
Contour Algorithm for Connectivity
Zhihui Du, Oliver Alvarado Rodriguez, Fuhuan Li, Mohammad Dindoost and David A. Bader

Department of Data Science
New Jersey Institute of Technology

Newark, USA
{zhihui.du,oaa9,fl28,md724,bader}@njit.edu

Abstract—Finding connected components in a graph is a
fundamental problem in graph analysis. In this work, we present
a novel minimum-mapping based Contour algorithm to efficiently
solve the connectivity problem. We prove that the Contour
algorithm with two or higher order operators can identify all con-
nected components of an undirected graph within O(log dmax)
iterations, with each iteration involving O(m) work, where
dmax represents the largest diameter among all components
in the given graph, and m is the total number of edges in
the graph. Importantly, each iteration is highly parallelizable,
making use of the efficient minimum-mapping operator applied
to all edges. To further enhance its practical performance, we
optimize the Contour algorithm through asynchronous updates,
early convergence checking, eliminating atomic operations, and
choosing more efficient mapping operators. Our implementation
of the Contour algorithm has been integrated into the open-source
framework Arachne. Arachne extends Arkouda for large-scale
interactive graph analytics, providing a Python API powered
by the high-productivity parallel language Chapel. Experimental
results on both real-world and synthetic graphs demonstrate the
superior performance of our proposed Contour algorithm com-
pared to state-of-the-art large-scale parallel algorithm FastSV
and the fastest shared memory algorithm ConnectIt. On average,
Contour achieves a speedup of 7.3x and 1.4x compared to FastSV
and ConnectIt, respectively. All code for the Contour algorithm
and the Arachne framework is publicly available on GitHub 1,
ensuring transparency and reproducibility of our work.

Index Terms—connected components, graph analytics, big
data, parallel algorithm

I. INTRODUCTION

A graph is one of the fundamental mathematical structures
used to model pairwise relations between abstract objects.
Many problems in science, society, and economics can be
modeled by graphs. The sizes of graph data collections con-
tinue to grow which makes the need for fast graph algorithms
critical, especially under online and real-time scenarios.

Finding connected components [4], [6], [13], [15] is a fun-
damental problem in graph analytics and an important first step
for other graph algorithms. Many graph algorithms are based
on the assumption that we already know a graph’s connected
components. In this work, we focus on the connectivity of
undirected graphs. The connected components problem can
be expressed as assigning each vertex with a label. If two
vertices are in the same component or there is a path between
them, they will be marked with the same label. Otherwise, the
vertices will be marked with different labels [7].

1https://github.com/Bears-R-Us/arkouda-njit

There are three kinds of algorithms for identifying con-
nected components of an undirected graph. The first is a graph
traversal-based method. Breadth-First Search (BFS) [14] and
label propagation [11], [19], [27] are two typical examples.
BFS will search from a set of just visited vertices (current
frontier, initially with one root vertex) and then extend to other
unvisited vertices (next frontier) connected to visited vertices
until all vertices are visited. The basic idea of label propagation
is that each vertex is initially assigned a unique label. Then,
each vertex subsequently compares its label with the labels of
its neighbors and updates its label to be the smallest among
them. This process is repeated until no label can be updated.
There are many variants to improve the performance further.
This method has high performance for low-diameter graphs.
However, if a graph has a long diameter, a lot of time and
iterations will be needed.

The second is the tree hooking-compressing-based method
[2], [16], [22], [30]. This kind of method will start by
initializing all vertices as singletons. Then, some tree hooking
operations are employed to merge smaller components into
larger components. Compressing operations will reduce the
tree’s height until all vertices are directly connected to a root
vertex. The major feature of such a method is formulating the
discovery of a big component as a forest building. Combining
the tree hooking and compressing, a much smaller number of
iterations will be needed to identify all the components, even
if the given graph has a large diameter.

The third is the union-find or disjoint set-based method [10],
[12], [18]. It models components as disjoint sets. The union
operation will merge different sets and the find operation will
return the representative member of a set. Unlike the previous
two methods, union-find is not an iteration-based method. It
can directly identify all connected components in one iteration
of the tree-based method. However, for large-scale parallelism
scenarios, union-find methods often lead to an unbalanced
workload that can significantly affect their performance.

We abstract the connectivity as a contour lines discov-
ery problem and develop simple and lightweight minimum-
mapping operators to work on different edges to efficiently
identify all the components in parallel. The minimum-mapping
operator can map the connected vertices to the same contour
line. Identifying one component is similar to identifying one
contour line with the same minimum mapping label. There-
fore, we name our algorithm “Contour” [8]. The minimum-
mapping operator can be employed on different edges in

parallel with high efficiency. Compared to tree hooking-
compressing or union-find-based methods, this can signifi-
cantly improve parallel performance and simplify implemen-
tation.

The major contributions of this work are as follows.
1) A novel Contour algorithm that formulates finding con-

nected components as a contour lines discovery prob-
lem. Based on this perspective, simple and lightweight
minimum-mapping operators are developed to map the
vertices in the same component to the same label in
parallel. The proposed method is suitable for large
graphs with different graph topologies.

2) A proof is given to show that for a graph with dmax

as its maximum diameter, the Contour algorithm can
converge in O(log(dmax)) iterations.

3) The proposed method has been integrated into the graph
package, Arachne. It is publicly available through the
open-source Arkouda framework from GitHub to ana-
lyze large graphs using the popular Python interface.

4) Extensive experimental results show that the proposed
Contour algorithm can achieve significant speedup com-
pared to state-of-the-art real-world and synthetic graphs
methods.

II. CONTOUR ALGORITHM

A. Problem Description

Given an undirected graph G =< V,E >, where V is the
set of vertices, and E is the set of edges. Let m = |E| be
the total number of edges and n = |V | be the total number of
vertices in G. Without loss of generality, here we assume that
vertex IDs are from 0 to n− 1.

A label array L[0..n − 1] with size n can be used to store
all the labels of different vertices. Initially, we assign each
vertex’s ID as its label. Identifying all connected components
in G means that we will assign the vertices of the same
components with the same vertex label. The label array is also
regarded as a pointer graph [22]. ∀v ∈ V,L[i] = v means that
there is a direct edge from vertex i to v. The pointer graph
will be updated after each iteration. It is a forest of rooted
trees plus self-loops that occur only in the root. Finally, if
graph G has S components, L will represent S stars after all
components are found. A star here is a unique type of graph
characterized by a single root vertex connected to all other
vertices, with no additional edges present.

B. Minimum-Mapping Operator

∀v ∈ V , L[v] is the mapped vertex or label of v. Lu[0..n−1]
is used to store the updated value of different vertices after
once iteration. If there is a path between w and v or w and v
are connected, and the values of their labels are different, we
should assign them the same label. Here we use the minimum
value among L[w] and L[v] to update the old label values in
Lu array.

First, we define the conditional vector assignment operator
as follows.

Definition 1 (Conditional Vector Assignment).x1

...
xk

 >←− z. (1)

It means that given a vector X =

x1

...
xk

 , ∀i ∈ N, 1 ≤ i ≤ k,

xi = z if xi > z.

Based on the definition of conditional vector assignment,
we will further define our minimum-mapping operators.

Definition 2 (One-Order Minimum-Mapping Operator). Given
two connected vertices w, v ∈ V , let z1 = min(L[w], L[v]).
We define the one-order minimum-mapping operator as fol-
lows.

MM1(Lu, L, w, v) :

[
Lu[w]
Lu[v]

]
>←− z1 (2)

MM1(Lu, L, w, v) means that before the mapping operator,
Lu = L. After employing the mapping operator, Lu[w] and
Lu[v] will be updated if either of them is larger than z1.

Higher h>1 order minimum-mapping operators
MMh(Lu, L, w, v) can also be defined similarly.

Definition 3 (h-Order Minimum-Mapping Operator). Given
two connected vertices w, v ∈ V , let zh = min(Lh[w], Lh[v]),
where ∀x ∈ V,Lh[x] = L[Lh−1[x]], L1[x] = L[x]. We define
the h-order minimum-mapping operator as follows.

MMh(Lu, L, w, v) :


Lu[w]
Lu[v]
...

Lu[L
h−1[w]]

Lu[L
h−1[v]]

 >←− zh. (3)

A higher-order minimum-mapping operator may include
more mapped vertices based on the two given vertices. So it
may find the final minimum contour quickly. However, it will
also perform many more operations. In this paper, we take the
two-order minimum-mapping operator as the default operator
because it can achieve a quick convergence (logarithmic time
complexity) with a minimum-mapping operator involving a
much smaller number of vertices and operations. We will
also show the different effects of its variants and combination
patterns in Section IV.

C. Algorithm Description

Based on the proposed minimum-mapping operator in Sec-
tion II-B, our Contour algorithm is given in Alg. 1. The
complete algorithm is straightforward and easy to parallelize.

For lines from 1 to 4, we initialize the label array L and the
corresponding update array Lu with each vertex’s ID. From
line 5 to line 10, we update the label array L until convergence
or there are no changes in the array. From lines 6 to 8, for
each edge e = ⟨w, v⟩ ∈ E, we will execute the two-order
minimum-mapping MM2(w, v) in parallel. MM2(w, v) may
update the value of Lu[w], Lu[v], Lu[L[w]], Lu[L[v]] if they

are larger than the minimum value z2. In line 9, all the old
values in L will be updated with the new values in Lu.

Since all the conditional assignments can be executed in
parallel, to avoid write races, we can use the atomic compare-
and-swap (CAS) 2 operation to implement our conditional
assignment as follows.

while (oldxi = atomic read(xi) > z) {
CAS(xi, oldxi, z)

}
(4)

Algorithm 1: Minimum-Mapping based Contour Al-
gorithm
Contour(G)
/* G = ⟨E, V ⟩ is the input graph with edge

set E and vertex set V . */
1 forall i in 0..n-1 do
2 L[i] = i
3 Lu[i] = i
4 end
/* Initialize the label array L,Lu */

5 do
6 forall (e = ⟨w, v⟩ ∈ E) do
7 MM2(Lu, L, w, v)
8 end
9 L = Lu

10 while (There is any label change in L)
11 return L

Let Lh
k [x] be the label of vertex x employing the h-

order minimum-mapping operator after the kth iteration, then
Lu,k[w] = min(L2

k−1[w], L
2
k−1[v1], L

2
k−1[v2], ..., L

2
k−1[vm],

where v1, v2, ..., vm are the vertices that directly connect with
w, or directly connect with the vertices that are mapped to w.
We give the following definition to show how the vertices in
the same component are mapped to the same minimum label
step by step.

Definition 4 (Equal Minimum Set). Given label x, after the
kth iteration, its one-order equal minimum set EMS(k)1x =
{v|∀v ∈ V,Lk[v] = x}. Its two-order equal minimum set
EMS(k)2x = {v|∀v ∈ V,L2

k[v] = x}.

We use the equal minimum set to indicate the vertices
mapped to the same vertex label.

Definition 5 (Merged Minimum Set). Let MMS(0) = V .
After the kth iteration, k ≥ 1, the one-order merged minimum
set is defined as MMS(k)1 = {v|∀v ∈ V,EMS(k)1v ̸= ϕ}.
Similarly, the two-order merged minimum set MMS(k)2 =
{v|∀v ∈ V,EMS(k)2v ̸= ϕ}.

From the definition, we can see that for k ≥
0,MMS(k)1 ⊇ MMS(k)2 ⊇ MMS(k + 1)1. In other
words, the merged minimum set’s size will become smaller
until it only contains the minimum vertices of different con-
nected components.

2https://chapel-lang.org/docs/primers/atomics.html

Definition 6 (Rooted Tree and its Neighbor). After the kth

iteration, k ≥ 1, the root vertices of different root trees in the
pointer graph R(t) = {v|v ∈ MMS(k) ∧ Lk[v] = v}. R(t)
is also called the root tree set of the pointer graph. ∀v1, v2 ∈
R(t), if ∃⟨v1′ , v2′⟩ ∈ E, and v1′ belongs to in root tree v1,
v2′ belongs to root tree v2, then we call v1 the neighbor of
v2, vice versa.

Our mapping operator has the following two effects on the
rooted trees. (1) Compressing. If the original height of a rooted
tree is x and we employ h order minimum mapping operator to
it, its height will be reduced to no more than ⌊x+h−1

h ⌋. Every
vertex in the rooted tree will point to its h order father or the
root. (2) Minimum Merging. Any vertex vm in one rooted tree
may be merged into its neighbor rooted tree as the son of root
or other vertices. At the same time, the subtree (if exists) with
vm as its root will be compressed and merged into its neighbor-
rooted tree. Both compressing and merging can happen at
the same time in one minimum-mapping operation. Minimum
merging is very flexible and different from the existing tree-
hooking or set union methods. One rooted tree can merge part
of another rooted tree instead of the complete rooted tree. At
the same time, it is simple and easy to implement.

The framework of Alg. 1 has some similarities to label
propagation or tree hooking-compressing. However, the label
propagation method can be regarded as a special case of our
method when the mapping order is one. Compared with the
existing tree hooking-compressing methods, they only allow
merging two rooted trees. However, our method can merge
any part of two rooted trees.

The following section will prove that our Alg.1 can converge
in logarithmic iterations.

D. Time complexity analysis

Lemma 1 (Root Tree Constraint). Let P =
⟨s0, . . . , sn−1⟩, n ≥ 2, be a path with s0 as the smallest
vertex, and consider running Alg. 1 on P (here we assume
the mapping operator can be employed up to twice in each
iteration). After the kth iteration, let the root tree set be
R(k), we have (32)

k−1
∑

v∈R(k) Hk(v) ≤ n−1, where Hk(v)

is the height of root tree v after the kth iteration.

Proof. Let’s do induction on k.
For k = 1, if all vertices are in increasing order along

the path P , then MMS(1)1 = s0 and H1(s0) = n − 1,∑
v∈R(1) H1(v) = n− 1. So, the inequation holds.
Otherwise, if there are multiple root trees vm1

, ..., vmj
in

the pointer graph and we let ns be the number of vertices in
root tree vms , where 1 ≤ s ≤ j. So, we have

∑s=j
s=1 ns = n

and H1(vms
) ≤ ns−1. Therefore,

∑s=j
s=1 H1(vms

) ≤ n− j <
n− 1. So, the inequality holds for the base case.

Let t ≥ 1; we assume that when t = k, the inequation holds.
Now we prove when k = t+ 1, the inequation also holds. If
R(t) = {s0} and Ht(s0) > 1, then after the (t+ 1) iteration,
Ht+1(s0) ≤ (23)Ht(s0), so the inequation holds.

We discuss two cases if |R(t)| > 1.

(1) If ∀v ∈ R(t), Ht(v) > 1∧v ∈ R(t+1), then Ht+1(v) ≤
(23)Ht(v).

(2) If ∃v ∈ R(t) ∧ Ht(v) = 1 ∧ Lk+1[v] = v′ ∧ v ̸= v′,
then root tree v will be merged into the root tree vm that
contains vertex v′ after the (t+1)th iteration. If Hk(vm) = 1,
then Hk+1(vm) = 1 < 2

3 (Hk(v) + Hk(vm)) = 2
3 × 2 = 4

3 .
If Hk(vm) > 1, we know that Ht+1(vm) ≤ 2

3Ht(vm) <
2
3 (Ht(vm) +Ht(v)).

If ∃v ∈ R(t) ∧Ht(v) = 1 ∧ Lk+1[v] = v, it means that v
is less than its neighbour vertex vx ∈ R(t). So, v will merge
its neighbor root tree or partial vertices of its neighbor root
tree. Since merging the complete root tree is the same as in
the above case, we only consider the case when only partial
vertices are merged into v. In this case, the neighbor root tree
vn must have Ht(vn) > 1. Otherwise, the neighbor root tree
will be merged into the v root tree. Here, we can employ the
mapping operator twice. If Ht+1(vn) = 1, then Ht+1(vn) +
Ht+1(v) = 2. We have 2

3 (Ht(vn) +Ht(vn)) ≥ 2
3 (1+ 2) = 2.

If Ht+1(vn) > 1, then we have Ht+1(vn) ≤ 1
3Ht(vn) so

Ht+1(vn) + 1 ≤ 2
3 (Ht(vn) + 1) when Ht+1(vn) > 1.

Hence, considering all the cases, we also have the same
conclusion.

Lemma 2 (Path Convergence). Let P = ⟨s0, . . . , sn−1⟩, n ≥
2, be a path with s0 as the smallest vertex, and consider
running Alg. 1 on P . Marking all vertices as s0 will need
at most ⌈log 3

2
(n− 1)⌉+ 1 iterations.

Proof. Based on Lemma 1, k ≤ ⌈log 3
2

(n−1)∑
v∈R(k) Hk(v)

⌉ + 1,
when

∑
v∈R(k) Hk(v) = 1, the maximum value of k should

be ⌈log 3
2
(n − 1)⌉ + 1. So, after at most ⌈log 3

2
(n − 1)⌉ + 1

iterations, all vertices on P will be marked as s0.

Lemma 3 (Diameter Convergence). For a connected graph
G with diameter d, Alg. 1 will take at most (⌈log 3

2
(d)⌉ + 1)

iterations to spread the minimum vertex label to all the other
vertices.

Proof. Let the smallest vertex in G be s0, then all shortest
paths from s0 to other vertices cannot be larger than d. Based
on Lemma 2, the vertices on any shortest path from s0 to
other vertices can be mapped to s0 within (⌈log 3

2
(d)⌉ + 1)

iterations. So the conclusion holds.

Theorem 1 (Graph Convergence). For any graph G, let dmax

be the maximum diameter of all graph G’s components. Alg.
1 will take at most (⌈log 3

2
(dmax)⌉ + 1) iterations to identify

all the components.

Proof. Let Gc be any connected component of G and d
be its diameter with d ≤ dmax. Based on Lemma 3, we
know that after (⌈log 3

2
(d)⌉ + 1) iterations, all vertices in Gc

will be mapped to their minimum vertices. Since dmax is
the maximum diameter of all graph G’s components, after
⌈log 3

2
(dmax)⌉+1) iterations, all connected components of G

must have been mapped to their minimum vertices. So, Alg.
1 will take at most ⌈log 3

2
(dmax)⌉ + 1) iterations to identify

all the components.

III. INTEGRATION WITH ARACHNE AND PERFORMANCE
OPTIMIZATION

A. Integration Method

Our method is integrated into Arachne [21], a large-scale
graph analytics package on top of Arkouda [17], [20]. Arkouda
is an open-source framework in Python created to be a NumPy
replacement at scale. It replaces the ndarray abstraction with
the pdarray. Our work aims to extend Arkouda for graph
analytics, where we use the underlying pdarray to implement
and execute our algorithms. Through this, we create an end-
to-end response system from Chapel to Arkouda. In Python,
our calling method is called graph cc(graph) where the user
passes to a function a graph. We added this method to Ark-
ouda’s front-end file called graph.py. The calling messages are
added into arkouda server.chpl. The Chapel method is invoked
when the function is called in Python, and the messages are
passed from Python to Chapel through ZMQ 3. The messages
are recognized at the back-end by arkouda server.chpl, and
the proper functions are invoked and executed in the chapel
back-end.

B. Algorithm Optimization

Alg. 1 presents the fundamental concept of our method.
However, we can further optimize it to enhance its practical
performance when we integrate the method into Arachne.

1) Asynchronous Update: The essence of the asynchronous
Contour algorithm is to update the label array L immediately,
eliminating the need for maintaining an update label array
Lu. An asynchronous update will not affect the correctness
or final convergence of the algorithm. However, the practical
performance will be very different. This approach offers
several advantages:

(1) Faster convergence speed: Vertices can be mapped to
lower labels more rapidly.

(2) Reduction of unnecessary operations: The step L = Lu

in Alg. 1 becomes unnecessary and can be removed.
(3) Memory usage reduction: The Lu array is no longer

required and can be eliminated.
Experimental results in Section IV demonstrate that asyn-

chronous updates significantly improve the performance of the
algorithm.

2) Early Convergence Check: With the definition of our
minimum mapping operator, for any edge e = (v, w) ∈ E,
if (L[v] ̸= L2[v]||L[w] ̸= L2[w]||L[v] ̸= L[w]), we need to
continue to the next iteration. However, if these conditions
are not met, even if there are updates in the current iteration,
we can confidently conclude that the algorithm has converged,
and we can exit the iteration directly. This early convergence
check allows us to save additional iterations.

By performing this convergence check, we can efficiently
terminate the algorithm once the convergence condition is met,
reducing unnecessary computations and improving the overall
efficiency of the algorithm.

3https://zeromq.org/

3) Eliminating Atomic Operations: In union-find algo-
rithms, atomic operations are essential to ensure correctness.
However, in iteration-based methods, atomic operations can
impact the number of iterations but not the correctness of the
algorithm. These atomic operations can be computationally
expensive compared to simple assignments.

Utilizing asynchronous updates can accelerate the con-
vergence speed and reduce the total number of iterations.
Consequently, we have the opportunity to replace costly
atomic updates with simple assignments, further enhancing the
practical performance of the algorithm.

By removing atomic operations and employing simple as-
signments, we can achieve better computational efficiency
without compromising the correctness of the algorithm. It is
similar to the effect of replacing synchronization updates with
asynchronous updates. These optimizations contribute to the
overall improvement in practical performance.

4) Selecting Suitable Minimum Mapping Operators: The
choice of minimum mapping operators and their combination
patterns can also significantly impact the performance of the
algorithm for a given graph. We will provide recommendations
based on experimental results in subsection IV-E. Here, we
introduce six different variants of our Contour algorithm:

C-Syn: This is the synchronous method described in Alg.
1 without employing any other optimization methods. Except
for the minimum mapping operator, it is almost the same as
the FastSV algorithm. It can only achieve limited speedup
compared with FastSV.

C-1: This variant employs the one-order minimum mapping
operator.

C-2: This variant employs the two-order minimum mapping
operator.

C-m: For large-diameter graphs, we may use a higher-order
minimum mapping operator greater than two to reduce the
total number of iterations.

C-11mm: This variant combines operators. It starts with
the one-order mapping operator for a few iterations and then
switches to a higher-order operator until convergence.

C-1m1m: This variant alternates between the one-order and
higher-order operators until convergence.

In subsection IV-E, we will provide specific analysis and
guidance on selecting the most suitable variant based on the
characteristics of the graph to achieve optimal performance.

C. State-of-the-Art Algorithms

In addition to our Contour algorithm, we have incorpo-
rated two state-of-the-art algorithms, namely FastSV [30] and
ConnectIt [10], into Arachne. This integration allows us to
expand our algorithm repository and conduct performance
comparisons.

The seminal Shiloach-Vishkin (SV) algorithm [22] is ca-
pable of identifying graph components in O(log(n)) time on
a CRCW PRAM machine with (m + n) parallel processors.
Various variants and improvements [3] based on the original
SV algorithm exist, and FastSV represents the latest and most
advanced version for large-scale parallel systems. However,

the synchronization introduced between different hooking and
compressing steps, along with the need to assign the current
label array L with the updated label array Lu before the next
iteration, significantly affects its performance compared to our
simple and flexible minimum mapping operators.

Union-find algorithms were developed to handle disjoint set
data structures and can achieve almost linear time complexity
[29]. Patwary et al.’s [18] experimental results reveal that
Rem’s simple union-find algorithm delivers superior practical
performance. Dhulipala et al. developed the ConnectIt frame-
work, which incorporates hundreds of different connected
components algorithms, and their experimental results on large
graphs demonstrate that Rem’s algorithm is the best within
their shared memory system. In Arachne, we have integrated
the optimal union-find algorithm from the ConnectIt frame-
work for comparison. Our experimental results (see subsection
IV-F) demonstrate that our Contour algorithm can effectively
exploit parallel resources to achieve improved performance.

IV. EXPERIMENTS

A. Dataset Description

Our dataset comprises a selection of publicly available syn-
thetic and real-world datasets, sourced from reputable repos-
itories. We have drawn graphs from the SuiteSparse Matrix
Collection4, Stanford Large Network Dataset Collection5, and
the MIT GraphChallenge graph datasets6.

To ensure comprehensive testing and performance compari-
son, we have carefully chosen a combination of real-world and
synthetic graphs, as outlined in Table I. Including both types of
graphs allows us to highlight and evaluate the efficacy of our
Contour algorithm compared with state-of-the-art algorithms.

The real-world graphs in our dataset may vary in character-
istics. They typically exhibit degree distributions that follow a
power-law distribution. These features provide a diverse set of
challenges and scenarios to thoroughly assess the algorithms’
performance.

Additionally, we have included a set of synthetic graphs
known as Delaunay. These graphs are constructed based on
Delaunay triangulations of randomly generated points in the
plane. Unlike graphs with power law distribution, Delaunay
graphs have vertices with degrees that are relatively close to
each other. Including synthetic graphs allows us to observe
how the algorithm’s performance varies with graph size.

By incorporating a diverse range of datasets, our evalua-
tion encompasses various real-world scenarios and provides
valuable insights into the scalability and effectiveness of our
Contour algorithm, as well as its comparison with state-of-
the-art methods.

B. Experimental Platform

Experiments were done on a 32-node cluster system.
Each node is a CentOS Linux release 7.9.2009 (Core) high-
performance server with 2 x Intel Xeon E5-2650 v3 @

4https://sparse.tamu.edu/
5https://snap.stanford.edu/data/
6https://graphchallenge.mit.edu/data-sets

TABLE I: Real World and Synthetic graphs
Graph Name Graph ID Number of Edges Number of Vertices

ca-GrQc 0 28980 5242
ca-HepTh 1 51971 9877

facebook combined 2 88234 4039
wiki 3 103689 8277

as-caida20071105 4 106762 26475
ca-CondMat 5 186936 23133

ca-HepPh 6 237010 12008
email-Enron 7 367662 36692
ca-AstroPh 8 396160 18772

loc-brightkite edges 9 428156 58228
soc-Epinions1 10 508837 75879

com-dblp 11 1049866 317080
com-youtube 12 2987624 1134890
amazon0601 13 2443408 403394

soc-LiveJournal1 14 68993773 4847571
higgs-social network 15 14855842 456626

com-orkut 16 117185083 3072441
road usa 17 28854312 23947347

kmer A2a 18 180292586 170728175
kmer V1r 19 232705452 214005017
uk 2002 20 298113762 18520486

delaunay n10 21 3056 1024
delaunay n11 22 6127 2048
delaunay n12 23 12264 4096
delaunay n13 24 24547 8192
delaunay n14 25 49122 16384
delaunay n15 26 98274 32768
delaunay n16 27 196575 65536
delaunay n17 28 393176 131072
delaunay n18 29 786396 262144
delaunay n19 30 1572823 524288
delaunay n20 31 3145686 1048576
delaunay n21 32 6291408 2097152
delaunay n22 33 12582869 4194304
delaunay n23 34 25165784 8388608
delaunay n24 35 50331601 16777216

2.30GHz CPUs with ten cores per CPU. Each server has
512GB of RAM. A high-performance Infiniband network
system connects all nodes.

C. Number of Iterations

In Fig. 1, we observe that for different graphs, the C-
1 operator consistently requires the largest total number of
iterations. Notably, Graph 17 road usa exhibits the highest
iteration count at 2369 iterations. This behavior is expected as
C-1 represents the lowest-order minimum mapping operator,
only considering directly connected vertices or those within a
search distance of 1.

Comparatively, C-2 performs significantly better than C-1 in
iteration numbers, involving all vertices that are at a distance
of 2 from each edge e = (v, w). Consequently, even a minimal
increase in the order of the minimum mapping operator leads
to a significant reduction in the total number of iterations for
long-diameter graphs. For instance, Graph 17 road usa only
requires 5 iterations when using C-2.

Further increasing the minimum mapping order to C-m (here
m = 1024) yields additional reductions in the total number of
iterations, but the improvement is not as significant. Across
all graphs, C-m achieves a maximum reduction of 3 itera-
tions compared to C-2. Therefore, we observe the following
relationship for the total number of iterations: Number of
Iterations (C-m) ≤ Number of Iterations (C-2) ≤ Number of
Iterations (C-1).

Next, we analyze the behaviors of the combined minimum
mapping operators C-11mm and 1m1m. Among the 38 graphs,

the majority (21) exhibit the same number of iterations for
both operators. For the remaining 13 graphs, 1m1m shows a
slightly higher number of iterations than C-11mm. Thus, C-
11mm generally demonstrates a slightly better performance
than 1m1m in terms of iteration count. Additionally, C-11mm
exhibits a total iteration count that is close to C-2.

Comparing C-Syn with FastSV, we find them to be quite
similar in terms of the total number of iterations. However,
C-Syn possesses a more efficient and simplified minimum
mapping operator, contributing to the slight advantage in
iteration count over FastSV. The optimized C-2 operator sig-
nificantly reduces the number of iterations compared to C-Syn
in most cases, validating the effectiveness of our optimization
in reducing iterations, as also reflected in subsection IV-D.

ConnectIt, as a non-iteration-based method, requires one
union operation on all edges and one compression operation
on all vertices. Consequently, we assign the iteration count for
ConnectIt as 1 for all graphs.

In summary, the average number of iterations, from low
to high, are as follows: C-m=2.19, C-2=3.19, C-11mm=3.89,
C-1m1m=4.31, C-Syn=6.83, FastSV=6.97, C-1=83.86.

D. Execution Time

In Fig. 2, we observe the execution times of different
methods. Notably, there is a general trend that as the size
of graphs increases (measured by the total number of edges
and vertices), the execution time also increases. This pattern is
expected since our server has a fixed number of 20 cores. As
the graph size grows, each core has to handle a larger number
of edges, leading to increased execution times. However, the
execution times may vary due to differences in graph topology.

Analyzing the Delaunay graphs, which share similar topol-
ogy, we find that as the graph size grows from delaunay n10 to
delaunay n24 (both the number of edges and vertices increase
about 16000 times), the execution time of C-2 increases by
895 times, C-1m1m increases by 1072 times, C-m increases
by 1268 times, ConnectIt increases by 1303 times, C-11mm
increases by 1329 times, C-Syn increases by 2705 times, and
FastSV increases by 4096 times.

Additionally, we observe that, in most cases, FastSV ex-
hibits longer execution times compared to all other methods.
Only when the diameters of some graphs are particularly large
does the execution time of C-1 surpass FastSV. Moreover, C-
Syn consistently shows longer execution times compared to
other Contour variants. As mentioned previously, this is due
to C-Syn employing synchronous updates instead of immediate
asynchronous updates, which hinders the quick spreading of
small labels to other vertices, thereby reducing its convergence
speed.

In summary, the execution times of the algorithms generally
follow the trend of increasing with graph size. However,
specific algorithm characteristics, such as synchronous vs.
asynchronous updates, also play a significant role in determin-
ing execution times. The overall performance of our Contour
algorithm outperforms FastSV, highlighting the effectiveness
of our optimization strategies in reducing execution times.

Fig. 1: Number of Iterations of FastSV, ConnectIt, and Different Contour Variants.

Fig. 2: Execution Time of FastSV, ConnectIt, and Different Contour Variants.

E. Speedup compared with FastSV

In Fig. 3, we observe the speedups of all the methods
compared to FastSV. The average speedups, from highest to
lowest, are as follows: C-m with a speedup of 7.3, C-11mm
with 6.6, ConnectIt with 6.49, C-1m1m with 6.33, C-2 with
6.33, C-1 with 4.62, and C-Syn with 2.87. This indicates
that high-order minimum mapping operators often perform
significantly better than FastSV.

However, C-1 shows particularly good speedup when the
size and diameter of the graphs are small. The reason behind
this behavior is that when the diameter of a graph is small, C-
1 can converge quickly within a few iterations. Additionally,
for each iteration, the total workload for each core is very
low because of the small graph size and C-1’s focus on only
checking one-path neighbors. This operation exhibits excellent
locality, which can be explained clearly by the work-depth
model [5] well. Consequently, under these conditions, C-1
achieves better performance. However, for larger graphs or
graphs with higher diameters, C-1 cannot maintain this better

speedup compared to other variants due to a higher overall
workload or larger number of iterations.

C-m achieves the best average speedup, but it may not be
suitable for all cases because each iteration will have a higher
cost. As mentioned above, C-1 excels in scenarios with small
diameters and sizes, while C-m is most effective for large-
diameter or large-size graphs. It reduces the total number of
iterations to minimize the overall cost.

C-2, on the other hand, exhibits a relatively small cost
in each iteration as it only checks reachable vertices within
two steps. Simultaneously, it can significantly reduce the total
number of iterations for graphs with large diameters. Thus,
C-2 stands as a stable and simple operator that fits well in
most cases.

C-1m1m is also a stable operator, but its policy differs from
C-2. It alternates between two extreme operators, C-1 and C-
m. C-1 reduces the cost of each iteration, while C-m focuses
on minimizing the total number of iterations. Combining these
two operators optimizes the overall performance.

The strategy behind C-11mm is different. It attempts to

Fig. 3: Speedups of ConnectIt and Different Contour Variants compared with FastSV.

handle graphs with the smallest cost first. If, after several
iterations, the graph does not converge, C-11mm employs the
C-m operator to reduce the total number of iterations rapidly.
When a graph contains both very small and very large diameter
components, C-11mm quickly converges the small diameter
components with minimal cost before efficiently handling the
large diameter components using the C-m operator.

In summary, the speedup of the algorithms compared to
FastSV exhibits variations based on the size and character-
istics of the graphs. Different operators are more suitable for
different scenarios, depending on graph size, and diameter. The
overall performance of our Contour algorithm outperforms
FastSV in many cases, particularly when utilizing high-order
minimum mapping operators, validating the effectiveness of
our approach.

F. Speedup compared with ConnectIt

In Fig. 4, we examine the speedups of our Contour algo-
rithm compared to another state-of-the-art algorithm, Connec-
tIt. We will expose another perspective that can significantly
affect the performance of different algorithms.

Across the 36 graphs, C-m outperforms ConnectIt on 31
graphs, with an average speedup of 1.41. Similarly, C-2
achieves better performance on 26 graphs, with an aver-
age speedup of 1.2. Both C-1m1m and C-11mm outperform
ConnectIt on 23 graphs, with average speedups of 1.37 and
1.35, respectively. All of these Contour variants achieve better
performance on more than half of the graphs. C-1 shows better
performance on 14 graphs, with an average speedup of 1.11.
C-Syn, on the other hand, only outperforms ConnectIt on 2
graphs, with an average speedup of 0.62.

The experimental results provide valuable insights into
when to use Contour algorithms and when to use ConnectIt
to achieve better performance. In general, when we have a
sufficient number of parallel cores to significantly reduce the
cost of one iteration, employing our Contour algorithm will
lead to better performance. The Contour algorithm’s efficiency
lies in its ability to reduce the total number of iterations and

workload per iteration, resulting in overall speedup. However,
if the graph size is very large, and the number of parallel cores
is relatively small, each core will have to handle a considerable
number of edges in each iteration, limiting the parallel effect.
This is very similar to sequential instead of parallel computing.
In such scenarios, the performance improvement is driven by
high efficiency instead of high scalability because the system
cannot provide sufficient parallel resources, where ConnectIt
excels with almost linear time complexity, approaching opti-
mality. Thus, ConnectIt can achieve better performance when
the workload per core is significantly high or when the system
lacks parallel resources.

The work-depth model can clarify these results. When the
work per iteration is high and parallel resources are limited,
ConnectIt stands as an ideal choice since it requires only one
iteration. Conversely, when parallel resources can significantly
reduce the work per iteration, Contour algorithms achieve
better overall performance with their ability to tolerate more
iterations.

In conclusion, the choice between Contour algorithms and
ConnectIt depends on the available parallel resources or the
size of different graphs. Our Contour algorithm demonstrates
superior performance when enough parallel resources are
available, but ConnectIt remains a suitable choice for scenarios
with high workloads and limited parallel resources.

G. Distributed Memory Results

The previous sections’ results were based on shared memory
parallel execution. However, when we consider distributed
memory parallel executions involving multiple computing
nodes, the absolute execution times become much longer. In
practical scenarios, using multiple distributed memory com-
puting nodes to solve a problem with a much longer time is
not reasonable if it can be handled by a single shared memory
parallel node with much less time. Therefore, we just give a
brief summary instead of the detailed experimental results as
follows.

Fig. 4: Speedups of Different Contour Variants compared with ConnectIt.

When comparing with FastSV, our Contour algorithm
demonstrates significantly better speedup than that in the
shared memory parallel node setting. Among all the variants
of our Contour algorithm, C-1 achieves much better speedup
when the total number of iterations is relatively low. The
reason for this lies in C-1’s ability to achieve high locality and
reduce additional communication. Communication becomes a
major performance bottleneck in distributed system scenarios,
overshadowing computation.

Taking advantage of high-level parallel language Chapel,
the shared memory ConnectIt algorithm can be run on dis-
tributed systems. Similarly, ConnectIt exhibits better relative
performance compared to Contour when dealing with large-
sized graphs. Due to relatively less communication overhead,
ConnectIt even achieves good performance for middle-sized
graphs. For small and low-diameter graphs, C-1, C-11mm, and
C-1m1m are more efficient and offer better performance.

V. RELATED WORK

For connected component problems, graph traversal meth-
ods [9], [23]–[25] have a major problem where they cannot
achieve high performance when graph diameters are large or a
graph has many small components. Label propagation methods
[11], [19], [23], [25], [27] cannot converge fast when the graph
diameter is large.

The Shiloach-Vishkin (SV) algorithm [22] is the pioneering
tree-based hooking-compressing method to reduce the total
number of iterations efficiently. There are different kinds of
improvements to the SV algorithm. Awerbuch and Shiloach
(AS) [1] use a very efficient parallelization using proper
computational primitives and sparse data structures. The AS
algorithm only keeps the information of the current forest and
the convergence criterion for AS is to check whether each tree
is a star. Afforest [28] is an extension of the SV algorithm that
approaches optimal work efficiency by processing subgraphs
in each iteration. The LACC [2] algorithm uses linear algebraic
primitives to implement connected components and is based
on the PRAM AS algorithm. FastSV [30] further simplifies

and optimizes LACC’s tree hooking and compressing method
to improve the performance. Iteration-based tree hooking-
compressing methods exploit large-scale parallel resources to
reduce the cost of each iteration and the total number of
iterations.

Union-find-based algorithms [10], [12], [18] take advantage
of the disjoint set data structure to reduce the total operations
in one iteration. Tree-based methods try to reduce the number
of iterations, but disjoint set-based methods focus on reducing
the total number of operations. So, tree-based methods are
suitable for large-scale parallel execution but disjoint set-based
methods are good for parallel resources limited scenarios.

There are some works combining different methods together
to optimize the performance further. Slota et al. [26] devel-
oped a distributed memory multi-step method that combines
parallel BFS and label propagation technique. The ParConnect
algorithm [14] is based on both the SV algorithm and parallel
breadth-first search (BFS). ConnectIt [10] provides a frame-
work to provide different sampling strategies and tree hooking
and compression schemes.

Recently, different optimization methods for connected
component problems have been proposed. Thrifty Label Prop-
agation (TLP) algorithm [11] uses the skewed degree distri-
bution of real-world graphs to develop their optimized label
propagation algorithm. Sutton et al. [28] uses sampling to find
the connected components on a subset of the edges, which
can be used to reduce the number of edge inspections when
running connectivity on the remaining edges.

We formulate the connected components as a contour line
discover problem and develop different minimum mapping
operators for different scenarios. Our method is flexible and
simple. It can achieve high performance in different scenarios.

VI. CONCLUSION

In this study, we addressed the fundamental graph problem
of finding connected components using a novel method called
“minimum mapping.” Our approach is characterized by its

simplicity, flexibility, and efficient implementation, setting it
apart from existing state-of-the-art methods.

We proved that our method achieves convergence in
O(log2(dmax)) time, where dmax represents the largest diam-
eter among all components in a graph. Experimental results
also show that our algorithm can converge in a small number
of iterations for different graphs.

Experimental results showed that our Contour method sig-
nificantly outperforms the state-of-the-art large-scale parallel
FastSV method. Additionally, our method complements the
state-of-the-art shared memory parallel ConnectIt method.
Notably, we have successfully integrated our method and the
state-of-the-art methods into an open-source graph package,
Arachne. Arachne extends an open-source framework for
Python users, enabling efficient large-scale graph analytics on
supercomputers. This integration empowers high-level Python
users to conduct large graph analytics efficiently, regardless of
their familiarity with supercomputing and large data process-
ing intricacies.

ACKNOWLEDGMENT

We appreciate the help from the Arkouda and the Chapel
community when we integrated the algorithms into Arkouda.
This research was funded in part by NSF grant number CCF-
2109988.

VII. REFERENCES

[1] Baruch Awerbuch and Yossi Shiloach. New connectivity and MSF
algorithms for shuffle-exchange network and PRAM. IEEE Transactions
on Computers, 36(10):1258–1263, 1987.

[2] Ariful Azad and Aydın Buluç. LACC: A linear-algebraic algorithm for
finding connected components in distributed memory. In 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 2–12. IEEE, 2019.

[3] D.A. Bader and G. Cong. A fast, parallel spanning tree algorithm
for symmetric multiprocessors. In 18th International Parallel and
Distributed Processing Symposium, 2004. Proceedings., pages 38–,
2004.

[4] Guy E Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism
in randomized incremental algorithms. Journal of the ACM (JACM),
67(5):1–27, 2020.

[5] Guy E Blelloch and Bruce M Maggs. Parallel algorithms. In Algorithms
and theory of computation handbook: special topics and techniques,
pages 25–25. 2010.

[6] Ka Wong Chong and Tak Wah Lam. Finding connected components in
O(log n log log n) time on the EREW PRAM. Journal of Algorithms,
18(3):378–402, 1995.

[7] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms. MIT press, fourth edition, 2022.

[8] Richard Courant and Herbert Robbins. What is Mathematics?: an
elementary approach to ideas and methods. Oxford University Press,
USA, 1996.

[9] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. Theoretically
efficient parallel graph algorithms can be fast and scalable. ACM
Transactions on Parallel Computing (TOPC), 8(1):1–70, 2021.

[10] Laxman Dhulipala, Changwan Hong, and Julian Shun. Connectit:
A framework for static and incremental parallel graph connectivity
algorithms. arXiv preprint arXiv:2008.03909, 2020.

[11] Mohsen Koohi Esfahani, Peter Kilpatrick, and Hans Vandierendonck.
Thrifty label propagation: Fast connected components for skewed-degree
graphs. In 2021 IEEE International Conference on Cluster Computing
(CLUSTER), pages 226–237. IEEE, 2021.

[12] Zvi Galil and Giuseppe F Italiano. Data structures and algorithms
for disjoint set union problems. ACM Computing Surveys (CSUR),
23(3):319–344, 1991.

[13] Costantino Grana, Daniele Borghesani, and Rita Cucchiara. Optimized
block-based connected components labeling with decision trees. IEEE
Transactions on Image Processing, 19(6):1596–1609, 2010.

[14] Chirag Jain, Patrick Flick, Tony Pan, Oded Green, and Srinivas Aluru.
An adaptive parallel algorithm for computing connected components.
IEEE Transactions on Parallel and Distributed Systems, 28(9):2428–
2439, 2017.

[15] David R Karger, Noam Nisan, and Michal Parnas. Fast connected
components algorithms for the EREW PRAM. In Proceedings of the
fourth annual ACM symposium on Parallel algorithms and architectures,
pages 373–381, 1992.

[16] Arvind Krishnamurthy, Steven Lumetta, David E Culler, and Katherine
Yelick. Connected components on distributed memory machines. Third
DIMACS Implementation Challenge, 30:1–21, 1997.

[17] Michael Merrill, William Reus, and Timothy Neumann. Arkouda:
interactive data exploration backed by Chapel. In Proceedings of the
ACM SIGPLAN 6th on Chapel Implementers and Users Workshop, pages
28–28, 2019.

[18] Md Mostofa Ali Patwary, Jean Blair, and Fredrik Manne. Experiments
on union-find algorithms for the disjoint-set data structure. In Exper-
imental Algorithms: 9th International Symposium, SEA 2010, Ischia
Island, Naples, Italy, May 20-22, 2010. Proceedings 9, pages 411–423.
Springer, 2010.

[19] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear
time algorithm to detect community structures in large-scale networks.
Physical review E, 76(3):036106, 2007.

[20] William Reus. CHIUW 2020 Keynote Arkouda: Chapel-Powered, In-
teractive Supercomputing for Data Science. In 2020 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 650–650. IEEE, 2020.

[21] Oliver Alvardo Rodriguez, Zhihui Du, Joseph T. Patchett, Fuhuan Li,
and David A. Bader. Arachne: An Arkouda package for large-scale
graph analytics. In The 26th Annual IEEE High Performance Extreme
Computing Conference (HPEC), Virtual, September 19-23, 2022, 2022.

[22] Yossi Shiloach and Uzi Vishkin. An O(logn) parallel connectivity
algorithm. Journal of Algorithms, 3(1):57–67, 1982.

[23] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
pages 135–146, 2013.

[24] Julian Shun and Guy E Blelloch. A simple parallel cartesian tree
algorithm and its application to parallel suffix tree construction. ACM
Transactions on Parallel Computing (TOPC), 1(1):1–20, 2014.

[25] George M Slota, Sivasankaran Rajamanickam, and Kamesh Madduri.
BFS and coloring-based parallel algorithms for strongly connected
components and related problems. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 550–559. IEEE,
2014.

[26] George M Slota, Sivasankaran Rajamanickam, and Kamesh Madduri.
A case study of complex graph analysis in distributed memory: Im-
plementation and optimization. In 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 293–302. IEEE,
2016.

[27] Stergios Stergiou, Dipen Rughwani, and Kostas Tsioutsiouliklis. Short-
cutting label propagation for distributed connected components. In
Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, pages 540–546, 2018.

[28] Michael Sutton, Tal Ben-Nun, and Amnon Barak. Optimizing parallel
graph connectivity computation via subgraph sampling. In 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 12–21. IEEE, 2018.

[29] Robert E Tarjan and Jan Van Leeuwen. Worst-case analysis of set union
algorithms. Journal of the ACM (JACM), 31(2):245–281, 1984.

[30] Yongzhe Zhang, Ariful Azad, and Zhenjiang Hu. FastSV: A distributed-
memory connected component algorithm with fast convergence. In
Proceedings of the 2020 SIAM Conference on Parallel Processing for
Scientific Computing, pages 46–57. SIAM, 2020.

