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Abstract—One of the most critical problems in the field of
string algorithms is the longest common subsequence problem
(LCS). The problem is NP-hard for an arbitrary number of
strings but can be solved in polynomial time for a fixed number of
strings. In this paper, we select a typical parallel LCS algorithm
and integrate it into our large-scale string analysis algorithm
library to support different types of large string analysis. Specif-
ically, we take advantage of the high-level parallel language,
Chapel, to integrate Lu and Liu’s parallel LCS algorithm into
Arkouda, an open-source framework. Through Arkouda, data
scientists can easily handle large string analytics on the back-
end high-performance computing resources from the front-end
Python interface. The Chapel-enabled parallel LCS algorithm
can identify the longest common subsequences of two strings,
and experimental results are given to show how the number of
parallel resources and the length of input strings can affect the
algorithm’s performance.

Index Terms—string algorithms, parallel computing, Chapel
programming language

I. INTRODUCTION

The longest Common Subsequence (LCS) of a set of strings
is the longest string which is a subsequence of all of them.
For example, the LCS of strings abccb, abba and acbb is
abb. The finding of the LCS of some strings has applications,
particularly in the context of bioinformatics, where strings
represent DNA or protein sequences [7].

Using a simple dynamic programming approach, one can
find the LCS of two strings with lengths m and n in O(mn)
time on one processor. For long strings, computing the LCS
can take a long time, and researchers have tried to find faster
algorithms. One way to increase the speed of the algorithm
is to use an approximation algorithm instead of an exact
algorithm. In this way, some methods, such as [14], [1] and
[4], have introduced approximation algorithms for the LCS
problem and some of its variations.

Another way to solve the LCS problem with a higher speed
is to develop parallel algorithms. In Lu and Lin’s work [11],
two algorithms are suggested for finding the LCS of two
strings in parallel, such that one of them has a time complexity
of O(log2(m)+log(n)) with mn/ log(m) processors, and the
other one has time complexity O(log2(m) log log(m)) with
mn/(log2(m) log log(m)) processors.

In this work, we have implemented a variant of the first
algorithm and have measured its average running time for

different test cases. To the best of our knowledge, it is the
first parallel implementation of LCS in Chapel. The main
contributions in this paper are as follows:

1) A typical longest common subsequence algorithm is
implemented in Chapel to support high-performance
string analysis.

2) Experimental results are given to show how the perfor-
mance of the parallel algorithm will change with the size
of two strings and the number of parallel resources.

3) This work is based on an open-source framework Ark-
ouda [12]. It means that data scientists can take advan-
tage of the user-friendly Python language supported by
Arkouda to conduct large-scale string analysis efficiently
on the back-end high-performance computing resource
with terabyte data or beyond.

II. ALGORITHM DESCRIPTION AND PARALLEL
IMPLEMENTATION

A. Basic Idea

Lu and Liu’s parallel method, as presented in their work
[11], offers a novel approach to solving the Longest Common
Subsequence (LCS) problem. The central idea behind their
method is to transform the LCS problem into a search for
the maximum weighted path between two specially designated
vertices within a grid graph.

In essence, this algorithm operates recursively. To elucidate,
when tasked with discovering the maximum weighted path
between vertices a and b, it seeks out a strategic intermedi-
ary vertex, denoted as c. The objective is to maximize the
combined weight of the path from a to c and the path from
c to b. Achieving this necessitates the determination of two
critical components: the maximum weighted path from a to c
and from c to b. This recursive nature stems from the need to
address these intermediate paths.

Like numerous other recursive algorithms, there exists a risk
of exponential time complexity. To mitigate this concern, Lu
and Liu’s method employs dynamic programming techniques
to efficiently tackle the recursive challenges posed by the
problem. This pragmatic approach helps maintain computa-
tional tractability while deriving optimal solutions for the LCS
problem.



B. Recursive and Parallel Methods

1) Recursive Formula: If vertices a and b are in two
consecutive rows of the grid graph, the maximum weighted
path between them can be calculated using a parallel prefix
min algorithm.

In our implementation, we define several matrices, but for
most of them, we compute only specific cells when needed.
The most crucial matrix is denoted as DG. Cell (i, j) of DG

indicates the column of the leftmost vertex in row i of the grid
graph G that can be reached by a path with weight j from the
vertex in the i-th column of the first row. If matrix DG has
more than two rows, we employ the following formula:

DG(i, j) = min(DGU
(i, j), DGL

(i, j), DGL
(DGU

(i, k), j−k))

for 1 ≤ k ≤ j, where DGU
represents the upper half of DG,

and DGL
represents the lower half of DG.

To better understand this formula, consider that DGU
(i, k)

represents the leftmost vertex in the bottom row of GU that
can be reached from the i-th vertex of the first row of GU

with a path of weight k. Therefore, DGL
(DGU

(i, k))(j − k)
represents the leftmost vertex in the bottom row of GU that
can be reached from the i-th vertex of the first row of G such
that the weight of this path is j. The sum of the weight of the
edges in GU for this path is k, and the sum of the weights
of the edges in GL for this path is j − k. An example of
computing a cell of DG is shown in Figure 2.

Fig. 1: Finding the LCS of gatttatgcagg and tcaggatt is equal
to finding the maximum weighted path in this graph from the
upper left vertex to downright vertex. This figure is copied
from [11]. It’s worth noting that in our implementation, we
exclude diagonal edges with a weight of 0.

We define a vertex v in the bottom row of a grid graph G
as the j-th breakout vertex of the vertex G(1, i) if v is the
leftmost vertex in the bottom row and there exists a path with
cost j from vertex G(1, i) to v. For instance, in Figure 1,
vertices (9, 2), (9, 3), (9, 4), (9, 5), and (9, 13) represent the
first, second, third, fourth, and fifth breakout vertices of the
vertex (1,1). There is no 5th breakout for vertex (1,8), or we
can say that the 5th breakout of vertex (1,8) is ∞. An example
of computing a cell of DG can be seen in Figure 2.

A matrix is considered monotone if, given two consecutive
columns c1 and c2 with c1 to the left of c2, the cell with
the minimum value in c2 is not in a row higher than the row
containing the cell with the minimum value in c1.

Fig. 2: DGU
, DGL

and computing DG(1, 3) for the graph in
Fig 1. This figure is copied from [11].

Algorithm 1: Find ColMins Function
1 findColMins(dgu, dgl, vertex : int, left : int, right :

int, top : int, bottom : int,mins, firstind : int)
2 var cols = right− left+ 1
3 if (cols < 1) then
4 return
5 end
6 var midCol = ⌈(right+ left)/2⌉ : int
7 var minIndex = findMinIndex(dgu, dgl, vertex :

int,midCol, top, bottom)
8 mins[firstind+midCol − left] = minIndex
9 if (find cell(dgu, dgl, vertex,minIndex,midCol) ̸=

infin) then
10 cobegin{
11

findColMins(dgu, dgl, vertex : int, left,midCol −
1, top,minIndex,mins, firstind)

12 findColMins(dgu, dgl, vertex : int,midCol +
1, right,minIndex, bottom,mins, firstind +
midCol − left+ 1)

13 }
14 else
15 findColMins(dgu, dgl, vertex :

int, left,midCol −
1, top, bottom,mins, firstind);

16 end
17 end

2) Key Functions: A critical component of the matrix
computation for DG (the cost matrix of G) lies in Algorithm
1. This algorithm recursively identifies the minimum element
index in each monotone matrix column and stores these indices
in an array called mins. Specifically, mins[i] preserves the
index of the minimum element in column i. The variables
left, right, top, and bottom correspond to the first and last
columns and the matrix’s first and last rows, respectively.



Algorithm 2: Find Min Index Function
1 findMinIndex(dgu, dgl, vertex : int, col : int, top :

int, bottom : int)
2 var listsize = bottom− top+ 1
3 var exp : int = 1
4 var expm1, expnot : int
5 var prefix : [0..listsize− 1]int
6 var minIndex : [0..listsize− 1]int
7 forall (i in 0..listsize-1) do
8 prefix[i] = find cell(dgu, dgl, vertex, i+ top, col)
9 minIndex[i] = i

10 end
11 while (exp < listsize) do
12 expm1 = exp− 1
13 expnot = ẽxp
14 forall (j in 0..listsize-1) do
15 if (j&exp ̸= 0) then
16 if (prefix[j&expnot|expm1] ≤ prefix[j] )

then
17 prefix[j] = prefix[j&expnot|expm1]
18 minIndex[j] =

minIndex[j&expnot∥expm1]
19 end
20 end
21 end
22 exp = exp << 1
23 end
24 return minIndex[listsize− 1] + top

We consistently initialize the variable firstind to match
the value of left. Cases where left ̸= firstind arise in
recursive processes, but these intricacies do not require user
intervention. Within the pseudocode, the commands forall
and cobegin signify situations where all enclosed commands
will be executed in parallel, while for executes commands
within its loop sequentially.

Algorithm 1 presents the pseudocode for ColMin. Inside
Algorithm 1, we rely on Algorithm 2, which is responsible for
determining the index of the minimum value within a column
of a matrix. Notably, Algorithm 2 operates in parallel.

It’s important to note that every recursive relation possesses
its own set of initial values.

3) Computing DGH
: In the recursive computation of DG,

we do not recursively compute the cost matrix of G if G has
only two rows; instead, we approach it differently. We consider
the input strings a and b and define the cost matrix of the grid
graph G consisting of rows numbered h and h+ 1 as DGh

.
In our implementation, we assume that DGH

has only
two rows. The first row of this matrix represents the 0th

breakout for each vertex, and we define the 0th breakout
of the ith vertex of Gh as i. While [11] does not define
the 0th breakout, we introduce this definition for simplifying
the implementation. Therefore, for the sake of simplicity in
notation, we assume that DGh

consists of only one row,
representing the first breakout of each vertex in the upper row
of the grid graph comprising rows h and h+ 1 of G.

We represent the ith letter of the string s as si, where
i ≥ 1. To compute DGH

, we need to determine values
j1, j2, j3, . . . , jr such that j1 < j2 < j3 < . . . < jr,

and bji = ah for 1 ≤ i ≤ r. Finding these values can
be accomplished in O(log n) using n processors, where n
represents the size of string b. Afterward, we assign jk− jk−1

to DGH
(jk−1 + 1) for 1 < k ≤ r, and set DGh

(1) to j1 + 1.
For instance, after performing these steps to compute

DG1
in Fig. 1, we obtain j = (3, 4, 5, 7) and D(G1) =

(4, x, x, 1, 1, 2, x, x, x, x, x, x), where x represents values that
have not yet been computed. Subsequently, we set DGh

(k) =∑k
j=1 DGh

(j) for 1 ≤ k ≤ jr + 1. At the conclusion
of this step, DG1

= (4, 4, 4, 5, 6, 8, 8, 8, 8, 8, 8, 8). In the
final step of computing DGh

, we assign ∞ to the entries
jr + 2 to n of DGh

. Consequently, we arrive at DG1 =
(4, 4, 4, 5, 6, 8, 8,∞,∞,∞,∞,∞).

The computation of DGh
for all values of h can be achieved

in O(log n) using mn/ log(n) processors [11].

C. Finding the Maximum Weighted Path

After computing matrix DG, which represents the weights
of various paths, we need to extract the vertices of the
maximum weighted path from the upper-left vertex (referred
to as the source) of G to the lower-right vertex (referred to as
the sink). For a maximum-cost path P = ⟨v1, v2, . . . , vl⟩ from
the source to the sink in G, there can be multiple vertices in
P that belong to the same row in G.

A vertex vi in P is considered a cross-vertex if it is the
leftmost vertex of P within its respective row. We use the
notation v[j] to represent a cross-vertex on the j-th row of G,
distinguishing it from other vertices in P . It is evident that
v1 = v[1], assuming row number 1 (not 0) as the first row.

D. Eliminating LCS from DG

Now, we need to address two subproblems: identifying the
cross-vertices of P and identifying the other vertices of P .
Let’s start with the first subproblem:

All cross-vertices on a maximum-cost path can be deter-
mined as a byproduct of computing the cost matrix DG.
Suppose we are computing DG(i, j), which corresponds to
finding in G the j-th breakout vertex of x = G(1, i), denoted
as y. Let p be the maximum-cost path from x to y, and let
vertex q be the cross-vertex of p on the boundary between GU

and GL. This implies that q = v[m/2 + 1].
The second subproblem is straightforward. If v[i] and v[i+1]

represent vertex G(i, j1) and vertex G(i+1, j2), respectively,
then the vertices on the i-th row of G from G(i, j1 + 1)
to G(i, j2 − 1) must all be part of the vertices between
v[i] and v[i + 1] in p, considering that diagonal edges with
weight 0 are not considered. Therefore, once all cross-vertices
have been identified in the first stage, there should be no
difficulty in listing all the vertices of p in an array. This can
be accomplished using a parallel PrefixSum function with a
time complexity of O(log n), employing n processors.

E. Identifying the LCS

In the final stage of the algorithm, we examine the cost of
each edge e = (v[k], v[k+1]). Symbol ai is marked if we find
that the edge e has a cost of 1 and vertex v[k] has a column



index of i. The LCS of strings a and b corresponding to path p
can be obtained by sorting these marked symbols. Given that
the number of edges on p is bounded by n+m, and checking
the cost of an edge takes constant time, marking symbols in
a can be accomplished in constant time using n processors or
in O(log n) using n/(log n) processors.

III. EXPERIMENTAL RESULTS

A. Experimental System

We conducted our experiments on a system with 2.00GHz
Intel(R) Xeon(R) Gold 6330 CPUs. Our program was executed
using Chapel version 1.31.0.

In our Chapel configuration, we set the CHPL_TASKS
variable to ‘‘qthreads’’, and CHPL_LLVM was con-
figured as ‘‘bundled’’. The number of cores we
utilized was controlled using the command export
CHPL_RT_NUM_THREADS_PER_LOCALE=x, where x rep-
resents the desired number of cores.

B. Performance

In this section, we embark on an in-depth exploration of
the multifaceted performance characteristics exhibited by the
proposed parallel algorithm. Our initial focus is on examining
how the execution time is influenced by varying the lengths of
input strings, with one of them held constant. The comprehen-
sive results of these investigations are meticulously presented
in Fig. 3.

Fig. 3 eloquently illustrates a series of experiments where
we meticulously maintain the length of one string at values of
2 and 4, while systematically extending the size of the other
string from 2 to 8192. These empirical investigations were
conducted with 32 processing cores.

Our observations from this figure reveal a striking pattern
of nearly exponential growth in the total execution time
required to determine the longest common subsequence. This
growth is prominently evident when we hold the length of
one string constant and progressively vary the length of
the other. Specifically, when one string size is fixed at 2,
our rigorous analysis yields a precise regression equation of
time = 5×10−05×e0.8552×size, accompanied by an R2 value
of 0.9046. Similarly, for the scenario where one string length
remains constant at 4, our analysis furnishes the regression
equation as time = 7× 10−05 × e0.9556×size, accompanied by
a notably higher R2 value of 0.9646.

These findings distinctly underscore the algorithm’s remark-
able sensitivity to input size. This sensitivity is vividly exem-
plified by the substantial and expedited growth in execution
time experienced when dealing with larger strings.

Intriguingly, as we look at the results obtained with eight
processing cores (as depicted in Fig. 4), we discern a similar
trend. However, subtle differences emerge when examining
the fitting equations. When one string length is kept at 2, our
analysis yields a fitting equation of time = 2 × 10−05 ×
e0.9535×size, resulting in an exceptionally high R2 value of
0.9817. Similarly, for a fixed string length of 4, the regression

equation is expressed as time = 3× 10−05 × e1.097×size, with
an even higher R2 value of 0.991.

These nuances in the results with eight cores highlight
that (1) for the same fixed string size, increasing the size
of the other string incurs a significantly faster growth in
execution time. Notably, focusing on the exponent constants
reveals that, for a fixed string size of 2, the execution time
increase with 8 cores is approximately 0.4 × e0.1283 times
that of 32 cores. Similarly, for a fixed string size of 4, the
execution time increase with 8 cores is roughly 3

7 × e0.1414

times that of 32 cores. These insights underscore the intriguing
relationship between input length and core count, elucidating
that increasing string length has a more profound impact on
execution time than reducing the number of processing cores.

In Table I, we expand our testing to include various fixed
sizes of strings. Then, we calculate the speedup of perfor-
mance on 32 cores compared to that on 8 cores. The results
underscore two key observations:

(1) Effective Parallelization: As we add processing cores, a
clear reduction in total execution time becomes evident for
identical string sizes. When both string lengths are larger,
the evidence becomes more obvious. An average of 1.8×
speedup can be achieved. This demonstrates the tangible
effectiveness of our parallel method, affirming its ability to
optimize performance.

(2) Input Size Impact: It is noteworthy that amplifying the
lengths of either string substantially impacts the total execution
time. Specifically, an increase in the size of either string leads
to a noticeable escalation in the overall execution duration.

These insights provide valuable confirmation of the efficacy
of our parallel approach while highlighting the sensitivity of
execution time to changes in input size.

Fig. 3: The execution time experiences exponential growth
as one string’s size increases while the other remains fixed.
This phenomenon occurs within the context of a computational
environment equipped with a total of 32 cores.

IV. RELATED WORK

In [17], Yang et al. developed an efficient parallel algorithm
on GPUs for the LCS problem. They proposed a new technique
that changes the data dependency in the score table used by



TABLE I: Algorithm execution time (seconds) and speedup for different number of cores and string sizes

number of cores sizeof(string1) sizeof(string2) Speedup
2 4 8 16 2 4 8 16

32

1024 0.119569 0.62156 1.63747 3.2784 3.095577 2.555988 1.406334 1.449948
2048 0.890801 2.4456 4.51969 12.2226 1.54443 2.583583 1.777177 1.575164
4096 6.64456 11.1501 16.5999 51.9423 0.805853 1.902557 1.997831 1.40539
8192 29.5529 53.5266 67.5972 190.575 0.971884 1.648791 2.152708 2.1932

8

1024 0.370135 1.5887 2.30283 4.75351
2048 1.37578 6.31841 8.03229 19.2526
4096 5.35454 21.2137 33.1638 72.9992
8192 28.722 88.2542 145.517 417.969

Fig. 4: The execution time experiences exponential growth as
one string’s size increases while the other remains fixed. This
phenomenon occurs when we reduce the number of cores from
32 to 8.

dynamic programming algorithms to enable higher degrees of
parallelism. In [8], Garcia et al. introduce a coarse-grained
multicomputer algorithm which works in O(N2/P ) time
complexity with P processors and O(P ) communication steps.
Dhraief et al. [6] studied languages for parallel development
on GPUs (CUDA and OpenCL) and presented a parallelization
approach to solving the LCS problem on GPU. Their proposed
algorithm was evaluated on an NVIDIA platform using CUDA
and OpenCL. Babu et al. [9] introduced a parallel algorithm
to compute the LCS using graphics hardware acceleration
and multiple levels of parallelism. Babu and Saxena [3]
introduced an algorithm with O(logm) time complexity using
mn processors, where m is the length of the shorter string and
n is the length of the longer string. Several parallel algorithms
(e.g., [10], [16], and [5]) have been proposed to find the
LCS of multiple strings. Nguyen et al. [13] introduced the
basics of parallel prefix scans. Tchendji et al. [15] provided a
parallel algorithm to solve the LCS problem with constraints.
Specifically, their problem is to find the longest common
subsequence, which excludes some strings as its substrings.
In [2], Alves, Caceres and Song introduce a parallel algorithm
for the all-substrings longest common subsequence problem.
In this problem, given two strings A and B, the goal is to
compute the LCS of A and each substring of B denoted as B′.

V. CONCLUSIONS AND FUTURE WORK

This paper introduces a parallel algorithm implemen-
tation for calculating the Longest Common Subsequence
(LCS) of two strings using the Chapel programming lan-
guage. It includes an analysis of the algorithm’s aver-
age runtime across strings of varying lengths on differ-
ent numbers of cores. Our source code is open source
and available on GitHub at https://github.com/SoroushVahidi/
parallel-longest-common-subsequence/

Our future research endeavors will focus on expanding the
capabilities of this algorithm implementation. Specifically, we
plan to develop a comprehensive library for LCS computation
in Chapel, which will encompass additional parallel methods
for solving the LCS problem.

Furthermore, an intriguing avenue for future research lies
in the development of parallel algorithms tailored to address
various LCS problems with specific constraints. These efforts
aim to provide more versatile and efficient solutions for a wide
range of real-world applications.
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