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Abstract. Over the past few years, homomorphic secret sharing (HSS)
emerged as a compelling alternative to fully homomorphic encryption
(FHE), due to its feasibility from an array of standard assumptions and
its potential efficiency benefits. However, all known HSS schemes, with
the exception of schemes built from FHE or indistinguishability obfus-
cation (iO), can only support two parties.

In this work, we give the first construction of a multi-party HSS scheme
for a non-trivial function class, from an assumption not known to imply
FHE. In particular, we construct an HSS scheme for an arbitrary num-
ber of parties with an arbitrary corruption threshold, supporting evalu-
ations of multivariate polynomials of degree log / log log over arbitrary
finite fields. As a consequence, we obtain a secure multiparty computa-
tion (MPC) protocol for any number of parties, with (slightly) sub-linear
per-party communication of roughly O(S/ log log S) bits when evaluat-
ing a layered Boolean circuit of size S.

Our HSS scheme relies on the sparse Learning Parity with Noise
(LPN) assumption, a standard variant of LPN with a sparse public
matrix that has been studied and used in prior works. Thanks to this
assumption, our construction enjoys several unique benefits. In partic-
ular, it can be built on top of any linear secret sharing scheme, pro-
ducing noisy output shares that can be error-corrected by the decoder.
This yields HSS for low-degree polynomials with optimal download rate.
Unlike prior works, our scheme also has a low computation overhead in
that the per-party computation of a constant degree polynomial takes
O(M) work, where M is the number of monomials.

1 Introduction

Homomorphic secret sharing (HSS) [19] is the secret sharing analogue of homo-
morphic encryption [37,51], which supports local evaluation of functions on
shares of secret inputs. A standard N -party t-private secret sharing scheme
randomly splits an input x into N shares, (x1, . . . , xN ), such that any subset
of t shares reveals nothing about the input. An HSS scheme additionally sup-
ports computations on shared inputs by means of local computations on their
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shares. More concretely, there is a local evaluation algorithm Eval and recon-
struction algorithm Rec satisfying the following homomorphism requirement.
Given a description of a function f , the algorithm Eval(f, xj) maps an input
share xj to a corresponding output share yj such that Rec(y1, . . . , ym) = f(x).
To avoid trivial solutions,1 the HSS output shares should be compact in the
sense that their length depends only on the output length of f and the secu-
rity parameter, and hence the reconstruction time does not grow in the function
size. HSS enables private outsourcing of computation to multiple non-colluding
servers. It also has applications to secure multiparty computation (MPC) with
sublinear communication [19,27,29], multi-server private information retrieval
(PIR) and secure keywords search [18,39,53], generating correlated pseudoran-
domness [15,16], and much more.

The work of Boyle, Gilboa and Ishai [19] gave the first nontrivial exam-
ple of a 2-party HSS scheme without FHE. Their scheme supports the class
of polynomial-size branching programs (which contains NC1) and is based on
the Decisional Diffie-Hellman (DDH) assumption. A series of followup works
have extended their result, improving efficiency [17,20,22], and diversifying the
underlying assumptions to Decision Composite Residuosity (DCR) [33,50,52] or
assumptions based on class groups of imaginary quadratic fields [1]. For more
limited function classes, which include constant-degree polynomials, 2-party HSS
can be based on different flavors of the Learning Parity with Noise (LPN)
assumption [16,29]. However, when it comes to the general setting of HSS with
N ≥ 3 parties, constructions have been lacking, with the only known solutions
relying on either FHE [11,12,21,26,32,48] or Indistinguishability Obfuscation
(iO) [18].2

The same “multi-party barrier” exists when it comes to the construction
of sublinear-communication MPC protocols, the goal is to achieve (per-party)
communication cost that is sublinear in the size of the circuit being computed.
Until the DDH-based construction of HSS [19], this could only be achieved using
FHE. It is easy to see that an N -party (N − 1)-private HSS for a function class
F directly implies an MPC protocol for functions in F with communication
depending only on the input and output lengths. Thus, all 2-party HSS schemes
in previous works immediately yield 2-party low-communication MPC for low-
depth computations (log- or log log-depth). Furthermore, these protocols can be
extended to handle general layered circuits with a communication cost sublinear
in the circuit size (by a log or log log factor). Unfortunately, when it comes
to general multiparty settings, with up to N − 1 corruption, the only known
solutions again rely on FHE or iO.

Motivated by the state-of-the-art, we ask:

1 A trivial solution is letting the output shares be (f, xj) and Rec reconstruct x from
the shares and then compute f . However, this solution is uninteresting since it is
not useful.

2 The work of [18] builds 2-party HSS for general polynomial-sized computation
from subexponentially secure iO and one-way functions. Their construction can be
extended to the multiparty setting.
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Can we have general N -party t-private HSS for useful classes of
functions, and sublinear communication MPC for general number of

parties, without FHE or iO?

1.1 Our Results

In this work, based on the sparse LPN assumption (described shortly), we con-
struct general N -party t-private HSS for log log-depth arithmetic circuits, and
more generally, for the class of multivariate polynomials with log / log log degree
and a polynomial number of monomials. Our HSS natively supports arithmetic
computation over arbitrary field Fq (assuming sparse LPN over Fq). It also
enjoys concrete efficiency. In particular, the server computation overhead can
be made constant (independent of the security parameter) when evaluating con-
stant degree polynomials, and shares of multiple outputs can be packed together
to achieve optimal download rate [35]. As an application of our HSS, we obtain
the first sublinear-communication MPC for general layered circuits and arbitrary
number of parties without relying on FHE or iO. We now describe our results
in more detail.

Sparse LPN. Given two sparsity parameters k = ω(1) ∈ N and δ ∈ (0, 1),
the (k, δ)-sparse LPN assumption over a finite field Fq states that the following
distributions are computationally indistinguishable:

(A, sTA+ eT mod q) ≈c (A, r) , where A ∈ F
n×m
q , s ← F

n
q , e ∈ F

m
q , r ← F

m
q .

The public matrix A ∈ F
n×m
q is k-sparse, meaning that each column is sampled

randomly subject to having Hamming weight exactly k, while the error vector
e is n−δ-sparse in the sense that each coordinate ei is random non-zero with
probability 1/nδ and 0 otherwise. This work relies on the sparse LPN assump-
tion that the above indistinguishability holds for every super-constant k, every
constant δ ∈ (0, 1), every prime modulus q (potentially exponentially large in λ),
and any polynomial number m of samples. See Assumption 4.1 for the precise
formulation. In fact, in this work it suffices to require the above indistinguisha-
bility to hold for some δ > 0 (though we believe that the assumption should
hold for any constant δ ∈ (0, 1)).

Variants of this assumption in the binary field F2 have been proposed and
studied for at least a couple of decades in average-case complexity (see works
such as [2,3,10,30,34,40,45,47]). The work of [6] generalized the assumption to
large fields Fq. Both of these variants have been used in a number of works (see
for example [2,4,7,42]). The related assumption of local PRGs [40] has also
been used in a number of works including the recent construction of program
obfuscation scheme [44]. Comparing with previous variants, our assumption is
relatively conservative in two aspects. First, we consider public matrices that
are (k = ω(1))-sparse, instead of constant sparse k = O(1). In fact, for our
constructions of HSS and sublinear communication MPC, it suffices to set k =
poly(log λ). Second, the error-rate 1/nδ can be an arbitrary inverse polynomial,
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whereas for some application such as PKE [4] we require δ to be greater than
some fixed constant.

The work of [4] showed how to construct PKE from sparse LPN over F2

with constant sparsity k = 3, sample complexity n1.4 and error probability
o(n−0.2). Their scheme could be naturally extended to work with the variant
of the assumption for a fairly general choice of parameters. In particular, they
could work with any choice of constant k ≥ 3, assuming a sample complexity of
m = n1+(k/2−1)(1−δ) for δ > 0, where the noise probability should be o(n−δ).
In our case, k is set to be ω(1) (so nk is super-polynomial), and our sample
complexity is only polynomial in n. For these parameters the noise probability
implying PKE through [4] is smaller than any inverse polynomial, while for
us, the noise probability could be n−δ for any δ > 0. Therefore, to the best
of our knowledge, our parameters are not known to imply PKE. We survey
cryptanalysis of the sparse LPN problem, and give more details on the PKE
scheme, in the full version.

General N-party t-private HSS Scheme. Assuming sparse LPN, we present a con-
struction of HSS schemes for general number of parties N and privacy threshold
t. Our schemes support computing functions represented by multivariate poly-
nomials with degree O(log λ/ log log λ) and polynomial number of monomials;
in particular, this class of functions contains O(log log)-depth arithmetic cir-
cuits. However, similar to the DDH-based HSS construction of [19], our schemes
have a noticeable correctness error, which can be made as small as any inverse
polynomial, at the cost of worse efficiency.

Theorem 1.1 (Multi-party HSS, informal). Assume sparse LPN. For any
number of parties N ≥ 2, privacy threshold t < N , modulus q, error probability
ε = 1/ poly(λ), there is a N -party, t-private HSS with correctness error ε for the
following class of functions:

– Function Class P(Fq,D,M): multivariate polynomials over the finite field Fq

with degree D = O(log λ/ log log λ) and number of monomials M = poly(λ).

The reconstruction of the above HSS scheme is linear. Furthermore, the scheme
can be modified to have compact (but non-linear) reconstruction and negligible
error rate.

Previously, sparse LPN with specific parameters was used to build public-key
encryption (PKE) through the classic work of [4]. However, as remarked above,
our parameters implying HSS are not known to imply PKE. Therefore, we obtain
the first multi-party HSS scheme for useful classes of functions from a plausibly
mini-crypt assumption. In contrast, previous (2-party) HSS schemes were either
based on LWE, on various number theoretic assumptions (DDH/DCR/QR), or
on standard LPN (with dense public matrix) that required the error rate to be
below n−0.5; all of these assumptions are known to imply PKE. See Fig. 1 for
details.

Besides accommodating general N and t, our construction enjoys several
other desirable features. First, thanks to the fact that the sparse LPN assumption
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Assumptions (N, t) Function Class Error

DDH [17,19,20], DCR [33] (2, 1) Branching programs (NC1) 1/ poly
LWE [22] (2, 1) Branching programs (NC1) negl

DCR [50,52] (2, 1) Branching programs (NC1) negl
Class Groups [1] (2, 1) Branching programs (NC1) negl

LPN [16] (2, 1) Constant-degree polynomials none
Quasi-poly LPN [29] (2, 1) Loglog-depth circuits none

Degree-k Homomorphic
Encryption [43,46]

(
� dt

k+2
�, t

)
Degree-d polynomials none a

Unconditional
(Shamir-based) [35]

(dt + 1, t) Degree-d polynomials none

iO and OWF [18] (�, �) Circuits (P/ poly) none

FHE [21,32] b (�, �) Circuits (P/ poly) negl

Sparse LPN (Ours) (�, �) Loglog-depth circuits 1/ poly

a reconstruction is non-linear
b relies on multi-key FHE schemes that can be based on “circular-secure” LWE

Fig. 1. Comparison between existing N -party, t-private HSS schemes and ours. The
reconstruction process is linear unless stated otherwise.

“arithmetize” to arbitrary field Fq, our HSS schemes natively support evaluating
these polynomials (and arithmetic circuits) over arbitrary field Fq. Second, our
construction can also accommodate general reconstruction threshold t < t′ ≤ N ,
namely, how many output shares are needed in order to reconstruct the output.
Having a smaller reconstruction threshold are useful in certain applications, for
instance, it implies fault tolerance to server failures in the scenario of outsourc-
ing computation to multiple servers via HSS. Furthermore, our schemes have
constant server-computation overhead when computing low degree polynomials
and optimal download rate, which we expand in detail later.

Sublinear Communication MPC for Any Number of Parties. Using our HSS
construction, we circumvent the “circuit-size barrier” for general MPC, for the
first time, without restricting the number of parties N or the function classes,
nor using FHE or iO. We construct such protocols where the communication
cost of each party is sublinear in the size S of the Boolean layered circuit being
computed, roughly by a factor of log log S (plus other lower order terms).

Theorem 1.2 (Sublinear MPC, informal). Assume sparse LPN and the
existence of an oblivious transfer protocol. Then, for any κ(λ) ∈ ω(1) and any
number of parties N , there exist N -party MPC protocols tolerating up to (N −1)
semi-honest corruptions that can evaluate Boolean layered circuits of size S,
depth D, and width W , with per-party communication

O(κ · S/ log log S) + D · So(1) · poly(λ,N) + W · poly(log N, log λ)/N.
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Besides sparse LPN, our sublinear-communication MPC also (inevitably)
needs to rely on an Oblivious Transfer (OT) protocol. The latter can be based on
standard LPN with noise rate below n−0.5 [2,31] or a specific sparse LPN-type
assumption [4].3 In summary, sublinear-communication MPC can be obtained
using only assumptions in the LPN family.

Finally, we note that by an existing compiler due to Naor and Nissim [49],
we can upgrade our MPC protocols to be maliciously secure while preserving
per-party sublinear communication cost, assuming the existence of Collision-
Resistant Hash (CRH) functions. Again, CRH can be constructed from standard
LPN with low-noise rate log2(n)/n [24].

Low Server Computation Overhead. If assuming stronger variants of sparse LPN
assumption where the public matrix is constant-sparse,4 i.e., k = O(1), we can
slightly adapt the evaluation procedure of our HSS construction, so that, the
computation overhead of each party/server for computing constant-degree poly-
nomials represented as a sum of monomials is only a constant. More precisely,
to compute a single degree d monomial over Fq, the local homomorphic evalu-
ation procedure can be represented by a degree d arithmetic circuit over Fq of
size O((k + 1)d). Next, homomorphic addition of the outputs of t monomials
involves only t addition over Fq. Therefore, when both k and d are constants,
the overhead is at most O((k+1)d/d) (i.e., the ratio between the server cost and
the cost of computing a single monomial) a constant. In comparison, almost all
previous HSS schemes (tolerating N − 1 corruption) have a server computation
overhead proportional to the security parameter poly(λ) [1,22,29,33,50,52]; the
only exception is using FHE [38] with polylogarithmic overhead, which implies
HSS with poly(log λ) overhead.

We remark that HSS for low-degree polynomials is well-motivated by a vari-
ety of applications, for instance, multi-server private information retrieval, for
computing inner product between two integer-valued vectors (a degree-2 func-
tion) which is a measure of correlation, and for computing intersection of d sets
where each set is represented by a characteristic vector in F

�
2, and intersection

can be computed by � instances of a degree-d monomial over F2. See [35,43,46]
for more examples.

Simple Reconstruction and Optimal Download Rate. In fact, our HSS is also
“compatible” with an arbitrary multi-secret sharing scheme LMSS. This allows
us to achieve much better download rate5 by packing many function evaluations
into a single set of output shares. In particular, by plugging in the multi-secret
Shamir sharing [36], we achieve a rate of 1−t/N , which matches the best possible
rate for information-theoretic HSS. In fact, this also applies to computational
3 Namely, the PKE constructed in [4] can be directly transformed into a semi-honest

OT.
4 In such a setting, we shall use public matrices from specific distributions instead of

being uniform. See Remark 4.2 for a discussion.
5 The download rate is the ratio of the output size over the sum of all output share

sizes (for details, see [35]).
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HSS with linear reconstruction, or where the output share size is independent
of the computational security parameter.6

Theorem 1.3 (General Linear Output Shares, informal). For any field
Fq, assume sparse LPN over Fq. For any N ≥ 2, t < N , ε = 1/ poly(λ), and
any N -party, t-private linear secret sharing scheme LSS, there is an N -party,
t-private HSS with correctness error ε for the same function class as in Theo-
rem 1.1 satisfying the following properties:

– the output shares are LSS secret shares of the output y with probability 1 − ε
(and LSS secret shares of some wrong value with probability ε).

– using an appropriate LMSS, the output shares can be packed together to
achieve download rate 1 − t/N .

The above should be compared with the 1 − Dt/N rate of the (perfectly
correct) information-theoretic construction from [35], which is in fact optimal for
HSS in which both the sharing and the reconstruction are linear. To the best of
our knowledge, the only other computationally secure HSS scheme with (1−t/N)
download rate uses FHE with certain properties. This scheme is sketched in the
full version.

1.2 Related Work

2-party sublinear MPC. The work of Boyle, Gilboa, and Ishai [19] showed how to
build sublinear 2PC for layered circuits of size S with communication complexity
roughly O(S/ log S), under the DDH assumption. Following this template, later
works showed that we can replace DDH with various other assumptions such as
DCR [33,50,52], poly-modulus LWE [22], or class group assumptions [1]. More
recently, Couteau and Meyer [29] showed that assuming the quasi-polynomial
hardness of (dense) LPN, we can have 2PC with sublinear communication com-
plexity roughly O(S/ log log S). Finally, in the correlated randomness model with
polynomial storage, Couteau constructed information theoretically secure MPC
protocols with communication complexity O(S/log log S) [27].

Beyond 2 parties. In a very recent and independent work, Boyle, Couteau and
Meyer [14] constructed the first sublinear MPC protocols for N ≥ 3 parties from
assumptions that are not known to imply FHE. This includes a 3-party protocol
from a combination of a variant of the (dense) LPN assumption and either DDH
or QRA, as well as a 5-party protocol additionally assuming DCR and a local
PRG. In contrast, we obtain a sublinear MPC protocol for any number of parties
N , based entirely on variants of the LPN assumption (sparse LPN and OT, which
is implied from low-noise dense LPN).

Our technical approach is very different from that of [14]. The results of [14]
are based on a novel compiler that obtains a sublinear N -party MPC protocol
6 The latter conditions rule out HSS schemes in which the output shares contain a

homomorphic encryption of the output. Such schemes can only achieve good rate
when the output size is much bigger than the (computational) security parameter.
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from an (N − 1)-party HSS scheme satisfying an extra “Las-Vegas”7 correctness
property, along with a PIR scheme with special properties. (See [14] for details,
and Proposition 1 in [14] for a more general framework.) We cannot use the
compiler from [14] to obtain our MPC result (Theorem 1.2), for two reasons: our
HSS scheme does not satisfy the extra Las-Vegas property, and (even standard)
PIR is not known to follow from any variant of LPN.

Instead, our sublinear MPC protocol follows the blueprint of a similar (2-
party) HSS-based construction from [19], adapting it to the lower complexity
class supported by our HSS scheme and extending it to cope with a big number
of parties. This approach is more direct and simpler than the compiler from [14],
thanks to the fact that we can use an N -party (rather than an (N − 1)-party)
HSS scheme to construct N -party sublinear MPC protocols.

Finally, we note that while our MPC protocol inherently has a negligible cor-
rectness error, the construction in [14] can leverage HSS schemes with Las-Vegas
correctness to yield perfectly correct (3-party or 5-party) MPC protocols [28].
We leave open the possibility of obtaining a Las-Vegas variant of our HSS scheme
or a perfectly correct sublinear MPC from sparse LPN and OT.

2 Technical Overview

Our results are facilitated mainly due to structural properties underlying our
assumption of sparse LPN.

Sparse LPN. We start by recalling the sparse LPN assumption. Our assumption
states that the following two distributions are computationally indistinguishable:

{ai, 〈ai, s〉 + ei}i∈[m] ≈c {ai, ui}i∈[m],

where ai are randomly chosen k-sparse vectors over F
n
q for a prime power q,

and m is an arbitrarily chosen polynomial in n. The error ei is chosen sparsely
from a Bernoulli random variable over Fq with probability of error being n−δ

for a constant δ > 0. On the other hand, {ui} are chosen at random from Fq.
In this work, we can work with any δ > 0 and typically consider k = ω(1) as an
appropriately chosen super constant, however the assumption is plausible even
when k is chosen to be a constant integer greater than equal to 3 as long as
m = o(nk/2). Such an assumption will allow our homomorphic secret sharing
scheme to support a slightly bigger function class. We discuss the history and
cryptanalysis of this assumption in the full version. Our function class consists
of multivariate polynomials over Fq, and the sparse LPN assumption we will use
to build such an HSS will also be over the same Fq. We now illustrate how this
assumption gives rise to a conceptually clean construction of a homomorphic
secret sharing scheme.

7 An HSS scheme has Las-Vegas correctness with error ε if each output share can be
set to ⊥ with at most ε probability, and if no output share is set to ⊥ then the shares
must always add up to the correct output.
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2.1 HSS Construction

We now describe the ideas behind our HSS construction. In this work, we con-
sider the function class P(Fq,D,M) which consists of polynomials evaluated on
inputs that are vectors of arbitrary polynomial length over Fq. These polynomi-
als are of degree D, and are subject to an upper bound of M on the number of
monomials. Looking ahead, we will handle D = log λ

log log λ and M = poly(λ) where
λ is the security parameter. This already lets us evaluate Boolean circuits that
are local where the locality8 is bounded by D = log λ

log log λ - any circuit that has a
locality bounded by D, can be represented by such a polynomial. We refer to the
definitions for a homomorphic-secret sharing scheme HSS = (Share,Eval,Rec) in
Sect. 3.2.

Template from Boyle et al. Our scheme follows the same high-level template that
was first suggested by [19] and has been later adopted in a number of follow-ups
such as [1,22,50,52], but introduces a number of important twists. Suppose we
want to secret share a vector x ∈ F

m
q = (x1, . . . , xm) amongst N parties. We

work with a suitable linear secret sharing scheme over Fq. In this overview, we
will work with the additive secret sharing for N parties, but it could be any
linear secret sharing scheme over Fq (or its field extensions).

Each party can be handed over the shares of x: a party P� for � ∈ [N ] is
given shares that are denoted by [[xi]]� for i ∈ [m], respectively. This is already
enough to build a homomorphic secret sharing scheme supporting linear func-
tions. Namely, parties can locally compute shares of linear functions of x by
applying appropriate linear functions over their shares [[xi]]�.

The main ingredient in prior HSS schemes is a method that lets one non-
interactively compute share of multiplication of an intermediate computation
y with an input symbol xi. The idea is that one publishes an encryption
of the input {cts(xi)} and encryptions of the products {cts(xi · sj)}, where
s = (s1, . . . , sn) is the secret key, using a suitably chosen linearly homomor-
phic encryption scheme (such schemes can typically be instantiated from any of
the LWE/DDH/DCR/QR assumptions). Since we are encrypting functions of
the secret key inside the ciphertext, the encryption scheme must also be KDM
secure (or we must assume it is KDM secure).

These encryptions are given to all parties. Along with these encryptions and
the shares of the input [[xi]]�, each party P� receives a share [[xi · sj ]]� of the
product xisj . The key step is a procedure that allows one to start with a share
[[y]]� for an intermediate computation y and shares [[y · sj ]]� of products y · sj

and compute not only a share of [[y · xi]]� for any input xi but also shares of the
form [[y · xi · sj ]]�. This step leverages structural properties of the linearly homo-
morphic encryption scheme. Typically in such settings, one homomorphically
computes on the ciphertext by “multiplying” cts(xi) with [[y]]�. The resulting
ciphertext is then “decrypted” in a distributed fashion using the secret-shares of
the form [[y · sj ]]�, assuming that the decryption is almost linear. This produces

8 The locality of any Boolean circuit is the number of input bits it depends on.
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shares of [[y · xi]]�. The shares of [[y · xi · sj ]]� can be computed by starting with
cts(xisj) instead.

Which linearly homomorphic encryption one chooses can present different
sets of challenges for realizing the above step. [19,50] relied on DDH/Pallier
based encryption. Since the ambient space of shares is over some field, whereas
the encryption consists of group elements, this step include some operations done
over the groups followed by a “distributed discrete-log” step that works specifi-
cally for two parties. In LWE based schemes such as [22], the ciphertexts live in
the same space as that of the shares. The issue is that while the ciphertexts are
almost linear in the secret, they have a low-norm error. The authors suggest a
rounding based idea that was inspired by earlier works on homomorphic encryp-
tion [23,25] that for some (not so) coincidental reason works specifically for two
parties. Our main approach consists of devising a suitable linearly homomorphic
encryption that sits naturally over the field Fq, and does not suffer from the
issues that prevented scaling of previous ideas beyond two parties.

Suitable Linearly Homomorphic Encryption. The main issue with prior linear
homomorphic encryption schemes that restricts constructions to two parties is
that they don’t work naturally with the linear secret sharing scheme. As a result,
special share conversion methods have to be devised (which seem to be stuck
at two parties). It is instructive to ask what properties a linear homomorphic
encryption could satisfy so that it works more naturally with the linear secret
sharing scheme.

To this end, consider the following (broken) encryption scheme that encrypts
input xi as cts(xi) = (ai, bi = 〈ai, s〉 + xi) where s is a vector of Fn

q and ai ←
F

n
q is randomly chosen. Similarly, we have cts(xisj) = (ai,j , bi,j = 〈ai,j , s〉 +

xisj). Such an encryption scheme is both linearly homomorphic and has a linear
decryption function over Fq. On the other hand, it is obviously not secure: one
could find the secret s by solving a properly constructed linear equation system.

But, for the time being assume that the scheme was secure. If this were
true, then this will give rise to a homomorphic secret sharing scheme supporting
corruption patterns governed by any linear secret sharing scheme over Fq, thanks
to it being linearly homomorphic over Fq and having linear decryption over Fq.
Indeed, observe that

bi [[y]]� − 〈ai, ([[ys1]]� , . . . , [[ysn]]�)〉 = [[xi · y]]� (1)
bi,j [[y]]� − 〈ai,j , ([[ys1]]� , . . . , [[ysn]]�)〉 = [[xi · y · sj ]]� (2)

LPN-Based Linearly Homomorphic Encryption. While the above proposal would
work, as described before, it is obviously not secure. To fix the security issue, one
could leverage an encryption scheme based on the standard LPN assumption.
We could instead have cts(xi) = (ai, bi = 〈ai, s〉 + xi + ei) and cts(xisj) =
(ai,j , bi,j = 〈ai,j , s〉+xisj+ei,j) where ei and ei,j are chosen from the generalized
Bernoulli random variables Ber(Fq, η) where η(n) is chosen to be a small inverse
polynomial n−δ. The resulting scheme is now secure by the LPN assumption, it
is also linearly homomorphic and has a linear decryption over Fq. Although, the
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decryption has a small probability correctness error due to noise. The problem
we now face is correctness of the output.

We can observe that if one is initially given [[xi]]� and [[xi · sj ]]�, as one com-
putes shares for degree two computations xi1 · xi2 , Eq. 1 instead yields noisy
shares 〈〈xi1 · xi2〉〉� and 〈〈xi1 · xi2 · sj〉〉�. Here by “noisy” we don’t mean that
the shares of individual parties are corrupted, but rather that, with some small
probability the shares reconstruct to something else other than the desired com-
putation (but they are still consistent secret sharing of some “noisy” output).
Each computed share can be corrupted with probability η due to the LPN noise.
Moreover, as one evaluates further to compute degree three terms, the noise
increases further. To compute degree three shares of the form 〈〈xi1 · xi2 · xi3〉〉�,
the noise probability could already be overwhelming. This is because due to
Eq. 1,

bi3 〈〈xi1xi2〉〉� − 〈ai, (〈〈xi1xi2s1〉〉� , . . . , 〈〈xi1xi2sn〉〉�)〉 = 〈〈xi1xi2xi3〉〉� .

Thus, each conversion is a function of one LPN sample and n shares derived
in the previous layer. The probability of having no noise in the reconstructed
output is roughly the probability that all the shares derived in the previous
layer are non-noisy and the LPN sample used in that layer has no noise. This
probability is roughly (1 − η)O(n) assuming that the errors are independent. As
η 	 1

n , this probability is already negligible.

Sparse LPN for Error Control. We can observe that in Eq. 1 above (now with
noisy shares),

bi3 〈〈xi1xi2〉〉� − 〈ai, (〈〈xi1xi2s1〉〉� , . . . , 〈〈xi1xi2sn〉〉�)〉 = 〈〈xi1xi2xi3〉〉� ,

if ai was only k-sparse, where k is a parameter that could be a constant or
slightly super-constant, the error build up will be manageable. The probability
that the share is non-noisy is can now be lower-bounded by 1 − (k + 1)η. This
is because this equation now depends only on k + 1 noisy shares derived in the
previous layer and one LPN sample, both with noise rate η.

Going inductively, the shares at level D for computing a degree D monomial
are non-noisy with probability at least 1 − O((k + 1)Dη). If one further adds
M such degree D monomials to compute the polynomial of desired form the
resulting shares are non-noisy with probability is at least 1 − O(M(k + 1)Dη).
We can make sure that this probability is 1−O( 1

λ ) if M(k+1)Dη is kept smaller
than 1

λ . If M is some polynomial in λ, D = log λ
log log λ , and η = n−δ for some

constant δ > 0, we can set k = logO(1) λ and n as some other polynomial in λ.
More details of our HSS scheme can be found in Sect. 5.1.

Summing up. To sum up, one would compute

cts(xi) = (ai, 〈ai, s〉 + ei + xi), (3)

where ai is chosen to be a random sparse vector as in the distribution specified by
the sparse LPN assumption, and ei is generated as a sparse noise. {cts(xisj)}i,j
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are generated analogously. Since our assumption works naturally over the field
Fq one could use any linear secret sharing scheme over Fq. One can then evaluate
any function in P(Fq,D,M). For any function f in the function class, at the end
of the evaluation each party gets a noisy share 〈〈f(x1, . . . , xm)〉〉�. With all but a
small inverse polynomial probability, these shares reconstruct to f(x) using the
same linear reconstruction that is used for the base secret sharing scheme.

2.2 Arguing KDM Security

One issue that we have not discussed thus far is that in our HSS scheme, one
gives out encryptions that are dependent on the key s. Namely, all parties not
only get encryptions of the input cts(xi), but also encryptions cts(xisj) of the
products xisj . Therefore, we need to argue that KDM security follows from
sparse LPN. Note that indeed if cts(xisj) were encrypted using the standard
LPN assumption, namely by setting cts(xisj) = (ai,j , 〈ai,j , s〉 + ei,j + xisj),
where ai,j is chosen randomly over F

n
q , then such KDM security holds directly

from LPN. The idea is that one can “simulate” such an encryption from an
LPN sample (a′, b′ = 〈a′, s〉 + e) as follows. We can simply set ai,j = a′ −
(0, . . . , 0, xi, 0, . . . 0)
︸ ︷︷ ︸

xi at jth coordinate

= a′ − xi · vj for the jth unit vector vj , and bi,j = b′.

Observe that b′ = 〈a′, s〉+ e = 〈ai,j , s〉+xisj + e. Since a′ is chosen at random,
the distribution of ai,j is also identically random even given xi.

The above simulation strategy fails to work when ai,j are exactly k-sparse
for some k. This is because the vector ai,j that is used to construct cts(xi · sj)
might actually be distinguishable from the distribution of a′ − xjvj . Not only
there could be a difference in the number of non-zero coordinates, this could
also leak out xi (by observing the value at of ai,j formed this way at the jth

coordinate).
We modify slightly the distribution of the coefficient vectors ai,j used to

generate cts(xi · sj) so that one could prove KDM security under sparse LPN
assumption. Below we sketch the main ideas assuming q is a prime power greater
than 2.

Modified Distribution. In the actual scheme in Sect. 5, we encrypt the vector x
as cts(xi) = (ai, 〈ai, s〉 + ei + xi) where ai are exactly k-sparse. However, to
encrypt the products xisj , we compute cts(xisj) = (ai,j , 〈ai,j , s〉 + ei,j + xi,j)
where ai,j are chosen differently. They are chosen to be 2k − 1 sparse with the
constraint that the jth coordinate of ai,j is non-zero. This constraint enables us
to prove security from sparse LPN as long as q > 2.

Our main idea is that such a sample ai,j , bi,j can be simulated from suf-
ficiently (polynomially) many samples of sparse LPN with sparsity k. Say we
have two samples of the form c1, d1 and c2, d2 such that di = 〈ci, s〉 + ei for
i ∈ {1, 2}. Additionally, c1 and c2 are non-zero at the jth coordinate and that
is the only coordinate at which both c1 and c2 are non-zero. Any pair of sam-
ples will satisfy this property with an inverse polynomial probability provided
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k is reasonably small. We sample a random non-zero field element r, and two
non-zero elements μ1, μ2 ∈ Fq so that μ1c1,j + μ2c2,j = r + xi. Computing
such non-zero μ1 and μ2 requires that q > 2. Indeed if q = 2, there is only
one choice for μ1 and μ2 and then our condition μ1c1,j + μ2c2,j = r + xi may
not hold. Now let α = μ1c1 + μ2c2, and set ai,j = α − xivj . Our desired
sample then becomes cts(xisj) = (ai,j , bi,j = μ1d1 + μ2d2). Observe that
bi,j = μ1〈c1, s〉 + μ2〈c2, s〉 + μ1e1 + μ2e2. As ai,j = μ1c1 + μ2c2 − xivj , we
have that bi,j = 〈ai,j , s〉 + (μ1e1 + μ2e2) + xisj .

Note that the error μ1e1+μ2e2 is still sparse (with noise rate close to 2η); our
remaining task is to show that ai,j has the right distribution. This follows from
the following argument. Since c1 and c2 have disjoint support aside from the jth

coordinate, the distribution of ai,j on coordinates not equal to j is identical to
a random (2k − 2)-sparse vector. On the other hand, at the jth coordinate ai,j

is set to be equal to r, which is random non-zero.
When q = 2, we are not able to prove KDM security of our distribution under

(exactly) k-sparse LPN. On the other hand, relying on a related assumption we
can indeed show KDM security. In this assumption, the samples will consist of
two kinds of coefficient vectors ai: with half probability, ai will be k-sparse,
otherwise it will be (k − 1)-sparse. We refer to Sect. 4.1 for more details.

2.3 Sublinear MPC Construction

We can leverage our homomorphic secret sharing scheme to build a sublinear MPC
protocol for (Boolean) layered circuits. Here too, our result follows the main con-
ceptual outline suggested by [19], with a number of low-level, yet important, differ-
ences in the implementation. The differences in implementation come from three
sources: handling arbitrary number of parties, dealing with restricted function
classes supported by the HSS, and dealing with correctness error. In the following,
recall that Boolean layered circuits of width W , depth D and size S are designed so
that every layer is computed by applying some gates on inputs only on the previ-
ous layer. Our sublinear MPC will can compute such a circuit supporting N with
a communication of O(ω(1) · S/ log log S + (D + W ) · So(1) · poly(N,λ)) for an
arbitrarily small tunable ω(1).

Recipe for Sublinear MPC from HSS from Boyle et al. The intuition why an HSS
scheme could be helpful for this task was first brought out by [19] and can be
described as follows. Suppose that our HSS scheme supported arbitrary circuits
and had no correctness error. Then parties can then run any MPC protocol that
distributes shares sh1, . . . , shN that correspond to a homomorphic secret sharing
of x of their combined input. The amount of communication per-party for this
would be polynomial in the security parameter λ, |x| and the number of parties
N . Each party P� can then locally evaluate on their share sh� to compute the
desired layered circuit C to form evaluation st� and output this value. For our
purposes, let the length of the output be M , which is the width of the last
layer. Let st� = (st�,1, . . . , st�,M ). The jth output bit can be reconstructed by
adding {st�,j}�∈[N ]. This yields an additional communication of |st�| = O(M)
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bits per-party. Thus, the total communication is poly(λ,N, |x|) + O(M) which
is sublinear in the circuit size.

There are two typical challenges that arise in materializing the intuition
above. First, the HSS scheme typically could have an error in output reconstruc-
tion. For all currently known schemes with erroneous outputs, leaking out which
outputs don’t reconstruct correctly can jeopardize security (much as how leaking
which LPN samples have error can break the assumption). The second challenge
is that typically HSS schemes don’t support circuits of arbitrary size; instead,
they may only handle circuits of depth log S or even log log S. Indeed, our HSS
can only handle circuits of depth c · log log S, for any constant c < 1.

To address the challenges of circuit depth, Boyle et al. suggested the follow-
ing. They suggested dividing the circuit C into L = S/ log S special layers (or
S/ log log S in our case depending on the depth supported by the HSS scheme),
such that HSS can be performed from one layer to the next. Unfortunately, this
won’t work as is because one cannot afford to run a general-purpose MPC for
every chunk to generate HSS sharings of the state of the circuit at that layer.
This is because the communication for this step could grow as O(W poly(λ,N))
where W is the width of the circuit. Any savings by running HSS evaluation
of circuits with depth log S (or log log S in our case) could be drowned out by
multiplicative poly(λ,N) term. To address this, Boyle et al. suggested that for
every chunk i ∈ [L], the MPC is run to generate an HSS sharing of N secret keys
{ski,�}i∈[L],�∈[N ] for a rate-one encryption scheme. Since keys are smaller in size
compared to the state of the circuit, this could be done with significantly less
communication. The keys ski,� for every chunk i ∈ [L] and party P� is known
only to party P�. The evaluation will follow in encrypt-then-evaluate cycles.
Namely, (rate-one) encrypted HSS evaluated shares will be decrypted by HSS,
computed upon according the circuit chunk description, and then the resulting
HSS evaluations are encrypted by each party using their key for that chunk. This
process could go on, but at the end we must reconstruct the output. If our HSS
is perfectly/statistically correct each party could simply release the HSS share
evaluations unencrypted corresponding to the output layer.

If the HSS evaluations do not satisfy correctness as described above, there
could be multiple additional issues. First, the output of computation for each
chunk might not be correct. More importantly, for the output layer, when parties
reveal the HSS evaluations it could jeopardize security. The fix for the first issue
that was proposed was to evaluate the circuit in a fault tolerant fashion using
appropriate error correction. Each HSS evaluation will now not only correspond
to a decryption followed by evaluation, it will also have an error correction step.
To address the second issue, Boyle et al. suggested using MPC at the final layer
to reconstruct the final output as opposed to clearly releasing the evaluations.
This will introduce additional communication but only about M · poly(N,λ).

Specific Issues in Our Context. We now discuss specific issues that we need to
address in our context.
– We can handle circuits of depth log log S, so we have to implement both error

correction and decryption within that depth.



Multi-party Homomorphic Secret Sharing and Sublinear MPC 329

– Each party P� encrypt their HSS evaluation under their secret key ski,�. Even
if the decryption circuit of the encryption is very simple, decrypting O(N)
encryptions, followed by HSS reconstruction and evaluation corresponding to
the chunk all under the hood of HSS could be too complex for us as such a
function has a locality of Ω(N).

To address error correction issue, we will do naive majority-based error cor-
rection. We will have κ = ω(1) copies of HSS shares for the same set of encryption
keys, where κ could be any super-constant. Each party will then release κ rate-
one encryptions, one for each of the κ HSS evaluations. For the error correction,
each HSS evaluation function will simply use majority decoding and compute
the majority of κ HSS reconstructions and then apply the circuit correspond-
ing to the chunk. If HSS reconstruction and the decryption are very local, then
the whole circuit is very local. This introduces a κ factor larger communica-
tion that the previous approach, but we can choose κ = o(log log S) so that our
communication is sublinear.

To implement the encryption with a very local decryption, we rely on sparse
LPN yet again. In particular, we revisit the encryption scheme described in Eq. 3,
whose decryption circuit has locality equal to the sparsity parameter k. We can
handle decryption errors via the same majority-based fault tolerance approach,
as described above.

To solve the third issue, we leverage the fact that our encryption scheme is
key-homomorphic. Instead of setting up HSS shares for keys {ski,�}�∈[N ], we set
up HSS shares for the sum Σ�∈[N ]ski,� = ski. The ciphertexts encrypting HSS
shares under key ski,� could be homomorphically added to form a ciphertext
under ski of the HSS reconstruction of the circuit state for the chunk, thanks
to the additive reconstruction of our HSS scheme and the additive homomor-
phism of the encryption scheme. Now, the HSS evaluation could decrypt just the
resulting ciphertext encrypted under ski as opposed to decrypting N ciphertexts.

While these are the main ideas, there are a number of low-level details that
we could not dive into in this overview. The details of our sublinear MPC can
be found in Sect. 6.

3 Preliminaries

Notation. Let N = {1, 2, . . . } be the natural numbers, and define [a, b] := {a, a+
1, . . . , b}, [n] := [1, n]. Our logarithms are in base 2. For a finite set S, we
write x ← S to denote uniformly sampling x from S. We denote the security
parameter by λ; our parameters depend on λ, e.g. n = n(λ), and we often drop
the explicit dependence. We abbreviate PPT for probabilistic polynomial-time.
Our adversaries are non-uniform PPT ensembles A = {Aλ}λ∈N. We write negl(λ)
to denote negligible functions in λ. Two ensembles of distributions {Dλ}λ∈N

and {D′
λ}λ∈N are computationally indistinguishable if for any non-uniform PPT

adversary A there exists a negligible function negl such that A can distinguish
between the two distributions with probability at most negl(λ).
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For q ∈ N that is a prime power, we write Fq to denote the finite field with q
elements, and F

×
q to denote its non-zero elements. We write vector and matrices

in boldcase, e.g. v ∈ F
m and A ∈ F

n×m. We recall the model of arithmetic
circuits, and properties of the Bernoulli distribution Ber(Fq, ε), in the full version

3.1 Linear Secret Sharing Schemes

We describe linear (multi-)secret sharing schemes, denoted L(M)SS. Looking
ahead, our HSS construction will work with an arbitrary LMSS/LSS scheme.
The reader can think of the Shamir LMSS as a running example, described in
Definition 3.3 below.

Definition 3.1 (Linear Multi-Secret Sharing Scheme). A N -party, t-
private, s-secret linear multi-secret sharing scheme (LMSS) over a finite field
F is a tuple of PPT algorithms LMSS = (Share,Rec) with the following syntax:

– Share(x1, . . . , xs; ρ) → (sh1, . . . , shN ). Given secrets x1, . . . , xs ∈ F, this algo-
rithm samples randomness ρ ∈ F

r and return shares shi ∈ F
bi for all i ∈ [N ].

Note that r, b1, . . . , bN ∈ N are also part of the description of LMSS. We
require Share : Fs × F

r → F
b1 × · · · × F

bN to be a F-linear map.
– Rec(sh1, . . . , shN ) → (x1, . . . , xs). Given shares (sh1, . . . , shN ), return the

secrets (x1, . . . , xs) or ⊥. We require Rec : F
b1 × · · · × F

bN → F
s to be a

F-linear map.

We require the following properties:

– Correctness. For any x1, . . . , xs ∈ F, we have

Pr
ρ∈Fr

[Rec(sh1, . . . , shN ) = (x1, . . . , xs) | (sh1, . . . , shN ) ← Share(x1, . . . , xs; ρ)] = 1.

– Privacy. For any tuples (x1, . . . , xs), (x′
1, . . . , x

′
s) ∈ F

s and any subset T ⊂
[N ] of size at most t, the following distributions are the same:
{
(shi)i∈T | (shi)i∈[N ] ← Share(x1, . . . , xs)

} ≡ {
(sh′

i)i∈T | (sh′
i)i∈[N ] ← Share(x′

1, . . . , x′
s)

}
.

We define the rate of LMSS to be r := s/(b1 + · · ·+ bN ). When s = 1, we denote
the (single-)secret sharing scheme by LSS.

Notation. We will denote by [[x1‖ . . . ‖xs]] a LMSS of s secrets x1, . . . , xs, and
[[x1‖ . . . ‖xs]]� the �’th share for � ∈ [N ]. When we have a LSS that encodes a
single secret, i.e., s = 1, its shares are denoted as [[x]] and [[x]]�, respectively.
When sharing a vector x element-wise using a LSS, we denote the �’th share of
x by [[x]]�.

Remark 3.2 (LMSS to LSS). A LMSS instance for s secrets can be “split”
into s LSS instances LSS(1), . . . , LSS(s), where for all σ ∈ [s], LSS(σ) shares
input x in the σth slot of LMSS as (0, . . . , x, . . . , 0) = x · uσ, where uσ =
(0, · · · , 0, 1, 0, · · · , 0) is the σ’th unit vector of dimension s and with a single
1 at coordinate σ.
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These LSS instances can be “merged” back into a LMSS instance in the
following sense: there exists an operation Pack, such that for any � ∈ [N ], given
party P�’s shares of the LSS instances [[x1 · u1]]

(1)
� , . . . , [[xs · us]]

(s)
� , returns party

P�’s share of the LMSS instance:

Pack
(

[[x1 · u1]]
(1)
� , . . . , [[xs · us]]

(s)
�

)

:=
∑

σ∈[s]

[[xσ · uσ]](σ)
� = [[x1‖ . . . ‖xs]]� .

We recall the construction of the Shamir LMSS in e.g. [36]. Note that this
LMSS achieves the optimal tradeoff (see [35]) between the rate and the privacy
threshold t, meaning that r = 1 − t/N .

Definition 3.3 (Multi-secret Shamir sharing). Let F be a finite field, N
be the number of parties, and t the privacy threshold. Let d = �log|F|(2N −
t)�, and define E to be the unique extension field of F of degree d. Let γ be a
primitive element of E over F. For any s ≤ N − t, the N -party, t-private, (ds)-
secret Shamir LMSS is defined as follows. Pick arbitrary distinct field elements
α1, . . . , αN , β1, . . . , βs ∈ E.

– Share(x1, . . . , xds) → (sh1, . . . , shN ). On input (x1, . . . , xds) ∈ F
ds, we pack

every d elements (xdj , . . . , xdj+d−1) into a field element yj of E by setting
yj =

∑d−1
i=0 xdj+iγ

i. We then choose a random polynomial p(X) ∈ E[X] of
degree at most s+t−1 such that p(βj) = yj for all j ∈ [s]. Return shi = p(αi)
for all i ∈ [N ].

– Rec(sh1, . . . , shN ) → (x1, . . . , xds). On input the shares (sh1, . . . , shN ), we
interpolate the unique polynomial p(X) ∈ E[X] of degree at most s + t − 1
such that p(αi) = shi for all i ∈ I. We then compute yj = p(βj) for all j ∈ [s],
and break yj down into d elements (xdj , . . . , xdj+d−1) of F (which is a F-linear
operation). Return (x1, . . . , xds).

3.2 Homomorphic Secret Sharing

We recall the definition of homomorphic secret sharing schemes from [18,21], in
the setting with a single client, an arbitrary number N of servers, and security
against t colluding servers. The functions we consider are arithmetic circuits over
a finite field.

Definition 3.4. Let N(λ), t(λ), q(λ), εcorr(λ) be polynomials in λ. A N -party,
t-private homomorphic secret sharing (HSS) scheme with correctness error εcorr,
for a class of arithmetic circuits F = {Fλ}λ∈N over the finite field Fq, is a tuple
of PPT algorithms HSS = (Share,Eval,Rec) with the following syntax:

– Share(x) → (sh1, . . . , shN ): given a vector x ∈ F
m
q of field elements, this

algorithm returns a secret sharing (sh1, . . . , shN ) of x.
– Eval(i, f, shi) → oshf,i: given party index i ∈ [N ], a function f ∈ Fλ and the

share shi, this algorithm returns an output share oshf,i.
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– Rec({oshf,i}i∈[N ]) → yf : given the output shares {oshf,i}i∈[N ], this algorithm
returns the final output yf or ⊥.

We require HSS to satisfy the following properties:

– Correctness. We say that the HSS scheme is εcorr-correct, if in an honest
execution of HSS algorithms with error bound εcorr, one can reconstruct the
correct output given the output shares with probability at least 1 − εcorr. For-
mally, for all λ ∈ N, all functions f ∈ Fλ, and inputs x to f , we have

Pr

[

Rec({oshf,i}i∈[N ]) = f(x)

∣
∣
∣
∣
∣

(shi)i∈[N ] ← HSS.Share(x)

oshf,i ← HSS.Eval(i, f, shi) ∀ i ∈ [N ]

]

≥ 1 − εcorr(λ).

– Security. We say that the HSS scheme is secure if any subset of no more
than t shares of the input x reveals no information about x. Formally, for
any sequence of subsets {Tλ}λ, where T = Tλ ⊂ [N ] has size t, and any PPT
adversary A = (A1,A2), the advantage of A in the following experiment is
bounded by 1/2 + negl(λ) for a negligible function negl.
1. A picks challenge inputs ((x0,x1), st) ← A1(1λ, T ).
2. C(x0,x1) samples a random bit b ← {0, 1} and computes

(shb,1, . . . , shb,N ) ← HSS.Share(xb).
3. A outputs a guess b′ ← A2(st, (shb,i)i∈T ).

The advantage of A in the above experiment is the probability that b equals
b′.

– Compactness. There exists a polynomial p such that for any λ ∈ N, any
i ∈ [N ], any f ∈ Fλ, any input x to f , given (shj)j∈[N ] ← Share(x), the
output share oshf,i ← Eval(i, f, shi) satisfies |oshf,i| ≤ p(λ). In particular, the
output share sizes do not depend on the size of the function f .

Remark 3.5 (Linear Reconstruction). We say that an HSS scheme for a class
of arithmetic circuits F over a field Fq has linear reconstruction if for every
f ∈ F , input x to f , shares (shj)j∈[N ], and party i ∈ [N ], the operation
Eval(i, f, shi) → oshf,i produces output shares that are vectors of field elements
in Fq. Furthermore, the reconstruction Rec({oshf,i}i∈[N ]) → yf consists of apply-
ing a Fq-linear map over the output shares oshf,i.

4 Sparse LPN

In this section, we define our sparse learning parity with noise ( sLPN) assump-
tion. sLPN is a natural variant of the LPN assumption, where each column
of the public matrix is now k-sparse for a parameter k. First introduced by
Alekhnovich [2], who used it for obtaining hardness of approximation results,
variants of the sLPN assumption were subsequently used for constructing local
pseudorandom generators [8], cryptography with constant computational over-
head [42], public-key encryption schemes [4], pseudorandom correlation gener-
ators [15] and more. In the full version, we give an overview of known attacks
against sLPN that may help establish a plausible concrete tradeoff between the
parameters.
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Definition 4.1 (Sparse LPN distribution). Let λ ∈ N be the security
parameter, n = n(λ) be the dimension, m = m(λ) ∈ N the number of sam-
ples, k = k(λ) ≤ n the sparsity parameter, q = q(λ) ∈ N the field size,
and ε = ε(λ) ∈ (0, 1) the noise rate. We define the sparse LPN distribution
DsLPN,n,m,k,ε,q to be output distribution of the following process:

– Sample s ← F
1×n
q uniformly at random.

– Sample A randomly from F
n×m
q such that every column of A has exactly k

non-zero elements.
– Sample e ← (Ber(Fq, ε))1×m, where Ber(Fq, ε) returns 0 with probability 1−ε,

and a uniformly random non-zero element of Fq otherwise.
– Compute b = s · A + e. Output (A, b).

Similarly, we define Drand,n,m,k,ε,q to be identical to the distribution
DsLPN,n,m,k,ε,q except that b is chosen uniformly at random from F

1×m
q .

We now state our Sparse LPN assumption. Note the following two parameter
choices: k = ω(1) is a super-constant, and the noise rate ε = O(n−δ) for some
δ ∈ (0, 1).

Assumption 4.1 (The (δ, q)-sLPN Assumption). Let λ ∈ N be the security
parameter, δ ∈ (0, 1) be a constant, and q = q(λ) is a sequence of prime powers
computable in poly(λ) time. We say that the (δ, q)-sLPN holds if for all func-
tions n = n(λ),m = m(λ), k = k(λ), ε = ε(λ) efficiently computable in poly(λ)
time, with k = ω(1) ≤ n and ε = O(n−δ), the following two distributions are
computationally indistinguishable:

{DsLPN,n,m,k,ε,q}λ∈N
≈c {Drand,n,m,k,ε,q}λ∈N

.

We will also use sLPNn,m,k,ε,q to refer to the (decisional) sparse LPN problem
with fixed parameters, where an adversary needs to distinguish between the two
distributions above.

Remark 4.2. In our sparse LPN assumption, we choose k = ω(1) to be a super-
constant (in particular, polylogarithmic) to avoid dealing with syntactical issues
arising when k is a constant. Formulations of sparse LPN are well-studied and
believed to be hard over F2 when k ≥ 3 is a constant (See for example [2,4,34]).
Such formulations can support even up to m = nk/2−ε samples for arbitrary
constant ε > 0. In such cases, however, we require the m columns of A to not
admit a sparse combination of columns say (i1, . . . , i�) such that Aii

+. . . Ai�
= 0

for some constant �. This is achieved by requiring the k-regular bipartite graph
formed with the columns of A satisfies certain expansion conditions. Unfortu-
nately, this criterion fails to hold for a random graph/random A with inverse
polynomial probability 1

nO(1) .
We could have worked with a stronger assumption, where k is a constant and

the matrix A comes from a special distribution of sparse matrices,9 to achieve a
slightly more expressive function class supported by our HSS scheme. Namely,
in such a case we could handle D = O(log λ). But for simplicity, we choose to
work with super-constant k and uniform k-sparse matrix A.
9 For example, the distribution in the work of Applebaum and Kachlon [9].
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4.1 KDM Security

For the security proof of our HSS construction, we will also require the pseudo-
randomness of a specific secret-dependent sLPN distribution. In this distribution,
we essentially encrypt each input xi and xi · sj for all i, j under sLPN. We note
that the result proved in this section corresponds to the notion of KDM security
with function fx,j(s) = x · sj for a given index j ∈ [n] and for all x ∈ Fq, defined
in prior works [5,13,22].

Definition 4.3 (Sparse LPN KDM distribution). Let δ ∈ (0, 1) be a con-
stant and q = q(λ) a sequence of prime powers efficiently computable in poly(λ)
time. Let λ ∈ N be the security parameter, and n(λ),m(λ), k(λ), ε(λ) ∈ N be effi-
ciently computable functions of 1n such that q is a prime power, k = ω(1) < n/2,
and ε = O(n−δ). For any sequence of vectors {x = xλ}λ where xλ ∈ F

m
q , we

define the distribution Dkdm
sLPN,n,m,k,ε,q(x) to be the output of the following process:

– Sample s ← F
n
q .

– For all i ∈ [m], sample a random k-sparse vector ai ∈ F
n
q .

– For all i ∈ [m], j ∈ [n], sample a random (2k − 1)-sparse vector ai,j ∈ F
n
q

conditioned on the jth coordinate of ai,j being nonzero.
– For every i ∈ [m], compute bi = 〈ai, s〉 + xi + ei, where ei ← Ber(Fq, ε).
– For every i ∈ [m], j ∈ [n], compute bi,j = 〈ai,j , s〉 + xi · sj + ei,j, where

ei,j ← Ber(Fq, ε).
– Output {(ai, bi)}i∈[m] and {(ai,j , bi,j)}i∈[m],j∈[n].

Similarly, we define Dkdm
rand,n,m,k,ε,q to be exactly the distribution above except that

bi, bi,j are chosen uniformly at random from Fq for all i ∈ [m], j ∈ [n].

We now show that the above KDM distribution is also computationally indis-
tinguishable from random, assuming the sparse LPN assumption for the same
parameters n, k, q, slightly lower noise rate ε/2, and a polynomially larger m′.
Note that the lemma requires q > 2 due to a technical detail, sketched in the
technical overview. We give a full proof in the full version, and discuss a few
workarounds for the case q = 2.

Lemma 4.4 (KDM security of Sparse LPN). Let δ, q, n,m, k, ε and x be
as specified in Definition 4.3. For q > 2 and k ∈ ω(1) ∩ o(

√
n), assuming the

(δ, q)-sLPN assumption holds (c.f. Assumption 4.1), the following distributions
are computationally indistinguishable:

{Dkdm
sLPN,n,m,k,ε,q(x)

}

n∈N
≈c

{Dkdm
rand,n,m,k,ε,q

}

n∈N
.

5 HSS Construction

In this section, we describe our main HSS construction from Sparse LPN (c.f.
Assumption 4.1). Our scheme can handle log / log log-degree polynomials con-
taining a polynomial number of monomials, and achieve ε-correctness for an
arbitrary inverse polynomial ε.
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Function Class. Our HSS supports the function class P(Fq,D,M) consists of
multivariate polynomials over field Fq with degree D and number of monomials
M . We do not put any constraint on the number of variables m of the polyno-
mial, as long as it is poly(λ). In particular, every function f ∈ P(D,M) can be
represented as a sum of monomials:

f(x1, · · · , xm) =
∑

γ∈[M ]

cγ · Mγ(x1, · · · , xm) ,

where cγ ∈ Fq is a coefficient and Mγ is a monomial of degree at most D over x.
Our HSS construction will require polynomials to be represented this way, which
is without loss of generality since one can efficiently pre-process any polynomial
to be of this form. Looking ahead, our scheme will achieve D = O

(

log λ
log log λ

)

and
M = poly(λ).

In particular, this function class allows us to evaluate arbitrary arithmetic
circuits (with fan-in 2) of depth d = c · log log λ, for any c < 1. This is because
every output of such a circuit can be computed by a degree-2d polynomial in 2d

number of variables. Since the degree is D = 2d = logc λ = O
(

log λ
log log λ

)

, and

the number of monomials is M ≤ (2d)2
d

< (logc λ)log λ/ log log λ = λc, we can see
that this circuit can be supported by our HSS.

5.1 Scheme Description

Parameters for Sparse LPN. We will use below the Sparse LPN assumption
over Fq with noise rate n−δ for an arbitrary constant δ ∈ (0, 1), chosen such that
the assumption holds, and dimension n which is a polynomial in the security
parameter λ depending on D and M .

Ingredient: A Linear Secret Sharing Scheme. In our scheme, we require an arbi-
trary N -party, t-private LSSS scheme LSS = (Share,Rec) supported over the
field Fq of computation. For convenience, the reader may think of the Shamir
secret sharing scheme (c.f. Definition 3.3). When N > q, note that the shares in
the Shamir LSSS live in a suitable extension field E of Fq such that |E| > N .

Scheme Overview. We now give a high-level overview of our multi-party HSS
scheme, expanding on some points made in the technical overview. The full con-
struction is presented in Fig. 2. In our scheme, HSS.Setup will choose a suitable
LSS scheme with reconstruction over Fq and suitably set sLPN parameters n
and k. To share an input x ∈ F

m
q , HSS.Share will generate encryptions cts(x),

cts(x⊗s) drawn from the distribution Dkdm
sLPN,n,m,k,ε,q(x) in Definition 4.3, along

with secret sharings of x and x ⊗ s. Namely:

– We sample a random k sparse coefficient vector ai ∈ F
n
q for every i ∈ [m].

Similarly, for every i ∈ [m], j ∈ [n], we sample a random 2k − 1 sparse vector
ai,j ∈ F

n
q so that it is non-zero at the jth coordinate.
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– To encrypt xi for i ∈ [m], we sample a random secret vector s ← F
n
q and

compute bi = 〈ai, s〉 + xi + ei for all i ∈ [m], where ei ← Ber(Fq, ε) is
Bernoulli with noise rate ε = n−δ.

– We also encrypt xi · sj for every i ∈ [m], j ∈ [n] as follows. We compute
bi,j = 〈ai,j , s〉 + xi · sj + ei,j , where ei,j ← Ber(Fq, ε) is Bernoulli with noise
rate ε = n−δ. Notice that together cts(x) :=

{

(ai, bi), {(ai,j , bi,j)}j∈[n]

}

i∈[m]

is exactly from the Dkdm
sLPN,n,m,k,ε,q distribution.

– We secret share each xi, for i ∈ [m], and products xi · sj , for i ∈ [m], j ∈ [n],
using our LSSS scheme. Let us denote the shares of each party P� with � ∈ [N ]
by [[xi]]� and [[xi · sj ]]�, respectively.

– Each party P�’s share sh�(x) consists of
(
cts(x),

{
[[xi]]� ,

{
[[xi · sj ]]�

}
j∈[n]

}

i∈[m]

)
.

Homomorphic Evaluation. To execute HSS.Eval, each party P� (for � ∈ [N ])
will perform homomorphic operations on its local shares. Intitially, the parties
start with sharings of the form [[xi]]� ,

{

[[xi · sj ]]�
}

j∈[n]
. Relying additionally on the

sparse LPN encodings, we will maintain the invariant that for every intermediate
value of computation y, each party P� stores shares of y and y · sj for j ∈ [n].
However, as a result of the computation each share can be corrupted by a low-
probablity noise over Fq. We will denote these shares using a special notation
〈〈α〉〉� for the intermediate variable α. To be precise 〈〈α〉〉� = [[α + eα]]� where eα

is a low-probability noise.
The Eval operations will involve both the linear shares and the noisy cipher-

text ctx(s), leading to a build-up of noise as each party continue its local com-
putation. The homomorphic operations are performed as follows:

– To add together two intermediate values y and z, each party P� can just add
its local noisy shares:

〈〈y + z〉〉� := 〈〈y〉〉� + 〈〈z〉〉� , 〈〈(y + z) · sj〉〉� := 〈〈y · sj〉〉� + 〈〈z · sj〉〉� ∀ j ∈ [n].

This operation increases the noise rate only by a factor of 2. Therefore, this
extends straightforwardly to handle arbitrary linear combinations of a poly-
nomial number of intermediate values assuming that the initial noise rate is
small enough.

– To multiply an intermediate value y with an input xi, each party P� will
utilize its encryptions (ai, bi), {(ai,j , bi,j)}j∈[n] along with its noisy shares of
y to compute:

〈〈xi · y〉〉� := bi · 〈〈y〉〉� −
∑

σ∈Supp(ai)

ai,σ · 〈〈y · sσ〉〉� ,

〈〈(xi · y) · sj〉〉� := bi,j · 〈〈y · sj〉〉� −
∑

σ∈Supp(ai,j)

ai,j,σ · 〈〈y · sσ〉〉� ∀ j ∈ [n].

(4)
The reason why the above holds is the following. Recall that Supp(a) denotes
the non-zero coordinates of a. Without any noise, the above computation
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gives the right result, since the equation

bi ≈ 〈ai, s〉 + xi =
∑

σ∈Supp(ai)

ai,σ · sσ + xi,

together with the linearity of the shares, imply that

bi · 〈〈y〉〉� −
∑

σ

ai,σ · 〈〈y · sσ〉〉� ≈ 〈〈xi · y〉〉� .

In other words, as long as the potentially noisy shares
〈〈y〉〉� , {〈〈y · sj〉〉�}j∈Supp(ai) were noise-free and the sample bi was also noise
free, then the share produced by 〈〈(xi · y)〉〉� in Eq. 4 will be noise free. A
similar argument applies for correctness of computing 〈〈(xi · y) · sj〉〉�.
The presence of noise affects the correctness as follows. Because both ai

and ai,j have sparsity at most 2k − 1, at every multiplication step the error
probability grows by a factor at most O(k). On careful analysis, this growth
at each level is just right to set parameters so that we can handle the desired
function class.

Using the homomorphic operations described above, we can evaluate any
multivariate polynomial f ∈ P(D,M), written as f(x1, . . . , xm) =

∑

S∈Λ cS ·xS ,
by first locally evaluating each monomial xS , then locally taking a linear combi-
nation of the results. Finally, we describe the reconstruction algorithm HSS.Rec.
At the end of the local computations, each party P� will hold a noisy share 〈〈y〉〉�

of the output y = f(x). Since these are LSS shares, we may reconstruct a noisy
version of y by applying the reconstruction algorithm of LSS.

5.2 Security Analysis

Noise growth analysis. We now analyze the noise growth of our homomorphic
operations. Here, we will write explicit noise terms (colored in red) for our noisy
shares:

〈〈y〉〉� = [[y + ey]]� , 〈〈y · sj〉〉� = [[y · sj + ey,j ]]� ∀ j ∈ [n],

We start by considering party �’s homomorphic multiplication of an input xi,
shared as sh�(xi), with an intermediate value y, shared as 〈〈y〉〉� , {〈〈y · sj〉〉�}�∈[N ].
Recalling that

bi = 〈ai, s〉 + xi + ei =
∑

σ∈Supp(ai)

ai,σ · sσ + xi + ei,
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HSS from Sparse LPN

Parameters. Number of parties N , threshold t, field Fq, a N -party, (t, t′)-private
LSSS scheme LSS over Fq, the function class P(D, M), sLPN parameters (k, n, δ)
chosen according to Remark 5.1.

– Share(x) → {sh�(x)}�∈[N ]. On input x ∈ F
m
q , sample from the KDM sparse

LPN distribution (with secret vector s ∈ F
n
q )

{cts (x), cts (x ⊗ s)} :=
{
(ai, bi), {(ai,j , bi,j)}j∈[n]

}
i∈[m]

← Dkdm
sLPN,n,m,k,δ,q(x).

Next, compute secret sharings (for all i ∈ [m], j ∈ [n]):

LSS.Share(xi) → {
[[xi]]�

}
�∈[N ]

, LSS.Share(xi · sj) → {
[[xi · sj ]]�

}
�∈[N ]

.

Return sh�(x) :=

(
cts (x), cts (x ⊗ s),

{
[[xi]]� ,

{
[[xi · sj ]]�

}
j∈[n]

}
i∈[m]

)
.

– Eval(�, P, sh�(x)) → oshP,�. Given a party index � ∈ [N ], a m-variate poly-
nomial P ∈ P(D, M), and the corresponding share sh�(x), we first evalu-
ate each monomial of P , then add these monomials together. The party P�

stores, for each intermediate value z during the computation, a noisy share

{{z}}� :=
(
〈〈z〉〉� ,

{〈〈z · sj〉〉�

}
j∈[n]

)
defined as follows:

• If z = xi for some i ∈ [m], set 〈〈z〉〉� := [[xi]]�, 〈〈z · sj〉〉� = [[xi · sj ]]� for all
j ∈ [n].

• If z = y · xi, where y is an intermediate value and xi is an input, parse
{{y}}� as above, then compute

〈〈z〉〉� := bi · 〈〈y〉〉� −
∑

σ∈Supp(a i)

ai,σ · 〈〈y · sσ〉〉� ,

〈〈z · sj〉〉� := bi,j · 〈〈y〉〉� −
∑

σ∈Supp(a i,j)

ai,j,σ · 〈〈y · sσ〉〉� for all j ∈ [n].

• If z =
∑

γ cγ ·yγ where cγ are coefficients and yγ are intermediate values,
parse {{yγ}}� as above, then compute

〈〈z〉〉� :=
∑

γ

cγ · 〈〈yγ〉〉� , 〈〈z · sj〉〉� :=
∑

γ

cγ · 〈〈yγ · sj〉〉� for all j ∈ [n].

Once party P� has computed the noisy share {{z}}� for the final output P (x),
return oshP,� := 〈〈z〉〉�.

– Rec(I, {osh�}�∈I) → z. Given a subset of parties I ⊂ [N ] and corresponding
output shares {osh�}�∈I , return z ← LSS.Rec (I, {osh�}�∈I).

Fig. 2. HSS from Sparse LPN
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where we denote the noise term in blue (which has a fixed noise rate O(n−δ)),
we can compute the following:

bi · [[y + ey ]]� −
∑

σ∈Supp(a i)

ai,σ · [[y · sσ + ey,σ ]]�

=

⎡

⎣

⎡

⎣

⎛

⎝
∑

ai,σ �=0

ai,σ · sσ + xi + ei

⎞

⎠ · y + bi · ey−
⎛

⎝
∑

ai,σ �=0

ai,σ · sσ

⎞

⎠ · y−
∑

ai,σ �=0

ai,σ · ey,σ

⎤

⎦

⎤

⎦

�

= [[xi · y + exi·y ]]� , where exi·y = y · ei + bi · ey −
∑

ai,σ �=0

ai,σ · ey,σ .

Similarly, we can compute the noise growth for the noisy shares 〈〈xi · y · sj〉〉� for
all j ∈ [n], keeping in mind that bi,j =

∑

σ∈Supp(ai,j)
ai,j,σ · sσ + xi · sj + ei,j :

bi,j · [[
y + ey

]]
�

−
∑

σ∈Supp(a i,j)

ai,j,σ ·
[[

y · sj + ey,σ

]]

�

=

⎡

⎢
⎣

⎡

⎢
⎣

⎛

⎜
⎝

∑

ai,j,σ �=0
ai,j,σ · sσ + xi · sj + ei,j

⎞

⎟
⎠ · y + bi,j · ey−

⎛

⎜
⎝

∑

ai,j,σ �=0
ai,j,σ · sσ

⎞

⎟
⎠ · y−

∑

ai,j,σ �=0
ai,j,σ · ey,σ

⎤

⎥
⎦

⎤

⎥
⎦

�

=
[[

xi · y · sj + exi·y,j

]]

�
, where exi·y,j = y · ei,j + bi,j · ey −

∑

ai,j,σ �=0
ai,j,σ · ey,σ.

We observe that after multiplication, the noisy shares 〈〈xi · y〉〉 and 〈〈xi · y · sj〉〉
both contain one new noise term, and due to the k-sparsity of ai and (2k − 1)-
sparsity of ai,j , aggregate at most 2k prior noises. Therefore, the rate of noise
increase by a factor of at most 2k +1. As we started out with noise level n−δ for
some arbitrary δ ∈ (0, 1), after D steps the noise level is at most (2k + 1)Dn−δ.

Next, we consider the noise growth for homomorphic linear combination.
Here, the error growth is much less, allowing us to aggregate M error terms for
arbitrary M = poly(λ). Namely, for any coefficients cγ ∈ Fq and any intermediate
noisy shares {{yγ}}� with γ ∈ [M ], we have:

M
∑

γ=1

cγ · [[

yγ + eyγ

]]

�
=

[[

M
∑

γ=1

cγ · yγ +
M
∑

γ=1

cγ · eyγ

]]

�

M
∑

γ=1

cγ · [[

yγ · sj + eyγ ,j

]]

�
=

[[

M
∑

γ=1

cγ · yγ · sj +
M
∑

γ=1

cγ · eyγ ,j

]]

�

∀ j ∈ [n].

The noise level for the final share grows by a factor of M .

Remark 5.1 (Parameter Selection for HSS). For a given program class
P(Fq,D,M), given any constant δ ∈ (0, 1) for which the Sparse LPN assumption
holds, and given desired correctness error ε ∈ (0, 1), we need to choose k and n
so that

k = ω(1) and (2k + 1)D · M · n−δ < ε . (5)

When D = O(log λ/ log log λ), M = poly(λ), and ε = 1/ poly(λ), we may choose
k = logc λ for a sufficiently small constant c > 0, and n = λc′

for a sufficiently
large constant c′ > 0 for the above conditions to hold.
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Remark 5.2 (Efficiency). Our HSS input share size |sh�(x)|, for x ∈ F
m
q , is equal

to m(n+1)+mn(n+1)+(m+mn)|LSS| = m(n+1)((n+1)+ |LSS|), where |LSS|
is the share size of the linear secret sharing scheme. In particular, by Remark 5.1
this share size depends on program class P(D,M) supported (since n depends
on D and M). In contrast, our HSS output share is just an LSS share. We also
note that when LSS is the Shamir secret sharing scheme, the share size |LSS| is
e field elements, where e ∈ N is the smallest integer such that t < qe.

For computation, our HSS evaluation only has an overhead of O(nk|LSS|),
since we need to compute on n + 1 shares 〈〈y〉〉, {〈〈y · sj〉〉}j∈[n], and during mul-
tiplication we suffer another O(k) overhead in computing a linear combination
of (k + 1) terms.

Remark 5.3 (On concrete parameter settings). While Sparse LPN has been
extensively studied in the asymptotic setting (see our discussion in Sect. 1.1),
there have been little work on determining concrete parameters for the assump-
tion. Prior works such as [6,54] proposed parameters for Sparse LPN in the
constant noise regime, while our noise rate is smaller, namely 1/nδ for an arbi-
trary 0 < δ < 1. Thus, we leave as interesting open questions the task of figuring
out concrete parameters for Sparse LPN in our noise regime, and optimizing our
HSS to be more efficient.

Remark 5.4 (Constant overhead for constant-degree polynomials). In fact, our
HSS construction can be made even more efficient than Remark 5.2 for poly-
nomials of constant degree D, where we may achieve O(kD · M) computation
overhead for polynomials with M monomials. If we were to set k = O(1), then
the overhead is constant in M . This follows from a more conservative computa-
tion of only the necessary values required to evaluate the polynomial. Namely,
each homomorphic multiplication of an intermediate value y with an input xi

requires only (k + 1) secret shares {[[ysσ]]}σ∈Supp(a). As a consequence, each
degree D monomial computation will touch at most O(kD) sparse LPN sam-
ples and secret shares and involve roughly these many binary additions and
multiplications.

From our noise growth analysis above and the subsequent Remark 5.1 on
parameter selection, we can conclude the correctness of our HSS construction.

Lemma 5.5 (Correctness of HSS). Assume the Sparse LPN assumption holds
with constant δ ∈ (0, 1). For any ε = 1/ poly(λ), any D = O(log λ/ log log λ),
and any M = poly(λ), for parameters n and k chosen according to Remark 5.1,
the resulting HSS construction in Fig. 2 is correct except with probability ε.

Remark 5.6 (Decreasing the correctness error). We note that our correctness
error can be decreased to negl(λ), at the cost of larger share sizes, more compu-
tation, and making reconstruction non-additive. This is done by giving out some
κ = ω(1) copies of the same HSS sharings, each with fresh randomness, doing
HSS evaluations of the same function for each of these sharings, then taking
majority.
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We will now show that our HSS scheme is secure. Again, most of the heavy
lifting is done in Lemma 4.4, from which our proof follows almost immediately.

Lemma 5.7 (Security of HSS). Assume the Sparse LPN assumption holds
with constant δ ∈ (0, 1). For any finite field Fq, any number of parties N ≥ 2,
any threshold t < N , any D = O(log λ/ log log λ), and any M = poly(λ), with
parameters chosen as in Remark 5.1, the N -party HSS construction in Fig. 2 for
the class P(Fq,D,M) satisfies HSS security with threshold t.

Proof. Recall that for security of HSS, we need to show that for any sub-
set I ⊂ [N ] of size |I| ≤ t and any vectors x,x′ ∈ F

m
q , the shares

{sh�(x)}�∈I and {sh�(x′)}�∈I are computationally indistinguishable. By con-
struction of HSS.Share, these shares consist of two parts, the KDM ciphertexts
{cts(x), cts(x ⊗ s)} versus {cts(x′), cts(x′ ⊗ s)}, along with the LSS shares
{[[x]]� , [[x ⊗ s]]}�∈I versus {[[x′]]� , [[x′ ⊗ s]]}�∈I . The former is indistinguishable
due to Lemma 4.4 (for q = 2, we may take any of the approaches, detailed in
the full version, to conclude Lemma 4.4), and the latter is indistinguishable due
to t-privacy of LSS. �

Putting everything together, we get our HSS with desired functionality.

Theorem 5.8 (Multi-party HSS). Assume the Sparse LPN assumption (c.f.
Assumption 4.1) holds. For any number of parties N ≥ 2, privacy threshold
t < N , finite field Fq, and error probability ε = 1/ poly(λ), there is a N -party,
t-private HSS with correctness error ε for the function class P(Fq,D,M) with
degree D = O(log λ/ log log λ) and number of monomials M = poly(λ).

In the full version, we will present the packed HSS variant that allows us to
conclude Theorem 1.3.

6 Sublinear MPC

In this section, we leverage our HSS in Sect. 5 to build a sublinear MPC, with
per-party communication dominated by the term O(S/ log log S), for layered
Boolean circuits of size S.10 Our MPC construction can support an arbitrary
N = poly(λ) parties with up to (N − 1)-out-of-N corruptions.

6.1 Protocol Description

Layered Boolean Circuits. Our MPC construction achieves sublinear communi-
cation for the class of layered Boolean circuits. A Boolean circuit C : {0, 1}n →
{0, 1}m is layered if its nodes can be partitioned into D = depth(C) layers
(L1, . . . , LD) such that any edge (u, v) of C satisfies u ∈ Li and v ∈ Li+1 for
some i ≤ D − 1. The width width(C) of a layered circuit C is defined to be

10 More generally, our construction can generalize to any constant-size field. For sim-
plicity, we only cover the Boolean case.
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the maximum number of non-output gates contained in any single layer. In
our MPC, we assume that the parties input are x1, . . . ,xN , concatenated into
x := x1‖x2‖ . . . ‖xN . Then x is the overall input to the circuit C, and at the
end of the MPC, each party should get C(x).

Remark 6.1 (Circuit Decomposition). From an existing result in [19], for any
d ∈ N, we have a decomposition of C into L = �D/d� special layers (L	

1, . . . , L
	
L)

such that: (1) two consecutive layers are of distance at most 2d from each other,
and (2) letting wi be the width of layer Li for all i ∈ [L], we have

∑L
i=1 wi ≤ S/d.

We denote by Ci,j the circuit computing the jth output of layer Li+1 from the
inputs of layer Li, for all i ∈ [L − 1], j ∈ [wi+1].

For simplicity, in our MPC construction we will assume that all the inputs to
C are in the first layer, and all outputs are in the last layer. This is without loss
of generality, as all intermediate values in our construction are represented in the
same form; thus, we can “delay” an input until it is needed in an intermediate
layer, and similarly delay an output till the end.

Protocol Description. Following the main ideas discussed in Sect. 2.3, we now
give our MPC construction in Figs. 3 and 4. In our construction, we assume
that each party has access to a broadcast channel. This is simply for ease of
presentation, since in the semi-honest model we can simulate such a broadcast
channel by letting parties pass messages in a cyclic or star-like fashion. In the full
version, we will prove that our MPC is secure, with desired sublinear per-party
communication as in Theorem 1.2.

Remark 6.2 (Removing dependence on width). We note that our MPC incurs
a communication cost proportional to the circuit width W , due to the use
of the public vectors {ai2,i3}i2∈[W ],i3∈[κ]. We suggest two main approaches to
reduce/eliminate the additive term proportional to the width.

– If the number of parties are large, since this is a semi-honest protocol, each
party can be required to output W ·κ

N such vectors, as opposed to running the
MPC for computing W ·κ such vectors. In this case this additive term can be
replaced by a term that grows like W · poly(log N, log λ)/N . This per party
communication becomes sublinear for big enough N .

– Since these vectors are chosen randomly (among all kEnc-sparse vectors), this
term can be removed altogether if we are willing to assume any of the follow-
ing: 1) a uniform random string, 2) a random oracle, or 3) an explicit family
of kEnc-sparse matrices for which the sparse LPN assumption holds. Any of
these assumptions allow the parties to have the description of ai2,i3 without
any further communication.



Multi-party Homomorphic Secret Sharing and Sublinear MPC 343

Sublinear MPC construction, part 1

Local Inputs. Each party P�, for � ∈ [N ], has input x�, concatenated into
x = x1‖ . . . ‖x�.
Circuit. A layered Boolean circuit C : {0, 1}n → {0, 1}m of size S, depth D and
width W , decomposed as in Remark 6.1. In particular, we choose depth parameter
d = 0.1 · log log S. This gives special layers (L�

1, . . . , L
�
L), where L = D/d, of widths

w1, . . . , wL respectively.
Output. The evaluation y = C(x), delivered to each party.
Ingredients.

– Number of repetitions κ, set to be an arbitrary super-constant ω(1).
– Our encryption scheme (Enc,Dec) from Sparse LPN, described in Equation 3,

with noise rate εEnc = 1/(2Nλ). We denote the encryption parameters as
follows: the dimension is nEnc and the sparsity is kEnc.

– Our N -party, (N − 1)-secure HSS in Figure 2, with correctness error εHSS =
1/(2λ), for the class of Boolean circuits of depth d′ = (0.9·log log S) and using
the additive secret sharing scheme AdSS. We denote the HSS parameters as
follows: the dimension is nHSS and the sparsity is kHSS.

– A general semi-honest MPC protocol, secure against (N − 1)-out-of-N cor-
ruptions, that can evaluate a Boolean circuit C of size S with communication
O(N ·S) per party. Such a protocol can be based on the existence of oblivious
transfer [41].

Protocol Execution:

1. Perform a MPC for the circuit GenVec → {ai2,i3}i2∈[W ],i3∈[κ], described as
follows:

For all i2 ∈ [W ], i3 ∈ [κ], sample a random kEnc-sparse vector ai2,i3 ←
F

nEnc
2 . Return {ai2,i3}i2∈[W ],i3∈[κ] to all parties.

Fig. 3. Semi-honest sublinear MPC from OTs and Sparse LPN
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Sublinear MPC construction, part 2

2. Perform a MPC for the circuit GenKeyShares →{
[[ki1 ]]�,i3

, shi1,i3,�

}
i1∈[L],i3∈[κ],�∈[N ]

, described as follows:

For all i1 ∈ [0, L − 1]:
– Sample a random key ki1 ← F

nEnc
2 .

– For each i3 ∈ [κ], compute {[[ki1 ]]�,i3
}�∈[N ] ← AdSS.Share(ki1),

each time with fresh randomness.
– For each i3 ∈ [κ], compute {shi1,i3,�}�∈[N ] ← HSS.Share(ki1) for

all i3 ∈ [κ], each time with fresh randomness.
For each � ∈ [N ], return {[[ki1 ]]�,i3

, shi1,i3,�}i1∈[L],i3∈[κ] to party P�.
3. For each � ∈ [N ], party P� secret-shares its input x� for κ

times {[[st1,i2,�]]�′,i3}�′∈[N ],i2∈[n],i3∈[κ] ← AdSS.Share(x�), and sends
{[[st1,i2,�]]�′,i3}i2∈[n],i3∈[κ] to each party P�′ . Then P� concatenate input shares
coming from all other parties to get {[[st1,i2 ]]�,i3

}i2∈[n],i3∈[κ].
4. For each layer i1 ∈ [L − 1] and party index � ∈ [N ]:

(a) For each i2 ∈ [wi1 ], i3 ∈ [κ], party P� samples ei1,i2,i3,� ← Ber(F2, εEnc)
and broadcasts its partial ciphertext cti1,i2,i3,� = 〈ai2,i3 , [[ki1 ]]�,i3

〉 +
[[sti1,i2 ]]�,i3

+ ei1,i2,i3,�.
(b) Party P� receives partial ciphertexts cti1,i2,i3,�′ from all other parties P�′

and reconstructs cti1,i2,i3 ← AdSS.Rec({cti1,i2,i3,�}�∈[N ]).
(c) For each i′2 ∈ [wi1+1], i3 ∈ [κ], P� computes

HSS.Eval(�,ComputeLayeri1,i′
2
, shi1,i3,�) where ComputeLayeri1,i′

2
is

the following function:
– Use input ki1 to decrypt sti1,i2,i′

3
← Dec(ki1 , cti1,i2,i′

3
) for

all i′3 ∈ [κ].
– Compute majority sti1,i2 ← Majority({sti1,i2,i′

3
}i′

3∈[κ]).
– Then compute sti1+1,i′

2
← Ci1,i′

2
({sti1,i2}i2∈[wi1 ]), where

Ci1,i′
2

is the circuit computing the (i′2)
th output of the

(i1 + 1)th layer.
(d) At this point, each party P� has shares for the next layer

{[[sti1+1,i2 ]]�,i3
}i2∈[wi1+1],i3∈[κ].

5. Perform a final MPC for the following circuit FinalRec → y:
– For each i2 ∈ [m], i3 ∈ [κ], compute yi2,i3 ←

AdSS.Rec({[[stL,i2 ]]�,i3
}�∈[N ]).

– For each i2 ∈ [m], compute majority yi2 ←
Majority({oshi2,i3}i3∈[κ]).

– Return {yi2}i2∈[m] to each party.

Fig. 4. Sublinear MPC construction, continued
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