. Then, B runs ForkC′

on input par , (h(non)
1 , h

(non)
1

′
), (h(non)

1

′′
, h

(non)
1

′′′
), . . . , (h(non)

q , h
(non)
q

′
), (h(non)

q

′′
,

h
(non)
q

′′′
), where (h(non)

i , h
(non)
i

′
) plays the role of vi and (h(non)

i

′′
, h

(non)
i

′′′
) plays

the role of v′
i. All Chal queries from the first execution of C′ are relayed by B

to its own Chal oracle, and, for all Chal queries from the second execution
of C′, B answers them with the same challenges as the first execution. All PI
queries from ForkC′

are relayed by B to its own PI oracle. Without loss of gener-
ality, we can assume all challenges are different since otherwise B can solve them
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trivially. Denote the event BadHash as any two of the scalars h
(non)
1 , h

(non)
1

′
,

h
(non)
1

′′
, h

(non)
1

′′′
, . . . , h

(non)
q , h

(non)
q

′
, h

(non)
q

′′
, h

(non)
q

′′′
are same. Since they are

sampled uniformly from Shash, we know Pr[BadHash] ď (4q)2/ |Shash| ď 16q2

2κ .
Then, we can conclude the proof with the following claim, which implies
Advaompr

LHF (B) ě acc(ForkC)´Pr[BadHash] ě (Advms-uf-cma
MuSig2-H[LHF](A))4/q3 ´ 16q2`15

2κ .

Claim 5. If ForkC′
returns (Iagg, Jagg,Out,Out′) and BadHash does not occur,

B can win the game AOMPRLHF.

��
Proof (proof of Claim 5). Denote (x̃,Out(1),Out(2)) ← Out and (x̃′, Out(3),
Out(4)) ← Out′, and we use (¨)(i) to denote the variables in Out(i). The
total number of Chal queries is 4qs ` 1, and the corresponding challenges are
X,U1, . . . , U4qs

.
We first show how to compute x˚ such that F(x˚) “ X. Since ForkC′

returns

Iagg, we have H(1)
agg(L˚(1),X) “ h

(agg)
Iagg

‰ h
(agg)
Iagg

′ “ H(3)
agg(L˚(3),X). Since the two

executions of C are identical before Hsig is assigned h
(agg)
Iagg

, we have L˚(1) “ L˚(3)

(we denote L˚(1) as L˚ from here forward) and H(1)
agg(L˚, pk′) “ H(3)

agg(L˚, pk′)
for any pk′ P L˚ and pk′ ‰ X. Therefore, the aggregated keys from L˚ in the
two execution can be represented as apk˚(1) “ t ¨ h

(agg)
Iagg

¨ X ` Z , apk˚(3) “
t ¨ h

(agg)
Iagg

′ ¨ X ` Z, where t is the number of times X appears in L˚ and Z :“
∑

pk′PL˚,pk′‰X H(1)
agg(L˚, pk) ¨pk′ . By Claim 4, F(x̃) “ apk˚(1) and F(x̃′) “ apk˚(3).

Therefore, B computes x˚ “ x̃´x̃′

t(h
(agg)
Iagg

´h
(agg)
Iagg

′
)
.

We now show how to compute u1, . . . , u4qs
such that F(ui) “ Ui. For k P [qs],

dt(i)(k) “ (b, c, a, s) ‰ K if and only if C queries PI on
∑

jP[4] b
j´1Ui`4(k´1) `

ca ¨ X. Define a set T :“ {(b, c ¨ a, s) : i P [4], dt(i)(k) “ (b, c, a, s)}. The
total number of PI queries for simulating those PI queries from C is equal
to |T |. From the execution of B, we know for any i1, i2 P [4] and i1 ‰ i2,
where (b, c, a, s) “ dt(i1)(k) and (b′, c′, a′, s′) “ dt(i2)(k), if b “ b′, then we have
(b, c, a, s) “ (b′, c′, a′, s′). Therefore, we know for any distinct (b, v, s), (b′, v′, s′) P
T , it holds that b ‰ b′. Also, we have |T | ď 4. If |T | ă 4, B picks an arbitrary
b′ P Shashz{b : (b, v, s) P T} and sets s′ ← PI

(∑
jP[4] b

′j´1
Ui`(4´1)k

)
. Then, B

adds (b′, 0, s′) to T and repeats this until T has size 4. Denote the elements in
T as (b1, v1, s1), . . . , (b4, v4, s4), and we have AU “ F(s), where

A “
⎛

⎜
⎝

1 b1 b21 b31
...

...
...

...
1 b4 b24 b34

⎞

⎟
⎠ , U “

⎛

⎜
⎝

U1`4(k´1)

...
U4k

⎞

⎟
⎠ , s “

⎛

⎜
⎝

s1 ´ v1x
˚

...
s4 ´ v4x

˚

⎞

⎟
⎠ .

Since A is a Vandermonde matrix over the field S, A has full rank. Therefore, B
can compute (u1`(k´1)4, . . . , uk4)T “ A´1s. Also, the number of PI queries for
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simulating the PI queries from C and computing T is equal to 4. Therefore, the
total number of PI queries made by B is 4qs, which implies B wins the game
AOMPRLHF. ��

4.2 Threshold Signatures

FROST1 [37] and a more efficient version FROST2 [6] of FROST1 are (partially)
non-interactive threshold signature schemes as formalized in [6]. We first give the
syntax and security definitions of non-interactive threshold signature schemes
following [6], then present new schemes based on LHF that are transformed from
FROST1/2, and finally show the security of the new schemes under the AOMPR
assumption.
Syntax. A (partially) non-interactive threshold signature schemes for n sign-
ers and threshold t is a tuple of efficient (randomized) algorithms TS “ (Setup,
KeyGen, SPP, LPP, LR,PS,Agg,Vf) that behave as follows. Parties involved are
a leader and n signers. The setup algorithm Setup(1κ) initializes the state sti
for each signer i P [n] and st0 for the leader and returns a system parameter
par . We assume par is given to all other algorithms implicitly. The key gener-
ation algorithm KeyGen() returns a public verification key pk, public auxiliary
information aux, and a secret key ski for each signer i.

The signing protocol consists of two rounds: a message-independent pre-
processing round and a signing round. In the pre-processing round, any signer
i can run SPP(sti) to generate a pre-processing token pp, which is sent to the
leader, and the leader runs LPP(i, pp, st0) to update its state st0 to incorporate
token pp. In a signing round, for any signer set SS Ď [n] with size t and message
m P {0, 1}˚, the leader runs LR(m,SS , st0) to generate a leader request lr with
lr .msg “ m and lr .SS “ SS and sends lr to each signer i P SS . Then, each
signer i runs PS(lr , i, sti) to generate its partial signature psig i. Finally, the
leader computes a signature σ for m by running Agg({psig i}iPSS ). In summary,
the signing protocol between signers in SS and the leader to sign a message
m P {0, 1}˚ is represented by the following experiment:

(ppi, sti) ← SPP() , st0 ← LPP(i, ppi, st0) , for each i P SS ,

(lr , st0) ← LR(m,SS , st0) ,

(psig i, sti) ← PS(lr , i, sti) , for each i P SS ,

σ ← Agg({psig i}iPSS ) .

(5)

The (deterministic) verification algorithm Vf(pk,m, σ) outputs a bit that indi-
cates whether or not σ is valid for pk and m or not. We say that TS is (perfectly)
correct if for any SS Ď [n] and any m P {0, 1}˚, Pr[Vf(pk,m, σ)] “ 1, where σ is
output from the experiment in (5) and the probability is taken over the sampling
of the system parameter par and the randomness of KeyGen.
Security. A hierarchy for security notions of threshold signatures is pro-
posed in [6]. Here, we focus on two of them, TS-SUF-2 and TS-SUF-3, which
are achieved by FROST2 and FROST1, respectively. TS-SUF-2 and TS-SUF-3
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require that there exists an efficient strong verification algorithm SVf that takes
as input a public key pk, a leader request lr , and a signature σ and outputs a
bit that indicates whether σ is obtained legitimately for lr . SVf satisfies that for
each (pk, lr), there exists at most one signature σ such that SVf(pk, lr , σ) “ 1
and for any SS Ď [n] and any m P {0, 1}˚, Pr[SVf(pk, lr , σ)] “ 1, where lr and
σ are generated in the experiment in (5) and the probability is taken over the
sampling of the system parameter par and the randomness of KeyGen. TS-SUF-2
guarantees that an adversary can generate a valid signature σ for m only if it
receives partial signatures from at least t ´ |CS | honest parties for the same
leader request lr such that lr .msg “ m and SVf(pk, lr , σ) “ 1, where CS denotes
the set of corrupted signers.

TS-SUF-3 is defined only for schemes where lr additionally specifies a func-
tion lr .PP that maps each i P lr .SS to a pre-processing token generated by signer
i. TS-SUF-3 guarantees that an adversary can generate a valid signature σ for
m only if, in addition to the condition of TS-SUF-2, it receives partial signatures
from each honest signer i such that lr .PP(i) is honestly generated by signer i for
lr . Formally, the TS-SUF-2 game and the TS-SUF-3 game are defined in Fig. 6,
where TS.HF denotes the space of the hash functions used in TS from which the
random oracle is drawn. The advantage of A for the TS-SUF-X game is defined
as Advts-suf-XTS (A, κ) :“ Pr

[
TS-SUF-XA

TS(κ) “ 1
]

for X P {2, 3}.
Our Schemes. Figure 7 shows the protocols FROST1-H and FROST2-H that
are transformed from FROST1 and FROST2, respectively. In addition to the
general transformation, we need to pick an injection x(¨) : [n] Ñ S. The choice of
x(¨) can be arbitrary, and the corresponding Lagrange coefficient for a set of index
S Ď [n] and i P S is defined as λS

i :“ ∏
jPSz{i}

xj

xi´xj
. We analyse the correctness

of the scheme in the full version of this paper. Also, similar to the multi-signature
case, we optimize the schemes by sampling key shares from Dkey Ď D and setting
the hash range to be Shash Ď S.

The following theorems show that, under the AOMPR assumption,
FROST2-H is TS-SUF-2-secure and FROST1-H is TS-SUF-3-secure in the ran-
dom oracle model. We prove the theorems in the full version of this paper.

Theorem 3. For any TS-SUF-2 adversary A game making at most qs queries
to PPO and qh queries to RO, there exists an AOMPR adversary B making at
most 2qs ` t queries to Chal running in time roughly equal two times that of
A such that Advts-suf-2FROST2-H[LHF](A, κ) ď √

q ¨ (Advaompr
LHF (B, κ) ` (3q2)/2κ) , where

q “ qh ` qs ` 1.

Theorem 4. For any TS-SUF-3 adversary A making at most qs queries to
PPO and qh queries to RO, there exists an AOMPR adversary B making at
most 2qs ` t queries to Chal running in time roughly equal two times that of
A such that Advts-suf-3FROST1-H[LHF](A, κ) ď 4n ¨ q ¨ √(Advaompr

LHF (B, κ) ` 6q/2κ) , where
q “ qh ` qs ` 1.
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Game TS-SUF-2A
TS(κ) , TS-SUF-3A

TS(κ) :

par ← Setup(1κ) ; H Ð$ TS.HF
L ← H ; S ← () ; S′ ← ()
(m, σ) ← AInit,PPO,PSignO,RO(par)
If (Vf(pk, m, σ) ‰ 1) then return 0

Return (not Dlr : lr .msg “ m ^ SVf(pk, lr , σ)

^ |S(lr)| ě t ´ |CS |)
For lr P L do

S′(lr) ← {i P HS ∩ lr .SS : lr .PP(i) P PPi}
Return (not Dlr : lr .msg “ m ^ SVf(pk, lr , σ)

^ |S(lr)| ě max{S′(lr), t ´ |CS |})

Oracle Init(CS) :

HS ← [n]zCS
(pk, aux, sk1, . . . , skn) ← KeyGen()
For i P HS do

sti.sk ← ski ; sti.pk ← pk ; sti.aux “ aux

Return pk, aux, {ski}iPCS

Oracle PPO(i) :

Require: i P HS
(pp, sti) Ð$ SPP(sti)
PPi ← PPi Y {pp}
Return pp

Oracle PSignO(i, lr) :

m ← lr .msg
Require: lr .SS Ď [n] and
i P HS
L ← L Y {lr}
(psig , st′i) Ð$ PS(lr , i, sti)
If (psig ‰ K) then

S(lr) ← S(lr) Y {i}
Return psig

Oracle RO(x) :

Return H(x)

Fig. 6. The TS-SUF-2 game and the TS-SUF-3 game for a threshold signature scheme
TS. The TS-SUF-2 game contains all but the dashed box, and the TS-SUF-3 game
contains all but the solid box.

5 Instantiations

5.1 Instantiations from the Discrete Logarithm Problem

Discrete Logarithm Problem. The discrete logarithm problem is formal-
ized by the DLog game defined in the left side of Fig. 8. The group generation
algorithm GGen(1κ) outputs (G, p, g), where G is a cyclic group with prime
size p ě 2κ and generator g. The corresponding advantage of A is defined as
AdvdlogGGen(A, κ) :“ Pr

[
DLogA

GGen “ 1
]
.

Instantiation. Following the instantiation from [30], a linear hash function
family GLHF is instantiated from a group generation algorithm GGen as follows.

– On input 1κ, PGen runs GGen(1κ) and receives a group description (G, p, g).
Then, PGen uniformly samples Z P G and returns κ ← (G, p, g, Z).

– Given κ “ (G, p, g, Z), define S :“ Zp , D :“ Z
2
p , R :“ G . Also, for any

(x1, x2) P Z
2
p, define F(x1, x2) :“ gx1Zx2 .

– The operation over D is defined as follows. For any (x1, y1), (x2, y2) P D and
s P S, (x1, y1) ` (x2, y2) “ (x1 ` x2, y1 ` y2) and s ¨ (x1, y1) “ (sx1, sy1).

– The operation over R is defined as follows. For any x1, x2 P R and s P S,
x1 ` x2 “ x1x2 , s ¨ x1 “ xs

1, where x1x2 and xs
1 are the group operations

of G.
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Setup(1κ) :

par Ð$ PGen(1κ)
For i P [n] do

st0.curPPi ← H
sti.mapPP ← ()

Return par

KeyGen() :

For i P [0..t ´ 1] do
ai Ð$ Dkey

For i P [n] do
ski Ð$

∑t´1
j“0 aj ¨ xj

i ; pki ← F(ski)
pk ← F(a0)
aux ← (pk1, . . . , pkn)
Return pk, aux, {ski}iP[1..n]

SPP(sti) :

r Ð$ D ; s Ð$ D
pp ← (F(r),F(s))
sti.mapPP(pp) ← (r, s)
Return (pp, sti)

LPP(i, pp, st0) :

st0.curPPi ← st0.curPPi Y {pp}
Return st0

LR(M,SS , st0) :

If D i P SS : st0.curPPi “ H then
Return K

lr .msg ← M ; lr .SS ← SS
For i P SS do

Pick ppi from st0.curPPi

lr .PP(i) ← ppi

st0.curPPi ← st0.curPPiz{ppi}
Return (lr , st0)

Vf(pk, m, σ) :

(R, s) ← σ
c ← H2(pk, m, R)
Return (F(s) “ R ` c ¨ pk)

CompPar(pk, lr) :

m ← lr .msg ; (R˚, s˚) ← σ
For i P lr .SS do

di ← H1(pk, lr , i)

di ← H1(pk, lr)

(Ri, Si) ← lr .PP(i)
R ← ∑

iPlr.SS(Ri ` diSi)
c ← H2(pk, M, R)
Return (R, c, {di}iPlr.SS)

PS(lr , i, sti) :

ppi ← lr .PP(i)
If sti.mapPP(ppi) “ K then

Return (K, sti)
(ri, si) ← sti.mapPP(ppi)
sti.mapPP(ppi) ← K
(R, c, {dj}jPlr.SS)

← CompPar(sti.pk, lr)
zi ← ri ` di ¨ si ` c ¨ λlr.SS

i ¨
sti.sk
Return ((R, zi), sti)

Agg(PS, st0) :

R ← K ; z ← 0
For (R′, z′) P PS do

If R “ K then R ← R′

If R �“ R′ then return
(K, st0)

z ← z ` z′

Return ((R, z), st0)

SVf(pk, lr , σ) :

(R˚, z˚) ← σ
(R, c, {dj}jPlr.SS)

← CompPar(sti.pk, lr)
Return (R “ R˚) ^
(F(z˚) “ R ` c ¨ pk

Fig. 7. The protocol FROST1-H[LHF] and FROST1-H[LHF], where LHF “ (PGen,F) is
a linear hash function family. The protocol FROST1-H contains all but the dashed box,
and the protocol FROST2-H contains all but the solid box. Further, n is the number
of parties, and t is the threshold of the schemes. x(¨) is an injection from [n] to S and
λlr.SS

i denotes the Lagrange coefficient which is computed as λlr.SS
i :“ ∏

jPSz{i}
xj

xj´xi
.

Dkey is a subset of D such that F is a bijection between Dkey and S. The function Hi(¨)
is computed as H(i, ¨) for i “ 1, 2, where H : {0, 1}˚ Ñ S.
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Game DLogA
GGen(κ) :

(G, p, g) Ð$ GGen(1κ)
Z Ð$ G

z Ð$ A(G, p, g, Z)
If gz “ Z then

Return 1
Return 0

Game RSAA
RGen(κ) :

(N, e) Ð$ RGen(1κ)
w Ð$ ZN̊

u Ð$ A(N, e, w)
If ue “ w then

Return 1
Return 0

Fig. 8. The DLog game and the RSA game.

The following theorem shows that GLHF is a linear hash function family and
collision resistance of GLHF is implied by the discrete logarithm assumption. [30]
shows similar statements, and we also give the proof in the full version of this
paper.

Lemma 3. For any group generation algorithm GGen, GLHF[GGen] is a lin-
ear hash function family (Definition 1). Moreover, for any adversary A for the
CRGLHF[GGen] game, there exists an adversary B for the DLogGGen game such that
AdvcrGLHF[GGen](A, κ) ď AdvdlogGGen(B, κ).

To instantiate MuSig2-H, FROST1-H, and FROST2-H, we set Dkey :“
{(x, 0) : x P Z} and Shash :“ S. It is clear that char(S) “ p ě 2κ, F is
a bijection from Dkey to R, and |Shash| “ |S| ě 2κ. Also, for instantiating
FROST1-H and FROST2-H, we set xi :“ i.

By combining Theorem 1 and Lemma 3 with the theorems in Sect. 4, we show
the security of MuSig2-H, FROST1-H, and FROST2-H instantiated from GLHF
under the discrete logarithm assumption in the random oracle model.

5.2 Instantiations from the RSA Problem

RSA Problem. The RSA problem we use here is formalized by the RSA game
defined on the right side of Fig. 8. The RSA parameter generation algorithm
RGen(1κ) outputs (N, e), where N “ P ¨ Q for two primes P and Q and e is
a prime such that gcd(N, e) “ gcd(φ(N), e) “ 1 such that φ(N) ě 2κ and
e ě 2κ.1 The corresponding advantage of A is defined as AdvrsaRGen(A, κ) :“
Pr

[
RSAA

RGen “ 1
]
.

Instantiation. To instantiate linear hash function families from the RSA prob-
lem, we have to use a weaker notion, referred to as weak linear hash functions,
which are the same as linear hash functions except that S is only required to
be a ring instead of a field. Formally, we construct a weak linear hash function
family, RLHF, from an RSA parameter generation algorithm RGen as follows.

1 Comparing this to the plain RSA problem, here we additionally require that e is
prime such that gcd(N, e) “ 1 and e ě 2κ.
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– On input 1κ, PGen runs RGen(1κ) and receives (N, e). Then, PGen uniformly
samples w P ZN̊ and returns par ← (N, e,w).

– Given par “ (N, e,w), define S :“ Z , D :“ Ze ˆ ZN̊ , R :“ ZN̊ . Also, for
any (a, x) P Ze ˆ ZN̊ , define F(a, x) :“ waxe P ZN̊ .

– The operations of D are defined as follows. For any (a1, x1), (a2, x2) P D
and s P S, (a1, x1) ` (a2, x2) “ (a1 ` a2, x1x2w

�(a1`a2)/e�) and s ¨ (a1, x1) “
(sa1, x

s
1w

�sa1/e�), where a1 ` a2 and sa1 are computed over Ze.
– The operations of R are defined as follows. For any x1, x2 P R and s P S,

x1 ` x2 “ x1x2 , s ¨ x1 “ xs
1, where x1x2 is the multiplicative operation over

ZN̊ and xs
1 is the exponential operation over ZN̊ . Note here and also in the

following discussion, we use “`” to denote the group operation of R instead
of the additive operation over Z and “¨” to denote the scalar multiplicative
operation of R instead of the multiplicative operation over Z.

The preceding instantiation is similar to the one from [30]. The only difference
is that we set S to Z in order to make both D and R to be S-modules. The
following theorem shows that RLHF is a weak linear hash function family and
collision resistance of RLHF is implied by the RSA assumption. We give the proof
in the full version of this paper.

Lemma 4. For any RSA parameter generation algorithm RGen, RLHF[RGen]
is a weak linear hash function family. Moreover, for any adversary A for the
CRRLHF[RGen] game, there exists an adversary B for the RSARGen game such that
AdvcrRLHF[RGen](A, κ) ď AdvrsaRGen(B, κ).

Reduction from CR to AOMPR. Unfortunately, Theorem 1 does not hold
for weak linear hash functions: in the proof of Claim 1, if S is not a field, it is
possible that there does not exist u satisfying the condition in (2). Nonetheless,
we can show for RLHF that the reduction still works. Formally, we have the
following theorem.

Theorem 5. For any adversary A for the AOMPRRLHF game, there exists an
adversary B for the CRRLHF game running in a similar running time as A such
that Advaompr

RLHF (A, κ) ď 2AdvcrRLHF(B, κ).

Proof (of Theorem 5). We prove the above theorem following the proof of Theo-
rem 1, where the only difference is that in the proof of Claim 1, we need to show
the following fact:

There exists z˚ P D such that F(z˚) “ 0, and, for any matrix B P S�ˆq

with � ă q, there exists a vector u P Sq and i P [q] such that Bu “ 0
and uiz

˚ ‰ 0, where 0 denotes the identity of D and R and the additive
identity of S.

We prove the above fact for RLHF as follows. Given the parameter (N, e,w)
that defines (S,D,R,F), the identity of D is (0, 1), and the identity of R is 1.
We first set z˚ “ (e ´ 1, w1´1/e), where 1/e denotes the multiplicative inverse
of e over Zφ(N). 1/e exists since gcd(φ(N), e) “ 1. We can verify that F(z˚) “
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we´1`e(1´1/e) “ 1. Since � ă q, we can always find a non-zero vector v P Z

such that Bv “ 0 using Gaussian eliminations. Denote k :“ gcd({vi}iP[q]). Let
u “ v/k, and we have gcd({ui}iP[q]) “ 1. Therefore, there exists i P [q] such that
ui ı 0 mod e and thus uiz

˚ ‰ (0, 1). Since Bu ¨ k “ Bv “ 0 and k ‰ 0, we know
Bu “ 0. ��

Solving Linear Equations. Another issue with weak linear hash functions
is that it is unclear how to invert challenges X P R given AX “ F(b), where
A P Snˆn and b P Dn, which is a common problem we encounter in the security
proofs in Sect. 4. In these proofs, to solve this problem, we show A has full rank
and then, since S is a field, we can compute x P Dn such that F(x) “ X by
multiplying the inverse of A on both sides of the equation. However, in the case
of weak linear hash functions, A might not have an inverse.

Fortunately, for RLHF, we show that such linear equations can be solved
efficiently if A has full rank modulo e, which is formally stated in the following
lemma.

Lemma 5. For any integer n ě 1 and any parameter par “ (N, e,w) for RLHF,
which defines (S,D,R,F), given A P Snˆn, X P Rn, and b P Dn such that A
has full rank modulo e and AX “ F(b), there exists an efficient algorithm with
input (A,X, b) that outputs x P Dn such that F(xi) “ Xi.

Proof. We compute x as follows.

1. Since A has full rank modulo e and e is a prime, we can efficiently compute
the inverse of A modulo e as A′.

2. Set C ← A′A. Since A′ is the inverse of A modulo e, we know for any i, j P [n],

Ci,j ≡
{

1 mod e, for i “ j

0 mod e, o.w .
.

3. Set b′ ← A′b and xi ← b′
i ´ ∑

jP[n] �Ci,j/e� ¨ (0,Xj) for each i P [n].

Since AX “ F(b), we have CX “ A′AX “ A′F(b) “ F(A′b) “ F(b′), which
implies F(b′

i) “ ∑
jP[n] Ci,jXj “ ∏

jP[n] X
Ci,j

j . Therefore, due to the above prop-

erty of C, for i P [n], F(xi) “ F(b′
i) ´ ∑

jP[n] X
e�Ci,j/e�
j “ ∏

jP[n] X
Ci,j´e�Ci,j/e�
j “

Xi. ��

Dkey and Shash. For instantiating MuSig2-H, FROST1-H, and FROST2-H from
RLHF, we set Dkey :“ {(0, x) | x P ZN̊} and Shash :“ Z2κ . It is clear that F is
bijection from Dkey to R and |Shash| ě 2κ.

5.3 Multi-signatures from RSA

To instantiate MuSig2-H from RLHF, we additionally require that for N “ P ¨Q,
P is a safe prime and P ą 2κ`1 for the security proof to go through. We discuss
how to remove this requirement later in this section. To show the security, we
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prove Theorem 2 holds if LHF is replaced by RLHF. Combining it with Theo-
rem 5 and Lemma 4 shows the security of RLHF-based MuSig2-H under the RSA
assumption in the random oracle model.

We now show the proof of Theorem 2 for the case LHF “ RLHF by discussing
only those places that differ from the original proof of Theorem 2.

Proof (of Theorem 2 for RLHF). We follow the original proof of Theorem 2 to
construct the adversary B. Then, we just need to show that Claim 3, Claim 4,
and Claim 5 hold.

Proof (of Claim 3 for RLHF). We only need to show that Lemma 2 holds for
RLHF, and the rest is the same as the original proof of Claim 3. Denote r P ZP̊ as
the primitive root of ZP̊ . For any X P ZN̊ “ R, there exists k P ZP̊ ´1 such that
X ≡ rk mod P . Suppose k ‰ P ′. For any 1 ď t, s ď 2κ ă P ′ and any 1 ď s ă
P ′, we have (X)ts ≡ rkts ı r0 mod P , which implies (X˚)t¨s1 ‰ (X˚)t¨s2 for any
distinct s1, s2 P Z2κ “ Shash. Therefore, we have |C(t,X)| “ |Shash|. Therefore,
X is Good if X ı rP ′

mod P . Therefore, we have PrX Ð$ R[X is not Good] ď
PrX Ð$ Z

˚
N

[X ≡ rP ′
mod P ] ď 1/(P ´ 1) ď 1/2κ. ��

Proof (of Claim 4 for RLHF). Following the original proof of Claim 4, we have
F(s˚) “ R˚ ` hI ¨ apk˚ and F(s˚′) “ R˚ ` h′

Iapk
˚, which implies (hI ´ h′

I) ¨ apk˚ “
F(s˚ ´ s˚′). Assume h′

I ă hI without loss of generality. Since hI , h
′
I P Shash “

Z2κ Ď Ze, we have 1 ď hI ´ h′
I ă e. Therefore, C′ computes x̃ using Lemma 5

for the case n “ 1. ��
Proof (of Claim 5 for RLHF). The total number of Chal queries made by B
is 4qs ` 1 and the corresponding challenges are X,U1, . . . , U4qs

. We follow the
original proof to show how B computes x˚, u1, . . . , u4qs

such that F(x˚) “ X and
F(ui) “ Ui for i P [4qs].

To compute x˚, following the original proof, we have F(x̃) “ t ¨ h
(agg)
Iagg

¨ X `
Z , F(x̃′) “ t ¨ h

(agg)
Iagg

′ ¨ X ` Z, where h
(agg)
Iagg

‰ h
(agg)
Iagg

′ P Shash “ Z2κ , 1 ď
t ď 2κ, and Z P R. Therefore, we have t(h(agg)

Iagg
´ h

(agg)
Iagg

′
) ¨ X “ F(x̃ ´ x̃′).

Assume h
(agg)
Iagg

′ ă h
(agg)
Iagg

without loss of generality. We have 1 ď t ď 2κ ă e and

1 ď (h(agg)
Iagg

´ h
(agg)
Iagg

′
) ď 2κ ă e, which implies t(h(agg)

Iagg
´ h

(agg)
Iagg

′
) ı 0 mod e.

Therefore, B computes x˚ using Lemma 5 for the case n “ 1.
For each k P [qs], to compute u1`4(k´1), . . . , u4k, following the original proof,

we have AU “ F(s), where

A “
⎛

⎜
⎝

1 b1 b21 b31
...

...
...

...
1 b4 b24 b34

⎞

⎟
⎠ , U “

⎛

⎜
⎝

U1`4(k´1)

...
U4k

⎞

⎟
⎠ , s “

⎛

⎜
⎝

s1
...
s4

⎞

⎟
⎠ . (6)

Also, bi P Shash “ Z2κ Ď Ze for i P [4], and b1, . . . , b4 differ from each other.
Therefore, A is a Vandermonde matrix modulo e, which implies A has full rank
modulo e. Therefore, B can compute u1`4(k´1), . . . , u4k using Lemma 5 for the
case n “ 4. Then, the rest follows from the original proof. ��
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Removing the safe-prime requirement. We briefly mention how to remove
the safe-prime requirement by slightly modifying MuSig2-H as follows. Denote
the modified schemes as MuSig2-HR. MuSig2-HR is identical to MuSig2-H except:

– In algorithm KeyAgg(L), it additionally computes a0 ← H′(L), where H′(L) :
{0, 1}˚ Ñ Dkey, and sets apk ← F(a0) ` ∑

iP[n] aipki.
– In algorithm Sign, after s is assigned, it additionally computes a0 ← c ¨ H′(L)

and returns (R, a0, s).
– In algorithm SignAgg({(R(1), a

(1)
0 , s(1)), . . . , (R(n), a

(n)
0 , s(n))}), it checks if

(R(1), a
(1)
0 ), . . . , (R(n), a

(n)
0 ) are all the same. If not, it aborts. Otherwise, it

returns σ ← (R(1), a
(1)
0 ` ∑

iP[n] s
(i)).

We can show the security of MuSig2-HR following the proof of Theorem 2
for RLHF. The only difference is the proof of Claim 3, which is also the only
place where we need the safe-prime condition. Claim 3 essentially shows that for
any new RO query Hagg(L, p̃k), the probability that apk ← KeyAgg(L) collides
with the set K of existing aggregated keys is small. We can easily show it for
MuSig2-HR since, for any new L in the random oracle model, H′(L) is uniformly
random over Dkey; thus, apk ← KeyAgg(L) is uniformly random over R even
given previous queries, which implies the collision probability is small.

5.4 Threshold Signatures from RSA

To instantiate FROST1-H and FROST2-H from RLHF, the only difficulty is that
the Lagrange coefficient λS

i might not be defined in S “ Z for S Ď [n]. To fix
this, we set xi “ i for i P [n] and modify the schemes as follows.

Denote the modified schemes as FROST1-HR and FROST2-HR. Define λ̃S
i :“

rΔ ¨ λlr .SS
i , where Δ “ n! and r P Ze̊ is the multiplicative inverse of Δ modulo

e. FROST1-HR/FROST2-HR is identical to FROST1-H/ FROST2-H except:

– In algorithm PS, the Lagrange coefficient λS
i is replaced by λ̃S

i , and (R, c, zi)
is returned as a partial signature.

– In algorithm Agg, we additionally set z̃ ← z´(ck) ¨(0, pk), where k “ �rΔ/e�,
and return (R, z̃) as the signature.

It is not hard to show the correctness of the schemes. Since the denominator
of λS

i , which is equal to
∏

jPS(i ´ j), divides i!(n ´ i)! and thus divides Δ, we
know λ̃S

i P Z. Also, for a leader request lr , if each signer i in lr .SS follows the
protocol to compute the partial signature (R, c, zi), we have F(z) “ R`(crΔ)¨pk,
where z “ ∑

iPlr .SS zi. Since r is the multiplicative inverse of Δ modulo e, we
have rΔ “ ke ` 1. Since F(0, pk) “ pke, we have F(z̃) “ R ` c ¨ pk, which implies
(R, z̃) is a valid signature.

We show the security of FROST2-HR and FROST1-HR under the RSA
assumption in the random oracle model by showing Theorem 3 and Theorem 4
hold for RLHF and combining them with Theorem 5 and Lemma 4. We give a
more detailed analysis in the full version of this paper.
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