
Property Graphs in Arachne
Oliver Alvarado Rodriguez, Fernando Vera Buschmann, Zhihui Du, David A. Bader

Department of Data Science
New Jersey Institute of Technology

Newark, NJ, USA
{oaa9,fv54,zd4,bader}@njit.edu

Abstract—Analyzing large-scale graphs poses challenges due
to their increasing size and the demand for interactive and
user-friendly analytics tools. These graphs arise from various
domains, including cybersecurity, social sciences, health sciences,
and network sciences, where networks can represent interactions
between humans, neurons in the brain, or malicious flows in a
network. Exploring these large graphs is crucial for revealing
hidden structures and metrics that are not easily computable
without parallel computing. Currently, Python users can leverage
the open-source Arkouda framework to efficiently execute Pandas
and NumPy-related tasks on thousands of cores. To address large-
scale graph analysis, Arachne, an extension to Arkouda, enables
easy transformation of Arkouda dataframes into graphs. This
paper proposes and evaluates three distributable data structures
for property graphs, implemented in Chapel, that are integrated
into Arachne. Enriching Arachne with support for property
graphs will empower data scientists to extend their analysis
to new problem domains. Property graphs present additional
complexities, requiring efficient storage for extra information on
vertices and edges, such as labels, relationships, and properties.

Index Terms—graph analytics, parallel algorithms, property
graphs, distributed-memory

I. INTRODUCTION

Property graphs are widely used in graph database systems
to combine graph structures with attributes such as vertex
labels, edge relationships, and properties. Data scientists often
analyze networks that naturally store these attributes on ver-
tices and edges. These attributes can enhance algorithms for
tasks like breadth-first search on specific vertices or filtering
subgraphs based on attribute matching, thereby enriching the
data scientists’ ability to analyze and understand the graph. It
is essential to provide solutions for storing property graphs to
enable data scientists to leverage the computational power of
their systems effectively. These solutions should be integrated
into proven libraries and frameworks designed for large-scale
analysis, such as Arkouda [14].

Arkouda is an open-source framework initially developed
as a scalable replacement for NumPy in Python. Powered
by Chapel [5]–[7] at the backend and offering a Python
interface, Arkouda has demonstrated its ability to handle
datasets comprising over 500 million rows, making it an
excellent choice for parallel analysis on large-scale datasets.
With a user-friendly interface inspired by NumPy, Arkouda
provides predefined operations for users to manipulate their
datasets from Python scripts or Jupyter Notebooks. These
operations primarily work with parallel and distributed array
objects called pdarrays. Arkouda facilitates data preparation,

exploration, and efficient parallel kernel invocation within a
single session. Given that a significant amount of datasets
can be structured as graphs, Arachne, built as an extension to
Arkouda, facilitates efficient massive-scale graph analysis [15].

Arachne aims to be a highly productive graph framework
for data scientists looking to extract information efficiently
from large graph datasets. It introduces a distributable graph
data structure called the Double-Index data structure (DI)
[9]. Arachne includes implementations of graph kernels such
as breadth-first search and triangle counting, which can be
executed on both shared-memory and distributed-memory sys-
tems. This work focuses on enhancing Arachne’s analysis
capabilities by introducing additional structures to enhance DI
for property graphs.

The main contributions in this paper are as follows:
1) DIP, a data structure derived from the DI data structure,

specifically designed to store property graphs.
2) Various versions of DIP implemented in Chapel, explor-

ing space and time-efficient variations: DIP-LIST, DIP-
LISTD, and DIP-ARR with experimential results.

All of our results are reproducible based off functionality
found at https://github.com/Bears-R-Us/arkouda-njit for prop-
erty graph analysis.

II. THE PROPERTY GRAPH DATA MODEL

A property graph is a directed and labeled multigraph
composed of a set of vertices V and edges E. Each vertex
v ∈ V and edge (u, v) ∈ E can store property key-value pairs.
Vertices store labels and edges store relationships, where
each edge between two vertices with a distinct relationship is
considered its own unique edge [1]. If an edge has multiple
relationships this means there is a multiedge, i.e., multiple
copies of one edge.

Property graphs can be either static or dynamic. In static
property graphs, edges and/or vertices cannot be added into
the graph over time, whereas dynamic graphs allow for the ad-
dition of edges and vertices over time. For this paper, we only
target static property graphs built from datasets that can be
viewed as dataframes where vertex labels, edge relationships,
and properties can all be inferred from the columns of a tabular
dataset. An example of a property graph can be seen in Fig. 1.

Given two vertices u, v ∈ V and an edge e ∈ E where
e = (u, v), then it is said that the source vertex is u and the
destination vertex is v where there is a direction specified as
u → v. Data can be extracted from the property graph data

Fig. 1: Example of a property graph with three vertices and five edges (the two edges between vertices with values 69 and 89
are structurally maintained as one but can conceptually be considered two distinct edges). The tables show the properties that
are defined on each vertex as well as some of the edges. The label, relationship, and property sets can be empty as is the case
with lives-with.

model when given some vertex u or edge e = (u, v). These
operations can be thought of as queries on the data structure
where the information stored at these locations is returned
back to the user upon completion.

III. DI FUNDAMENTALS

DI was first introduced into Arachne by Du et al. [9] to
allow for easy distribution of edges across a compute cluster.
In this section, we will highlight the fundamentals of DI for di-
rected graphs. DI is typically composed of four arrays: source
(SRC), destination (DST), number of neighbors (NEI), and
the starting indices (STR) into SRC and DST . For this work,
we optimized its space complexity by amalgamating the STR
and NEI arrays into one array called SEG. The grouping of
the SRC and DST arrays are referred to as the edge index
arrays, whereas SEG is referred to as the vertex index array.
The indices of the edge arrays are in the range [0,m− 1] and
the indices of the vertex array are in the range [0, n] where
m = |E| is the number of edges and n = |V | is the number
of vertices. For the SEG array the first index is always 0
and the end index is always m. Given an edge e = (u, v),
the vertices are stored in the edge arrays where SRC[e] = u
and DST [e] = v and e is the index into the edge arrays.
All the edges in SRC and DST are sorted based off the
vertex values where SRC is sorted first, and then for every
vertex, its corresponding adjacency list is sorted in DST . The
vertex index array is created based off the sorted edge arrays.
Lastly, all the original vertex names are normalized to the
range [0, n−1] during construction. Storing these arrays takes
Θ(m) + Θ(n) space.

Given a vertex identifier u, the neighborhood of that vertex
u can be found by using the following Chapel array slice
DST [SEG[u]..SEG[u+ 1]− 1]. The edge and vertex index

arrays are distributed in a block-distributed manner to the
compute nodes that are allocated for the job. In Chapel, the
result of an array slice is a reference to the subset of the array
elements specified from the slicing index set. No new memory
is ever allocated, making this operation memory efficient. An
example showing the slicing can be found in Fig. 2. If a vertex
u has k neighbors then the time to iterate over the adjacency
list is Θ(k) and finding this list takes constant time O(1). DI
enhances CSR by explicitly listing all edges to facilitate both
edge-based and vertex-based algorithms.

IV. DIP DESIGN AND DEVELOPMENT

DIP is powered by the DI data structure that currently drives
graph storage in Arachne. It employs the same edge-centric
view of graphs that allows for easy load-balancing across
cluster (multilocale) systems in Chapel. Since DIP is designed
to be written in Chapel, we will discuss operations in terms
of how they are implemented in Chapel.

A. Notes on the DIP Design
Everything listed in Sec. III is applicable to DIP with

the added complexity of storing multiple vertex labels, edge
relationships, and properties. While designing DIP and its
variations, we approached the problem in a memory-efficient
manner to ensure we also matched the compactness of DI. We
implemented three different methods to store property graphs
based off of two-dimensional byte arrays (DIP-ARR), Chapel
domains (DIP-LIST), and Chapel lists (DIP-LISTD). Vertices
and edges are referred to as entities whereas their labels,
relationships, and properties are referred to as attributes. In
short, attributes are either represented by a two-dimensional
byte array that flags whether a particular entity contains it, or
by lists that maintain a single copy of every attribute for each
entity.

Fig. 2: Example of neighborhood slicing in DI. To get the
neighborhood of the vertex with index 50, the slice is taken
of DST [SEG[u]..SEG[u+1]−1] = DST [1000..1003]. The
number of neighbors for u can be taken by using SEG[u +
1]−SEG[u]. The SEG domain set is the range [0, n] and the
domain set range of SRC and DST is [0,m−1]. The domain
map specified by those domain sets makes up the indices of
those arrays.

B. DIP-LIST(D)

Storing attributes can be done in an attribute-centric manner
where we store each attribute for a vertex or edge explicitly,
and for the case of DIP-LISTD we maintain pointers to the
“next” and “previous” attribute to easily extract all the vertices
and/or edges that make up that attribute. This is the typical
method used in many graph databases where objects represent
each vertex and store all the data held by that vertex. This
choice, however, is not very memory efficient as each storing
object must maintain pointers and entity/attribute identifiers.

An example of both DIP-LIST and DIP-LISTD can be seen
in Fig. 3. For the case of DIP-LIST the list stored for a particu-
lar entity just contains an integer representing the input string.
On the other hand, for DIP-LISTD we store Node objects that
contain variables to store the data, vertex or edge they belong
to, and pointers to the next and previous elements that induce
a doubly-linked list. Since this is a distributable data structure,
the previous and next pointers point to objects that can live on
the different locales allocated for a job. Objects in Chapel are
pointers to heap-allocated memory. Using the Chapel memory
management technique called shared, an object can be
initialized and allocated at runtime and remain in scope fully
until all variables that reference that object go out of scope.
Changes to the data are allowed and done through the memory
management technique borrowed which does not delete the
object when the borrowing variable goes out of scope.

The addition of a Node during property graph con-
struction requires updating the next pointer of the previ-
ous Node and the prev pointer of the Node being in-
serted. This is done by extracting the last added Node
from last_entity_tracker. Once that is finished,
last_entity_tracker is updated to include the Node
that was just added. For this map, the key is the name of the
attribute and the value is the Node that was just added. The
addition requires calling a lock on both the map and list until
the insertion operation finishes. This is done by encapsulating
the code running the operation with a mutex lock created
by using sync variables in Chapel. Currently, this is not as
efficient as it could be, and optimizing these insertions are left
to future work.

Fig. 3: Example of storing attributes in lists for each element.
In this case, there are x entities where x can be either n or
m depending on whether vertices or edges are being stored.
In the purple arrows, we show how DIP-LISTD maintains an
extra way of searching the data structure backwards to only
traverse the entities that make one particular attribute.

C. DIP-ARR

Unlike the list versions of DIP that were implemented, we
also implemented an array-based data structure that makes
indexing and slicing for data more efficient and avoids com-
plicated class structures to represent the data stored. Further,
traversing arrays is relatively inexpensive since they are stored
contiguously in memory. In this section, we explore our
array-based method of storing attributes. Simply put, for each
attribute there exists a Boolean array of size n or m depending
on whether it is storing vertex or edge information. Then,
storing that specific attribute is just storing true if it exists
for an entity and false otherwise. An example of this can
be seen in Fig. 4.

The two-dimensional Boolean byte array is partitioned
into chunks using the array type domain(2) dmapped
Block(0..<k, 0..<x) in Chapel. This operation creates
a blocked array with two dimensions with k rows and x
columns. It is chunked in such a way by Chapel that if there

were four locales then the array would be split into four
quadrants, one for each locale. This would mean that no one
entire attribute list for an entity or entity list for an attribute
would be stored on the same machine. However, this should
not impact performance much during querying processes since
each locale only processes the array chunk it owns.

Fig. 4: Example of storing attributes as a two-dimensional byte
Boolean array. The number of columns is of size x which is
either n or m depending on whether vertices or edges are
being stored. The number of attributes stored can be of any
size k, in this case k = 5. To extract the value stored for a
given vertex or edge, if it is true, the row integer identifier is
passed through a sorted array to return the original value of
the string.

D. Space and Time Complexity Trade-offs

Each of the proposed variations of DIP supports the same
fundamental operations of insertion and querying. To reiter-
ate, vertex and edges are referred to as entities and labels
and relationships as attributes. The insertion operations are
specified for inserting attributes. The querying operations are
specified for returning all the attributes specified for an entity,
or accepting a list of attributes and returning all the entities
that contain any of them. The returned values can be further
processed to find the intersections of the returned vertex and
edge arrays to create a subgraph. We will use N to refer to the
size of the entity set and K to refer to the size of the attribute
set. We will use k ≤ K to denote the size of an attribute set
for any given entity.

1) Space Complexity: DIP-LIST stores a list for each entity
of size k that varies for each entity. In the worst case, each
entity will contain every attribute to make the size of DIP-
LIST to be O(NK). DIP-LISTD stores the same list with
extra data that has constant – but not neglible – size. This
constant c makes the storage of DIP-LISTD to be, in the worst
case, O(cNK). This c will be made up of 64B for the attribute
integer id, 64B for each vertex id (which is doubled for edges),
8B for the previous pointer, and 8B for the next pointer. This
creates a total of 208B for edge attributes and 144B for vertex

attributes. Lastly, DIP-ARR stores a two-dimensional array of
size N ×K making its space complexity Θ(NK).

2) Building Time Complexity: DIP-LIST and DIP-LISTD
insert data sequentially led by parallel chunks of work. This
means that we can populate two vertices u and v that live on
separate chunks simultaneously, but changes to the domains
or lists for u and v must be done sequentially to avoid race
conditions. This comes out to a time of O(cNK

P) where N is
the number of entities, c is the overhead of inserting into a
list or domain, K is the number of attributes being inserted,
and P is the number of processors. In the case of DIP-ARR,
we set a flag if we encounter that attribute for an entity. Thus,
this time complexity is O(NK

P), where P is the number of
parallel processing units in the system.

V. DATA INGESTION WORKFLOW

Currently, Arachne targets the same data science workflows
targeted by Arkouda. Therefore, it is assumed that property
graphs are generated from data already in-memory that has
been read in by Arkouda from file formats such as HDF5,
Parquet, or CSV files. Arachne contains the capability to read
in matrix market files, but the ability to store vertex and edge
attributes in this format is limited. Therefore, the time it takes
to preprocess these datasets with Arkouda is not taken into
consideration here, and all workflows are assumed to begin
after the original data ingestion and cleansing.

When the data are already present in Arkouda, the
base data structure (DI) is constructed by Arachne from
two Arkouda arrays that signify the source and desti-
nation vertices of an edge. This is achieved by cre-
ating a graph with Arachne using the property graph
class, graph = ar.PropGraph() and adding edges in
bulk to it through graph.add_edges_from(source,
destination). Once the graph is populated with vertices
and edges, graph attributes follow. It is expected that the
data scientist will load attributes independently from different
dataframes they generate from their data. Four independent
functions are available to handle each of the four types of
attributes.

Typically, the steps to ingest property graph data involves
three main steps. (1) Remap attribute values to an integer
identifier to reduce storage space. (2) Generate internal indices
of vertices and edges that correspond to where data will be
stored in the back-end. (3) Insert the data into DIP in the
back-end. Steps 1 and 2 are facilitated by existing Arkouda
functionality and step 3 is written in Chapel at the back-end.
Manipulating array-based data is highly efficient in Arkouda
which Arachne exploits to increase performance.

VI. QUERYING DATA

The property graph data model allows us to search for en-
tities or attributes that match a particular query. These queries
specified on property graphs can follow different formats [11],
but all queries boil down to simple searches on the graph
data structure. Creating a data structure that allows fast and
easy searching with parallel reads will increase performance as

one increases the number of processors that the system runs
on. Fast querying makes data analysis more interactive and
improves data science workflow uptime. We will follow the
same notation and worst-case scenarios as specified in Sec.
IV-D. For querying in this paper, we define it as passing a
string array with any number of attributes and returning the
entities that contain them. When an entity is found with any of
the passed attributes, they are marked as true and the final array
returned is a Boolean array that marks which entity indices
make up the returned query.

A. DIP-LIST

Given an attribute, finding all the entities that contain it
takes O(NK

P) time since every single attribute list for every
entity must be traversed. The fraction N

P breaks the data up
into blocks where each search is done sequentially by the task
spawned to tackle that block.

B. DIP-LISTD

Given an attribute, finding all the entities that contain it
takes O(N) time since we traverse starting from the last Node
added into last_entity_tracker (see Sec. IV-B). This
traversal involves parsing through previous and next pointers
in the distributed memory doubly-linked list. Since Chapel
objects are just pointers to a distributed heap-allocated space,
jumping to an object stored on a different locale requires
spawning a thread on the remote locale to process that object.

C. DIP-ARR

Given an attribute, finding all the entities that contain it
takes O(NP) time since we traverse the row for the given
attribute to see which elements are true. This method is the
simplest to parallelize since Chapel tasks run concurrently on
the locale that owns a slice of the array.

VII. EXPERIMENTS

Experiments were conducted by varying a configuration of
1, 2, and 8 compute nodes (locales). Each locale consists
of 128 cores (64 per AMD EPYC 7713 CPUs), 1TB DDR4
RAM, and an Infiniband HDR 200 GB/s node interconnect.
Further, the number of cores per locale utilized varied between
32, 64, and 128 cores. This variance is done due to the
fact that Chapel runs a single process per locale and then
uses multiple threads per locale for concurrency. Each of
those threads can be issuing remote communications which
goes through GASNet. Communication injection is serialized
within GASNet for Infiniband networks, therefore increasing
the number of cores can degrade performance for codes that
perform a large amount of fine-grained communication. For
graph building and adding in attributes, decreasing the number
of cores degraded performance, but not significantly. However,
querying was heavily improved by reducing the number of
cores due to the current nature of the code performing many
fine-grained communications when writing the entities that
match the query. Therefore, we limit our results to show scal-
ability as the number of locales are increased when setting the

number of cores to 32. Large-scale experiments are delegated
to future work. Here, we show a simple scalability measure
of our methods.

A. Datasets

Graphs were generated randomly by creating two arrays of a
given size (number of edges) and populating them with random
integers from a given range. For these experiments, we set the
random vertex integers created to be that of the same size as
number of edges to minimize the amount of multiple edges
that are created. Graph information is given in Tab. I. For
this experimental study, the structure of the graph is not taken
into consideration nor how it can impact execution times. In
other words, inspecting the graph for regularity or power-law
distributions is left to future work. We increase the number
of edges for each graph by 10x. The set sizes for the number
of labels and relationships was set to 50 and the vertices and
edges populated with labels were randomly selected from a
pool equal to the vertex and edge sets. Some vertices or edges
could be repeated and some not selected at all.

Fig. 5: Log-scale scalability of execution times as the number
of locales is increased for DIP-LIST. There is a visible
downward trend for graphs 3 and 4, with less visibility for
graph 2 due to its small size.

Fig. 6: Log-scale scalability of execution times as the number
of locales is increased for DIP-LIST. There is a visible
downward trend for graph 4 with an upward curve for graphs
2 and 3.

TABLE I: Information for randomly generated graphs. The number of vertices (n), number of edges (m), minimum in/out-
degrees, maximum in/out-degrees, and average in/out-degrees are all shown.

n m min in-deg max in-deg avg in-deg min out-deg max out-deg avg out-deg
graph1 86,503 100,000 0 8 1 0 9 1
graph2 864,237 1,000,000 0 10 1 0 8 1
graph3 8,646,309 10,000,000 0 9 1 0 10 1
graph4 86,469,224 100,000,000 0 11 1 0 11 1
graph5 864,648,454 1,000,000,000 0 12 1 0 11 1

B. Results

We now highlight results for graph building and
ingesting/querying relationships. Due to the fact that
adding any type of attribute requires the same basic steps
as highlighted in Sec. V, for DIP-LIST we show results
on relationship operations. We omit results for DIP-LISTD
because across the board its operations were up to 10x slower
than DIP-LIST and DIP-ARR.

For querying operations on both DIP-LIST and DIP-ARR,
the execution time dropped as the number of locales were
increased from 2 to 4 to 8. We can see these results for DIP-
LIST in Fig. 5. DIP-ARR also followed a downward trend
but it was not as drastic as the drops we see for DIP-LIST,
therefore we omit those results from this section. The reason
for this performance increase is because no traversals are being
performed between locales. Quite simply, the more locales that
are added, the more resources are available for each of them
to independently process their chunk of the property graph
stored. For adding relationships, the trend is more apparent
for graph 4 as seen in Fig. 6.

The largest graph tested was graph 5 from Tab. I on eight
locales. Adding relationships to it took 30.43 seconds and
querying its relationships took 118.38 seconds, less than two
minutes to entirely return the edge set of a new graph that
matched the query space. This translates to 8.5 million edges
processed per second for query operations. For adding labels
and relationships, the most time consuming operations were
the remapping of vertex values and index generation steps.
The actual internal storage of values amounted to less than
three seconds for graph5 meaning that built-in Chapel data
structures such as domains are highly efficient.

VIII. RELATED WORK

Property graphs concentrate on the labels, properties, and
relationships of vertices and edges and how they can be used
to increase the knowledge extracted from them [4], [16]. The
work by McColl et al. [13] provides a performance evaluation
of open-source graph databases, where most store their data
using the property graph data model. The simplest way to store
graph-based data models is via a labeled property graph, which
is a set of triples. The work by Angles et al. [2] provides a
new way of viewing graph-based data called multilayer graphs
that extends directed labeled graphs with edge identifiers.

Property graphs utilize a graphical representation, where
vertices represent entities and edges represent the relationships
between them. This graphical approach provides a visual
representation of the data structure. Property graphs allow for

representing connections between entities and the properties
associated with vertices and edges [3], [10]. This capability
enables the storage and querying of detailed information about
the entities and their relationships within the graph. Property
graphs are employed for data analysis and discovering hidden
knowledge [12], [16]. These models support advanced queries
and analysis, facilitating the extraction of meaningful infor-
mation from the graph. Property graphs focus on representing
the properties and relationships of vertices and edges in a
graph [3]. Property graphs model data using vertices, edges,
and properties without the need for a predefined schema [3].
Property graphs offer more flexibility in terms of adding
new properties or relationships between vertices and edges,
allowing for quicker adaptation to changes in data require-
ments [17]. Property graphs employ database-specific query
languages such as Cypher in the case of Neo4j [8].

IX. CONCLUSION

Designing data structures for property graphs involves not
only efficiently storing the vertices and edges of a graph, but
more importantly, the attributes are also stored with them.
Oftentimes, property graph database developers want to tightly
couple data with the entity, as was shown in the DIP-LIST
and DIP-LISTD data structures. DIP-LIST and DIP-ARR
allow for fast traversals and storing large amounts of data on
multiple locales easily, and efficiently. Further work involves
optimizing the DIP-LIST method that allows for easy label and
relationship additions with fast querying. Further, this work
can be easily extended for property storage and algorithms
that utilize property graphs.

ACKNOWLEDGMENT

We thank the Chapel and Arkouda communities for their
guidance. This research is supported in part by the NSF grant
CCF-2109988.

REFERENCES

[1] Renzo Angles. The Property Graph Database Model. 2018.
[2] Renzo Angles, Aidan Hogan, Ora Lassila, Carlos Rojas, Daniel

Schwabe, Pedro Szekely, and Domagoj Vrgoč. Multilayer graphs: a
unified data model for graph databases. In Proceedings of the 5th ACM
SIGMOD Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics (NDA),
GRADES-NDA ’22, pages 1–6, New York, NY, USA, June 2022.
Association for Computing Machinery.

[3] Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. RDF and
Property Graphs Interoperability: Status and Issues. 2019.

[4] Michael E. Bales and Stephen B. Johnson. Graph theoretic modeling of
large-scale semantic networks. volume 39, pages 451–464, 2006.

[5] Bradford L Chamberlain. Chapel (Cray Inc. HPCS Language)., 2011.

[6] Bradford L Chamberlain, David Callahan, and Hans P Zima. Parallel
programmability and the Chapel language. The International Journal of
High Performance Computing Applications, 21(3):291–312, 2007.

[7] Bradford L Chamberlain, Elliot Ronaghan, Ben Albrecht, Lydia Duncan,
Michael Ferguson, Ben Harshbarger, David Iten, David Keaton, Vassily
Litvinov, Preston Sahabu, et al. Chapel comes of age: Making scalable
programming productive. Cray User Group, 2018.

[8] Isabelle Comyn-Wattiau and Jacky Akoka. Model driven reverse
engineering of NoSQL property graph databases: The case of Neo4j.
In 2017 IEEE International Conference on Big Data (Big Data), pages
453–458, 2017.

[9] Zhihui Du, Oliver Alvarado Rodriguez, Joseph Patchett, and David A
Bader. Interactive graph stream analytics in Arkouda. Algorithms,
14(8):221, 2021.

[10] Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge
graphs. In Michael Martin, Martı́ Cuquet, and Erwin Folmer, editors,
SEMANTiCS (Posters, Demos, SuCCESS), volume 1695 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2016.

[11] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, To-
bias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra
Selmer, and Andrés Taylor. Cypher: An Evolving Query Language for
Property Graphs. In Proceedings of the 2018 International Conference
on Management of Data, pages 1433–1445, Houston TX USA, May
2018. ACM.

[12] Nandish Jayaram, Arijit Khan, Chengkai Li, Xifeng Yan, and Ramez
Elmasri. Querying knowledge graphs by example entity tuples. IEEE
Transactions on Knowledge and Data Engineering, 27(10):2797–2811,
2015.

[13] Robert Campbell McColl, David Ediger, Jason Poovey, Dan Campbell,
and David A. Bader. A performance evaluation of open source graph
databases. In Proceedings of the first workshop on Parallel programming
for analytics applications, PPAA ’14, pages 11–18, New York, NY,
USA, February 2014. Association for Computing Machinery.

[14] Michael Merrill, William Reus, and Timothy Neumann. Arkouda:
interactive data exploration backed by Chapel. In Proceedings of the
ACM SIGPLAN 6th on Chapel Implementers and Users Workshop, pages
28–28, 2019.

[15] Oliver Alvarado Rodriguez, Zhihui Du, Joseph T. Patchett, Fuhuan Li,
and David A. Bader. Arachne: An Arkouda Package for Large-Scale
Graph Analytics. In 2022 IEEE High Performance Extreme Computing
Conference (HPEC), 2022.

[16] Sudharshan S. Vazhkudai, John Harney, Raghul Gunasekaran, Dale
Stansberry, Seung-Hwan Lim, Tom Barron, Andrew Nash, and Arvind
Ramanathan. Constellation: A science graph network for scalable data
and knowledge discovery in extreme-scale scientific collaborations. In
2016 IEEE International Conference on Big Data (Big Data), pages
3052–3061, 2016.

[17] Gongsheng Yuan, Jiaheng Lu, Zhengtong Yan, and Sai Wu. A survey
on mapping semi-structured data and graph data to relational data. ACM
Comput. Surv., 55(10), 2023.

