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Abstract. The beautiful work of Applebaum, Ishai, and Kushilevitz
[FOCS’11] initiated the study of arithmetic variants of Yao’s garbled cir-
cuits. An arithmetic garbling scheme is an efficient transformation that
converts an arithmetic circuit C : Rn → Rm over a ring R into a garbled
circuit ̂C and n affine functions Li for i ∈ [n], such that ̂C and Li(xi)
reveals only the output C(x) and no other information of x. AIK pre-
sented the first arithmetic garbling scheme supporting computation over
integers from a bounded (possibly exponentially large) range, based on
Learning With Errors (LWE). In contrast, converting C into a Boolean
circuit and applying Yao’s garbled circuit treats the inputs as bit strings
instead of ring elements, and hence is not “arithmetic”.

In this work, we present new ways to garble arithmetic circuits, which
improve the state-of-the-art on efficiency, modularity, and functionality.
To measure efficiency, we define the rate of a garbling scheme as the
maximal ratio between the bit-length of the garbled circuit | ̂C| and that
of the computation tableau |C|� in the clear, where � is the bit length of
wire values (e.g., Yao’s garbled circuit has rate O(λ)).

– We present the first constant-rate arithmetic garbled circuit for
computation over large integers based on the Decisional Compos-
ite Residuosity (DCR) assumption, significantly improving the effi-
ciency of the schemes of Applebaum, Ishai, and Kushilevitz.

– We construct an arithmetic garbling scheme for modular computa-
tion over R = Zp for any integer modulus p, based on either DCR or
LWE. The DCR-based instantiation achieves rate O(λ) for large p.
Furthermore, our construction is modular and makes black-box use
of the underlying ring and a simple key extension gadget.

– We describe a variant of the first scheme supporting arithmetic
circuits over bounded integers that are augmented with Boolean
computation (e.g., truncation of an integer value, and comparison
between two values), while keeping the constant rate when garbling
the arithmetic part.

To the best of our knowledge, constant-rate (Boolean or arithmetic) gar-
bling was only achieved before using the powerful primitive of indistin-
guishability obfuscation, or for restricted circuits with small depth.
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1 Introduction

Garbled circuits, introduced by Yao [18], enable a “Garbler” to efficiently trans-
form a Boolean circuit C : {0, 1}n → {0, 1}m into a garbled circuit ̂C and a
pair of keys ki

0,k
i
1 for every input bit. In particular, the input keys are short, of

length polynomial in the security parameter only, independent of the complexity
of the circuit. An input x ∈ {0, 1}n to the circuit can be encoded by choosing
the right keys corresponding to each input bit Lx = {ki

xi
}i∈[n], referred to as

the input labels. The garbled circuit and input labels ( ̂C,Lx) together reveal the
output of the computation y = C(x), and hide all other information of x. Yao’s
seminal result [18] constructed garbled circuit using Pseudo-Random Generators
(PRGs), which in turn can be based on one-way functions. Since its conception,
garbled circuits has found a wide range of applications, and is recognized as one
of the most fundamental and useful tools in cryptography.

The Arithmetic Setting. While there have been remarkable optimizations
and analytical improvements in the intervening years, the currently most widely
applied approaches to garbling circuits still largely follow Yao’s paradigm from
the 1980s1. Yao’s idea involves encrypting the truth tables of gates in the circuit,
which becomes inefficient or even infeasible when the truth tables are large. A
longstanding open question is designing arithmetic garbling, namely, variants of
garbled circuits that apply naturally to arithmetic circuits without “Booleaniz-
ing” the computation, meaning bit-decomposing the inputs and intermediate
values and garbling the Boolean circuit implementation of arithmetic opera-
tions. To achieve arithmetic garbling, fundamentally new techniques different
from the mainstream encrypted truth-table methods must be developed.

The work of Applebaum, Ishai, and Kushilevitz (AIK) [5] initiated the study
of arithmetic garbling. They first formalized the notion of Decomposable Affine
Randomzed Encoding (DARE) as follows:

Arithmetic garbling (i.e., DARE) is an efficient transformation Garble
that converts an arithmetic circuit C : Rn → Rm over a ring R into a garbled
circuit ̂C, along with 2n key vectors ki

0,k
i
1 ∈ R�, such that ̂C together with

the input labels Lx = {Li = ki
0xi + ki

1} computed over the ring R, reveal
C(x) and no additional information about x ∈ Rn.

The main difference between arithmetic and Boolean garbling is that the input
encoding procedure of the former consists of affine functions over the ring R, and
does not require the bit-representation of the inputs. There are natural informa-
tion theoretic methods for garbling arithmetic formulas and branching programs

1 There have been alternative approaches that rely on strong primitives such as a
combination of fully homomorphic encryption and attribute-based encryption [9,11,
15], or indistinguishabilty obfuscation [2]. These approaches however are much more
complex than Yao’s garbling and less employed in applications. See Sect. 1.2 for more
discussion.
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over any ring R [4,13]. But garbling general (unbounded depth) arithmetic cir-
cuits is significantly more challenging. AIK proposed the first construction sup-
porting bounded integer computation – namely computation over integers R = Z

from a bounded (but possibly exponential) range [−B,B] – based on the Learn-
ing With Errors (LWE) assumption. In addition, they presented an alternative
construction that generically reduce arithmetic garbled circuits to Yao’s Boolean
garbled circuits, via a gadget that converts integer inputs into their bit repre-
sentation using the Chinese Remainder Theorem (CRT). Though general, the
CRT-based solution does not satisfy many desiderata of arithmetic garbling, in
particular, it still relies on bit-decomposing the inputs and garbling the Boolean
circuit implementation of arithmetic operations. So far, the AIK LWE-based
construction gives the only known scheme that can garble to general arithmetic
circuits without “Booleanizing” them.

1.1 Our Results

Despite its importance, little progress were made on arithmetic garbling in the
past decade after the work of AIK. In this paper, we revisit this topic and
present new ways of arithmetic garbling. Our contributions include 1) a signif-
icantly more efficient arithmetic garbling scheme for bounded integer compu-
tations, achieving constant rate, 2) the first scheme supporting modular arith-
metic computation mod p that makes only black-box calls to the implementation
of arithmetic operations, and 3) a new way of mixing arithmetic garbling with
Boolean garbling. Finally, we diversify the assumptions, showing the Decisional
Composite Residuosity (DCR) assumption is also sufficient, in addition to LWE.

Part 1: Constant-Rate Garbling Scheme for Bounded Arithmetic. To
highlight our efficiency improvement for bounded integer garbling, we define the
rate of a garbling scheme to be the maximal ratio between the bit-length of
the produced garbled circuit | ̂C| and input encoding, and the bit-length of the
tableau of the computation in the clear |C|� (i.e., the bit length of merely writing
down all the input and intermediate computation values). Let � be bit length of
wire values. For a B-bounded integer computation, � = �log(2B + 1)�.

rate = max
C,x

| ̂C| + |Lx|
|C|�

For example, the rate of Yao’s garbling for Boolean circuits is O((|C′|+|x|)kSKE)
|C′|×(�=1) =

O(kSKE), where kSKE is the key length of the symmetric key encryption (or
PRF) used. For arithmetic garbling, the Boolean baseline of applying Yao’s
garbling on the Boolean circuit implementation of the arithmetic circuit achieves
a rate of O(log �·kSKE), when implementing integer addition/multiplication using
the most asymptotically efficient algorithms of complexity O(� log �) [12]2. The

2 Note that this approach is entirely impractical for any reasonable length input due
to the astronomical constants involved in fast multiplication.
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Table 1. Comparison of Arithmetic Garbling for Bounded Integer Computation.

Garbling Scheme Assumption Rate Input Label Size

Boolean Baseline OWFs O(kSKE log �) O(n�kSKE)

AIK - CRT-based [5] OWF O(kSKE log �) O(n�6kSKE)

AIK - LWE-based [5] LWE O(kLWE) Õ(n�kLWE)

This work DCR O(1 + kDCR
�

) O(n(kDCR + �))

CRT-based construction by AIK reduces arithmetic garbling to Yao’s Boolean
garbling and achieves the same asymptotic rate O(log � · kSKE) when the circuit
size is sufficient large. However, the size of the input labels is O(n�6kSKE) where
n is the number of input elements, which is prohibitive even for relatively small
range, say 10-bit, integer computation. The AIK LWE-based construction, on
the other hand, has a larger rate of O(kLWE) where kLWE is the LWE dimension,
which must be larger than �1+ε for some constant ε ∈ (0, 1). See Table 1 for a
summary.

We show that arithmetic garbling can actually be significantly more effi-
cient than the Boolean baseline. Based on the Decisional Composite Residuosity
(DCR) assumption over Paillier groups Z∗

Nr+1 for N = pq with primes p, q
and integer r ≥ 1 [10,16], we present a scheme producing garbled circuits of
size | ̂C| = O(|C|(� + kDCR)), and input label of size |Lx| = O(n(� + kDCR)),
where kDCR = log N is the bit-length of the modulus N . As such, the rate
is just a constant O(1) when the integer values are sufficiently large, namely
� = Ω(kDCR). To the best of our knowledge, this is the first garbling scheme for
general unbounded depth circuits (in any model of computation) that achieve a
constant rate, without relying on the strong primitive of iO (see Sect. 1.2 for a
more detailed comparison).

Theorem 1 (Informal, Arithmetic Garbling for Bounded Integer Computa-
tion). Assume the DCR assumption over Z∗

Nr+1 for N = pq with primes p, q
and r a sufficiently large positive integer. Let kDCR = �log N�, B ∈ N, and
� = �(log 2B + 1)�. There is an arithmetic garbling scheme for B-bounded inte-
ger computation, where the size of the garbled circuit is | ̂C| = O(|C|(� + kDCR))
(i.e., rate O(1 + kDCR

� )), and the length of input label is O(n(� + kDCR)) bits.

Part 2: Arithmetic Garbled Circuit over Zp. Beyond bounded integer com-
putations, can we support other important models of arithmetic computation?
We consider modular arithmetic computation over a finite ring R = Zp (where p
is not necessarily a prime), which arises naturally in applications, in particular,
in cryptosystems.

It turns out that the AIK CRT-based garbling scheme can be adapted to
support Zp-computation3. However, as mentioned above, this solution does not
3 This scheme reduces to Yao’s garbling by first decomposing the input elements into

a bit representation using CRT. As such, this approach works as long as the inputs
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satisfy many desiderata of arithmetic garbling, in particular, it makes non-black-
box use of the Boolean circuit implementation of arithmetic operations. Though
integer multiplication and mod-p reduction are basic operations, there are
actually many different algorithms (such as, Karasuba, Tom-Cook, Schönhage-
Strassen, Barrett Reduction, Montgomery reduction to name a few), software
implementation, and even hardware implementation. It is preferable to avoid
applying cryptography to these algorithms/implementation, and have a modu-
lar design that can reap the benefits of any software/hardware optimization.

We present an arithmetic garbling scheme for Zp-computations, which makes
only black-box call to the implementation of arithmetic operations.

Theorem 2 (Informal, Arithmetic Garbling Scheme for Modular Computa-
tion). Let p ∈ N and � = �log p�. There are arithmetic garbling schemes for
computation over Zp that make only black-box use of implementation of arith-
metic operations over Zp, as described below.

– Assume DCR. The size of the garbled circuit is O(|C|(� + kDCR)kDCR) and
the length of input labels is O(n�kDCR) bits (i.e., rate O(kDCR + k2

DCR
� )).

– Assume LWE with dimension kLWE, modulus q, and noise distribution χ that
is poly(kLWE)-bounded, such that log q = O(�) + ω(log kLWE). The size of the
garbled circuit is |C| · � · Õ(kLWE) and the length of input labels is Õ(n�kLWE)
bits (i.e., rate Õ(kLWE)).

We note that being black-box in the implementation of arithmetic operations,
is different from being black-box in the ring. The latter has stringent conditions
so that a construction that is black-box in the ring can automatically be applied
to any ring. Unfortunately, Applebaum, Avron, and Brzuska [3] showed that
such garbling is impossible for general circuits. Nevertheless, being black-box
in the implementation of arithmetic operations already provides some of the
benefits of a modular design. The garbler does not need to choose which algo-
rithm/implementation of arithmetic operations to use, and evaluation can work
with any algorithm/implementation.

Part 3: Mixing Bounded Integer and Boolean Computation. Many nat-
ural computational tasks mix arithmetic and Boolean computation. For example,
a simple neural network component is a (fixed-point) linear functions fed into
a ReLU activation functions, where ReLU(z) = max(0, z) is much more efficient
using (partially) Boolean computation. Even natural arithmetic computational
tasks can benefit from (partial) boolean computation. Take the example of fast
exponentiation: given (x, y) one can efficiently compute xy if one has access to
the bits of y, y�, . . . , y0 using the fact that xy = x

∑�
i=0 yi2

i

=
∏

i:yi=1 x2i

.
This motivates us to consider the following mixed model of computation,

represented by a circuit consisting of three types of gates: 1) arithmetic operation
gates +/−/× : R2 → R, 2) Boolean function gates, g : {0, 1}r → {0, 1}r′

, where
g is implemented using a Boolean circuit, and 3) the bit decomposition gate,

are integers from a bounded range and the computation can be implemented using
Boolean circuits.
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bits : R → {0, 1}�, that maps a ring element to its bit representation. Naturally,
a Boolean function gate can only take input from the bit decomposition gate or
other Boolean function gates (otherwise, there is no restriction on how gates are
connected).

We gave a construction for mixed bounded integer and Boolean computation.
Our scheme naturally uses Yao’s garbled circuit to garble the Boolean function
gates, and arithmetic garbled circuit (from Theorem 1 or AIK) to garble the
arithmetic operation gates over bounded integers. Finally, we design a new gad-
get for bit decomposition, based on either DCR or LWE.

The bit decomposition gadget is an arithmetic garbling scheme for func-
tions of form BD{cj ,dj} that maps an integer x ∈ [−B,B] to � labels, where
the j’th label is cjbits(x)j +dj . This means given the garbled circuit ̂BD and
input label ax + d, the output labels are revealed and nothing else.

Our scheme puts together the above three components in a modular and black-
box way. In terms of efficiency, the size of the garbled circuit naturally depends
on the number of gates of each type. More specifically, garbling the Boolean
computation gates incurs an rate of O(kSKE) inherited from Yao’s garbled circuit,
whereas the arithmetic operation gates can be garbled with close to constant rate
if using our DCR-based scheme in Theorem 1. Our bit decomposition gadget
produces a garbled circuit of size O(�2 · kDCR) for sufficiently large integers
� = Ω(kDCR) if based on DCR, and of size �2 · Õ(kLWE) if based on LWE, where
kLWE is the LWE dimension. Recall that the AIK CRT-based scheme also relies
on performing bit decomposition, however, at a much larger cost of O(�6kSKE).

Theorem 3 (Informal, Arithmetic Garbling Schemes for Mixed Computation).
Let B ∈ N and � = �log 2B + 1�. There are arithmetic garbling schemes for
mixed B-bounded integer and Boolean computation as described below.

– Assume DCR. The size of the garbled circuit is O(sbkDCR + ma(� + kDCR) +
mb(�+kDCR)2 ·kDCR), where sb is the total circuit size of all Boolean function
gates, ma the number of arithmetic operation gates, and mb the number of
bit-decomposition gates. The length of input label is O(n(� + kDCR)) bits.

– Assume LWE with dimension kLWE, modulus q, and noise distribution χ that
is poly(kLWE)-bounded, such that log q = O(�) + ω(log kLWE). The size of the
garbled circuit is sbO(λ) + ma · � · Õ(kLWE) + mb · �2 · Õ(kLWE). The length of
input label is O(n�kLWE) bits, where ε is a fixed constant (Fig. 2).

Potential for Concrete Efficiency Improvement. The primary goal of
this work is designing new arithmetic garbling with good asymptotic efficiency.
Though we do not focus on optimizing concrete efficiency, our DCR-based
schemes do show potential towards practical garbling. Our concrete analysis
demonstrates that when the input domains are large, � ∼ kDCR = 4096 bits,
the size of garbled circuits produced by our constant-rate bounded integer gar-
bling scheme is significantly smaller than that of the Boolean baseline using the
state-of-the-art Boolean garbling scheme of [17] – the garbling size of addition
is ∼100× smaller, and the size of multiplication is ∼500× smaller. See Sect. 5.
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Table 2. Summary of Our Garbling Schemes.

Computation Assumption Rate Input Label Size

Bounded Arithmetic DCR O(1 + kDCR/�) O(n(kDCR + �))

Mod p DCR O(kDCR + k2
DCR/�) O(nkDCR�))

Mod p LWE Õ(kLWE) Õ(n�kLWE)

Mixed DCR O((� + kDCR)kDCR)* O(n(� + kDCR))

Mixed LWE Õ(�kLWE)* O(n�kLWE)

*Rate of Mixed Computation Schemes depends on relative frequency of gate
types. Numbers here conservatively assume all gates are the most expensive type.

1.2 Related Works

We briefly survey approaches to garbling Boolean circuits that achieve good rate.
AIK showed that their LWE-based scheme when applied to constant-degree

polynomials represented as a sum of monomials has constant-rate. The work of
[2] yields a garbling scheme with size O(|C|)+poly(λ) and input size O(n+m+
poly(λ)), assuming subexponentially secure indistinguishability obfuscation and
rerandomizable encryption.

The work of [9,11] presents a O(|C| + poly(λ, d))-size garbling of Boolean
circuits, with input labels of size O(nm poly(λ, d)) where d is the circuit depth,
n is the input length, m is the output length, and λ the security parameter. One
significant advantage of their scheme is that the circuit description is given in
the clear. We analyze the sizes of garbled circuits and input labels when using
their scheme to garble a B-bounded integer computation (C, x) of depth d, in
particular, spelling out the exponent in the poly term. For simplicity of notation,
we set the input length n, output length m, wire-value bit length log B = �, and
the size of a FHE bit encryption all to O(k).

[9,11]: |C̃| + |Lx| > |C| + Õ(k3d6 + k6d4)

Our DCR-based scheme: |C̃| + |Lx| = O(|C|k)

In comparison, the garbling of [9,11] has smaller size when k and d are
sufficiently small comparing with |C|, achieving even sub-constant rate O(|C|/k).
However, our garbled circuits are smaller when k and d are larger, achieving a
constant rate for all k and d. The term Õ(k3d6 + k6d4) associated with [9,11] is
prohibitive, even for small k, d such as 100, whereas the complexity of our scheme
does not have such large exponents. Our scheme is also simpler than [9,11], which
combines ABE, FHE, and Yao’s garbled circuit in an intricate way.

The works of [7,8] generalized FreeXOR [14], a technique that allows one
to garble XOR gates at zero cost, to general arithmetic setting. They present a
scheme for bounded integer computation where addition is for free. They also
present a gadget (similar to our bit decomposition gadget) that converts inte-
gers to a primorial-mixed-radix representation, which has similar advantage as a
Boolean representation (e.g. cheap comparisons). Leveraging free addition, they
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show that their scheme has concrete performance benefit for certain bounded
arithmetic computations, in comparison to directly applying Boolean garbling
to arithmetic circuits. However, their construction is not arithmetic; in particu-
lar, the input encoding requires a “bit representation” of the inputs.

Finally, the work of [6] describes a method for generically shortening the
length of input labels to |Lx| = n�+o(n�) – that is, rate-1 input labels. However,
the transformation does not preserve decomposability, which is a property that
each input element xi is encoded separately Li(xi). Many applications of garbling
rely on decomposability, e.g., in 2PC, the party holding xi can use OT/OLE to
obtain Li(xi). The encoding of our schemes, AIK, and Yao’s garbled circuits all
satisfy decomposability, and our DCR-based bounded integer garbling has the
shortest input encoding (see Table 3).

1.3 Technical Overview

We start with reviewing the modular design paradigm of AIK, which is the basis
of our approach.

As an arithmetic analog of Yao’s Boolean garbled circuits, the AIK garbling
shares a similar high-level structure. Like Yao’s scheme, AIK’s scheme associates
each wire value, xi, with a wire label, Li, (which hides/encrypts the wire value).4

Also like Yao’s scheme, the Garbler generates “garbled tables” that enable an
evaluator holding a wire label for each input wire to a gate in the circuit to
derive the corresponding output wire label. However, unlike in Yao’s scheme,
the tables do not directly correspond to encryptions of the output wire labels
under all possible input label pairs.

Instead, AIK builds bounded arithmetic garbled circuits in two steps: (1)
they construct an information-theoretically secure garbling scheme for low depth
arithmetic circuits over a ring R (via black-box use of R), (2) they then construct
a key extension gadget for bounded arithmetic computation that allows them
to efficiently circumvent the depth restriction (the key extension gadget makes
non-black-box use of R, but the overall garbling scheme makes use of the key
extension gadget in a black-box way).

To begin, let us recall how AIK construct (1) the information-theoretic
scheme. This scheme does away with garbled gate information entirely, at the
expense of long input labels whose structure depends explicitly on the circuit
being garbled. In particular, for every wire of the circuit, the Garbler generates
two keys ki

0,k
i
1 which are vectors in R. During evaluation, for every wire, the

evaluator should obtain a label Li = ki
0xi + ki

1 corresponding to the correct
value of the wire as follows:

– Input Labels: For each input wire, its label is given to the evaluator.
– Garbled Gate: For every gate xi = g(xj1 , xj2), the invariant is that given

the labels Lj1 ,Lj2 corresponding to inputs xj1 and xj2 , the evaluator can

4 In Yao’s scheme, these labels may be chosen independently and uniformly at random.
In the arithmetic setting, this is infeasible as the domain may be exponentially large.
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Arithmetic Operation Gadgets

Gadget for Addition xi = xj1 + xj2 : At garbling time, given a pair of keys
(ki

0,k
i
1) for the output wire i, it produces a pair of keys (kj1

0 ,kj1
1 ) and (kj2

0 ,kj2
1 )

for each input wire (and no garbled table) as follows:

Set kj1
0 = kj2

0 = ki
0 Sample additive shares kj1

1 + kj2
1 = ki

1 .

At evaluation time, the output label can be obtained as follows

Lj1 + Lj2 = (kj1
0 xj1 + kj1

1 ) + (kj2
0 xj2 + kj2

1 ) = ki
0(xj1 + xj2) + ki

1 = Li .

Gadget for Multiplication xi = xj1 × xj2 : At garbling time, given output keys
(ki

0,k
i
1), it produces input key pairs (kj1

0 ,kj1
1 ) and (kj2

0 ,kj2
1 ) (and no garbled

table) as follows:

kj1
0 := (ki

0, sk
i
0), kj1

1 := (r,u) , kj2
0 := (1, r), kj2

1 := (s, sr − ki
1 − u) .

where s is a random scalar and r,u are random vectors.
At evaluation time, given input labels Lj1 = (ki

0xj1 + r, ski
0xj1 + u) and Lj2 =

(xj2 + s, rxj2 + sr − ki
1 − u), the output label can be obtained as follows:

Li = Lj1
leftL

j2
left − Lj1

right − Lj2
right .

Fig. 1. AIK Arithmetic Operation Gadgets

learn a label Li corresponding to the output xi for each output wire, and
no other information. This is achieved using the arithmetic computation
gadget described in AIK, which are essentially information theoretically
secure DARE (Decomposable Affine Randomized Encoding) for functions
f+,ki

0,ki
1
(xj1 , xj2) = ki

0(xj1 +xj2)+ki
1 and f×,ki

0,ki
1
(xj1 , xj2) = ki

0(xj1 ×xj2)+
ki

1. They are summarized in Fig. 1.5

Remark: Having separate gadgets for addition and multiplication leaks the type
of gate. There also exists an universal garbling gadget for arithmetic opera-
tion, which hides the gate operation, so that only the topology of the circuit
is revealed.

– Outputs: For each output wire, the evaluator learns Li = ki
0xi + ki

1, which
reveals the output xi by setting ki

0 = 1 and ki
1 = 0.

The above paradigm gives an information-theoretic arithmetic garbling
scheme, however, only for logarithmic depth circuits. Its major issue is that
the key-length increases exponentially in the depth of the circuit, because 1) the
key-length of the input wires of a multiplication gate is twice the key-length of

5 Note that while the evaluator can efficiently evaluate the garbled circuit from the
bottom-up (inputs to outputs), the garbler (as described here) proceeds from the
top-down: generating labels for the output wires and then recursively generating
increasingly complex keys for the wire layers below.
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its output wire, and 2) the key-length of input wires of any gate grows linearly
with the fan-out that gate. On the flip side, this scheme has constant overhead
for constant depth circuits.

To go beyond low-depth circuits, AIK introduced a key-extension gadget—a
DARE for functions fKE,c,d(x) = c · x + d. It ensures that given the input label
a ·x+b and garbled table, the evaluator can obtain a new longer label c ·x+d,
and no other information. Now to support arbitrary depth circuit, AIK uses the
arithmetic operation gadgets to handle the computation gates, and whenever the
key length |c|, |d| becomes too long, it uses the key-extension gadget to shrink
the key length down |a|, |b| < |c|, |d|.

It may seem counter-intuitive that a key “extension” gadget would be used to
“shrink” keys, so let us discuss how this works in slightly more detail. First, recall
that the information-theoretic DARE gadgets described in Fig. 1 derive (possibly
longer) labels for the inputs to a gate from the output labels corresponding to
that gate. Next, we break each wire i into two sub wires: the part that comes
out of the preceding gate, iout, and the part that goes into the next gate, iin

(for higher fan-out there will other iin wires). By breaking up all wires in this
manner, we can garble gates in parallel (as opposed to from the top-down) by
independently and locally (a) sampling the (short) labels Liout

, and (b) locally
applying the gadgets from Fig. 1 to derive (long) input labels Ljin

1 ,Ljin
2 . At this

point each wire value is now associated with two labels: a short output label
and long input label(s). The key extension gadget allows the evaluator to derive
the long input portion(s) from the short input label portion (using some extra
information: the gabled table).

Therefore, this paradigm reduces the problem of constructing constant-
overhead arithmetic garbling for bounded integer computation (Theorem 1) and
arithmetic garbling for modular computation (Theorem 2) to the problem of
designing (efficient) key-extension gadgets for the respective model of computa-
tion.

Abstract Key-Extension Gadget. Instead of describing AIK’s gadget, we will
instead introduce an abstract approach to constructing key-extension gadgets
(that also captures AIK’s key-extension gadget). Instantiating this approach
has encounter significant technical barriers (discussed at length below), but we
believe the high level paradigm is nonetheless instructive.

Recall that to construct a key-extension gadget the garbler knows short keys
(a,b) corresponding to short wire labels of the form Sx = a · x + b as well as
long keys (c,d) corresponding to long wire labels of the form Lx = c ·x+d. The
garbler’s task is to output some succinct information, tb, so that an evaluator
holding a short wire label Sx can derive the long wire label corresponding to
the same value Lx without learning anything about the other wire labels Ly (for
y 	= x).

As a warm up, observe that the Yao’s approach can be adapted to give an
efficient key extension gadget for small domains. In particular for the boolean
case of x ∈ {0, 1}, the garbler can simply set tb to consist of two (one-time sym-
metric key) encryptions: Encb(d) = EncS0(L0) and Enca+b(c + d) = EncS1(L1)
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(randomly permuted). Using tb the evaluator can simply decrypt the relevant
ciphertext (using the short label as a key) to derive the long label corresponding
to the same value. Semantic security implies that the evaluator learns nothing
about the other label.

Unfortunately, it is not clear how to extend Yao’s approach to large
arithmetic domains (with succinct garbled tables). Instead, it seems we need
a stronger arithmetic properties from the encryption scheme. In particular,
assume we have an encryption scheme, (Enc,Dec), which is linearly homomor-
phic in both the key and message space: there are operations �,� such that
x � Enca(c) � Encb(d) = Encax+b(cx + d).

Given such an encryption scheme, consider the case that the wire value x
is public (we will relax this assumption momentarily). Then note that given a
garbled table, tb, comprised of just two cipher texts Enca(c) and Encb(d) the
evaluator can use x,Sx to derive a long label Lx by homomorphically evaluat-
ing x � Enca(c) � Encb(d) = Encax+b(cx + d) = EncSx

(Lx) and decrypting.
We need to additionally show that the evaluator learns nothing about the other
output labels. In more detail, observe that we can simulate the view of eval-
uator holding Sx,Lx, x which is comprised of 3 cipher texts: (1) Enca(c), (2)
Encb(d), and (3) EncSx

(Lx). First, note that given Lx, x, one can derive cipher-
text (2) from ciphertexts (1) and (3) (and x) by simply homorphically computing
EncSx

Lx) � Enca(c) � x = Encb(d). Armed with this observation we can invoke
semantic security and simply simulate (given Sx,Lx, x) by encrypting (3) hon-
estly, replacing (1) with a random encryption, and homomorphically evaluating
(2) from the other two ciphertexts.

There are two issues with this approach: the first (which we have already
mentioned) is that the wire label is public, the second (and more subtle issue)
is that we are implicitly assuming that encryption scheme has a key space that
is identical to the message space which is in fact the ring R we wish to compute
over. We will describe a generic approach to dealing with the first issue here,
but leave the second issue to the specific settings and implementations below.

We observe that one can effectively assume the wire label is public without
loss of generality. The idea is that instead of extending the wire value x directly,
we will mask x with a random value, r, that is known to the garbler to get
x′ = x + r. Note that x′ can be safely output by the garbled circuit while
statistically hiding x. Then we can use our key extension gadget to extend x′.
Then once we have a long label Lx′ we can easily use another gadget to remove
r (known to the garbler).6

Key Extension Gadget for Bounded Integer Computation. Our first key
extension gadget relies on the Paillier extension of the Paillier encryption [10,16].
This gadget is very efficient: the input label only consists of O(1) ring elements
and the table size is proportional to the output label size.

We use a one-time secure version of the Paillier encryption. To generate the
public parameters, sample two large safe primes and let N be the product of the
6 Similar ideas are found in the well-known “half-gates” construction [19] of Zahur,

Rosulek, and Evans for garbling boolean circuits comprised of XOR and AND gates.
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two safe primes. Choose a small integer ζ ≥ 1, and the ciphertexts are vectors
modulo N ζ+1. The group Z∗

Nζ+1 contains a hard subgroup of unknown order
(i.e., the 2N ζ ’th residue subgroup, the order of which is hard to compute given
N) and an easy subgroup of order N ζ generated by 1 + N , in which discrete
logarithm is easy. The public parameters are (N, ζ,g), where g = (g1, g2, . . . , gψ)
are randomly-sampled generators of the “hard” subgroup. The one-time use key
s is an integer sampled uniformly from {0, . . . , N}. The encryption algorithm
takes a message vector m ∈ Z

ψ
Nζ of dimension at most ψ as the input message,

and generates a ciphertext as follows:

Enc(s,m) = gs · (1 + N)m = (gs
1 · (1 + N)m1 , . . . , gs

ψ · (1 + N)mψ ) .

The Decisional Composite Residuosity (DCR) assumption implies that the
ciphertext is pseudorandom. Indeed, the secret key can only be used once; in
fact, the encryption algorithm is deterministic.

For our application, the following properties of the Paillier encryption are
important:

– Small Keys: the secret key s is an integer upper bounded by N which is much
smaller than the message space modulus Nζ .

– Linear Homomorphism: for any keys s1, s2 ∈ Z and messages m1,m2 ∈ Z
ψ
Nζ ,

Enc(s1,m1) · Enc(s2,m2) = Enc(s1 + s2
︸ ︷︷ ︸

over Z

,m1 + m2
︸ ︷︷ ︸

over Z
Nζ

).

In particular, given ciphertexts Enc(s1, c),Enc(s2,d) and x, one can homo-
morphically compute Enc(s1x + s2, cx + d).

– Integer Keys: To decrypt the output ciphertext produced by the homomorphic
evaluation, we need the key s1x+s2. Importantly, since the order of the hard
group is unknown, we can only hope to use the key s1x + s2 computed over
Z.

The above observations immediately suggest a näıve construction of key
extension gadget: Let Enc(s1, c),Enc(s2,d) be the garbled table, and (x, s1x+s2)
computed over Z be the input label. Decryption gives c·x+d mod Nζ as desired.
However, such a näıve construction faces two problems:

– Input label over Z. The output label is in ring ZNζ . We will set N ζ 
 B
to be sufficiently large so that a B-bounded computation can be “embeded”
in computation modulo Nζ . As such, arithmetic operations can be garbled
using AIK arithmetic operation gadgets in Fig. 1 with modulus N ζ . However,
a problem is that to decrypt Paillier encryption, the input label s1x+s2 must
be computed over Z. To close the gap, we crucially rely on the fact that in
bounded integer computation, every wire value x is bounded. We can also
sample s1, s2 from a bounded range so that s1x + s2 < Nζ . Therefore, the
input label can be (x, s1x + s2) mod N ζ = (x, s1x + s2) over Z.

– Leakage. In the näıve construction, x is revealed. To hide x, we replace x
by y = x + r, a one-time pad of x. Let (y, s1y + s2) be the input label,
let Enc(s1, c),Enc(s2,d − rc) be the table. The evaluator homomorphically
computes Enc(s1y + s2, cy + d − rc), then decrypts cy + d − rc = cx + d.
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For clarity, we sketch how this works. Say the wire value x is guaranteed to
be bounded by −B ≤ x ≤ B. Sample r ← {−B′, . . . , B′} for some B′ 
 B, thus
r + x statistically hides x. Sample s1 ← {0, . . . , N}. Sample s2 ← {0, . . . , B′′}
for some B′′ 
 NB′, so that s1(r + x) + s2 statistically hides s1(r + x), which
in turn preserves semantic security for encryptions under s1.7 Choose ζ so that
N ζ > 2B′′. Overall, the gadget consists of the following:

Input Key: a = (1, s1) b = (r, s1r + s2)

Input Label: Lin = (r + x, s1(r + x) + s2)
Garbled Table: Enc(s1, c) Enc(s2,d − rc) .

We observe that the garbled table has “constant-rate”, which is the key leading to
constant-rate garbled circuit. More precisely, the size of the above garbled table
is |c|(ζ + 1) log N . When the integer bound B is sufficiently large, it suffices to
set the modulus N to be a constant times longer than B, i.e., log N = O(log B).
In addition, the dimension of the output key |c| is proportional to the fan out k
of the wire with value x. Therefore, the garbled table has size |c|(ζ + 1) log N =
O(k log B), incurring a constant overhead. See Sect. 4 for more details.

Key Extension Gadget for Modulo-p Computation. There are two bar-
riers when we try to extend the previous key extension gadget to the modulo-p
computation setting.

– Arbitrary Message Ring Zp. In the Paillier encryption, the message is a vector
over ring ZNζ . It supports linear homomorphic evaluation modulo N ζ , where
N is the product of two randomly sampled primes. But we need to perform
computation modulo p, where p is an arbitrary integer specified by the given
arithmetic circuit.

– The Input Label over Z. The AIK arithmetic operations gadgets now uses
keys and labels over Zp. However, as discussed above, to decrypt Paillier
encryption, we need the input label s1y + s2 to be computed over Z, where
y now equals to (r + x) mod p). In the previous setting, we get around this
problem easily because the wire value x is bounded, and hence computing
s1y + s2 modulo N ζ is the same as computing it over the integers. Now, the
wire value x could be an arbitrary element in Zp, certainly s1y + s2 mod p is
very different from s1y + s2 over Z. We need a new technique to recover the
latter.

To overcome the first barrier, we construct another encryption scheme on
top of Paillier encryption, such that the message space is over Zp. The new
encryption scheme is defined as

Enc(s,m) = Enc(s, �m · Nζ

p �) , Dec(s, c) = �Dec(s, c) · p
Nζ � .

7 We do not need protect s2 because the corresponding ciphertext can be simulated
using the ciphertext encrypted under s1 and the output label cx + d.
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The new scheme satisfies a weaker form of linear homomorphism. Notice that
for any m1,m2 ∈ Zp,

�m1 · Nζ

p � + �m2 · Nζ

p � = �(m1 + m2) · Nζ

p � + e

for some e ∈ {−1, 0, 1}. Therefore, for any s1, s2 ∈ Z and m1,m2 ∈ Zψ
p ,

Enc(s1,m1) · Enc(s2,m2) = Enc(s1 + s2
︸ ︷︷ ︸

overZ

,m1 + m2
︸ ︷︷ ︸

modulo p

) · (1 + N)e

for some e ∈ {−1, 0, 1}ψ, and it can be correctly decrypted to m1 + m2 given
key s1 + s2, by simply decrypting according to Paillier and rounding the result
to the nearest multiple of N ζ/p. The homomorphic evaluation can be extended
to any linear function f(x1, . . . , x�) = c1x1 + · · · + c�x�. For any s1, . . . , s� ∈ Z

and m1, . . . ,m� ∈ Zψ
p ,

Dec

(

f(s1, . . . , s�),
�

∏

i=1

Enc(si,mi)ci

)

= f(m1, . . . ,m�)

as long as |f |1 =
∑

i |ci| 
 Nζ

p . Otherwise, if the magnitude of the coefficients
are large, then the accumulation of the rounding error may break correctness.

In the main body, we also present an alternative construction of linear homo-
morphic encryption scheme based on the LWE assumption.

Now, using such a linear homomorphic encryption scheme (whose message
space is over Zp), we construct our key extension gadget: Sample random r ∈ Zp

and let y = x + r mod p be the one-time pad of x. Sample random s1 ∈ {0, 1}�,
s2 ∈ {0, . . . , �p/2�}�. We set the input label as

Lin = (y, s1y + (1 − s1) · �p/2� + s2) mod p .

Also define

sres = s1y + (1 − s1) · �p/2� + s2 mod p ,

s′
res = s1y + (1 − s1) · �p/2� + s2 (over Z) .

Then Lin = (y, sres) and sres = s′
res mod p.

Our key observation is that, given Lin = (y, sres), one can recover s′
res.

Let sres,i (resp. s′
res,i, s1,i, s2,i) denote the i-th coordinate of sres

(resp. s′
res, s1, s2). Then

s′
res,i = s1,iy + (1 − s1,i) · �p/2� + s2,i =

{

y + s2,i, if s1,i = 1 ,

�p/2� + s2,i, if s1,i = 0 .
(1)

As illustrated by Fig. 2,

– In case y < p/2, we have 0 ≤ s′
res,i < p, thus s′

res,i = sres,i.
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Fig. 2. The range of s′
res,i, conditioning on s1,i and y

– In case y > p/2, we have �p/2� ≤ s′
res,i < �p/2� + p, thus s′

res,i can also be
recovered from sres,i.

Therefore,

s′
res,i =

{

sres,i + p, if y > p/2 and sres,i < �p/2� ,

sres,i, otherwise.

Since the evaluator can recover s′
res = s1y + (1 − s1) · �p/2� + s2, if the table

consists of

“Enc(s1, c)” and “Enc((1 − s1) · �p/2� + s2,d − rc),”

then the evaluator can homomorphically compute Enc(s′
res, cx + d) and decrypt

it to get cx + d.
To formalize this idea, there are a few problems we have to overcome.

Problem 1: Format Mismatch. In the linear homomorphic encryption scheme,
the key should be an integer sampled from a large interval. While s1 is a vector
consisting of 0’s and 1’s. To close the gap, we introduce a linear function Lin :
Z� → Z to compress the length and to increase the magnitude. For example, if
we let Lin(s1, s2, . . . , s�) = s1+2s2+22s3+23s4+. . . , then Lin(s1) is the uniform
distribution over {0, . . . , 2� − 1} since s1 is sampled uniformly from {0, 1}�.

Let the table be

Enc
(

Lin(s1), c
)

, Enc
(

Lin((1 − s1) · �p/2� + s2),d − rc
)

.

The evaluator homomorphically computes Enc(Lin(s′
res), cx +d) and decrypts it

to get cx + d.
After the introduction of Lin, the construction satisfies the correctness

requirement. From now on, we will focus on the privacy issues.
Problem 2: the Leakage of s1. As shown by Eq. (1) and illustrated in Fig. 2,

s1,i = 1 =⇒ s′
res,i is uniform in [y, y + p/2) ,

s1,i = 0 =⇒ s′
res,i is uniform in [p/2, p) .

Therefore, s1,i is hidden only if s′
res,i ∈ [y, y + p/2) ∩ [p/2, p). Otherwise, when

s′
res,i /∈ [y, y + p/2) ∩ [p/2, p), the value of s1,i is leaked by s′

res,i. For example, in
the most extreme case when y = 0, the value of s1 is completely leaked by s′

res.
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We will later discuss how to repair the construction when y is close to zero.
For now, let us assume y ∈ (p/4, 3p/4). Under such assumption, for each i, there
is a ≥ 50% chance that s1,i is not revealed by s′

res.
For privacy of the encryption scheme, we require that Lin(s1) is “sufficiently

random” conditioning on s′
res. In the full version we construct a (seeded) linear

function Lin, such that with overwhelming probability, Lin(s1) smudges8 the
uniform distribution over {0, . . . , N}.

As analyzed in the full version let Lin(s1, s2, . . . , s�) =
∑

i cisi, where the
coefficients c1, . . . , c� are i.i.d. sampled from {0, . . . , N}. Then as long as � ≥
log N , Lin(s1) will smudge the uniform distribution over {0, . . . , N} even if about
half of the coordinates of s1 ∈ {0, 1}� are revealed. Here Lin is essentially a
randomness extractor that is linear over Z.
Problem 3: the “Bad” Values of y. So far, we have constructed a key extension
gadget that works well when the one-time pad y = x+ r mod p is in (p/4, 3p/4),
but it has serious privacy issue if y ∈ [0, p/4) ∪ (3p/4, p).

To close the leakage, we repeat the gadget one more time. This time use a
different one-time pad ỹ = x + r + �p/2� mod p. Note that, y lies in the “bad”
region [0, p/4) ∪ (3p/4, p) if and only if ỹ is in the “good” region (p/4, 3p/4).

In greater detail, sample random r ∈ Zp and let

y = x + r mod p, ỹ = y + r + �p/2� mod p .

Sample random s1, s̃1 ∈ {0, 1}�, s2, s̃2 ∈ {0, . . . , �p/2�}�, and let

sres = s1y + (1 − s1) · �p/2� + s2 mod p ,

s̃res = s̃1ỹ + (1 − s̃1) · �p/2� + s̃2 mod p ,

s′
res = s1y + (1 − s1) · �p/2� + s2 (over Z) ,

s̃′
res = s̃1ỹ + (1 − s̃1) · �p/2� + s̃2 (over Z) .

Set Lin = (y, sres, s̃res) as the input label. Let (c1,d1), (c2,d2) be additive shar-
ings of (c,d). The table consists of

Enc
(

Lin(s1), c1

)

, Enc
(

Lin((1 − s1) · �p/2� + s2),d1 − rc1

)

,

Enc
(

Lin(s̃1), c2

)

, Enc
(

Lin((1 − s̃1) · �p/2� + s̃2),d2 − rc2

)

.

Given the table and input label, the evaluator homomorphically evaluates
Enc(Lin(s′

res), c1x+d1), Enc(Lin(s̃′
res), c2x+d2). The evaluator recovers s′

res, s̃
′
res

from the input label, and decrypts both ciphertexts to get c1x + d1, c2x + d2.
In the end, output Lout = cx + d = (c1x + d1) + (c2x + d2) mod p.

Bit Decomposition Gadget. Besides purely arithmetic computation, we also
consider a computation model that combines Boolean operations and arithmetic
operation. Garbling such mixed computation is enabled by the bit decomposition

8 Formally, Lin(s1) smudges the uniform distribution over {0, . . . , N} if Lin(s1) and
Lin(s1) + u are statistically indistinguishable, where u is sampled from {0, . . . , N}.
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gadget — a DARE for functions fBD,{cj ,dj}(x) = {cjbits(x)j + dj}. It ensures
that given ax+b and the garbled table, the evaluator can get a label cjbits(x)j +
dj for every bit in the bit representation of x.

Notice that, in order to build the bit decomposition gadget, it suffices to
design the truncation gadget. Let �x�2j :=

⌊

x/2j
⌋

denotes the integer quotient of
x divided by 2j . This operation truncates j least significant bits. The truncation
gadget is a DARE for functions fTC,c,d(x) = c · �x�2 +d. Given a label of x and
the garbled table, the evaluator can get a label for the truncated value �x�2. Once
we have the truncation gadget, the evaluator can use the truncation gadgets j
times to get a label for the truncated value �x�2j for every j. Thus the evaluator
can compute a label of the j-th bit of x via

c �x�2j−1 + d1
︸ ︷︷ ︸

a label of �x�2j−1

− 2 · (c �x�2j + d2
︸ ︷︷ ︸

a label of �x�2j

) = c · bits(x)j + (d1 − 2d2)
︸ ︷︷ ︸

a label of the j-th bit of x

.

Now the task has been reduced to designing the truncation gadget. Our
construction of the truncation gadget is inspired by the techniques used in the
key extension gadgets. The first idea is to sample random r from a sufficiently
large range, and to consider the one-time pad y = x + r. Instead of generating
the labels of bits(x)j , we construct an (imperfect) bit decomposition gadget that
generates the labels of each bits(y)j . Once evaluator has the labels of every bit
of y, it can compute the labels of every bit of x, as long as we additionally give
the evaluator a Yao’s Boolean garbled circuit, with r hard-coded inside. Thus
correspondingly, it suffices to construct an (imperfect) truncation gadget that
allows the evaluator to get c �y�2 + d.

Inspired by our key extension gadget for modulo-p computation, the gadget
table of the (imperfect) truncation gadget looks like

Enc(Lin(s1), c), Enc(Lin(�s2�2),d).

The evaluator can homomorphically evaluate Enc(Lin(s1 �y�2+�s2�2), c �y�2+d).
The input label of the truncation gadget is

(y, s1y + s2) , which equals (x + r, s1x + (s1r + s2)) .

If the evaluator can recover s1 �y�2 + �s2�2 from the input label, it can decrypts
c �y�2 + d using the key Lin(s1 �y�2 + �s2�2).

To enable the recovery, s1, s2 ∈ Z� are sampled from carefully chosen distri-
butions. s1 is sampled uniformly from {0, 1}�. s2 is sampled conditioning on s1:
for each i ≤ �,

s2,i =

{

a random integer in [0, Bsmdg), if s1,i = 1
a random odd integer in [0, Bsmdg), if s1,i = 0



20 M. Ball et al.

Fig. 3. The range of {s1,jy}2 + {s2,j}2, conditioning on s1,i and {y}2

where Bsmdg is a sufficiently large bound. We sample s1, s2 in such a way to
ensure that s1,j �y�2 + �s2,j�2 can be recovered from (y, s1,jy + s2,j).

Given (y, s1,jy + s2,j), the evaluator can compute �s1,jy + s2,j�2, which is
very close to the target value. In particular,

s1,j �y�2 + �s2,j�2 =

{

�s1,jy + s2,j�2 − 1, if both s1,jy and s2,j are odd
�s1,jy + s2,j�2 , otherwise

The evaluator can offset the error if it can tell whether both s1,jy and s2,j are
odd. We claim:

both s1,jy and s2,j are odd ⇐⇒ y is odd and s1,jy + s2,j is even, (2)

By this, the evaluator can recover s1 �y�2 + �s2�2.
The claim (2) can be proved by enumerating the possible parities of

s1,j , y, s2,j . We also provide a visualized proof of this claim. Let {z}2 := z−2 �z�2

denote the remainder of z divided by 2. The rounding error occurs if and only if
{s1,jy}2 + {s2,j}2 = 2. As shown by Fig. 3, when y is even, there is no rounding
error; when y is odd, the rounding error occurs only if s1,jy + s2,j is even.

Figure 3 also shows that s1,j is not always hidden by s1,jy +s2,j . For privacy,
we require that Lin(s1) is “sufficiently random” even conditioning on the leakage.
Such (seeded) linear function Lin is constructed in the full version.

Organization. In Sect. 2, we define three models of computations, bounded inte-
ger, modular arithmetic, and mixed computation, our garbling scheme, and the
key extension gadget. The full version also defines the arithmetic computation
and bit decomposition gadgets. In Sect. 3, we introduce a linearly homomor-
phic encryption scheme (LHE) as a tool for constructing the gadgets. In the
full version, we instantiate it under either the DCR or the LWE assumption.
In Sect. 4, we construct a key extension gadget in the bounded integer model.
The full version also constructs key extension in the modular arithmetic model,
bit decomposition in the mixed model, and the overall garbling scheme in all
three models. In Sect. 5, we compare the concrete efficiency of our scheme, in
the bounded integer model, with the scheme of [8] and the Boolean baseline
using [17]. The full version extends the comparison to the modular arithmetic
and the mixed models.
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2 Definitions

A circuit over some domain I ⊆ Z consists of connected gates that each computes
some function over I. For a circuit C with n input wires and a vector x ∈ In,
(C,x) is referred to as a computation.

In the following, we define three classes of circuits by specifying their respec-
tive domains, allowed types of gates, and admissible inputs. Each class of circuits
is also referred to as a model of computation.

Modular Arithmetic Computation. In this model, a circuit C consists of
three types of gates: addition, subtraction, and multiplication over Zp (all
with fan-in two). Its domain is simply I = Zp. That is, every input and
intermediate computation value is in Zp. For a circuit C with n inputs, all
input vectors in Zn

p are admissible.
Bounded Integer Computation. In this model, a circuit C consists of the

same arithmetic gates as above, computed over Z. Its domain is the set
of integers whose absolute values are bounded by some positive integer B,
denoted as I = Z≤B. For a circuit C, an input vector is admissiable if and
only if (C,x) is B-bounded, i.e., every input and intermediate computation
value while evaluating C(x) is in the range [−B,B].

Mixed Bounded Integer and Boolean Computation. This model extends
bounded integer computation, with domain I = Z≤B and bit length d =
�log (2B + 1)�, to include the following additional gates.
– The bit decomposition gate gBD : Z≤B → {0, 1}d is defined by gBD(x) =
bits(x)1, . . . , bits(x)d, where bits(x)i represents the ith bit x. By default,
we let bits(x)d represent the “sign” of x: for a non-negative integer x,
bits(x)d = 0, and for a negative integer x, bits(x)d = 1. The rest of the
bits represent the magnitude of x such that |x| =

∑d−1
i=1 2i−1bits(x)i.

The output of gBD can be used in two ways. First, they can be interpreted
as 0, 1 values in Z≤B, and fed into further arithmetic computations. Second,
they can be used as inputs to other Boolean computation gates g : {0, 1}d1 →
{0, 1}d2 . In general, we allow any Boolean computation gate g that can be
computed by a polynomial-size Boolean circuit. Interesting examples include
comparison and truncation.
– A comparison gate gcomp : {0, 1}d × {0, 1}d → {0, 1} is defined as

gcomp(bits(x), bits(y)) = 1 iff x > y.
– A truncation gate gΔ

trun : {0, 1}d → {0, 1}d with parameter Δ ∈ Z≤B is
defined as gcomp(bits(x)) = bits(� x

Δ�).
Formally, we define classes of polynomial-sized circuits in above-described

models: Let CArith
Zp

=
{CArith

Zp(λ),λ

}

λ
, CBI

Z≤B
=

{CBI
Z≤B(λ),λ

}

λ
, and CBI−decomp

Z≤B
=

{CBI−decomp
Z≤B(λ),λ

}

λ
contain circuits consisting of a polynomial number of gates in

respectively the modular arithmetic computation with modulus p(λ), B(λ)-
bounded integer computation, and B(λ)-bounded integer and Boolean compu-
tation model. The bound B(λ) and modulus p(λ) are bounded by 2poly(λ) for
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some fixed polynomial. When talking about a general model of computation, we
will use the notation C ∈ {CArith

Zp
, CBI

Z≤B
, CBI−decomp

Z≤B

}

over I ∈ {Zp,Z≤B}.

Notations for Garbling. For a model of computation C over I, our garbling
scheme introduces two more spaces: a label space L, and a ciphertext space E ,
where I ⊆ L.

Similar to prior garbling schemes [5], the garbling algorithm assigns two keys
z1, z2 ∈ L� of dimension � to each wire in a computation (C,x). If this wire has
a value x ∈ I, then the evaluator should obtain a label L = z1x + z2 computed
over L (by interpreting x ∈ I as elements in L).

For each gate in C, the garbling algorithm outputs a garbled table consisting
of some ciphertexts in E . These ciphertexts, together with labels for the input
wires, allow an evaluator to obtain a label for each of its output wires.

2.1 Definition of Garbling Schemes

Definition 1 (garbling). Let C ∈ {CArith
Zp

, CBI
Z≤B

, CBI−decomp
Z≤B

}

be a model of com-
putation over the domain I ∈ {Zp,Z≤B}. A garbling scheme for C = {Cλ}λ over
I = I(λ), with a label space L = L(λ) consists of three efficient algorithms.

– Setup(1λ) takes a security parameter λ as input, and outputs public parame-
ters pp, which define a ciphertext space E, and specify a polynomial dimension
� for keys and labels.
The rest of the algorithms have access to pp.

– Garblepp(1λ, 1�, C) takes as inputs a security parameter λ, and a circuit C ∈
Cλ with input length n. It outputs n key pairs {zi

1, z
i
2}i∈[n] ∈ L� of dimension

� specified by pp, independent of the circuit size |C|, and a garbled circuit ̂C
(consisting of many garbled tables, each further contains ciphertexts in E).

– Decpp({Li}i∈[n], ̂C) takes as inputs n labels Li ∈ L�, and a garbled circuit ̂C.
It outputs an evaluation result y ∈ I.

Correctness. The scheme is correct if for all λ ∈ N, pp ∈ Supp
(

Setup(1λ)
)

,
circuit C ∈ Cλ with n input wires, and input x = (x1, . . . , xn) ∈ In that’s
admissible to C, the following holds.

Pr

[

Decpp({Li}i∈[n], ̂C)
= C(x) (over I)

∣

∣

∣

∣

∣

{zi
1,z

i
2}i∈[n], ̂C ← Garblepp(1λ, C),

Li = zi
1xi + zi

2 (over L)

]

= 1.

Security. A simulator Sim for the garbling scheme has following syntax.

– Sim(1λ, pp, C, y) takes as inputs a security parameter λ, public parameters pp,
a circuit C ∈ Cλ, and an evaluation result y ∈ I. It outputs n simulated labels
{˜Li}i∈[n] and a simulated garbled circuit ˜C.
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The garbling scheme is secure if there exists an effcient simulator Sim such
that for all sequence of circuits {Cλ}λ where each Cλ ∈ Cλ has n = n(λ) inputs,
and sequence of admissible inputs {xλ}λ where xλ = (x1,λ, . . . , xn,λ) ∈ In, the
following indistinguishability holds. (We surpress the index λ below.)

{

pp,Sim(1λ, pp, C, y)
}

≈c

{

pp, {Li}i∈[n], ̂C
}

.

∣

∣

∣

∣

∣

∣

∣

pp ← Setup(1λ),

{zi
1, z

i
2}i∈[n], ̂C ← Garblepp(1λ, C),

Li = zi
1xi + zi

2, y = C(x)

Recall that in bounded integer computations (i.e., C = CBI
Z≤B

or CBI−decomp
Z≤B

), an
input x is admissible to a circuit C if and only if (C,x) is B-bounded. In modular
arithmetic computations (i.e., C = CArith

Zp
) all inputs are admissible.

2.2 Definition of Garbling Gadgets

Our garbling scheme garbles a circuit in a gate-by-gate fashion. To handle dif-
ferent types of gates, we introduce different garbling gadgets. In addition to
the arithmetic computation gates, bit decomposition gates, and general Boolean
computation gates as introduced earlier, we also consider the following key exten-
sion gates, which are artificially added to every circuit at garbling time.

Key Extension Gate has one input and one output wire and implements the
identity function f(x) = x. Inserting this gate anywhere in a circuit does not
change the function computed. However, garbling the key extension gate has
the following effect during evaluation: Given a short label for the input wire
zin
1 x + zin

2 of dimention �, the evaluator can obtain a much longer label for
the output wire zout

1 x + zout
2 of some dimension �′ > �.

Our key extension gadget for handling the above gate is exactly the “key
shrinking” gadget in [5], and is the technical core of this work. We define it
formally below. The analogous definitions of the arithmetic computation, bit
composition, and Boolean computation gadgets are deferred to the full version.

Gadgets Share Setup of Garbling Scheme. Each gadget is defined with
respect to a garbling scheme for some model of computation C over a domain I
and a label space L. The gadget depends on the public parameters pp generated
by the Setup algorithm of the garbling scheme, which specifies a ciphertext space
E , and a key dimension � ∈ N. Its algorithms all have random access to pp.

Key Extension Gadget. The key extension gadget consists of three algo-
rithms, KeyGen, Garble, and Dec. To handle a key extension gate, we assume
each of its output wires is already assigned an output key pair. Their concatena-
tion form a long “target” key pair zout

1 , zout
2 . At garbling time, the garbler uses

KeyGen,Garble to generate a short key pair zin
1 , zin for the input wire, and a

garbled table tb. At evaluation time, the evaluator uses Dec on the input label
Lin = zin

1 x+zin
2 for some value x, and the garbled table tb to recover the output

lable Lout = zout
1 x + zout

2 . We define the algorithms formally below.
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Definition 2 (key extension).

– KE.KeyGenpp(1λ, 1�) takes as inputs a security parameter λ, and the key
dimension � specified by pp. It samples a key pair zin

1 , zin
2 ∈ L�.

– KE.Garblepp(zout
1 , zout

2 , zin
1 , zin

2 ) takes as inputs a (long) key pair zout
1 , zout

2 ∈
L�′

, and a (short) key pair zin
1 , zin

2 ∈ L�. It outputs a garbled table tb (con-
sisting of many ciphertexts in E).

– KE.Decpp(Lin, tb) takes as inputs a short label Lin ∈ L� and a garbled table
tb. It outputs a long label Lout ∈ L�′

.

Correctness. The scheme is correct if for all λ ∈ N, pp ∈ Supp
(

Setup(1λ)
)

,
zout
1 , zout

2 ∈ L�′
of dimension �′ ∈ N, and x ∈ I, the following holds.

Pr

⎡

⎢

⎣

KE.Decpp(Lin, tb)

= Lout

∣

∣

∣

∣

∣

∣

∣

zin
1 , zin

2 ← KE.KeyGenpp(1λ, 1�),

tb ← KE.Garblepp(zout
1 , zout

2 , zin
1 , zin

2 ),

Lin = zin
1 x + zin

2 , Lout = zout
1 x + zout

2

⎤

⎥

⎦ = 1.

Security. A simulator KE.Sim for the scheme has the following syntax.

– KE.Sim(1λ, pp,Lout) takes as inputs a security parameter λ, public parameters
pp, and a long label Lout ∈ L�′

. It outputs a simulated short label ˜Lin ∈ L�

and a simulated garbled table ˜tb.

The scheme is secure if there exists an efficient simulator KE.Sim such
that for all polynomial �′ = �′(λ), sequence of key pairs {zout

1,λ , zout
2,λ}λ where

zout
1,λ , zout

2,λ ∈ L�′
, and sequence of inputs {xλ}λ where xλ ∈ I, the following

indistinguishability holds. (We suppress the index λ below.)

{

pp,KE.Sim(1λ, pp,Lout)
}

≈c

{

pp,Lin, tb
}

.

∣

∣

∣

∣

∣

∣

∣

∣

pp ← Setup(1λ), zin
1 , zin

2 ← KE.KeyGenpp(1λ, 1�),

tb ← KE.Garblepp(zout
1 , zout

2 , zin
1 , zin

2 ),

Lin = zin
1 x + zin

2 , Lout = zout
1 x + zout

2 .

3 Linearly Homomorphic Encryption

3.1 Definition of Basic LHE

We first define a very simple base scheme that creates noisy ciphertexts. Decryp-
tion doesn’t try to remove the noise, and simply recovers the encrypted message
with noise. The scheme allows evaluating linear functions homomorphically over
ciphertexts, which increases the level/magnitude of noise in the ciphertexts.

The base scheme can be instantiated under either the learning with error
(LWE) assumption or the decisional composite residuosity (DCR) assumption
(shown in the full version). We will then implement another scheme on top of a
base instantiation that’s tailored to the needs of our application.
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Definition 3 (noisy linearly homomorphic encryption). A noisy linearly homo-
morphic encryption scheme consists of five efficient algorithms, and is asso-
ciated with two exponentially bounded functions in the security parameter λ,
Be(λ), Bs(λ) ≤ 2poly(λ).

– Setup(1λ, 1Ψ, param) takes as inputs a security parameter λ, an upper bound
Ψ ∈ N on the dimensions of message vectors to be encrypted, and additional
parameters param. It outputs public parameters pp, which defines a key space
S = Z�s , a ciphertext space E, and a message modulus P , that satisfy certain
properties specified by param.
By default, the rest of the algorithms have random access to pp, and receive
as inputs 1λ, param in addition to other inputs, i.e., we use the simplified
notation X(x1, x2, . . .) to mean Xpp(1λ, param, x1, x2, . . .).

– KeyGen(1�s) takes the key dimension �s (specified by pp) as input, and outputs
a key s ∈ Z�s , satisfying that |s|∞ < Bs(λ).

– Enc(s,m) takes as inputs a key s ∈ Z�s , and a message vector m ∈ Zψ of
dimension ψ ≤ Ψ. It outputs a ciphertext ct ∈ E.

– Dec(s, ct) takes as inputs a key s ∈ Z�s , and a ciphertext ct ∈ E. It outputs
a (noisy) message vector m′ ∈ Z

ψ
P of dimension ψ ≤ Ψ, or the symbol ⊥ in

case of a decryption error.
– Eval(f, {cti}) takes as input a linear function f specified by d integer coeffi-

cients i.e., f(x1, . . . , xd) =
∑

i∈[d] aixi, and d ciphertexts {cti}i∈[d]. It outputs
an evaluated ciphertext ctf ∈ E.
(If cti encrypts a message vector mi ∈ Z

ψ
P of dimension ψ ≤ Ψ, under a key

si, ctf should encrypt the vector mf = f(m1, . . . ,md), evaluated coordinate-
wise over ZP , under the key sf = f(s1, . . . , sd), evaluated over Z.

Correctness w.r.t. Be. The scheme is correct if for all λ,Ψ ∈ N, param,
pp ∈ Supp

(

Setup(1λ, 1Ψ, param)
)

, s ∈ Z�s , m ∈ Zψ where ψ ≤ Ψ, it holds that

Pr

[

‖e‖∞ ≤ Be

∣

∣

∣

∣

∣

ct ← Enc(s,m), m′ = Dec(s, ct),
e = m′ − m mod P

]

= 1,

where we calculate the infinity norm ‖ · ‖∞ of e ∈ Z
ψ
P by identifying it as an

integer vector over [−P/2, P/2]ψ.

One-time Security. The scheme is (one-time) secure if for all polynomial Ψ =
Ψ(λ), sequence of parameters {paramλ}λ each of bit length |paramλ| ≤ poly(λ),
and sequence of integer message vectors {m1,λ,m2,λ}λ where m1,λ,m2,λ ∈ Zψλ

of dimension ψλ ≤ Ψ(λ), ‖mi,λ‖∞ ≤ 2poly(λ), the following indistinguishability
holds. (We surpress the index λ below.)

{ct1, pp} ≈c {ct2, pp} .

∣

∣

∣

∣

∣

pp ← Setup(1λ, 1Ψ, param),

s ← KeyGen(1�s), cti ← Enc(s,mi),

Below we define two additional properties satisfied by our base instantiations
under either the LWE or the DCR assumption.
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Definition 4 (linear homomorphism). A LHE scheme (per Definition 3) has
linear homomorphism if for all linear function f specified by d integer coeffi-
cients, for all λ,Ψ ∈ N, param, pp ∈ Supp

(

Setup(1λ, 1Ψ, param)
)

, si ∈ Z�s for
each i ∈ [d], and cti ∈ E for each i ∈ [d], such that, Dec(si, cti) outputs mi 	= ⊥
and all mi have the same dimension ψ ≤ Ψ, then the following holds:

Pr

[

Dec(sf , ctf )
= f({mi}) mod P

∣

∣

∣

∣

∣

mi = Dec(si, cti), ctf ← Eval(f, {cti}),
sf = f({si}) (over Z)

]

= 1.

Definition 5 (statistical closeness). A LHE scheme (per Definition 3) has sta-
tistical closeness if for all λ,Ψ ∈ N, param, pp ∈ Supp

(

Setup(1λ, 1Ψ, param)
)

,
s ∈ Z�s , and any two distributions D1,D2 of ciphertexts over E such that, for
all i ∈ {1, 2}, Pr [Dec(s, cti) 	= ⊥ | cti ← Di] = 1, the following holds:

ΔSD (ct1, ct2) = ΔSD (Dec(s, ct1),Dec(s, ct2)) | cti ← Di, .

3.2 A Construction of Special-Purpose LHE

We next construct a special-purpose LHE scheme lhe using a basic LHE scheme
lhe defined in the previous subsection as a black-box. The special-purpose LHE
lhe is taylored to the needs of our garbling construction in the following ways:

– Arbitrary Message Space: Note that the message space ZP of the basic
LHE scheme is specified by the public parameter pp during setup time, and
may not match domain, e.g. Zp of the computation to be garbled. (For exam-
ple, in the DCR instantiation, P = Nr, where N is a randomly sampled RSA
modulus). In lhe, the setup algorithm Setup takes an arbitrary modulus p as
an additional parameter, and sets up public parameters pp with exactly Zp

as the message space. In the construction, Setup invokes the basic setup algo-
rithm Setup and makes sure that the basic modulus P is sufficiently large. lhe
then embeds the actual message space Zp in ZP .

– Exact Decryption: lhe decryption produces noisy message, where the noise
is bounded by Be, while lhe decryption produces the exact message.

– Special-Purpose Linear Homomorphism, and Noise Smudging: Rely-
ing on the linear homomorphism and statistical closeness of lhe (Definition 4,
Definition 5), we show in Lemma 2 and Lemma 1 that lhe satisfies prop-
erties tailored for our construction of garbling schemes. Roughly speaking,
it allows evaluating simple linear functions, e.g., f(x1, x2) = yx1 + x2, and
f ′(xres, x1) = xres − yx1, and we can smudge the noise in a noisy ciphertext
by homomorphically adding an encryption of the smudging noise.

Construction 1 (LHE for Zp). We construct the special purpose scheme lhe
on top of a basic scheme lhe (instantiated under either LWE or DCR in the full
version.) Let Be = Be(λ) ≤ 2poly(λ) be the fixed noise bound for lhe guaranteed
by its correctness (Definition 3).
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– Setup(1λ, 1Ψ, p, Bmax) takes as input an arbitrary message modulus p ∈ N,
and an upper bound Bmax ∈ N on noise levels in ciphertexts, and proceeds in
the following steps:

• Set Bmsg = 2p · max(Bmax, Be), and run Setup(1λ, 1Ψ, param = Bmsg) to
obtain pp, which specifies a key dimension �s, a ciphertext space E , and
a message modulus P .
Our instantiations of lhe guarantee that P ≥ Bmsg, and �s is polynomial
in λ and log Bmsg, independent of the maximal message dimension Ψ.

• Set a scaling factor Δ = �P/p�, and output pp = (pp,Δ), which specifies
a key space S = Z�s , a ciphertext space E , and a message modulus p.

Note: By our setting of Bmsg, and the guarantee that P ≥ Bmsg, we have

Δ ≥ �Bmsg/p� = 2max(Bmax, Be) . (3)

– KeyGen(1�s) directly runs s ← KeyGen(1�s), and outputs s.
– Enc(s,m) takes as input a secret key s and a message vector m ∈ Zψ. It

computes m′ = (m mod p) · Δ ∈ Z
ψ
P , and outputs ct ← Enc(s,m′). Note:

The one-time security of lhe follows directly from that of lhe.
– Dec(s, ct) first runs m′ = Dec(s, ct) to recover m′ ∈ Z

ψ
P , and then computes

mp = �m′/Δ� to recover mp ∈ Zψ
p . It outputs mp.

Note: By the correctness of lhe, we have

Dec(s,Enc(s,m)) = Dec(s,Enc(s,mp · Δ)) = mp · Δ + e ∈ Z
ψ
P ,

for some noise vector e such that ‖e‖∞ ≤ Be. As noted in Eq. (3), we have
Δ ≥ 2Be. Hence rounding by Δ recovers the correct message mp ∈ Zψ

p exactly,
i.e., the construction has correctness with noise bound Be = 0.

– Eval(f, {cti}) directly runs ctf ← Eval(f, {cti}) and outputs ctf . Note: Eval ≡
Eval, hence it can operate on ciphertexts of both lhe and lhe.

Next, relying on the linear homomorphism of lhe, we show that lhe satisfies linear
homomorphism w.r.t. linear functions of the form f(x1, x2) = yx1 + x2, which
suffices for our garbling constructions.

Lemma 1 shows how to “smudge” the noises in an evaluated lhe ciphertext
ctR by homomorphically adding a fresh lhe encryption cte of a smudging noise
vector e to it, as ct′R = Eval(+, ctR, cte). As long as the smudging noise is large
enough, the result ct′R is statistically close to homomorphically adding cte to a
fresh lhe ciphertext ct2, as ct′2 = Eval(+, ct2, cte).

Lemma 2 shows how to set the noise upper bound Bmax during Setup so that
evaluated lhe ciphertexts can still be decrypted exactly. We prove the lemmas in
the full version.

Lemma 1 (noise smudging). Suppose the underlying LHE scheme lhe in Con-
struction 1 satisfies linear homomorphism (Definition 4) and statistical closeness
(Definition 5). For all λ,Ψ, p, Bmax, α1 ∈ N, set the smudging noise level to

α2 = λω(1) max(p,Be, α1)2 .
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For any pp ∈ Supp
(

Setup(1λ, 1Ψ, p, Bmax)
)

, s1, s2 ∈ Z�s , m1,m2 ∈ Zψ where
ψ ≤ Ψ, and function f(xres, x1) = xres − yx1, where |y| < p, the following two
ciphertexts are statistically close, i.e., ΔSD (ct′2, ct

′
R) ≤ negl(λ).

Sampling ct′2:

– generate fresh ciphertext ct2 ← Enc(s2,m2).
– sample noise e ← [−α2, α2]ψ, and encrypt it using key 0, cte ← Enc(0, e).
– smudge noise in ct2 via ct′2 ← Eval(+, ct2, cte).

Sampling ct′R:

– generate fresh ciphertext ct1 ← Enc(s1,m1).
– sample noise e1 ← [−α1, α1]ψ, and encrypt it using key 0, cte,1 ← Enc(0, e1).
– generate additionally noisy ciphertext ct′1 ← Eval(+, ct1, cte,1).
– generate fresh ciphertext ctres ← Enc(sres,mres), where sres = ys1 + s2, and

mres = ym1 + m2 mod p.
– homomophically evaluate f(xres, x1) = xres − yx1 to obtain ctR ←

Eval(f, ctres, ct
′
1).

– smudge noise in ctR via ct′R ← Eval(+, ctR, cte), using the same cte as above.

The simpler case: The statistical closeness also holds when α1 = 0 and ct′R is
generated using ct1 directly, instead of ct′1.

Lemma 2 (homomorphic evaluation). Suppose the underlying LHE scheme
lhe in Construction 1 satisfies linear homomorphism (Definition 4). For all
λ,Ψ, p, α1, α2 ∈ N, if the maximal noise level is set sufficient large

Bmax ≥ p(p + 1 + α + 2Be) , α = max(α1, α2)

then for all pp ∈ Supp
(

Setup(1λ, 1Ψ, p, Bmax)
)

, s1, s2 ∈ Z�s , m1,m2 ∈ Zψ where
ψ ≤ Ψ, homomorphic evaluation of functions of form f(x1, x2) = yx1+x2 where
|y| < p on additionally noisy ciphertexts yields correct decryption:

Pr

⎡

⎢

⎢

⎣

Dec(ys1 + s2, ctres)

= ym1 + m2modp

∣

∣

∣

∣

∣

∣

∣

∣

∀i ∈ {1, 2}, ei, ← [−αi, αi]
ψ, cte,i ← Enc(0, ei),

cti ← Enc(si,mi), ct
′
i ← Eval(+, cti, cte,i)

ctres ← Eval(f, ct′1, ct′2)

⎤

⎥

⎥

⎦

= 1.

The simpler case: The above also holds when α1 = 0 and ct′res is generated
using ct1, instead of ct′1.

4 Key Extension for Bounded Integer Computation

In this section, we construct the key-extension gadget for B-bounded integer
computation. Our starting point is the following observation: A B-bounded com-
putation can be “embedded” in modulo-p computation as long as p > 2B:

(C, x) is B-bounded ∧ p > 2B =⇒ C(x) over Z = C(x) mod p.
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Setup Algorithm of Bounded Integer Garbling

Parameters and Tools: The computation is B-bounded. The construction uses
the scheme lhe from Construction 1, which is associated with a bound Bs on the
infinity norm of LHE keys sampled by lhe.KeyGen, and a bound Be on the decryption
noise of the scheme lhe underlying lhe. All of B, Bs, and Be are bounded by 2poly(λ).

Setup(1λ) invokes the setup algorithm of the lhe scheme

pp ← lhe.Setup(1λ, 1Ψ, p, Bmax),

and outputs pp = (pp, �), where the parameters are set as below.

– Parameters of the lhe scheme (with key dimension �s = poly(λ, log Bmax)):

message modulus p = λω(1)B · Bs (4)

smudging noise level α = λω(1) max(p, Be)
2 (5)

maximal noise level Bmax = p(p + 1 + α + 2Be)

message dimension bound Ψ = 2(�s + 1) = 2�.

– The dimension of keys/labels of the key extension gadget is set to � = �s + 1.

Fig. 4. Setup for bounded integer garbling.

Therefore, we can directly use the (information theoretic) arithmetic operation
gadget for ring Zp from AIK (recalled in the full version). What remains is to
design a key-extension gadget for Zp, i.e., a mechanism that enables expanding
a short label ax + b mod p to an arbitrarily long label cx + d mod p.

As shown in this section, the fact that every intermediate values x is bounded
tremendously simplifies the key extension gadget, especially if it is compared
with the key extension gadget for modular computation in the full version.

4.1 The Setup Algorithm

Our key extension gadget for bounded integer uses the special-purpose LHE
scheme lhe in Construction 1. The parameters of the LHE scheme is setup once
by the Setup algorithm of the entire garbling scheme, as shown in Fig. 4, and is
shared by all invocation of gadgets when garbling an arithmetic circuit.

We emphasize that the Setup algorithm depends only on the security param-
eter and the integer bound B. It’s independent of any parameters (e.g., maximal
size, fan-out, depth) of the circuit to be garbled later. As such, the public param-
eter pp is generated once and re-used for garbling many poly-sized circuits.

4.2 Length-Doubling Key Extension

We present the construction in two steps:
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Step 1: Length-doubling. In Construction 2, we present a basic length-
doubling key extension gadget, that is, at evaluation time, given a label
zin
1 x + zin

2 of dimension � produces a label zout
1 x + zout

2 of dimension 2�.
This construction already contains our main idea.

Step 2: Arbitrary Expansion. Next, we present a generic transformation
(in the full version) that converts a length-doubling key extension gadget,
to a full-fledged key extension gadget that produces an output-wire label of
arbitrary polynomial dimension �′ > �. At a high-level, the transformation
recursively calls the length-doubling key extension gadget in a tree fashion
till the desired output-wire label dimension �′ is reached.

Construction 2 (length-doubling key extension for bounded integers). The
algorithms below uses the parameters, p, α, Bmax, Ψ, specified in Setup (Fig. 4),
and have random access to the public parameters pp, which contains the public
parameter pp of the LHE scheme lhe and the key dimension �.

– KE.KeyGenpp(1λ, 1�): Generate a lhe secret key s1 ← lhe.KeyGen(1�s), which
is an integer vector in Z�s with ‖s1‖∞ ≤ Bs. Output input-wire keys z1, z2:

zin
1 = (s1, 1), zin

2 = (rs1 + s2, r) (over Z),

where r ← [−Bsmdg, Bsmdg] and s2 ← [−B′
smdg, B

′
smdg]

�s , with Bsmdg =
λω(1)B and B′

smdg = λω(1)BsmdgBs < p/4 (the inequality can be satisfied
because the message modulus p is set sufficient large; see Equation (4)).
Note: We make a few observations: i) the input-wire keys are p bounded, that
is, they belong to the label/key space zin

1 , zin
1 ∈ Zp as the definition requires,

and ii) a label for x equals

Lin = zin
1 x + zin

2 = (s1(x + r) + s2, x + r) mod p

= (s1(x + r) + s2
︸ ︷︷ ︸

sres

, x + r
︸ ︷︷ ︸

y

) over Z

The last equality holds because the magnitude of entries of sres and y do not
exceed p/2. The fact that the labels are effectively computed over the integers
is crucial for decoding later, and this crucially relies on the fact that values
x are B-bounded and that p can be set sufficiently larger than B.

– KE.Garblepp(zout
1 , zout

2 , zin
1 , zin

2 ): First recover s1, s2, r from the input-wire
keys. Then encrypt zout

1 and z′out
2 = zout

2 − rzout
1 using lhe under keys s1, s2

respectively. This is possible because zout
1 , zout

2 has dimension 2� ≤ Ψ, as set
in Fig. 4, and any integer vector of dimension �s, e.g. s2, can be used as a
secret key for lhe.

ct1 ← lhe.Enc(s1, zout
1 ), ct2 ← lhe.Enc(s2, z′out

2 ).

Finally, add a smudging noise of magnitude α (set in Equation (5)) to ct2 to
obtain ct′2, and output garbled table tb = (ct1, ct′2).

e ← [−α, α]�
′
, cte ← lhe.Enc(0, e) , ct′2 ← lhe.Eval(+, ct2, cte) .
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– KE.Decpp(Lin, tb = (ct1, ct′2)) Treat Lin as an integer vector and parse it as
Lin = (sres, y), where sres ∈ Z�s , y ∈ Z. Homomorphically evaluate the linear
function f(x1, x2) = yx1 +x2 over ct1 and ct′2, decrypt the output ciphertext
to obtain mres, and output Lout = mres as the output-wire label:

ct′res ← lhe.Eval(f, ct1, ct
′
2) , Lout = mres = lhe.Dec(sres, ct

′
res) .

Correctness. We show that the above scheme is correct, which requires that
given a correctly generated input-wire label Lin = zin

1 x + zin
2 (mod p) and gar-

bled table tb, the decoding algorithm KE.Dec recovers the correct output-wire
label Lout = zout

1 x + zout
2 (mod p). As we analyzed above Lin = (sres, y) where

sres = s1y + s2 and y = x + r are computed over the integers. By construc-
tion, KE.Dec uses sres as the secret key to decrypt the lhe ciphertext ct′res,
where ct′res is the output ciphertext obtained by homomorphically evaluating
f(x1, x2) = yx1 + x2 over ct1 and ct2 encrypting zout

1 and z′out
2 respectively. By

the special-purpose linear homomorphism of lhe, namely Lemma 2 (the simpler
case), ct′res can be decrypted using secret key f(s1, s2) = s1y+s2 computed over
the integers, which is exactly sres. Therefore,

mres = lhe.Dec(sres = (s1y + s2), ct′res) = (yzout
1 + z′out

2 ) mod p

= ((x + r)
︸ ︷︷ ︸

=y

zout
1 + zout

2 − rzout
1

︸ ︷︷ ︸

z′out
2

) mod p = zout
1 x + zout

2 mod p = Lout .

In order to invoke Lemma 2, we still need to verify that the prerequisite Bmax ≥
p(p + 1 + α + 2Be) is indeed satisfied. This is the case as set by Setup in Fig. 4.

The security proof of the scheme is deferred to the full version.

Lemma 3. Construction 2 is secure per Definition 2.

5 Potential for Concrete Efficiency Improvement

In this section, we compare the concrete efficiency of our bounded integer gar-
bling scheme based on the DCR assumption against the scheme of [8] (BMR),
which garbles arithmetic circuits in the bounded integer model with free addition
and subtraction, and the baseline solution that first converts arithmetic circuits
into Boolean circuits and then runs the Boolean garbling scheme of [17] (RR).
We defer the analysis and comparison for our mod-p and mixed garbling to the
full version. Note that, the concrete efficiency of our construction is not opti-
mized. The calculations and comparisons in this section are only to demonstrate
the potential towards more practical garbling schemes, for garbling arithmetic
circuits with large domains.

Concretely, for B-bounded integer garbling, we consider the Paillier modulus
N to have 4096 bits, and the bit length � = log(B) to be just slightly below
4096, specifically 3808 bits (the setting is described below). We set the statistical
security parameter κ = 80.
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Table 3. Comparison of garbling circuit size for bounded integer computation. The
last two lines assume the stronger small exponent assumption.

Scheme Garbled Table Size

Ours (per Mult Gate) 12 · 3 · log N 18.0 KB

[17] (per Mult Gate) 1.5 · 128 · �1.58 10.4 MB

[8] (per Mult Gate) 2 · 128 · ∑k
i=1(pi − 1) 15.0 MB

Ours (per +/− Gate) 6 · 3 · log N 9.0 KB

[17] (per +/− Gate) 1.5 · 128 · � log � 1.0 MB

[8] (per +/− Gate) Free 0 b

Ours, Improved (per Mult Gate) 12 · 2 · log N 12.0 KB

Ours, Improved (per +/− Gate) 6 · 2 · log N 6.0 KB

Under the concrete setting, the most efficient Boolean circuit implementation
for integer multiplication uses Karatsuba’s method. We conservatively count the
number of AND gates (as XOR gates in RR is free) in a multiplication circuit
as �1.58, ignoring any hidden constants, and an addition circuit as � log �.

At a high level, the BMR scheme works by decomposing a large B-bounded
integer into its Chinese Remainder Theorem (CRT) representation using the
smallest distinct primes (p1 = 2, p2 = 3, . . . , pk) whose product exceeds B. Under
the concrete setting, the number of primes is k = 394.

Size of Bounded Integer Garbling. Under standard DCR, our bounded
integer garbling significantly improves the garbling size of both addition (∼100×)
and multiplication (∼500×) gates over the Boolean baseline using RR, as shown
in Table 3. BMR supports free addition, but multiplication is more expensive
than RR.

The formula for our scheme is derived as follows. In our garbling scheme, the
garbled table for each multiplication gate consists of 12 ring elements in ZP :
according to Fig. 1, the two input wires each have a pair of keys of dimension
4 and 2 (as the label xj2 + s is available before key extension and does not
need to be regenerated). In the DCR instantiation, we set P = N3. Because
� = log B = 3808, it satisfies that N2 ≥ N22κB, which is how large the values
encrypted in Paillier encryption are. Note that this is different from how Setup
algorithm (Fig. 4) specifies the modulus P , because Setup is designed to fit both
the DCR and the LWE instantiations. The size of garbling an addition gate is
calculated the same way as multiplication, except with key dimensions 2 and 1
for the input wires.

Computation Efficiency. In both BMR and RR, the main costs are comput-
ing garbled table entries, which are 128-bit AES ciphertexts. Concretely: BMR
computes 2 · ∑k

i=1(pi − 1) ≈ 106 AES ciphertexts for each Mult gate, and has
free addition. The Boolean baseline using RR computes 1.5 · �1.58 ≈ 6.8 × 105

and 1.5 · � log � ≈ 6.8 × 104 AES ciphertexts for each Mult and Add gate respec-
tively. In our scheme, a garbled table for Mult consists of 12 ring elements in
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Table 4. Comparison of computation costs for bounded integer garbling.

Scheme Garbling Computation Cost

Ours (per Mult Gate) 12 · lsk ≈ 1.5 × 103 Mult modP

[17] (per Mult Gate) 1.5 · �1.58 ≈ 6.8 × 105 AES calls

[8] (per Mult Gate) 2 · ∑k
i=1(pi − 1) ≈ 106 AES calls

Ours (per +/− Gate) 6 · lsk ≈ 7.7 × 102 Mult modP

[17] (per +/− Gate) 1.5 · � log � ≈ 6.8 × 104 AES calls

[8] (per +/− Gate) Free Free

ZP , each a Paillier ciphertext of the form hx(1 + N)m, for some hard group
element h, secret exponent x, and message m. Thanks to algebraic properties of
Pailler, (1 + N)m can be computed cheaply without exponentiation. The main
cost comes from raising h to the exponent x. Let lsk be the bit length of x. The
DCR assumption assumes that lsk = log N = 4096. However, under the “small
exponent” assumption as introduced in [1], we can set lsk = 128, which improves
efficiency in two ways. First, it slightly reduces our garbling sizes, as we can now
set the modulus P = N2 ≥ N2lsk22κB, as shown in the last two lines of Table 3.
More importantly, it significantly improves computational efficiency. Concretely,
our scheme computes 12 · lsk ≈ 1.5 × 103 and 6 · lsk ≈ 7.7 × 102 multiplications
mod P for each Mult and Add gate respectively. A comparison is in Table 4.
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