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ABSTRACT

Local atomic environment descriptors (LAEDs) are used in the materials science
and chemistry communities, for example, for the development of machine learning
interatomic potentials. Despite the fact that LAEDs have been extensively studied
and benchmarked for various applications, global structure descriptors (GSDs),
i.e., descriptors for entire molecules or crystal structures, have been mostly de-
veloped independently based on other approaches. Here, we propose a systemati-
cally improvable methodology for constructing a space of representations of GSDs
from LAEDs by incorporating statistical information and information about chem-
ical elements. We apply the method to construct GSDs of varying complexity for
lithium thiophosphate structures that are of interest as solid electrolytes and use an
information-theoretic approach to obtain an optimally compressed GSD. Finally,
we report the performance of the compressed GSD for energy prediction tasks.

1 INTRODUCTION

Local atomic environment descriptors (LAEDs) are widely used in the materials science and chem-
istry communities, for example, in machine learning interatomic potentials (force fields) and for de-
tecting (dis)similarities between atomic environments (Parsaeifard et al., 2021; Langer et al., 2022).
An early example is the atom-centered symmetry functions introduced by Behler and Parrinello
(Behler & Parrinello, 2007; Behler, 2011) to describe the chemical environment of atoms as input
to atomic neural networks. Since then, various other LAED methods have been proposed in the lit-
erature and broadly applied to research questions in chemistry and materials science (Drautz, 2019;
Onat et al., 2020; Musil et al., 2021; Langer et al., 2022). In parallel, global structure descriptors
(GSDs) for entire molecules and crystal structures have independently been developed, though, for
periodic crystal structures, only a few representations have been proposed (Damewood et al., 2023).
So far, less emphasis has been placed on constructing GSDs from LAEDs for learning tasks where
the property of interest cannot be intuitively decomposed into atomic contributions, for example,
for predicting elastic properties such as the bulk modulus. Given that LAEDs have been extensively
benchmarked, it would be desirable to leverage this experience for the construction of GSDs as well.

Prior work includes examples of constructing GSDs by evaluating the mean of the LAEDs for a
given atomic structure (Priedeman et al., 2018; Cheng et al., 2020). Other authors proposed to in-
clude the variance in addition to the mean to combine all LAEDs of sites with the same chemical
element (Guo et al., 2022). Higher mathematical moments have been used to construct invertible
LAEDs with prospective applications for materials discovery through inverse design tasks (Uhrin,
2021). Here, we build on and extend these ideas to formalize the construction of GSDs by com-
bining chemical information and structural statistics via a moment expansion of the distribution of
atomic environment descriptors. We then use a recently introduced information-theoretic approach
(Glielmo et al., 2022; Darby et al., 2022a;b) to inspect the relationship of the GSD information
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content with its complexity and determine the GSDs that offer the optimal compromise between
the information content about the atomic system and the descriptor complexity (Zeni et al., 2021;
Khan et al., 2023). Finally, we demonstrate the performance of our proposed descriptors for energy
prediction tasks.

2 METHODOLOGY

We adopt the following notation. The structure data set S consists of atomic structures s that in
turn contain the sites {a1, ..., an1 , b1, ..., bn2 , ...} with corresponding element types {A,B, ...}. The
LAED of site a in structure s is denoted �(s)

a and is a real-valued vector. Note that the present work
is independent of the method that is used to obtain �(s)

a .

2.1 CHEMICAL ELEMENT DESCRIPTOR

We call chemical element descriptor (CED) a representation of all sites of the same chemical element
in a given structure. A CED can be constructed by combining the information of the LAEDs of all
sites of a given element type. Simply averaging all LAEDs would potentially result in a significant
loss of information. One way to systematically go beyond the mean LAED is by taking into account
the statistics through mathematical moments. The first moment of a distribution is the mean, and

general moments of order two (variance) and above are given by µn(X) =
1

N

NP
i=1

�
Xi � X̄

�n. The

mean of the LAEDs thus corresponds to a CED with an inner-moment1 degree of 1 (nin = 1). To
incorporate higher moments in the CED, we can stack (concatenate) different moment descriptors:

�(s)
A =

ninL
i=0

µi({�(s)
a | 8a 2 A, A 2 s}), where the

L
operator concatenates its arguments into a

single CED vector with dimensions of d(A) = d(a) · nin, where d(a) is the dimension of the LAED.

2.2 GLOBAL STRUCTURE DESCRIPTOR

We propose different methods for obtaining a global structure descriptor (GSD) from LAEDs and
CEDs. A global structure descriptor can be constructed from:

i: LAEDs, by finding the moments up to a degree of outer-moment (nout) of the distribution of all
(element-weighted) LAEDs,

ii: CEDs, by stacking CEDs for all chemical elements,
iii: CEDs, by finding the moments up to a degree of outer-moment of the distribution of (element-

weighted) CEDs.

�(s) =

8
>>>>>>><

>>>>>>>:

i:
noutL
i=0

µi({wA · �(s)
a | a 2 A, 8a 2 s}), if nout 2 {1, 2, ...} and nin = 0.

ii:
L
A2s

�(s)
A , if nout = 0 and nin 2 {1, 2, ...}.

iii:
noutL
i=0

µi({wA · �(s)
A | 8A 2 s}), if nout, nin 2 {1, 2, ...}.

(1)

The element weighting can be turned off by setting w = 1 for all elements. Note that the
LAEDs themselves can already incorporate chemical information, for example, through element
weightings (Artrith et al., 2017). The dimension of the final global structure descriptor is d(s) =
d(a) · max(1, nout) · max(1, nin) for methods i and iii, and, for method ii, is additionally scaled by
the number of unique elements in S. For multi-element data sets, where not all structures contain all
element types, GSD from method ii should be correctly zero-padded to achieve consistent GSD di-
mensions among all structures. Besides the three GSD construction methods shown above, we can
create new GSDs by simply stacking different GSD constructions discussed (i.e., stacking GSDs
from methods iii and i, or descriptors from method i or iii with and without element weightings).

1Here, “inner” refers to the CED construction and “outer” to the GSD construction of section 2.2
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2.3 INFORMATION CONTENT AND COMPRESSION

The number of inner and outer moments considered, as well as the number of unique elements in
the data set, can increase the GSD dimension. We define the complexity of a descriptor as d(s)/d(a).
It is important to quantify the information that each new moment adds about the system and to cre-
ate methods for determining the best dimension/construction method of the GSD that contains the
necessary structural and chemical information. In other words, we’re looking for the optimum com-
bination of inner and outer moments and element weightings that can be obtained by compressing
the full GSD with minimal loss of information.

To compress the descriptor, we need to quantify the information content (or loss) between com-
pressed and full descriptors. We can choose between information content measures based on dis-
tances or ranks, the latter being preferred because it is agnostic to the scaling of the space. Here,
we use an information imbalance between two descriptors based on ranks (also called rank in-
formation imbalance - RIM), recently introduced by Glielmo et al. (2022): �R(⌃1 ! ⌃2) =
1

N

P
si,sj2S

⇣
r(⌃2)
sisj | r(⌃1)

sisj = 1
⌘

, where r(⌃)
sisj is the rank between GSDs of structures si and sj in

descriptor space ⌃. The rank rsisj is computed by sorting the distances between GSD of si and
all other structure descriptors from smallest to largest and then finding the corresponding index for
sj . So, for instance, a rank of 1 means that GSDs of si and sj are nearest neighbors in the given
descriptor space. To find the rankings, we use Euclidean distance as the distance metric. So rank
information imbalance computes the average rank in descriptor space ⌃2 for the structures that are
nearest neighbors in descriptor space ⌃1. If �R(⌃1 ! ⌃2) ⇡ 1, then descriptor ⌃1 is informative
of descriptor ⌃2. The higher the imbalance, the less informative ⌃1 becomes for ⌃2. It is impor-
tant to note here that the rank imbalance is not symmetric (�R(⌃1 ! ⌃2) 6= �R(⌃2 ! ⌃1))
because the sets of pairs of nearest neighbors in different descriptor spaces are, almost often, dif-
ferent. For this reason, similar to Glielmo et al. (2022), we can construct a symmetric full rank

information imbalance (SRIM) as follows: �R̄(⌃1,⌃2) =
1

2
[�R(⌃1 ! ⌃2) +�R(⌃2 ! ⌃1)].

Both information imbalance measures discussed have a lower limit of 1, meaning that both spaces
are equivalent (all nearest-neighbor pairs in both descriptor spaces are the same), and the upper limit
will depend on the number of structures in the data set.

3 RESULTS AND DISCUSSION

3.1 CONSTRUCTION OF GLOBAL STRUCTURE DESCRIPTORS

Data set: We used 6055 previously published computationally generated atomic structures of
glass-ceramic lithium thiophosphates (LPS) with compositions on or close to the composition line
(Li2S)x(P2S5)1-x (Guo et al., 2022).

Local atomic environment descriptor: We employed a LAED based on the truncated Chebyshev
expansions of the radial and angular distribution functions (RDF and ADF) (Artrith et al., 2017).
This LAED method is numerically efficient and has the advantage that its dimension does not in-
crease with the number of chemical elements; it is also invariant with respect to rotations, transla-
tions, and atom permutations (Artrith & Urban, 2016). For all elements, we used a cutoff of 6.0 Å
with expansion order 19 for the RDF and a cutoff of 3.0 Å with expansion order 5 for the ADF. The
LAED is a stacking of four sets of expansion coefficients: the coefficients of the RDF and ADF with
and without element weightings, leading to a total LAED dimension of 2 ⇥ (19 + 5) = 48 (Guo
et al., 2022). The following element weightings were used: Li: -1, P: 0, and S: +1.

Global structure descriptor: GSDs with all possible combinations of outer and inner moments
up to a degree of five, with and without element weightings (using the LAED weightings), were
constructed. In the following, ⌃ijk denotes a GSD with outer moments up to a degree of i, inner
moments up to a degree of j, and with (k = 1) or without (k = 0) element weightings. For
example, ⌃231 and ⌃230 represent GSDs with and without element weighting, respectively, that are
constructed with outer moments of up to a degree of two (average and variance) and inner moments
of up to a degree of three (average, variance, and third moment). Note that GSDs of type ⌃0j1 do not
exist, according to equation 1. Element-weighted and unweighted GSDs with i 6= 0 and identical
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inner (i) and outer (j) moments can be combined via concatenation to create new GSDs, ⌃ij2; for
example, ⌃232 = ⌃230�⌃231. With such concatenation, we further construct two GSDs that contain
the most information about the geometry statistics and chemistry, ⌃555 = ⌃552 � ⌃502 � ⌃050 and
⌃554 = ⌃552 � ⌃502. ⌃555 and ⌃554 have the dimensions 3600 and 2880, and complexities 75 and
60, respectively. Enumerating all distinct combinations of GSDs with moments up to order 5 and
their concatenations resulted in a GSD space with 97 distinct representations. All descriptors were
normalized to remove the scale imbalance from using higher-order moments.

3.2 COMPLEXITY ANALYSIS

By design, most of the constructed GSDs are contained within other GSDs, and most information
is contained in ⌃555, followed by ⌃554. Here, we aim to identify those lower-dimensional descrip-
tors that exhibit minimal information loss compared to these two references. For this purpose, we
evaluated the RIMs between all 97⇥ 96 = 9312 pairs of GSDs.

(a) (b)

Figure 1: (a) Correlation plot between rank information imbalances of inferring all other descriptors
from ⌃555 (on x-axis) and inferring ⌃555 from all other descriptors (on y-axis). (b) Minimum
symmetric rank information imbalance between ⌃555 and all other descriptors as a function of the
descriptor complexity.

Figure 1a shows a correlation plot between the RIMs for inferring each descriptor space from ⌃555

and inferring ⌃555 from each descriptor space. GSDs with high complexity (> 30) exhibit minor
information loss (i.e., retain most information content) when inferring ⌃555 from them or inferring
them from ⌃555. Figure 1b shows the minimum SRIM between ⌃555 and other descriptors for a
given complexity value. We observe that increasing the complexity beyond ⌃242 does not affect the
SRIM substantially. By comparing the results with Figure B.1b that shows a similar SRIM anal-
ysis for ⌃554, it is apparent that ⌃i,j,k=2 descriptors have the most information content and least
information loss for both ⌃554 and ⌃555. Here we did not mention descriptors ⌃0,j>2,0 because,
although their performance towards ⌃555 is good, they provide a worse interpretation for ⌃554, and
the reason most likely is that ⌃554 does not contain ⌃050. The raw data is given in Table B.2 and
exhibits the same trend: ⌃i,j,k=2 descriptors are most informative about the other GSDs (see also
Table B.1) and can be inferred best from other descriptors (Table B.3). This means incorporating
only structural/geometric information (with ⌃ij0-type descriptors) is insufficient, and the addition
of chemical information to the descriptor through element weightings adds the missing informa-
tion content. Table B.1 also shows that simple averaging of all LAEDs with or without element
weighting (⌃101 and ⌃100, respectively) has the worst overall performance. Such descriptors might
be useful if all atomic environments are similar in composition, but if the environments vary dras-
tically (Figure A.1), simple averaging and disregarding chemical information leads to information
loss. While ⌃101 and ⌃100 are the worst for inferring other GSDs, the data in Table B.3 shows
that it is the hardest to infer ⌃050 from other GSDs. This is intuitive because ⌃i>0,j,k2{0,1} GSDs
lose either the distinct elemental information by including only element-weight agnostic moments
or lose the distinct geometry information by including element-weighted moments. From Table B.4,
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we see that GSDs that are most similar to each other contain higher moments and the same method
for the descriptor construction. This exemplifies that adding the next higher moment to the descrip-
tor results in a decreasing information gain, i.e., the GSDs converge with the order of the moment
expansion. From Table B.5, the most dissimilar descriptors are those constructed with different
methods, meaning that different construction methods will result in including different pieces of
information.

3.3 ENERGY FITTINGS

In the previous section, we assessed the information content in different GSDs. Here, we investigate
whether high information content is indeed beneficial for learning tasks. We trained on a subset of
formation energies of those structures in the LPS dataset that are exactly on the (Li2S)x(P2S5)1-x
composition line (Guo et al., 2022). We used a gradient-boosted tree model with four different num-
bers of estimators to accommodate the varying complexity of GSDs. Training and test set splits of 9
to 1 over five random seed numbers were used (Figure C.1). From the mean absolute error (MAE)
and root mean squared error (RMSE) plots, it can be seen that indeed ⌃100 and ⌃101 are performing
the worst towards the energy training task. ⌃i,j,k=2 descriptors perform better, although they do not
reach the accuracy of the full ⌃555 descriptor. Interestingly, the descriptor that, on average, con-
tained most information about other descriptors (Table B.2), ⌃332, is performing second best after
the full descriptor and performs equivalently when considering the MAE only. Overall, the scale of
energy errors is on the same order of magnitude as the state-of-the-art neural network interatomic
potentials, even though the tree models and LAED parameters were not optimized. Important to
observe that the relative rankings of optimal GSDs from the information-theoretic approach and en-
ergy models are slightly different. One reason is that the models were trained on a subset of LPS
structures (about 2/3 of the original data set) and evaluated on a test set that contains only 7% of
all structures. To conclude, the results of the information-theoretic approach and energy models
are sensitive to the data set used. A similar analysis should first be performed for a new data set
before choosing an optimally compressed descriptor. See Appendix D and E for further discussion.
This analysis leads to two conclusions: (i) it is apparent that the complexity of the full descriptor
is not needed, and models with similar or equivalent performance can be obtained with less com-
plex GSDs, (ii) the systematic convergence of the GSDs seen in the information imbalance is also
reflected by the performance of the energy models.

4 CONCLUSION

We introduced a systematic framework for constructing computationally efficient and property-
independent global structure descriptors from local atomic environment descriptors by incorporating
both geometry statistics through mathematical moments and chemistry through element weight-
ings. We demonstrated for a set of glassy/amorphous lithium thiophosphate structures how global
descriptors with an optimal balance of information content and complexity can be identified, and
we confirmed the descriptor performance with an energy prediction task. In future work, we plan
to investigate how the hyperparameters of the local atomic environment descriptor affect the per-
formance of the global descriptor, how the descriptors perform for different moment expansions
(through standardized moments or cumulants) and on much larger materials data sets with diverse
chemical elements.

CODE AVAILABILITY

The code to construct global structure descriptors from local environment descriptors is implemented
in ænet software package and can be found in https://github.com/atomisticnet/aenet-python open
source repository.
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A APPENDIX: STATISTICS OF INDIVIDUAL COMPONENTS OF THE FULL
GLOBAL STRUCTURE DESCRIPTOR

(a)

(b)

Figure A.1: (a) Mean and (b) standard deviation values of each component in ⌃555 global structure
descriptor.
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B APPENDIX: ADDITIONAL INFORMATION IMBALANCE ANALYSIS

(a) (b)

Figure B.1: (a) Correlation plot between rank information imbalances of inferring all other descrip-
tors from ⌃554 (on x-axis) and inferring ⌃554 from all other descriptors (on y-axis). (b) Minimum
symmetric rank information imbalance between ⌃554 and all other descriptors as a function of the
descriptor complexity.

(a) (b)

Figure B.2: (a) Mean rank information imbalance of inferring all other descriptors from the given
descriptor with the given complexity. (b) Mean information imbalance of inferring the given de-
scriptor with the given complexity from all other descriptors.
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Table B.1: Global descriptors sorted by the average of symmetric rank information imbalance�⌦
�R̄

↵�
.

⌃1 h�R1!2i h�R2!1i
⌦
�R̄

↵

132 1.553 1.807 1.680
232 1.550 1.862 1.706
332 1.478 1.938 1.708
222 1.825 1.604 1.714
322 1.837 1.622 1.730
422 1.864 1.699 1.782
522 1.867 1.746 1.806
122 1.950 1.684 1.817
432 1.573 2.158 1.865
302 2.083 1.726 1.904
142 1.643 2.182 1.913
402 2.077 1.758 1.918
532 1.577 2.310 1.944
242 1.546 2.411 1.978
502 2.126 1.858 1.992
... ... ... ...

010 4.389 1.928 3.159
040 2.045 4.291 3.168
251 2.402 3.940 3.171
510 4.255 2.109 3.182
541 2.282 4.147 3.214
550 2.249 4.283 3.266
102 4.671 2.172 3.421
351 2.693 4.183 3.438
050 2.136 5.127 3.631
151 2.852 4.433 3.643
110 4.891 2.564 3.728
451 3.049 4.691 3.870
551 3.043 4.961 4.002
100 5.710 2.314 4.012
101 5.651 2.384 4.017
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Table B.2: Global descriptors sorted by the average of information they contain about all other
descriptors (h�R1!2i).

⌃1 h�R1!2i h�R2!1i
⌦
�R̄

↵

332 1.478 1.938 1.708
242 1.546 2.411 1.978
232 1.550 1.862 1.706
132 1.553 1.807 1.680
432 1.573 2.158 1.865
532 1.577 2.310 1.944
554 1.586 2.998 2.292
542 1.604 3.088 2.346
442 1.605 2.861 2.233
342 1.616 2.540 2.078
142 1.643 2.182 1.913
452 1.651 3.670 2.660
352 1.662 3.226 2.444
152 1.666 2.538 2.102
252 1.672 2.986 2.329
... ... ... ...

111 3.923 2.291 3.107
410 3.949 2.097 3.023
210 3.965 2.070 3.018
511 3.998 2.258 3.128
411 4.011 2.212 3.112
512 4.015 1.906 2.961
112 4.075 1.924 2.999
201 4.089 2.073 3.081
510 4.255 2.109 3.182
412 4.317 1.875 3.096
010 4.389 1.928 3.159
102 4.671 2.172 3.421
110 4.891 2.564 3.728
101 5.651 2.384 4.017
100 5.710 2.314 4.012
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Table B.3: Global descriptors sorted by the average of information all other descriptors contain
about them (h�R1!2i).

⌃2 h�R1!2i h�R2!1i
⌦
�R̄

↵

222 1.604 1.825 1.714
322 1.622 1.837 1.730
122 1.684 1.950 1.817
422 1.699 1.864 1.782
302 1.726 2.083 1.904
522 1.746 1.867 1.806
402 1.758 2.077 1.918
202 1.800 2.742 2.271
132 1.807 1.553 1.680
212 1.824 3.227 2.526
312 1.833 3.694 2.764
502 1.858 2.126 1.992
232 1.862 1.550 1.706
412 1.875 4.317 3.096
200 1.905 3.155 2.530
... ... ... ...

250 3.583 2.120 2.851
452 3.670 1.651 2.660
350 3.703 2.085 2.894
441 3.821 2.231 3.026
251 3.940 2.402 3.171
552 3.979 1.674 2.827
450 4.057 2.239 3.148
541 4.147 2.282 3.214
351 4.183 2.693 3.438
550 4.283 2.249 3.266
040 4.291 2.045 3.168
151 4.433 2.852 3.643
451 4.691 3.049 3.870
551 4.961 3.043 4.002
050 5.127 2.136 3.631
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Table B.4: Most similar pairs of descriptors according to the symmetric rank information imbalance�
�R̄

�
. Note that not all decimal points are shown here.

⌃1 ⌃2 �R1!2 �R2!1 �R̄
450 550 1.010 1.009 1.010
420 520 1.011 1.011 1.011
421 521 1.011 1.011 1.011
440 540 1.012 1.011 1.011
442 542 1.012 1.011 1.011
411 511 1.012 1.012 1.012
432 532 1.012 1.011 1.012
451 551 1.013 1.012 1.012
422 522 1.012 1.012 1.012
431 531 1.012 1.013 1.012
452 552 1.013 1.012 1.012
430 530 1.014 1.012 1.013
412 512 1.014 1.013 1.013
441 541 1.015 1.013 1.014
401 501 1.017 1.017 1.017
340 440 1.018 1.018 1.018
311 411 1.020 1.019 1.019
410 510 1.022 1.019 1.020
352 452 1.021 1.020 1.020
330 430 1.022 1.020 1.021
252 352 1.021 1.021 1.021
341 441 1.025 1.019 1.022
320 420 1.023 1.021 1.022
340 350 1.023 1.021 1.022
342 442 1.020 1.025 1.022
232 332 1.024 1.021 1.023
351 451 1.023 1.022 1.023
140 150 1.024 1.021 1.023
251 351 1.023 1.022 1.023
322 422 1.023 1.023 1.023
... ... ... ... ...
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Table B.5: Most dissimilar pairs of descriptors according to the symmetric rank information imbal-
ance

�
�R̄

�
.

⌃1 ⌃2 �R1!2 �R2!1 �R̄
... ... ... ... ...

452 101 2.467 11.708 7.088
441 100 2.310 11.897 7.104
452 100 2.590 11.701 7.145
112 551 11.392 2.961 7.176
251 101 2.562 11.889 7.225
450 101 3.987 10.571 7.279
102 451 11.475 3.088 7.282
550 100 3.669 10.898 7.283
102 050 11.772 2.956 7.364
151 101 3.195 11.574 7.384
552 100 2.581 12.383 7.482
541 101 2.237 12.750 7.493
541 100 2.305 12.729 7.517
102 551 12.050 3.044 7.547
550 101 4.002 11.094 7.548
552 101 2.445 12.721 7.583
110 351 10.666 4.502 7.584
111 050 11.867 3.381 7.624
100 050 12.164 3.132 7.648
251 100 2.720 12.647 7.683
151 100 3.413 12.272 7.843
101 050 12.383 3.340 7.862
351 101 2.902 13.145 8.023
110 451 12.108 4.468 8.288
351 100 3.442 13.150 8.296
110 551 12.544 4.392 8.468
451 101 2.978 14.054 8.516
551 101 2.925 15.045 8.985
451 100 3.518 14.626 9.072
551 100 3.469 15.415 9.442
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C APPENDIX: A GRADIENT-BOOSTED TREE MODEL FOR FORMATION
ENERGY PREDICTIONS

We used a gradient-boosted tree model to determine if our results can compare to those from the
state-of-the-art neural network interatomic potential models.

(a) (b)

Figure C.1: Average (a) MAE and (b) RMSE scores for the test set of formation energy training on
a subset of the LPS dataset. A horizontal jitter is applied to the points to help differentiate global
structure descriptors.
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D APPENDIX: COMPARISON BETWEEN THE WHOLE AND LIMITED DATA SETS

In the main body of the paper, we have performed the energy fittings on a smaller data set of struc-
tures (compared to the dataset used for the information-theoretic analysis). Here, we compare the re-
sults from the information-theoretic study on the whole and limited data sets. From Figures D.1, D.2,
and D.3, the choice of the data set (in our case slightly) affects the relative ranking of optimally com-
pressed descriptors. For this reason, a similar analysis should first be performed for a new data set
before choosing an optimally compressed descriptor.

(a) Whole data set (b) Limited data set

(c) Whole data set (d) Limited data set

Figure D.1: Minimum symmetric rank information imbalance between (a,b) ⌃555, (c,d) ⌃554 and
all other descriptors as a function of the descriptor complexity for (a,c) the whole and (b,d) limited
data sets.
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(a) Whole data set (b) Limited data set

(c) Whole data set (d) Limited data set

Figure D.2: Mean rank information imbalance of inferring all other descriptors from the given
descriptor with the given complexity for (a) the whole and (b) limited data sets. Mean information
imbalance of inferring the given descriptor with the given complexity from all other descriptors for
(c) the whole and (d) limited data sets.
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(a) Whole data set (b) Limited data set

(c) Whole data set (d) Limited data set

Figure D.3: Correlation plot between rank information imbalances of inferring all other descriptors
from (a,b) ⌃555, (c,d) ⌃554 (on x-axis) and inferring (a,b) ⌃555, (c,d) ⌃554 from all other descriptors
(on y-axis) for (a,c) the whole and (b,d) limited data sets.
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E APPENDIX: A LINEAR MODEL FOR FORMATION ENERGY PREDICTIONS

We also fitted a linear model to the entirety of the limited data set (the training set contains the en-
tirety of the limited data set). The relative ordering of descriptors from Figures C.1, D.1, and E.1 is
slightly different. Note that with the information-theoretic approach, we aim to construct a universal
GSD instead of one only useful for the formation energy prediction task. So similar model analy-
ses for other properties are also needed before choosing the universal optimally compressed global
descriptor.

Figure E.1: MAE score of a simple linear regression model trained on the entirety of the limited
data set as a function of descriptor complexity. Note that only a small number of relevant descriptors
are depicted.
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