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Finding connected components is a fundamental problem in graph analysis. We develop a novel minimum-
mapping based Contour algorithm to solve the connectivity problem. The Contour algorithm can identify
all connected components of an undirected graph within O(log dp,4x) iterations on m parallel processors,
where dpax is the largest diameter of all components in a given graph and m is the total number of edges
of the given graph. Furthermore, each iteration can easily be parallelized by employing the highly efficient
minimum-mapping operator on all edges. To improve performance, the Contour algorithm is further optimized
through asynchronous updates and simplified atomic operations. Our algorithm has been integrated into an
open-source framework, Arachne, that extends Arkouda for large-scale interactive graph analytics with a
Python API powered by the high-productivity parallel language Chapel. Experimental results on real-world and
synthetic graphs show that the proposed Contour algorithm needs less number of iterations and can achieve
5.26 folds of speedup on average compared with the state-of-the-art connected component method FastSV
implemented in Chapel. All code is publicly available on GitHub (https://github.com/Bears-R-Us/arkouda-nyjit).
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1 INTRODUCTION

A graph is one of the fundamental mathematical structures used to model pairwise relations
between abstract objects. Many problems in science, society, and economics can be modeled by
graphs. The sizes of graph data collections continue to grow which makes the need for fast graph
algorithms critical, especially under online and real-time scenarios [31].

Finding connected components [1, 4, 9, 10, 12, 16, 17, 21, 27] is a fundamental problem in graph
analytics and an important first step for other graph algorithms. Many graph algorithms are based
on the assumption that we already know a graph’s connected components. In this work, we focus
on the connectivity of undirected graphs. The connected components problem can be expressed as
assigning each vertex with a label. If two vertices are in the same component or there is a path
between them, they will be marked with the same label. Otherwise, the vertices will be marked with
different labels [11]. We abstract the connectivity as a Minimum-Mapping problem and develop
a simple and lightweight minimum-mapping operator to work on different edges to efficiently
identify all the components in parallel. We develop an efficient minimum-mapping operator that
maps the connected vertices to the same contour. Identifying one component is similar to identifying
one contour with the same minimum label. Therefore, we name our algorithm “Contour". No tree
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hooking-compressing or set find-union operations are needed. At the same time, the minimum-
mapping operator can be employed on different edges (or connected vertices) in parallel, whether
their vertices are overlapping or not. This can significantly improve parallel performance and
simplify implementation compared to tree/set merge-based methods.

The major contributions of this work are as follows.

(1) A novel Contour algorithm that formulates finding connected components as a minimum-
mapping problem. Based on this perspective, a simple and lightweight minimum-mapping
operator is developed to map the vertices in the same component to the same label in parallel.
The proposed method is suitable for large graphs with different graph topologies.

(2) A proofis given to show that for a graph with d;,;4x as its maximum diameter of any connected
components, the Contour algorithm can converge in O(log(dmax)) iterations.

(3) The proposed method has been integrated into the graph package, Arachne. It is publicly
available through the open-source Arkouda framework from GitHub to analyze large graphs
using the popular Python interface.

(4) Extensive experimental results show that the proposed Contour algorithm can achieve signif-
icant speedup compared with the state-of-the-art traversal and tree-hooking-based methods
on real-world and synthetical graphs.

2 CONTOUR ALGORITHM
2.1 Problem Description

Given an undirected graph G =< V, E >, where V is the set of vertices, and E is the set of edges.
Let m = |E| be the total number of edges and n = |V| be the total number of vertices in G. Without
loss of generality, here we assume that vertex IDs are from 0 to n — 1. Identifying all connected
components in G means we will assign the vertices of the same components with the same label.

We can use a label array L[0..n — 1] with size n to store all the label values of different vertices.
Initially, we assign each vertex’s ID as its label. The label array can also be regarded as a point
graph [33]. Vo € V, L[i] = v means that there is a direct edge from vertex i to v. The point graph
will change after each iteration. It is a forest of rooted trees plus self-loops that occur only in the
root. Finally, if graph G has S components, L will represent S stars after all components are found.

2.2 Minimum-Mapping Operator

Vv € V, L[v] is the mapped vertex or label of v. L,,[0..n — 1] is used to store the updated value of
different vertices after one update. If there is a path between w and v or w and v are connected,
and the values of their labels are different, we should assign them the same minimum label. We use
the minimum value among L[w] and L[v] to update the old label values in L, array.

First, we define the conditional vector assignment operator as follows.

Definition 2.1 (Conditional Vector Assignment).
>
(%1, ooy Xk) — 2 (1)
It means that given a vector X = (x1,....xx),Vie N1 <i <k, x; =zifx; > z.

Based on the definition of conditional vector assignment, we will further define our minimum-
mapping operators.

Definition 2.2 (One-Order Minimum-Mapping Operator). Given two connected vertices w,v € V,
let z! = min(L[w], L[v]). We define the one-order minimum-mapping operator as follows.

MM (Ly, L w,0) : (Ly[w], Ly[0]) <~ 2! @)
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MM (Ly, L, w,0) means that given two vertices w and v and the original label value array L, the
updated results after the one-order minimum-mapping operation will be kept in the updated array
La.

Higher h>1 order minimum-mapping operators MM" (L,, L, w,v) can also be defined similarly.

Definition 2.3 (h-Order Minimum-Mapping Operator). Given two connected vertices w,v € V, if
we let 2" = min(L"[w], L"[0]), we can define the h-order minimum-mapping operator as follows.

MM (Lo, L w, 0) : (Lu[w], Lu[0], oo La[L* [w]], Lu [LP " [0]]) &= 2. 3)
where Yo € V, L"[v] = L[L" [v]],L'[v] = L[v], 2" = min(L"[w], L"[0]).

A higher-order minimum-mapping operator may include more mapped vertices based on the
two given vertices. So it may find the final minimum contour quicker. However, it will also perform
many more operations. In this paper, we take the two-order minimum-mapping operator as the
default operator because it can achieve a quick convergence (logarithmic time complexity) with a
minimum-mapping operator involving a much small number of vertices and operations.

2.3 Algorithm Description

Based on the proposed minimum-mapping operator, our Contour algorithm is given in Alg. 1. The
complete algorithm is straightforward and easy to parallelize.

For lines from 1 to 4, we initialize the label array L and the corresponding update array L,
with each vertex’s ID. From line 5 to line 10, we update the label array L until it is converged
or there are no changes in the array. From lines 6 to 8, for each edge e = (w,v) € E, we will
execute the two-order minimum-mapping MM?(w, v) in parallel. MM?(w, v) may update the value
of L, [w], L, [0], Ly [L[w]], Ly [L[0]] if they are larger than the minimum value z2. In line 9, all the
old values in L will be updated with the new values in L,.

Since all the conditional assignments can be executed in parallel, to avoid write race, we use the
atomic compare-and-swap (CAS) ! operation to implement our conditional assignment as follows.

while (oldx; = atomic_read(x;) > z) {
CAS(x;,0ldx;, z) (4)
}

This is different from the CRCW PRAM model-based method [33]. CRCW will generate arbitrary
write results. Our CAS-based method ensures that only the minimum value is assigned to the L
array.

After k*" iteration, the label of w should be L,;[w] = min(Li_l[w],Li_l[vl],Lz_l[vz],...,
L/2<71 [0:m], where vy, 0, ..., 0y, are the vertices that directly connect with w, or directly connect
with the vertices that are mapped to w; LZ [x] is the h order label of x after the k" iteration. We
can ignore h when h = 1. We first give the following definition to show how the vertices in the
same component are mapped to the same label step by step.

Definition 2.4 (Equal Minimum Set). Given label g, after the k" iteration, its one-order equal
minimum set EMS(k)} = {0|Vv € V, Li[v] = a}. Its two-order equal minimum set EMS(k)2 =
{v|Vo €V, lec [0] = a}.

We use the equal minimum set to indicate the vertices mapped to the same vertex label.

Thttps://chapel-lang.org/docs/primers/atomics.html
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Algorithm 1: Minimum-Mapping based Contour Algorithm

1 Contour(G)
/% G=(E, V) is the input graph with edge set E and vertex set V. m = |E| is the total number of edges and n=|V| is the

total number of vertices. %/
2 forall iin 0.n-1do
3 Lli]=i
4 Lylil=i
5 end
/* Initialize the label array L,L; */

while (There is any label change in L) do
forall (e = (w,0) € E)do
| MM?(Ly, L w,0)
end
10 L=1Ly,
11 end
12 return L

© % N9

Definition 2.5 (Merged Minimum Set). Let MMS(0) = V. After the k" iteration, k > 1, the
one-order merged minimum set is defined as MMS(k)! = {v|Vo € V,EMS(k)} # ¢}. Similarly, the
two-order merged minimum set MMS(k)? = {v|Vo € V, EMS(k)? # ¢}.

Compared to other label propagation algorithms, Alg. 1 has two major differences. (1) We use
edge-based parallel method that is easy to achieve load balancing for degree-skewed real-world
graphs. However, label propagation typically uses vertex-based parallel methods. (2) The kernel
of existing label propagation methods is similar to our one-order minimum mapping operator,
which cannot achieve high performance for high-diameter graphs. However, our algorithm can
employ high-order minimum-mapping operators to reduce the total number of iterations. Compared
to existing tree-hooking-based vertices merging methods, both are edge-based parallel methods.
However, our minimum-mapping operator can significantly simplify the tree operations.

The following section will prove that our Alg.1 can converge in logarithmic iterations.

We can prove that Alg. 1 will take O(log(dmax)) iterations to identify all the components. The
detailed proof is ignored here.

3 INTEGRATION WITH ARACHNE AND PERFORMANCE OPTIMIZATION
3.1 Integration Method

Our method is integrated into Arachne [30], a large-scale graph analytics package on top of Arkouda
[24, 29]. Arkouda is an open-source framework in Python created to be a NumPy replacement at
scale. Our work aims to extend Arkouda for graph analytics, where we use the underlying pdarray
to implement and execute our algorithms. Through this, we create an end-to-end response system
from Chapel to Arkouda. In Python, our calling method is called graph_cc(graph) where the user
passes to a function a graph. We added this method to Arkouda’s front-end file called graph.py.
The calling messages are added into arkouda_server.chpl. The Chapel method is invoked when the
function is called in Python, and the messages are passed from Python to Chapel through ZMQ 2.
The messages are recognized at the back-end by arkouda_server.chpl, and the proper functions are
invoked and executed in the chapel back-end.

3.2 Algorithm Optimization

Alg.1 shows the basic idea of our method. However, we can continue to optimize it to improve prac-
tical performance. So, we propose the asynchronous version of Alg.1 to improve the convergence
speed.

Zhttps://zeromq.org/
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The basic idea of the asynchronous Contour algorithm is that we will immediately update the
label array L instead of keeping the old value and updating it in the update label array L,,. So, the
update label array L, can be removed entirely. The asynchronous algorithm has the following
advantages: (1) accelerating the convergence speed (vertices can be mapped to lower label quickly);
(2) reducing unnecessary operations (L = L, in Alg.1 is removed); (3) reducing unnecessary memory
(L, array is removed).

Another aspect is optimizing the implementation of the conditional vector assignment in Eq.
4. We design a new compare-and-assignment atomic operation CAA(old, new). It means that if
old > new, then old = new. Suppose the low-level system can support such a compare-and-
assignment atomic operation with high performance. In that case, we can use such a new atomic
operation to implement our Contour algorithm. We currently replace the conditional assignment in
Eq. 4 with Eq. 5 to partially simulate its effect.

oldx; = atomic_read(x;)
CAS(x;,0ldx;, z) ®)

We also implement the state-of-the-art FastSV [43] in Chapel for comparison.

4 EXPERIMENTS
4.1 Dataset Description

Our datasets are chosen from publicly available synthetic and real-world datasets. The SuiteSparse
Matrix Collection® and the MIT GraphChallenge graph datasets* are used in selecting our test
graphs. A combination of real-world and synthetic graphs is selected to highlight the performance
of our optimized Contour algorithm in Table 1. The real-world graphs can be either weighted or
unweighted. Real-world graphs have degree distributions that follow a power-law distribution,
while sparse synthetic graphs tend to follow a normal distribution.

The synthetic graphs used are random geometric graphs (Rgg) and kron-g500 graphs from the
DIMACS10 Implementation Challenge [5].

Table 1. Dataset 1- Real-World and Synthetic Graphs

Graph Type | Graph ID Graph Name m n
1 Toc-brightkite_cdges | 214078 58228
soc-Epinions1 405740 75879

amazon0601 2443408 | 403394
com-youtube.ungraph | 2987624 | 1134890
soc-LiveJournall 68993773 | 4847570
kmer_Vir 232705452 | 214005017
kmer_AZa 180292586 | 170728175
uk-2002 261787258 | 18484117

9 uk-2005 783027125 | 39454746
10 rgg n_2_21_s0 14487995 | 2097148
11 rgg n_2_22_s0 30359198 | 4194301
12 rgg_n_2_24_s0 132557200 | 16777215
13 kron_g500-logn16 2456071 55321
14 kron_g500-logn18 | 10582686 | 210155
15 kron_g500-logn20 | 44619402 | 795241

Real-World Graph
oo <a| o] | | 0] 0

Synthetic Graph

4.2 Experimental Platform

Experiments were done on an 32-node cluster system. Each node is a CentOS Linux release 7.9.2009
(Core) high-performance server with 2 x Intel Xeon E5-2650 v3 @ 2.30GHz CPUs with ten cores per
CPU. Each server has an amount of 512GB of RAM. All nodes are connected by a high-performance
Infiniband network system.

3https://sparse.tamu.edu/
4https://graphchallenge.mit.edu/data-sets
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Contour algorithm and FastSV algorithm for both  variants compared with the FastSV algorithm for
real-world and synthetic graphs (one locale). both real-world and synthetic graphs (one locale).

4.3 Experimental Results

In the following sections, we use Contour to indicate our highly optimized algorithm. C-1 means
we just use the fixed one-order minimum-mapping operator. C-2 means that we just use the fixed
two-order minimum-mapping operator. C-S means we employ the simplified Eq. 5 to replace the
atomic operation in a loop. C-CAS means we employ a loop-based compare-and-swap atomic
operation according to Eq. 4. C-Syn means the synchronized Contour algorithm. FastSV is the result
of the FastSV algorithm. We execute the tests in two ways, shared memory and distributed memory.
For shared memory, we only use one node. For distributed memory, we will use four nodes. Both
are executed in parallel. We will first discuss the shared memory results. For the Chapel parallel
program, it means that we only use one locale® to explore the parallelism in one shared memory
computing device.

Comparison of Number of Iterations: First, we analyze how different methods can affect the
number of iterations. Fig. 1a shows the total number of iterations for different graphs with our
optimized Contour algorithm, its different variants, and the FastSV method. We can see our Contour
method has the smallest number of iterations for almost all the different graphs. The number of
iterations of C-1 is very high for high-diameter graphs. This is reasonable because the number of
iterations of our one-order minimum-mapping operator will be linear with the diameter of a graph.
The C-S and C-CAS variants are very close to each other and also have a very small number of
iterations. For some real-world graphs, the numbers of iterations of C-S and C-CAS are slightly
higher than the Contour method. C-Syn and FastSV have almost the same number of iterations
for most graphs and they are always the worst ones. This is because they have a similar iteration
mechanism. Both will be synchronized after each iteration.

Speedup Compared with FastSV: Fig. 1b shows the speedup of our Contour algorithm and its
variants compared with the state-of-the-art FastSV method. For all the graphs, our Contour algorithm
can achieve 5.26 folds of speedup on average. The maximum speedup is 9.17 for the synthetic graph
rgg_n_2_22_s0. The minimum speedup is 2.68 for the real-world graph loc-brightkite_edges. We
can see the performance of C-1 can be very high for low-diameter graphs. But it can also be very
low for high-diameter graphs. So, the performance of C-1is not stable. C-2 is very good for most of
cases because it can balance the low-diameter and high-diameter graphs. C-S is always better than
C-CAS because removing the loop operation will save time. This also means that our suggested
hardware-supported atomic CAA can perform better than C-CAS. So, the performance trend is
Contour > C-S > C-CAS > C-Syn > FastSV, where a > b means that the performance of a is better
than that of b.

The trend of the results on 4 locales is similar to that of the one locale results, so, we do not
include the results here.

Shttps://chapel-lang.org/docs/primers/locales.html
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4.4 More Results and Discussions

We also implement the BFS-based connected components method in Arachne and compare our
Contour algorithm with the widely used BFS method. Here both Contour and BFS are running on
one locale using data set 2. The total number of iterations of BFS is much larger than that of our
Contour algorithm, especially for the large diameter graphs. For most of the graphs, Contour can
converge in 4 iterations. However, BFS will need much more iterations (the largest number of
iterations is 1510 for BFS). The speedup will increase with graph size at first and then become flat
and then drop. The average speedup is 196. The maximum speedup is 320 for delaunay_n19. The
minimum speedup is 30 for delaunay_n10.

Multi-locale is employed to test the performance of a distributed system. The trend of the results
on 4 locales is similar to that of the one locale results. However, the performance is very different
for different methods. For the C-1 method, its number of iterations is the largest. However, its
performance is very good for graphs whose diameters (graph sizes) are not very large, even better
than the Contour version. Only when the graph diameter (graph size) becomes very large will its
performance drop. The reason is that the major cost for a distributed memory graph algorithm is
communication instead of computation. The C-1 method can exploit the locality well. However,
all the other methods will involve more communication relatively. This is why C-1 can achieve
much better performance when the graph diameter (graph size) is not large. Our experimental
results show that the absolute performance of distributed memory version is much slower than the
corresponding shared memory version.

For delaunay_n20, FastSV in Chapel needs 0.290952s. Contour needs 0.038154s. We implement our
method in two graph packages, LAGraph and Graph Based Benchmark Suite (GBBS). In LAGraph
(in C and GraphBLAS), FastSV needs 0.0226186s. Contour cannot be faster than FastSV because
GRaphBLAS interface cannot support the flexible minimum-mapping operator well. In GBBS,
we compare our algorithm with the package’s simplified SV algorithm. Our Contour will need
0.012859s, and the simplified SV algorithm takes 0.022097s.

Based on the above experiments and comparison, we can see that compared with some C or C++
based graph packages, our package in Chapel has some overhead. However, we also find that the
Chapel is much more flexible to express different parallel methods.

5 RELATED WORK

Connected components problem can be formulated as graph traversal or tree-hooking/set-union
problems. Graph traversal [13, 34-36] or label propagation methods [15, 28, 34, 36, 39], have a major
problem where they cannot achieve high performance when graph diameters are large or a graph
has many small components. The tree-hooking based methods [2, 4, 6, 7, 18, 22, 23, 25, 33, 38, 41, 43]
or union-find based methods [8, 19, 26] can overcome this problem and work well on varying graph
topologies.

The Shiloach-Vishkin (SV) algorithm [33] is the pioneering tree-hooking method. It is a widely
known PRAM algorithm and can achieve O(log n) time on O (n+ m) processors. There are different
kinds of improvements to the SV algorithm. Awerbuch and Shiloach (AS) [2] use a very efficient
parallelization using proper computational primitives and sparse data structures. The AS algorithm
only keeps the information of the current forest and the convergence criterion for AS is to check
whether each tree is a star. Afforest [40] is an extension of the SV algorithm that approaches optimal
work efficiency by processing subgraphs in each iteration. The LACC [3] algorithm uses linear
algebraic primitives to implement connected components and is based on the PRAM AS algorithm.
FastSV [43] further simplifies and optimizes LACC’s tree hooking and compressing method to
improve the performance.
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Thrifty Label Propagation (TLP) algorithm [15] uses the skewed degree distribution of real-world
graphs to develop their optimized label propagation algorithm. Sutton et al. [40] uses sampling to
find the connected components on a subset of the edges, which can be used to reduce the number
of edge inspections when running connectivity on the remaining edges.

There are some works combining different methods together to further optimize the performance.
Slota et al. [37] developed a distributed memory multi-step method that combines parallel BFS and
label propagation technique. The ParConnect algorithm [20] is based on both the SV algorithm
and parallel breadth-first search (BFS). Connectlt [14] provides a framework to provide different
sampling strategies and tree hooking and compression schemes.

Deng et al. works on exploiting the existence of high-degree nodes to create hubs to extract
connected component sizes and numbers [12]. Wu and Du use label propagation to compute the
connected components of graphs built on top of MapReduce [42]. Another similar work by Sharma
and Misra also utilizes MapReduce to compute connected components by reducing the upper bound
of MapReduce rounds down from linear to logarithmic [32].

We formulate the connected components as a minimum-mapping problem instead of a tree-
hooking/set union problem. Our method is flexible and simple, so it can significantly simplify the
existing tree-hooking-based methods to improve practical performance.

6 CONCLUSION

Finding connected components is a fundamental graph problem, and we present a novel problem
formulation method, minimum mapping, to solve the problem. Our method is very flexible and
simple. Therefore, it can be implemented efficiently compared with the existing tree-hooking/set-
union methods. At the same time, it can avoid the weakness of graph travel-based methods.

We have proved that our method can converge in O(log(dax)) time, where dy,qy is the largest
diameter among all the components in a graph. The result is better than the existing O(log(n))
time because d;,4, can be much smaller than n, where n is the total number of vertices.

Most noteworthy, we have integrated our method into an open-source graph package Arachne,
which is an extension of an open-source framework for Python users to handle large data easily
on supercomputers. Through Arachne, high level Python users can conduct large graph analytics
efficiently without knowing the details of supercomputing and large data processing.
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