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A Note on the Optimality of Balanced Truncation for a Class of
Infinite Dimensional Systems

Seddik M. Djouadi’

Abstract— Balanced truncation is a widespread model
reduction method that uses balanced realizations for
finite dimensional systems. The latter are state space
realizations where the controllability and observability
gramians are equal to the same diagonal positive matrix.
In this paper, a generalization of balanced realization for
a class of infinite dimensional LTT systems is employed to
perform balanced truncation. It is shown that balanced
truncation is optimal in the Hilbert-Schmidt sense if a
particular time-varying balanced realization is used for
the original LTI system. It appears that the use of time-
varying balanced realizations to study the optimality and
perform balanced model reduction for LTI systems is
novel.

I. INTRODUCTION

Balanced truncation is a simple yet widespread
model reduction technique initiated in [2]. It has been
studied extensively in many papers and books, for
e.g., [3], [1], [4] and references therein. Balanced
truncation has been extended to linear time varying
systems in [6], nonlinear systems in [5], [8], [7], [9],
and infinite dimensional systems in [13], [14], [10] to
name a few.

Particular balanced realizations and their corresponding
balanced truncations have been defined and studied
for certain classes of infinite dimensional LTI systems
in [13], [14], [10]. In this paper, for a certain class
of infinite dimensional stable LTI systems defined
in [13], [14], with impulse responses belonging to
specific functional spaces. In particular, these systems
correspond to Hilbert Schmidt Hankel operators. In this
paper, a particular time varying balanced realization
based on the Schmidt pairs of the system Hankel
operators is defined, and used to show that balanced
truncation is in fact optimal in the sense of minimizing
the Hilbert Schmidt norm of the approximation of
the Hankel operator by finite rank linear operators.
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The results obtained obviously hold for stable finite
dimensional LTI systems. The key idea is to define
a new balanced linear time-varying realization for
the LTI systems to show optimality. The study of
the optimality of balanced truncation is not new. In
[2], it was stated that balanced truncation does not
appear to be optimal in any sense. In [15] it was
shown that, in general, balanced truncation is not
optimal in the L?-norm. In [16], it was shown that
balanced approximation can lead to approximations
that minimize various error norms, including the
L?-norm for specific finite dimensional LTI stable
systems including a finite difference model for a
parabolic partial differential equation (PDE). In
contrast, it is shown here that balanced truncation is
Hilbert Schmidt optimal if a particular time varying
balanced realization is adopted. The optimality of
balanced truncation was observed in [17], however
an incorrect balanced realization was used to show
optimality in the Hilbert-Schmidt sense. It appears that
the use of time-varying balanced realizations to study
the optimality and perform balanced model reduction
for LTI systems is new.

II. INFINITE DIMENSIONAL SYSTEMS

For simplicity, we consider the class of stable linear
infinite dimensional systems described by impulse re-
sponse functions () which act on input signals u(t) €
R, and produce output signals y(t) € R™, t € [0, 00)
defined by the following input-output convolution map,

P :L%([0,00),R*) — L%([0,0), R™)
u(t) — Pu(t) :==y(t) = /0 h(t — T)u(r)dr
€]

where L%([0,00), R¥) is the space of measurable and
square integrable R*-valued functions.
The impulse response h(-) is assumed to belong to the



following spaces [13], [14]

h(t) € L' N L*([0, 00), RF*™)
t2h(t) € L([0, 00), RF*™) 2)
Under these assumptions the corresponding Hankel
operator, denoted I', and defined by

I :L%*[0,00),RF) — L2(]0,00),R™)

u(t) — Tu(t) / h(t 4+ T)u(r)dr (3)
is guaranteed to be a compact and a Hilbert Schmidt
operator on L?(]0, oo), R¥). In addition, T is a bounded
linear operator on the space C*([0, 00); R¥) of contin-
uously differentiable functions under the norm [11]
< df (r
=ttt [ L2 e @
-

Under these conditions the operator I'*T" is a compact
and positive operator on L?([0,00), R¥), where T'* is
the adjoint operator of I'" [11], [14]. As a consequence
I has countable positive eigenvalues that can be
ordered as follows: O'% > a% > e > 02-2 > ... > 0.
o;’s are known as the singular values of the operator I'.

The corresponding Schmidt pairs, denoted (v;,w;)

satisfy for i = 1,2,---, [11], [14]
Fvi o;W;
IMw; = o;v; (5)

The Schmidt pairs satisfy the following identities

o
<0,V >1 = / v]*-(t)vi(t)dt = 5ij (6)
OOO
< Wi, Wj >2 = / w]*-(t)wi(t)dt = 52‘3' @)
0
where < -, >7 and < -,- >9 are the inner products in

L?(]0,00),R¥) and L?([0, 00), R™), respectively, and
0;; is the Kronecker delta.

Note v;’s are the eigenvectors of the operator I'™*T’
which is compact on C'([0, 00); R¥) N L?(]0, 00), R¥),
thus v; € C1([0,00); R¥) N L2([0, 00), R¥) [11].

Likewise, w;’s are the eigenvectors of the operator '™
which is compact on C*(]0, 00); R™)NL?(]0, 00), R™),
thus w; € C([0, 00); R™)NL2([0, 00), R™) [11], [14].

The polar decomposition of the Hankel operator
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yields [11], [13], [14]

/000 h(t + 7)u(r)dr
Z Uzwz(
i=1

In the next section we propose a new balanced real-
ization based solely on the Schmidt pairs. The novelty
about this realization is that it is a time varying state
space realization although it represents an (infinite
dimensional) linear time-invariant (LTI) system.
The results obviously apply to finite dimensional LTI
systems.

Tu(t)

0 /0 T ru(ndr ®)

III. A TIME-VARYING BALANCED REALIZATION
FOR LTI SYSTEMS

Following [13], [14], a balanced realization for the
system described by the impulse response h(-) on a
Hilbert state space H is the triplet (C, A, B), where A,

B, and C are linear operators
C:H—R' B:R"— H 9)

and the operator A is the infinitesimal generator of a
strongly continuous semigroup, 7'(¢), on H such that
the following identity holds [13], [14]

h(t) =CT(t)B, ae.t

Define the controllability operator C and observability
operator O as follows

(10)

C: L*[0,00),RF) — H
w(t) — Cu = /Oo T Bu(t)dt (1)
0
O: Hr— L*[0,00),R™)
z(t) — (Ox)(t) := CT(t)z(t) (12)

The operators C and O are well defined and bounded
linear operators if the operators B and C' are bounded
and the semigroup 7'(t) is exponentially stable [13],
[14]. In addition the impulse response h(t) defined
in (10) satisfies the conditions in (2). Moreover, the
Hankel operator I' is given by the following identity

[13], [14]
r=0-¢ (13)

The controllability gramian W, and observability
gramian W, are then defined as follows [13], [14]

W, :=CC*
W, := O0*0O

(14)
(15)
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where C* and O* are the adjoint operators of C and
O, respectively.

A realization (C,T(t),B) is a balanced realization
for the Hankel operator I' if the reachability and
observability operators C and O are bounded, (13)
holds, and the controllability and observability
gramians W, and W, are equal to the same positive
diagonal operator [13], [14].

We propose the following time varying realization for
the impulse response h(-) defined on the Hilbert space
H = (? of square summable sequences

Thi;(t) Lif 0=
0 if i
By(t) =
(1
Co(t) = (Vorwi(t), Voswa(t), -, oiwi(t), -
(1
where 7" in (17) denotes the transpose. Note

Ty = (Tyij) = (ds;) is simply the identity operator [
and therefore satisfies all the properties of a semigroup.

From (11) the corresponding reachability operator is
then

Cru (19)

/ " Byu(t)dt
0
_ /0 > Vet (tuit)dt, u(t) = (ui(t)

and from (12) the observability operator

Opr .= Chz (20)

It is readily seen from (8) that I' = Oy(y, i.e., the
Hankel operator I' is realized by the new reachability
and observability operators, and therefore admits
(Cy, Tp(t), By) as a state space realization.

Now let us show that (Cy,I,B) is a balanced
realization for the infinite dimensional LTI system
with impulse response A(-). The controllability gramian
is given by

Wy = CCF = / Bo(t) By (t)dt
0
- < / @@v;uj(d)dt> @1
0 2,]
= diag(oy,09, - , 0%, ") (22)
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7)

)
8)
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where we used the orthonormality of the Schmidt
vectors v; and diag(-) denotes the diagonal operator.
Similarly,

Wo = (’)g(’)b = / Cg(t)Cb(t)dt
0
= (/ ﬁ@w?wﬂd)dt) (23)
0 i,j
- diag(0—170_27"' 7Uk7"') (24)

where we used the orthonormality of the Schmidt vec-
tors w;. Expressions (22) and (24) show that (C, I, By,)
is a balanced realization for T' on ¢2, Moreover, it
can be shown that since W, and W,, are positive
operators, this realization is approximately controllable

16) and initially observable (see [14] for the definition).
(16) y

* * * 7 Details will be provided in a forthcoming journal paper.
(\/ Olvl(t)v Vv UQUQ(t)v VO (t)7 T )

IV. OPTIMALITY OF THE TIME-VARYING
BALANCED TRUNCATION

Following balanced truncation in finite dimension
where the state vector is truncated and the correspond-
ing state matrices are truncated accordingly [2], [1],

[3], we propose the following nth order truncations
Ty (t) diag(1,1,-+- ,1) = Inxn

(25)
an(t) = (\/Elvf(t)v \/EQUE(t% ) \/EnU:L(t))T

(26)
Cbn(t) = (\/Elwl (t)? \/52w2(t)’ ) \/Enwn(t))

27

The truncated realization (27) corresponds to a finite
dimensional LTI system. It is balanced since the cor-
responding controllability and observability gramians
Wepn = Wopy, = diag(o1,09, -+ ,0,) are diagonal.
The impulse response h,(-) of the truncated system
(27) is given by

hn(t) = Cbn(t)an(t) (28)
which shows that

ha(t) € LY N L2([0, 00), RF*™)

t2hy(t) € L2(]0, 00), RF*™) (29)

since v; € C}([0,00); R¥) N L?([0,0), R¥) and
w; € CL([0,00); R™) N L?([0,00), R™). This shows
that h,,(-) is stable, thus the balanced truncation (27)
is also stable.



The corresponding Hankel operator I',, is defined
by

(Cnu)(t) (30)

/0 " bt + )u(r)dr
; oiwi(t) /0 Ty

The Hankel operator is compact, and in fact of finite
rank n, and is also a Hilbert-Schmidt operator.

*

)

(T)u(r)dr (31)

We will show next that the balanced truncation
(27) is optimal in the Hilbert Schmidt sense. To see
this define the Hilbert-Schmidt norm || - ||gs for the
Hankel operator I' as [12], [17]

(o)

( /0 b /0 i (h(t + ) h(t + T))deL‘) :

(32)

ITls

where ¢r(-) denote the trace. From expression (8) I" can
be written in terms of its spectral factorization [17]

r= Z o0 @ w; (33)
=1

Next, consider the following optimal approximation
problem

= min

IT = Tlus
rank(T)<n<oco

(34)

Hn i=
where the minimization is with respect to linear bonded
operators Y of rank at most m. It turns out that
the minimizer in (34) exists and is unique since the
optimization is posed in a Hilbert space (the space of
Hilbert-Schmidt operators). By Hilbert-Schmidt theory
[18], the optimal solution is given by the following
expression

= min
rank(Y)<n<oo

= IT' = Yllas = [T = Tnllus  (35)
where I',, is the Hankel operator defined by (30) and
is realized by the impulse response h,(-), and the
balanced truncated system (25-27). Moreover, I';, has
the spectral factorization [17]

n
Fn = E o;U; @ w;
i=1

Since I',, is realized by the balanced realization
(Chns Inxcn, Ben), the latter is optimal in the sense

(36)
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of minimizing the Hilbert-Schmidt norm of the
approximation of I' by linear operators T of rank at
most 7.

The residual error is given by

o n
E o ® Wi — E oiv; Q@ w;
i=1 =1

2

(o] (o.0]
Z OV @ W; = (ZO’

1
i=n+1 n+1

(37
HS

)

To summarize, we have shown that if the time-varying
balanced realization (16)—(18) is used to represent the
impulse response of the infinite dimensional impulse
response h(-) and realize the corresponding Hankel
operator I', then balanced truncation is optimal in the
sense of minimizing the Hilbert-Schmidt norm of the
difference between the full order (infinite dimensional)
Hankel operator I' and an operator of rank at most
n. This result has been alluded to in [17] but an
incorrect LTI balanced realization was used. The results
apply to stable finite dimensional LTI systems since
the corresponding Hankel operators is finite rank and
therefore always Hilbert-Schmidt.

fin

1
2

HS

V. CONCLUSION

In this paper, we have shown that for a class of
infinite dimensional stable LTI systems that a particular
time-varying balanced realization based on the Hankel
singular values, and the Schmidt pairs can always
be obtained to get a balanced realization although
the original system is LTI. This particular balanced
realization was used to obtain a reduced order model
by a time-varying balanced truncation. The latter was
used to show that balanced truncation is optimal in the
Hilbert-Schmidt sense if this particular time-varying
balanced realization is used. The results obtained
in this paper apply to stable finite dimensional LTI
systems. To the best of the our knowledge, the use of
time-varying balanced realizations for LTI systems to
study the optimality and perform model reduction is
new.

We are currently working towards weakening some of
the assumptions made in this paper, and providing full
proofs in a forthcoming extended journal paper.
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