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Abstract

We study discrete distribution estimation under
user-level local differential privacy (LDP). In
user-level ε-LDP, each user has m ≥ 1 sam-
ples and the privacy of all m samples must be
preserved simultaneously. We resolve the fol-
lowing dilemma: While on the one hand having
more samples per user should provide more in-
formation about the underlying distribution, on
the other hand, guaranteeing privacy of all m
samples should make estimation task more dif-
ficult. We obtain tight bounds for this prob-
lem under almost all parameter regimes. Perhaps
surprisingly, we show that in suitable parameter
regimes, having m samples per user is equivalent
to having m times more users, each with only
one sample. Our results demonstrate interesting
phase transitions for m and the privacy parame-
ter ε in the estimation risk. Finally, connecting
with recent results on shuffled DP, we show that
combined with random shuffling, our algorithm
leads to optimal error guarantees (up to logarith-
mic factors) under the central model of user-level
DP in certain parameter regimes. We provide
several simulations to verify our theoretical find-
ings.

1 Introduction

Modern distributed machine learning systems such as fed-
erated learning (Kairouz et al., 2021) collects data from
users to provide better service. Without proper design, a
learning algorithm can reveal sensitive information about
the users. Differential privacy (DP) (Dwork et al., 2006),
which requires the algorithm’s output to be ªsimilarº when
a single contribution changes, has become the gold stan-
dard for privacy protection in many machine learning and
database applications.
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In the distributed setting, the more stringent version, local
differential privacy (LDP) (Warner, 1965; Kasiviswanathan
et al., 2011) requires users to privatize their data before
sending it to the data collector (see Definition 1.2). In other
words, the true data never leaves the user. However, LDP
comes at a significant drop in utility compared to central
DP where a trusted central data collector performs differ-
entially private analysis on user data. To circumvent this,
a sequence of recent works (Erlingsson et al., 2019; Cheu
et al., 2019; Balle et al., 2019; Girgis et al., 2021; Feld-
man et al., 2022), has shown that combined with random
shuffling, locally randomized data can lead to an amplified
DP guarantee in the central model. This setting is often
referred to as the shuffle model of DP and motivates more
study of local randomizers with large privacy parameters.

For the task of discrete distribution under LDP constraints,
efficient algorithm and fundamental limits have been es-
tablished in Duchi et al. (2013); Erlingsson et al. (2014);
Kairouz et al. (2016); Ye and Barg (2018); Acharya et al.
(2018); Chen et al. (2020). However, these works consider
the setting where each user contributes a single data point.
The setting where multiple samples per user are allowed,
which is common in practice, is largely unexplored.

We study discrete distribution estimation when each user
has multiple data samples and must privatize all their sam-
ples under LDP. Notice that without privacy constraints,
more samples per user means an increase in overall num-
ber of samples thus leading to a reduction in the estima-
tion error. When each user has multiple samples, one can
choose to ignore all but one sample from each user and
obtain the same performance as the item-level LDP where
user has one data sample, which will lead to the case perfor-
mance as the one-sample case. When the users have multi-
ple samples, we have hope of using information from these
samples to obtain better estimators. However, the noise
addition mechanism also becomes stringent because now
changing the value of a data point means changing all the
samples of a user. We ask the following question.

Can multiple samples per user help with estimation while

maintaining

the same local privacy budget at each user?

We settle this question affirmatively and obtain a nearly
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tight characterization of the estimation error for all values
of m (the number of samples per user) and ε (the privacy
parameter). We show that in certain regimes, having m
samples per user is equivalent to having mn users each

with one sample and each with a privacy budget of ε. Our
results also demonstrate interesting phase transitions of the
estimation risk in terms of privacy budget ε and number of
samples per user m.

Moreover, we show that combined with random shuffling,
our results lead to optimal (up to logarithmic factors) esti-
mation error in the central model of user-level privacy (Liu
et al., 2020; Narayanan et al., 2022) in certain regimes of
ε while maintaining the local privacy guarantee that the
server only has access to a properly randomized version
of user data. This also establishes the tight estimation error
in the shuffle model of DP.

Organization. We define the problem in Section 1.1 and
state our results in Section 2. We introduce our algorithms
for the high privacy regime (ε < 1) in Section 3. Algo-
rithms for the low privacy regime are discussed in Sec-
tion 4. Finally we discuss lower bounds in Section 5. Miss-
ing proofs are presented in the supplementary material.

1.1 Problem setup and preliminaries

Let ∆k := ¶p = (p1, . . . , pk) ∈ R
k : p ≥ 0, ∥p∥1 = 1♢

be the (k−1)-dimensional probability simplex, which is the
set of all k-ary distributions. In this paper, we consider the
homogeneous case where there are a total of n users, each
observing m i.i.d. samples from the same (unknown) dis-
tribution p ∈ ∆k. We write Xi := (Xi,1, Xi,2, . . . , Xi,m)
for the samples at user i, and Xn = (X1, X2, . . . , Xn) ∈
[k]nm for all nm samples.

Remark on heterogeneity. In practice, the data genera-
tion process can be heterogeneous. Our results can be ex-
tended to the case with limited heterogeneity on user distri-
bution, e.g., ∀i ∈ [n], Xi ∼ pi and dTV(pi, p) ≤ γ. Using
the coupling argument in (Levy et al., 2021, Appendix B),
the same results can be obtained when γ is small (poly-
nomial in 1/m and 1/n). We leave the study of the more
general heterogeneous case as an interesting future work.

To preserve privacy of users, (central) differential privacy
requires an algorithm A has ªsimilar" outputs on neigh-
bouring datasets, formally defined below.

Definition 1.1. An algorithm A : [k]nm → Y is said to be
(ε, δ)-DP at user level if for any Xn and X

′n which differ
at one user’s contribution, we have for any S ⊂ Y ,

Pr (A(Xn) ∈ S) ≤ eε Pr
(

A(X
′n) ∈ S


+ δ.

The case of δ > 0 is called approximate DP and δ = 0 is
pure DP, denoted as ε-DP. When m = 1, this is the same as
item-level DP.

In the local model of DP, user i sends a message Yi ∈ Y
to the central server through a channel Wi, which describes
the randomized mapping from [k]m to Y . We require each
Wi to satisfy LDP constraints:

Definition 1.2. A randomized scheme Wi : [k]m → Y
satisfies (ε, δ)-LDP at user-level if ∀x, x′ ∈ [k]m and S ⊂
Y ,

Wi(y ∈ S ♣ x) ≤ eε · Wi(y ∈ S ♣ x′) + δ. (1)

For LDP, we will focus on the case when δ = 0, denoted
as ε-LDP. All messaging schemes satisfying (1) with δ = 0
are denoted Wε.

Upon receiving Y n := (Y1, Y2, . . . , Yn), the server outputs
an estimator p̂ : Yn → ∆k for the underlying distribution
p. The performance of the estimator is measured by the
expected total variation (TV) distance between p̂ and p,
where for p, q ∈ ∆k, dTV(p, q) := (1/2)

∑
x∈[k] ♣p(x) −

q(x)♣. In this work, we are interested in the minimax risk

of the estimation problem, defined as

R(ε, k, n, m) := min
W n

min
p̂

max
p∈∆k

E[dTV(p̂(Y n), p)] (2)

where the minimum over W n is taken over all ε-LDP mes-
saging schemes.

In general, the choice of Wi may depend on the previous
messages Y i−1 := (Y1, Y2, . . . , Yi−1) and a common ran-
dom seed U (independent of the observations) available to
all users. A protocol is called noninteractive if all the
channels Wis are chosen independently of each other con-
ditioned on the shared random seed. In distributed systems,
noninteractive schemes are easier to implement and lead to
lower latency.

Next we introduce composition property of differential pri-
vacy and privacy amplification by shuffling, which we will
use in later sections.

Theorem 1.3 (Advanced composition (Dwork et al.,
2010; Dwork and Roth, 2014)). If messaging schemes

W1, W2, . . . , Wt satisfy ε-LDP, then their composition

W t = (W1, W2, . . . , Wt) is ε′-LDP with ε′ = tε and

(ε′′, δ)-LDP with ε′′ = ε
√

2t log(1/δ)+ tε(eε −1). More-

over, the choice of Wi is allowed to depend on the outputs

of W1, W2, . . . , Wi−1.

Theorem 1.4 (Amplification by shuffling (Feldman et al.,
2022)). Suppose messaging schemes W1, W2, . . . , Wn

satisfy ε-LDP. Let A be the algorithm that applies

(W1, W2, . . . , Wn) on Xn
π = (Xπ(1), . . . , Xπ(n)) where π

is a uniform premutation of [n], then we have for δ ∈ (0, 1)
satisfying ε ≤ log( n

16 log(1/δ) ), A is (ε′, δ) - central DP for

ε′ ≤ log

(
1 +

eε − 1

eε + 1

(
8
√

eε log(4/δ)√
n

+
8eε

n


.
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When ε > 1, we have ε′ = O

√
eε log(1/δ)

n


and when

ε ≤ 1, ε′ = O


ε
√

log(1/δ)
n


. In the distributed setting,

random shuffling is often performed by a secure multi-
party communication protocol. Hence besides central DP
guarantee, the model also guarantees that the server does
not have access to the true user data. This model is often
referred to as shuffle model (Erlingsson et al., 2019; Cheu
et al., 2019; Balle et al., 2019; Girgis et al., 2021; Feldman
et al., 2022).

2 Prior work and our results

Distribution estimation under local privacy when each user
has one sample (m = 1) has been well-studied and it has
been established that Erlingsson et al. (2014); Duchi et al.
(2013); Kairouz et al. (2016); Ye and Barg (2018); Acharya
et al. (2018); Acharya and Sun (2019),1

R(ε, k, n, m = 1) = Θ

(√
k

n
∨
√

k2

n((eε − 1)2 ∧ eε)


.

(3)

The first term is the centralized minimax risk without pri-
vacy constraints and the second term is the additional loss
due to privacy. In our setup when each player has m sam-
ples, without privacy constraints when ε = ∞, the server
has unconstrained access to all nm samples giving a risk of

R(ε = ∞, k, n, m) = Θ

(√
k

nm


. (4)

Therefore the first term of minimax risk reduces by a fac-
tor of 1/

√
m compared to the case when each user has one

sample. The conundrum we try to resolve is about the sec-
ond term. Can one take advantage of the multiple samples
per user or does the requirement of guaranteeing privacy to
all samples overwhelm the minimax risk?

Consider the case when ε = O(1). If we only use one sam-

ple from each user, we recover the rate O
(√

k2/(nε2)


for the case of m = 1 under ε-LDP. Another approach
is to use a naive element-level LDP algorithm and apply
composition of LDP (Theorem 1.3) to get user-level pri-

vacy guarantee. This leads to a rate of O
(√

mk2/(nε2)


under pure LDP or Õ(
√

k2/(nε2)) if we relax to approxi-
mate LDP and use advanced composition. Either case, the
risk does not decrease with m. The question of whether
increasing m brings an advantage is still unclear.

Another important question for the general m > 1 case
is the dependence on the privacy parameter ε. From (3),

1We use a ∨ b = max{a, b} and a ∧ b = min{a, b}.

when m = 1, the error rate decreases exponentially with
respect to ε when ε ∈ (1, ln k). With m > 1, can we still
enjoy this exponential rate, and if so, for what ranges of ε?

In this work, we answer these questions, showing that in-
creasing m can indeed help in certain regimes and the rate
can be as steep as O(1/

√
m) as in the centralized case.

Moreover, we characterize the precise dependency on ε,
which has more sophisticated phase transitions compared
to the case where m = 1. Our results are summarized in
Table 1.

For sufficiently large n, our rates are tight up to constant
factors in all regimes except in k/eε ≤ m < k where it is
tight up to log factors. Somewhat surprisingly, for ε < 1
or m < k/eε, the error rate is the same as having m times
more users in the one sample case, but the sum of privacy
budgets of all users is m times smaller. Next we look at m
and ε separately and discuss their rates in different regimes.

Dependence on m. When ε < 1, the error rate always
decays as Θ(1/

√
m). For ε ≥ 1, the error rate with re-

spect to m differs for small m (m < k/eε), medium m
(k/eε < m < k), and large m (m > k). For small m
and large m, the error decays as

√
m, but the dependence

on ε is different. For medium m, however, the error barely
improves with m by at most a logarithmic factor. It is an in-
teresting future direction to study whether this logarithmic
factor is tight.

Dependence on ε. In the high privacy regime (ε < 1),
the error decays at a rate of Θ(1/ε). The situation in the
low privacy regime (ε > 1) is more complicated. When
m < k, we observe a phase transition at ε = ln(k/m).
Below this threshold, there is an exponential decay with
respect to ε. Beyond ln(k/m), the rate of decay becomes
Θ(

√
ε). If m > k, then the exponential phase does not

exist. When ε ≥ k, the error matches that of ε = ∞ and
cannot be improved further by increasing ε.

2.1 Connection to central and shuffled DP at user

level

Our results imply almost tight rates in the central and shuf-
fle model of DP under certain parameter regimes through
amplification by shuffling. In particular, we get the follow-
ing result.

Theorem 2.1. For m < k and ε and δ satisfying ε <√
k log(1/δ)2

mn and δ ∈ (0, 1/n), using algorithms in Theo-

rem 3.1 and Theorem 4.3 combined with random shuffling,

the estimation risk under (ε, δ) user-level DP in the shuffle

model is

O


k log(1/δ)

n
√

mε


.
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useful information about a subset Bj if it observes at least
one sample in Bj . If m = 1, this happens with proba-
bility p(Bj). However, with m samples, the probability
increases to Pm(S). At least 90% of the blocks satisfy
p(Bj) ≤ 10/m, in which case Pm(Bj) = Θ(mp(Bj)).
Hence, the number of effective messages sent by the users
roughly increases by a factor of m.

Connection to Acharya et al. (2021a). Acharya et al.
(2021a) studied a similar problem under communication
constraints where each user sends a message of at most ℓ
bits. They show that more samples per user decreases the
error by O(1/

√
m) in certain parameter regimes. While

our algorithms are inspired by their algorithms, nontrivial
extensions and novel ideas are needed to obtain tight rates
in the LDP case. We highlight the important differences in
terms of algorithm design and proof technique below.

Localization stage. In the localization stage, the analysis
for the Gray code scheme in Acharya et al. (2021a) fails
since the bits are not private. This issue cannot be resolved
by flipping the bits sent by the Gray code scheme using
Randomized Response since it requires the error probabil-
ity for most of the bits in the Gray code to decrease expo-
nentially.

In this work, we view the localization localization stage as
a private selection problem and resolve it based on private
sparse distribution estimation in Acharya et al. (2021b).
In addition to circumventing the failure issue mentioned
above in the LDP case, this new idea can also be used in the
communication-constrained case considered in Acharya
et al. (2021a), which leads to a simpler analysis and better
regularity condition. For example, Theorem 2.1 of Acharya
et al. (2021a) requires n/ log n = Ω(k log m) for 1-bit al-
gorithms, while using communication-limited sparse distri-
bution estimation algorithm in Acharya et al. (2021b) only
requires n = Ω(k log m).

A unified algorithm for m ≤ k/eε and k/eε ≤ m ≤ k.
For the algorithms with m ≤ k/eε, we divide the domain
[k] into m bins instead of k/eε as suggested by Acharya
et al. (2021a). Intuitively, this modification ensures that for
a uniform p, for any block Bj , Pm(Bj) is some constant
away from 0 and 1, which ensures that privatization does
not lose too much information. Moreover, the algorithms
for m ≤ k/eε and k/eε ≤ m ≤ k are now unified. We can
make the same modification to the algorithms in Acharya
et al. (2021a) for m ≤ k/2ℓ and k/2ℓ ≤ m ≤ k.

Lower bound proof. Acharya et al. (2021a) uses a Pois-
sonization trick, where each user needs to send one bit to
indicate whether they get enough samples under Poisson
sampling, which might violate privacy constraints. We re-
solve this issue differently in different regimes. See Sec-
tion 5 for a detailed discussion.

3 Algorithms for high privacy regime

(ε ≤ 1)

We focus on the high privacy regime (ε ≤ 1) and show that
having more samples per user indeed brings an advantage
and the rate decreases as Θ(1/

√
m).

Theorem 3.1. When ε < 1 and n ≥ Ck log(m)/ε2 for

some constant C,

R(ε, k, n, m) = Θ

(√
k2

mnε2


.

Moreover, the bound is achieved by a non-interactive pro-

tocol.

We describe the upper bound part in this section and dis-
cuss the lower bound idea in Section 5. For simplicity,
we describe the interactive algorithm in this section, which
carries most of the algorithmic ideas. We discuss how to
modify the algorithm to a non-interactive version in Ap-
pendix A.1.

Inspired by Acharya et al. (2021a), we start with the special
case of k = 2 and then generalize to k > 2.

3.1 Coin estimation (k = 2)

We first consider a simple coin estimation problem, which
corresponds to the special case of k = 2: There are n users,
each has m i.i.d. samples from Bern(p). The goal is to es-
timate p under ε-LDP. Our solution to this simple problem
will become a crucial building block for algorithms in the
general case. The formal guarantee is stated below.

Theorem 3.2. For ε < 1, there exists an algorithm with an

estimate p̂ such that if n ≥ C log(m)/ε2 for some constant

C,

E
[
(p̂ − p)2

]
= O

(
1/
(
mnε2

))
.

Let Zu ∼ Bin(m, p) be the number of 1’s in user u. Our
algorithm is inspired by Acharya et al. (2021a, Section 2.1)
and consists of two stages. In the first stage (localization),
we estimate p up to accuracy O(

√
p(1 − p)/m), the stan-

dard deviation of the local empirical estimate Zi/m. Then
in the second stage (refinement), we try to obtain a more
accurate estimate by inverting a binomial density function.

Similar to Acharya et al. (2021a), we divide the [0, 1] inter-
val into Θ(

√
m) sub-intervals. At a high level, the intervals

are designed such that if p ∈ Ii, there exists c, such that

(p − c

√
p(1 − p)

m
, p + c

√
p(1 − p)

m
) ⊂ Ii−1 ∪ Ii ∪ Ii+1.

This is important for the localization stage since by Ob-
servation 2.2, we know that the empirical estimate of p
will lie in an interval close to p. Let CI be a constant
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and r := ⌊
√

m
2CI

⌋. We define a partition ¶Ii♢i∈[2r]. Let

Ii := [li−1, li] for 1 ≤ i ≤ r, where

li := min


CI i2

m
,

1

2


, 0 ≤ i ≤ r.

Furthermore I2r+1−i := [1 − li, 1 − li−1].

Next we describe the algorithm, we divide users into two
groups S1, S2 with equal size, which will be used for the
localization stage and refinement stage respectively.

Localization stage. In this stage, the server obtains a
crude estimation of p based on messages from S1.

1. Privatization scheme. For u ∈ S1, let Vu be a 2r-
dimensional binary vector with ∀i ∈ [2r], Vu(i) =
1¶Zu ∈ Ii♢, which is a one-hot vector indicating the
index of the interval that Zu falls in. Let Yu be ob-
tained by flipping each coordinate of Vu with proba-
bility β := 1/(eε/2 + 1), i.e., ∀i ∈ [2r],

Yu(i) =

{
Vu(i) with prob 1 − β,

1 − Vu(i) with prob β.

2. Estimation scheme. Here we obtain a confidence in-
terval of p using Yu’s, whose index is given by

î = arg max
i∈[2r]

∑

u∈S1

Yu(i).

Refinement stage. In this stage, users in S2 send mes-
sages based on î and the server obtains a refined estimate
of p.

1. Privatization scheme. We choose t as follows: if 2 <
î < 2r − 2, then let t be the mid point of Iî ; if î ≤ 2,
let t = 1/m; else let t = 1 − 1/m. Users in S2 send a
privatized version of 1¶Zu/m > t♢, i.e.,

Yu =

{
1¶Zu/m > t♢ with prob 1 − β,

1 − 1¶Zu/m > t♢ with prob β.

2. Estimation scheme. Let Pm,t(p) :=
Pr (Zu/m > t ♣ Zu ∼ Bin(n/2, p)) and

P̂ :=
eε + 1

eε − 1

(
2

n

∑

u∈S2

Yu − 1

eε + 1


,

which is the empirical estimate of Pm,t(p). Return
p̂ = P −1

m,t(P̂ ).

The interactive scheme achieves the error rate in Theo-
rem 3.2. We provide a proof sketch here and defer the
detailed proof to Appendix A.1. In the localization stage,
we show that p ∈ Î := Iî ∪ Iî−1 ∪ Iî+1 with high prob-
ability. More precisely, the failure probability is at most
O(1/(mnε2)) when n = Ω(log m/ε2).

In the refinement stage, we condition on the event that p ∈
Î (i.e. all expectations are conditioned on p ∈ Î). Using
the analysis for Randomized Response, we have

E

[
(P̂ − Pm,t(p))2

]
= O


1

nε2


.

Furthermore, since ♣Î♣ = O(
√

p(1 − p)/m), it is shown
in Acharya et al. (2021a) that for p ∈ Î ,

d

dp
Pm,t(p) = Ω(

√
m).

Hence, evaluating p̂ = P −1
m,t(P̂ ) yields the desired accu-

racy,

E
[
(p̂ − p)2

]
≤ max

p∈Î


dPm,t(p)

dp

−2

E

[
(P̂ − Pm,t(p))2

]

= O


1

mnε2


.

Combining with the failure probability in the localization
stage proves Theorem 3.2 in the interactive setting.

3.2 General case k > 2

Using the algorithm for coin estimation, we can design an
algorithm for k > 2 using ideas from the 1-bit Hadamard
Response algorithm (Acharya and Sun, 2019).

Without loss of generality assume k is a power of 2. Let
Hk be the Hadamard matrix defined as

H1 = 1, H2l =


H2l−1 H2l−1

H2l−1 −H2l−1


, ∀l ≥ 1.

Let Ti = ¶j ∈ [k] : Hk(i, j) = 1♢ be the locations of 1’s
in the ith row of Hk. Users are divided into k groups of
size n/k, each responsible for estimating one of p(Ti). By
Theorem 3.2, we can obtain p̂T (i) such that

E
[
(p(Ti) − p̂T (i))2

]
= O


k

mnε2


.

Let p̂T = (p̂T (1), . . . , p̂T (k)). We obtain p̂ with inverse
Hadamard transform p̂ = H−1

k (2p̂T − 1k). Let pT =
(p(T1), . . . , p(Tk)). Since H⊤

k Hk = kI , we have

E

[
∥p̂ − p∥2

2

]
=

1

k
E

[
∥p̂T − pT ∥2

2

]
= O


k

mnε2


.

Applying Cauchy-Schwarz inequality, we can obtain the
desired accuracy in Theorem 3.1.

4 Algorithms for low privacy regime (ε > 1)

In this regime, the main challenge is to design algorithms
that takes full advantage of both the increasing sample size
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m and extra privacy budget ε. One may easily propose a
simple extension of the algorithm for ε < 1: each user
split the privacy budget into ⌊ε⌋ parts using the composition
property of LDP (Theorem 1.3), each with a budget of 1
(the excess budget is omitted). Now each user can send
information about ⌊ε⌋ ∧ k different rows in Hk. Hence the
effective sample size increases by a factor of ε ∧ k. Using
Theorem 3.1, the guarantee of this algorithm is given by
Corollary 4.1

Corollary 4.1. For ε > 1, if n > Ck log(m)/ε for some

constant C, the simple extension outputs an estimate p̂ with

E[dTV(p̂, p)] = O

(√
k

mn
∨
√

k2

mnε


.

Hence we can easily achieve a risk with 1/
√

ε decay. Can
we acheive better rates? It turns out that when n > (k/ε)2,
for large m (m > k) the simple extension achieves the
following optimal risk.

Theorem 4.2. For n > (k/ε)2, m ≥ k, and ε > 1, the

minimax error rate satisfies

R(ε, k, n, m) = Ω

(√
k

mn
∨
√

k2

mnε


.

For small m and medium m, we can design better algo-
rithms, which we will elaborate in this section.

4.1 Small m ( m ≤ k/eε)

For small m, we are able to obtain the same Θ(1/
√

m)
decrease in the rate as in the high privacy case. Moreover,
the error rate decays exponentially with ε, similar to the
error rate for m = 1.

Theorem 4.3. When ε > 1 and m < k/eε, if n >
Cm log(m), we have

R(ε, k, n, m) = Θ

(√
k2

mneε


.

The bound is achieved by a non-interactive protocol.

We focus on the upper bound part in this seciton and dis-
cuss the lower bound proof in Section 5. At first glance,
it may seem overly ambitious to achieve both exponential
decay in ε and 1/

√
m improvement in m. Nevertheless,

we accomplish this goal by taking advantage of both Ob-
servation 2.2 and 2.3, and using the algorithm for m = 1
which enjoys exponential dependence on ε as a subroutine.
Details of the algorithm are described as follows,

1. Let ε0 = 0.52. Divide the domain [k] into m blocks
B1, . . . , Bm, each with size k/m.

2We choose ε0 = 0.5 for simplicity. Any constant ε0 < 0.5

will work without changing the bounds up to constant.

2. Each user uses ε0 = 0.5 to estimate the block dis-
tribution pB := [p(B1), . . . , p(Bm)] with the algo-
rithm for ε ≤ 1 in Section 3. Denote the estimate as
p̂B = [p̂B(1), . . . , p̂B(m)].

3. Divide all users into m groups. The jth group tries to
estimate p̄j := p(·♣Bj), the distribution conditioned
on a sample is in Bj (treated as uniform if p(Bj) =

0). Note that for x ∈ Bj , p̄j(x) = p(x)
p(Bj) .

To do this, each user in the jth group considers the
distribution p̃j over Bj ∪ ¶⊥♢ where

p̃j(⊥) := PXm∼p (∀x ∈ Bj , x /∈ Xm) = (1 − p(Bj))
m

,

and for x ∈ Bj , p̃j(x) is the probability that x is the
first symbol in Bj that appears in Xm . It can be ob-
tained that

p̃j(x) = p̄j(x)(1 − p̃(⊥)).

A user can simulate a sample from p̃j by getting ⊥ if
Bj ∩Xm = ∅ and getting the first sample in Xm ∩Bj

if it is not empty. Each user then sends a message
using Hadamard Response (Acharya et al., 2018) for
(ε − ε0)-LDP.

The server can then get an estimate ˆ̃pj for p̃j using
the messages above. Using ˆ̃pj , an estimate p̂j for p̄j

can be obtained by ∀x ∈ Bj

p̂j(x) =
ˆ̃pj(x)

1 − ˆ̃pj(⊥)
,

or m/k if 1 − ˆ̃pj(⊥) = 0.

4. To obtain an estimate p̂ for the underlying distribu-
tion, for each x ∈ Bj ,

p̂(x) = p̂B(j) · p̂j(x).

To derive the guarantee for the algorithm, we need to relate
the estimation errors for p, p̃j , and p̄j .

Lemma 4.4. The estimation errors can be decomposed as

E[dTV(p̂, p)] ≤
∑

j∈[m]

p(Bj)

(mp(Bj)) ∧ 1
E
[
dTV

(
ˆ̃pj , p̃j

)]

+ E[dTV(p̂B , pB)] (5)

From Theorem 3.1, when n/m > C log(m),

E[dTV(p̂B , pB)] = O

(√
m2

mn


= O

(√
k2

mneε


. (6)

The second inequality is due to m ≤ k2/(meε) whenever
m ≤ k/eε/2. By the guarantee of the Hadamard Response
algorithm (Acharya et al., 2018, Corollary 8),

E
[
dTV

(
ˆ̃pj , p̃j

)]
= O

(√
(k/m)2

(n/m)eε


= O

(√
k2

mneε


.

Plugging in (5) yields the desired bound. Detailed proofs
of Lemma 4.4 and Theorem 4.3 are in Appendix D.2.
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4.2 Medium m (k/eε < m < k)

In this regime, we discover that increasing m barely helps
with improving the error rates in certain parameter regimes.

Theorem 4.5. For ε > 1 and k/eε < m < k, if n >
Cm log(m)/ε for some constant C, we have

R(ε, k, n, m) = O

(√
k

mn
∨
√

k ln(k/m + 1)

nε


.

The bound is achieved by a non-interactive protocol.

Note that R(ε, k, n, m) is non-increasing with m. Set-
ting m = k in Theorem 4.2 yields a lower bound of

Ω
(√

k/mn ∨
√

k/nε


for k/eε < m < k when n >

(k/ε)2. Thus Theorem 4.5 is tight up to logarithmic fac-
tors.

When m ≤ k/eε/2, we use the same algorithm as m ≤
k/eε, and the guarantee is proved similarly (see Ap-
pendix B.2 for details). When m > k/eε/2, we make the
following changes,

1. To learn pB = [p(B1), . . . , p(Bm)], we use ε/2 pri-
vacy budget with the algorithm for m ≥ k. Hence, the
estimation error for pB satisfies

E[dTV(p̂B , pB)] = O

(√
m2

mnε


= O

(√
k

nε


.

The final equality is due to m < k.

2. To estimate p(·♣Bj), we divide the remaining bud-
get of ε/2 into t′ := ⌊ ε

2 ln(k/m) ⌋ parts. Note that
with ln(k/m) privacy budget and n/m samples, we
can learn p̃j with accuracy O(

√
k/n). Since k/m <

eε/2, we can assign m ∧ t′ blocks to each user. The
effective sample size increases by a factor of m ∧ t′.
Thus

E
[
dTV

(
ˆ̃pj , p̃j

)]
= O

(√
k

n(m ∧ t′)



= O

(√
k

mn
∨
√

k ln(k/m + 1)

nε


.

Applying Lemma 4.4 yields the desired upper bound.

5 Lower bound

In this section, we discuss the proof of lower bounds in
Theorem 3.1, Theorem 4.3, and Theorem 4.2. We use the
information contraction framework in Acharya et al. (2020)
and the lower bound construction in Acharya et al. (2021a).
Our hard instances are from the ªPaninskiº family (Panin-
ski, 2008). Let γ ∈ (0, 1/2) be a parameter related to the

expected error. We consider a family of distributions de-
fined as follows: for each vector z ∈ Z := ¶−1, 1♢k/2,
define a discrete distribution pz as

pz(2i − 1) =
1 + γzi

k
, pz(2i) =

1 − γzi

k
.

The m samples observed by each user can be viewed as a k-
dimensional vector indicating the histogram from a multi-
nomial distribution. While the proof builds on Acharya
et al. (2021a, 2020) for the communication-constrained
case, their techniques cannot directly translate to ε-LDP.
Their proof relies on the ªPoissonizationº trick to make
each coordinate independent. However, for the trick to
work, each user needs to send one bit to indicate whether
they get enough samples, which might violate privacy con-
straints. Our solution is as follows,

• For m ≤ k/eε and ε < 1, we compute the informa-
tion contraction bound for multinomial distributions
directly, which leads to tight lower bounds without
ªPoissonizationº.

• For m > k/eε and ε > 1, ªPoissonizationº is still
used. We show that even if we allow each user to send
an extra clean bit, which we term ªε-LDP + 1-bitº
channels, the desired lower bound still holds.

We defer the detailed proof to Appendix D.

6 Experiments

The main goal of the section is to demonstrate the effec-
tiveness of our algorithmic ideas and verify our theoretical
findings3. The experiments are based on prototype algo-
rithms without extensive tuning on constants. We mainly
focus on the interactive versions since they give better con-
stants than the non-interactive ones numerically. We com-
pare our algorithms to Hadamard Response (Acharya et al.,
2018) with 1 sample per user on either n users (referred
as 1-sample HR) or mn users (all-sample HR) in various
parameter regimes. They serve as baseline upper and lower
bounds on the achievable rates under user-level LDP 4. Av-
erage TV error and standard deviation over 5 independent
runs are reported. Additional results for both interactive
and non-interactive algorithms are provided in Appendix E.

High privacy ε ≤ 1. Figure 2 shows the result for the
high privacy regime for k = 2 and k = 32, with m =
[32, 64, 128, 256, 512]. In both cases, the performance of
the 1-sample HR remains nearly the same, while the per-
formance of our algorithm is always within a constant (2.5)
factor to that of all-sample HR, as Theorem 3.1 suggests.

3Code at https://github.com/Azulgrana1/user_level_LDP
4RAPPOR Erlingsson et al. (2014) outperforms HR numeri-

cally by a small margin (e.g., Acharya et al. (2018)). We compare
with HR here since our algorithms use ideas from HR and both
algorithms are optimal up to constants.





Discrete Distribution Estimation under User-level Local Differential Privacy

neurips.cc/paper/2021/file/

9d740bd0f36aaa312c8d504e28c42163-Paper.

pdf. 2.2, 3, 3.1, 3.1, 5, A.1.2, 1, A.1.3, A.1.3, A.1.3,
B.1, D, D.3, D.3, D.3

J. Acharya, P. Kairouz, Y. Liu, and Z. Sun. Es-
timating sparse discrete distributions under privacy
and communication constraints. In V. Feldman,
K. Ligett, and S. Sabato, editors, Proceedings of the

32nd International Conference on Algorithmic Learn-

ing Theory, volume 132 of Proceedings of Ma-

chine Learning Research, pages 79±98. PMLR, 16±19
Mar 2021b. URL https://proceedings.mlr.

press/v132/acharya21b.html. 2.2

B. Balle, J. Bell, A. Gascón, and K. Nissim. The pri-
vacy blanket of the shuffle model. In A. Boldyreva
and D. Micciancio, editors, Advances in Cryptology ±

CRYPTO 2019, pages 638±667, Cham, 2019. Springer In-
ternational Publishing. ISBN 978-3-030-26951-7. 1, 1.1

C. L. Canonne. A Survey on Distribution Testing:

Your Data is Big. But is it Blue? Number 9 in
Graduate Surveys. Theory of Computing Library, 2020.
doi: 10.4086/toc.gs.2020.009. URL http://www.

theoryofcomputing.org/library.html. D

W.-N. Chen, P. Kairouz, and A. Ozgur. Breaking
the communication-privacy-accuracy trilemma. In
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, editors, Advances in Neural Information Process-

ing Systems, volume 33, pages 3312±3324. Curran As-
sociates, Inc., 2020. URL https://proceedings.

neurips.cc/paper/2020/file/

222afbe0d68c61de60374b96f1d86715-Paper.

pdf. 1

A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev.
Distributed differential privacy via shuffling. In Y. Ishai
and V. Rijmen, editors, Advances in Cryptology ± EU-

ROCRYPT 2019, pages 375±403, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-17653-2. 1,
1.1

J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local pri-
vacy and statistical minimax rates. In 54th Annual IEEE

Symposium on Foundations of Computer Science, FOCS

2013, pages 429±438. IEEE Computer Society, 2013. 1,
2

C. Dwork and A. Roth. The algorithmic foundations of
differential privacy. Foundations and Trends in Theoreti-

cal Computer Science, 9(3±4):211±407, Aug 2014. ISSN
1551-305X. doi: 10.1561/0400000042. URL https:

//doi.org/10.1561/0400000042. 1.3

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Cal-
ibrating noise to sensitivity in private data analysis. In

Theory of cryptography, volume 3876 of Lecture Notes

in Computer Science, pages 265±284. Springer, Berlin,
2006. 1

C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and
differential privacy. In 2010 IEEE 51st Annual Sympo-

sium on Foundations of Computer Science, pages 51±60,
2010. doi: 10.1109/FOCS.2010.12. 1.3

Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor:
Randomized aggregatable privacy-preserving ordinal re-
sponse. In Proceedings of the 2014 ACM SIGSAC con-

ference on computer and communications security, pages
1054±1067. ACM, 2014. 1, 2, 4

Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan,
K. Talwar, and A. Thakurta. Amplification by shuffling:
From local to central differential privacy via anonymity.
In Proceedings of the Thirtieth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, pages 2468±2479. SIAM,
2019. 1, 1.1

V. Feldman, A. McMillan, and K. Talwar. Hiding among
the clones: A simple and nearly optimal analysis of pri-
vacy amplification by shuffling. In 2021 IEEE 62nd

Annual Symposium on Foundations of Computer Sci-

ence (FOCS), pages 954±964, 2022. doi: 10.1109/
FOCS52979.2021.00096. 1, 1.4, 1.1

A. M. Girgis, D. Data, S. Diggavi, A. T. Suresh, and
P. Kairouz. On the renyi differential privacy of the shuffle
model. In Proceedings of the 2021 ACM SIGSAC Confer-

ence on Computer and Communications Security, pages
2321±2341, 2021. 1, 1.1

P. Kairouz, K. Bonawitz, and D. Ramage. Discrete distri-
bution estimation under local privacy. In Proceedings of

the 33rd International Conference on Machine Learning,

ICML 2016, volume 48 of JMLR Workshop and Confer-

ence Proceedings, pages 2436±2444. JMLR.org, 2016. 1,
2

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Ben-
nis, A. N. Bhagoji, K. A. Bonawitz, Z. Charles, G. Cor-
mode, R. Cummings, R. G. L. D’Oliveira, H. Eich-
ner, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett,
A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Har-
chaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu,
M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konečný,
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A Detailed algorithm and proof for ε < 1

A.1 ε < 1, k = 2

In this section, we provide the detailed proof of Theorem 3.2. Recall the coin estimation problem: there are n users, each
has m i.i.d. samples from Bern(p). We want to estimate p under LDP.

A.1.1 Localization stage

We first prove the guarantee of the localization stage. Let CI = 10 and r := ⌊
√

m
2CI

⌋. We now recall the definition of the

intervals ¶Ii♢i∈[2r]. Let Ii := [li−1, li] for 1 ≤ i ≤ r, where

li := min


CI i2

m
,

1

2


, 0 ≤ i ≤ r.

Furthermore I2r+1−i := [1 − li, 1 − li−1].

For user u, let Zu be the number of 1s. Zu induces a random variable Vu := arg maxi∈[2r] 1¶Zu ∈ Ii♢, which follows a
discrete distribution q, with qi = Pr[Zu ∈ Ii], i ∈ [2r].

Recall that β = 1/(eε + 1) and define γ = 1 − 2β = eε−1
eε+1 . We start with the following observation about the partition

¶Ii♢i∈[2r].

Lemma A.1. Suppose that p ∈ Ii and p ≤ 1/2. Then

max


CI

m
,

5

3

√
CI

√
p

m


≤ ♣Ii♣ ≤ max


CI

m
, 2.5

√
CI

√
p

m



Proof. If i = 1, then ♣Ii♣ = CI/m. If i ≥ 2, then since p ≥ CI i2/m,

♣Ii♣ =
CI(2i + 1)

m
≤ CI(2.5i)

m
≤ 2.5

√
CI

√
p

m
.

Since p ≤ CI(i + 1)2/m and 1 ≤ (i + 1)/3,

♣Ii♣ =
CI(2i + 1)

m
≥ CI(2 − 1/3)(i + 1)

m
=

5

3

√
CI

√
p

m
.

We can obtain a result similar to Lemma A.1 for p > 1/2 by replacing p with 1 − p.

Theorem A.2. Recall that Î = ∪♣i−î♣≤1Ii. There exists a constant C such that if n1 ≥ C log(m)/ε2, we have

E

[
(p̂ − p)2

1

{
p /∈ Î

}]
= O


1

mn1ε2



Proof. Let ip be such that p ∈ Iip
. Due to Lemma A.1, by concentration inequalities for binomials

∑

♣i−ip♣≤1

qi ≥ 0.96 =: 1 − α.

For i ∈ [2r], let Mi =
∑

u∈S1
Yu,i. By Chernoff bound, for i such that ♣i − ip♣ > 1, with probability at least 1 − δ,

Mi ≤ n1(β + αγ) +

√
3n1(β + αγ) log


1

δ


=: M∗.

By union bound, with probability at least 1 − 2rδ = 1 − Θ(
√

mδ), Mi ≤ M∗ for all ♣i − ip♣ > 1.
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Let i∗ = arg maxi qi. It is clear that ♣i∗ − ip♣ ≤ 1, and qi∗ ≥ (1 − α)/3 = 0.32. Next we argue that with high probability,
Mi∗ > M∗, and hence the maximum of Mi’s must be achieved at some i ∈ [ip − 1, ip + 1].

First, there exists a constant C1 such that when n1 ≥ C1 log(1/δ)/ε2,

E[Mi∗ − M∗] =
1 − 4α

3
n1γ −

√
3n1(β + αγ) log

1

δ
≥ 1 − 4α

6
n1γ.

Therefore, by Chernoff bound,

Pr[ Mi∗ ≤ M∗ ] = Pr[ Mi∗ ≤ E[Mi∗ ] − E[Mi∗ − M∗] ]

≤ exp


− γ20.282

β + 0.32γ
n1


,

which is at most δ as long as n1 ≥ C2 log(1/δ)/ε2 for some constant C2.

Set δ = 1
m2n1ε2 and C ′ = max¶C1, C2♢. Then

E

[
(p̂ − p)2

1

{
p /∈ Î

}]
≤ Pr

[
p /∈ Î

]
≤ (

√
m + 1)δ = O


1

mn1ε2


,

as long as
n1ε2 ≥ C ′ log(m2n1ε2) = 2C ′ log m + C ′ log(n1ε2).

In addition, there exists a constant C3 such that as long as n1ε2 ≥ C3, we can guarantee n1ε2/2 ≥ C ′ log(n1ε2). Hence,
let C = max¶C ′, C3♢, we can guarantee the desired error as long as n1 ≥ C log(m)/ε2

A.1.2 Interactive scheme

With Theorem A.2, we are now ready to prove the estimation error of the interactive scheme described in Section 3.1.
Recall that Pm,t(p) = PrX∼Bin(m,p)[X/m ≥ t]. We first prove a lower bound on its derivative, similar to (Acharya et al.,
2021a, Claim A.10).

Lemma A.3. Let Sm(p) ∼ Bin(m, p) be a binomial random variable, then

Pr[ Sm(p) = s ] ≥
√

2π

e2
√

s
e−m

(s/m−p)2

p(1−p) .

Proof. Using Stirling’s approximation,
√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n,

we have

Pr[ Sm(p) = s ] =


m

s


ps(1 − p)m−t

≥
√

2π

e2
√

m

1√
s/m

√
1 − s/m

ps(1 − p)m−s

(s/m)s(1 − s/m)m−s

=

√
2π

e2
√

s
e−mDKL(s/m♣♣p)

≥
√

2π

e2
√

s
e−m

(s/m−p)2

p(1−p) .

Lemma A.4. Let C/m ≤ p ≤ 1/2 for some constant C and t − 1/m ∈ [p − C
√

p
m−1 , p + C

√
p

m−1 ]. Then,

dPm,t(p)

dp
≥

√
π

e2
e−2C2

√
m

p
.

For 1 − C/m ≥ p ≥ 1/2, the same inequality hods with p replaced by 1 − p.



Discrete Distribution Estimation under User-level Local Differential Privacy

Proof. Without loss of generality assume that s = mt is an integer since binomial random variables are integer-valued,
and thus we only need to consider integer thresholds. Let Sm(p) ∼ Bin(m, p) be a binomial random variable. From the
binomial-beta relation,

Pr[ Sm(p) ≥ s ] = m

∫ p

0

Pr[ Sm−1(u) = s − 1 ]du.

Therefore,
dPm,t(p)

dp
= m Pr[ Sm−1(p) = s − 1 ]. (7)

Thus using Lemma A.3, for s/m ∈ [p − C
√

pm, p + C
√

p/m],

Pr[ Sm−1(p) = s − 1 ] ≥
√

2π

e2
√

s − 1
e−C2/(1−p) ≥

√
2π

e2
√

s − 1
e−2C2 ≥

√
2π

e2
√

2mp
e−2C2

The final inequality is due to mp ≥ C2, and thus C
√

mp ≤ mp and s − 1 ≤ mp + C
√

mp ≤ 2mp

We also need to bound the derivative of Pm,t(p) when p ≤ C/m,

Lemma A.5. Let p ≤ C/m and t = 1/m for some integer constants C, C ′ > 0. Then,

dPm,t(p)

dp
= Ω(m).

For p ≥ 1 − C/m and t = 1 − 1/m, the same holds with p replaced by 1 − p.

Proof. When t = 1/m, then Pm,t(p) = 1 − (1 − p)m and

dPm,t(p)

dp
= m(1 − p)m−1.

Since p ≤ C/m, there exists a constant C ′ that depends on C such that (1 − p)m−1 ≥ C ′, hence proving the lemma.

Now we can prove the guarantee of the interactive algorithm

Theorem A.6. Let ε ≤ 1 and let p̂ be the output of the interactive scheme. Then

E
[
(p̂ − p)2

]
= O


1

mnε2


.

Proof. Recall that Î is a confidence interval obtained from the localization stage. It suffices to prove that

E

[
(p̂ − p)2

1

{
p ∈ Î

}]
= O


1

mnε2


(8)

since Theorem A.2 establishes

E

[
(p̂ − p)2

1

{
p /∈ Î

}]
= O


1

mnε2


,

Thus combining the two parts proves the theorem. We now proceed to prove (8). To achieve this, we can safely condition
on the event that p ∈ Î .

Using the analysis for Randomized Response, for all t ∈ (0, 1),

E

[
(P̂ − Pm,t(p))2

]
≤ 2

n


eε + 1

eε − 1
+

eε + 1

(eε − 1)2


= O


1

nε2



First, we consider p ≤ 1/2. If î ≤ 2, recall that in this case t = 1/m. Then we must have p ∈ Î ⊆ I1 ∪ I2 ∪ I3 and hence
p ≤ C/m for some constant C. Thus, we can apply Lemma A.5

E

[
(p̂ − p)2♣p ∈ Î

]
≤ max

p∈Î


dPm,t(p)

dp

−2

E

[
(P̂ − Pm,t(p))2♣p ∈ Î

]
= O


1

nε2
· 1

m2


= O


1

mnε2


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If î > 2, then p ≥ C/m for some constant C. We use a similar argument and apply Lemma A.4

E

[
(p̂ − p)2♣p ∈ Î

]
≤ max

p∈Î


dPm,t(p)

dp

−2

E

[
(P̂ − Pm,t(p))2♣p ∈ Î

]
= O


1

nε2
· 1

m


= O


1

mnε2



For p ≥ 1/2 similar holds by replacing p with 1 − p when applying Lemma A.5 and A.4. Combining all the parts proves
the theorem.

A.1.3 Non-interactive scheme

Let CR = 100CI
2 and r′ = ⌊

√
m

2CR
⌋. For 1 ≤ i ≤ r′, define Li = [l′

i−1 − l′
i] similarly as ¶Ii♢i∈[2r] with CI replaced

by CR. Let ji = (l′
i−1 + li)/2 and ¶Ji♢i∈[2r+1] be the partition defined by jis. The detailed protocol is described

in Algorithm 1.

In Algorithm 1 we define the functions R2, R3, R4 as

R2(p) := Pr

(
Z

m
∈
⋃

i

L2i


, R3(p) := Pr

(
Z

m
∈
⋃

i

J2i


, R4(p) = Pr (Z ≥ 1) , (9)

where Z ∼ Bin(m, p).

Algorithm 1 Non-interactive binomial Estimation Protocol.

Divide users into 4 groups S1, . . . , S4. ♣S1♣ = n
2 =: n1, ♣S2♣ = ♣S3♣ = ♣S4♣ = n

6 =: N .

Localization stage. In this stage, the goal is to obtain an interval I , which corresponds to a crude estimate of p.

• Users: u ∈ S1 computes the one-hot encoding of Vu and flips each coordinate with probability β := 1/(eε + 1).
Denote the flipped vector as Yu := (Yu,1, . . . , Yu,2r).

• The server: Let
î = arg max

i∈[2r]

∑

u∈S1

Yu,i.

Set the confidence interval Î = ∪i:♣i−î♣≤1Ii.

Refinement stage. In this stage, we improve the accuracy to Θ(1/mn).

• Users:

1. u ∈ S2 flip 1¶Zu/m ∈ ∪iL2i♢ with probability β.

2. u ∈ S3 flip 1¶Zu/m ∈ ∪iJ2i♢ with probability β.

3. u ∈ S4 flips 1¶Zu ≥ 1♢ with probability β.

Denote Yu as the flipped bit and send Yu

• The server: According to (Acharya et al., 2021a, Lemma A.8), one of the 3 cases must hold.

If Î ⊆ [0, 65CR/m], let Ȳ4 =
(

1
N

∑
u∈S4

Yu − β
)
/γ

p̂ = R−1
4

(
Ȳ4

)
:= ¶ p ∈ [0, 1] : R4(p) ♢ = Ȳ4♢.

Else if there exists i ∈ [2r] such that Î ⊆ I ′
i :=

[
l′
i − 0.55CRi

m , l′
i + 0.55CRi

m

]
, let Ȳ2 =

(
1
N

∑
u∈S2

Yu − β
)
/γ

p̂ = R−1
2,I′

i

(
Ȳ2

)
:=
{

p ∈ I ′
i : R2(p) = Ȳ2

}
.

Else if there exists i ∈ [2r + 1] such that Î ⊆ J ′
i :=

[
ji − 0.55CRi

m , ji + 0.55CRi
m

]
, let Ȳ3 =

(
1
N

∑
u∈S3

Yu − β
)
/γ

p̂ = R−1
3,J ′

i
:=
{

p ∈ J ′
i : R3(p) = Ȳ3

}
.

Using a similar argument in the proof of (Acharya et al., 2021a, Lemma A.8), the interval Î has the following property.
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Lemma A.7. Conditioned on p ∈ Î , at least one of the following must hold,

1. There exists i ∈ [2r], such that Î ⊆ I ′
i =

[
CRi2

m − 0.55CRi
m , CRi2

m + 0.55CRi
m

]

2. There exists i ∈ [2r + 1] such that Î ⊆ J ′
i =

[
ji − 0.55CRi

m , ji + 0.55CRi
m

]

3. Î ⊆ [0, 65CR/m]

The proof is identical to (Acharya et al., 2021a, Lemma A.8). Furthermore, in the respective intervals stated in Lemma A.7,
there is at least one of R2(p), R3(p), R4(p) with large derivatives.

Lemma A.8. There exists some absolute constant C > 0 such that the following holds.

1. For all i ∈ [2r], R2(p) is monotonic in I ′
i :=

[
l′
i − 0.55CRi

m , l′
i + 0.55CRi

m

]
, and for p ∈ I ′

i ,

∣∣∣∣
dR2(p)

dp

∣∣∣∣ ≥ C

√
m

p
.

2. For all i ∈ [2r + 1], R3(p) is monotonic in J ′
i :=

[
ji − 2CRi

m , ji + 0.55CRi
m

]
, and for p ∈ J ′

i ,

∣∣∣∣
dR3(p)

dp

∣∣∣∣ ≥ C

√
m

p
.

3. R4(p) is monotonic in [0, 65CR/m], and for p ∈ [0, 65CR/m],

dR4(p)

dp
≥ Cm.

The proof is identical to (Acharya et al., 2021a, Lemma A.9)

Proof of Theorem 3.2. We note that for h ∈ ¶2, 3, 4♢, using the analysis for Randomized response,

E
[
(Ȳh − Rh(p))2

]
≤ 1

N
·


eε + 1

eε − 1
+

eε + 1

(eε − 1)2


= O


1

Nε2



If Case 1 holds in Lemma A.7, we have

E

[
(p̂ − p)

2 ♣p ∈ Î
]

≤ max
p∈Î


dR2(p)

dp

−2

E

[
(Ȳ2 − R2(p))2♣p ∈ Î

]
≤ 1

Nε2

(
1

C

√
1

m

2

= O


1

mNε2


,

where we use Lemma A.8.

When Case 2 holds, we can prove it similarly by inverting R3(p). When Case 3 holds, we have

E

[
(p̂ − p)

2 ♣p ∈ Î
]

≤ max
p∈Î


dR4(p)

dp

−2

E

[
(Ȳ4 − R4(p))2♣p ∈ Î

]
≤ 1

Nε2
· 1

C2m2
≤ O


1

mNε2


.

Together this implies E

[
(p̂ − p)2

1

{
p ∈ Î

}]
= O

(
1

mnε2

)
. Combining with Theorem A.2, this concludes the proof of

Theorem 3.2.

A.2 ε < 1, k > 2

Theorem A.9. There exists a constant C and an ε-LDP algorithm such that when n ≥ Ck log(m)/ε2,

E[dTV(p̂, p)] = O

(√
k2

mnε2


.
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Proof. We use an idea considered in Acharya et al. (2018) and estimate the probabilities of subsets of [k] defined below.

Let K = 2⌈log2(k+1)⌉ be the smallest power of 2 larger than k and HK be the K × K Hadamard matrix. Define Ti = ¶j ∈
[k] : HK(i, j) = 1♢, i.e., the locations of 1’s in the ith row of HK . Let pT = (p(T1), p(T2), . . . , p(TK)). The following
two claims are shown in Acharya and Sun (2019).

Claim A.10. For any distribution p, we have

pT =
HK · p + 1K

2
,

where we append 0’s to p to make it of dimension K.

Claim A.11. For all p, p̂, we have

∥pT − p̂T ∥2
2 =

K

4
∥p − p̂∥2

2.

The above two claims show that for any estimate for the set probabilities p̂T , we can obtain an estimate for p by inverting
the formula in Claim A.10. Moreover, Claim A.11 establishes the relation between the errors for the two estimates.

Now we described the protocol.

1. Divide users into K subsets, each with size n/K.

2. Users in the ith set count the number of samples in Ti and apply the ε-LDP protocol in Theorem 3.2 to estimate p(Ti).

3. After obtaining the estimates p̂(Ti), the server returns the first k coordinates of p̂ where

p̂ = H−1
K (2p̂T − 1K),

where p̂T = (p̂(T1), p̂(T2), . . . , p̂(TK)).

By Theorem 3.2, for n/K ≥ C log m/ε2 where C is the constant in Theorem 3.2,

E

[
∥p̂T − pT ∥2

2

]
=

k∑

i=1

E

[
(p̂(Ti) − p(Ti))

2
]

= O


K

m(n/K)ε2


= O


K2

mnε2


.

Combining with Claim A.11, we get

E[dTV(p̂, p)] ≤ 1

2

√
KE

[
∥p̂ − p∥2

2

]
=

1

2

√
KE


4

K
∥p̂T − pT ∥2

2


= O

(√
K2

mnε2


.

Then the upper bound of Theorem A.9 follows by K ≤ 2k.

B Missing proofs for ε > 1

B.1 m ≤ k/eε

To prove Lemma 4.4, we use (Acharya et al., 2021a, Lemma 3.2), which states

E[dTV(p̂, p)] ≤ E[dTV(p̂B , pB)] +
∑

j

p(Bj)dTV(p̂j , p̄j).

The only missing part is the following claim.

Claim B.1. For all j ∈ [t],

dTV(p̂j , p̄j) ≤ dTV

(
ˆ̃pj , p̃j

)

1 − p̃j(⊥)
.
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Proof.

dTV(p̂j , p̄j) =
∑

x∈Bj

♣p̂j(x) − p̄j(x)♣ (10)

=
∑

x∈Bj

∣∣∣∣
ˆ̃pj(x)

1 − ˆ̃pj(⊥)
− p̃j(x)

1 − p̃j(⊥)

∣∣∣∣ (11)

≤
∑

x∈Bj

∣∣∣∣
ˆ̃pj(x)

1 − ˆ̃pj(⊥)
−

ˆ̃pj(x)

1 − p̃j(⊥)

∣∣∣∣+

∣∣∣∣
ˆ̃pj(x)

1 − p̃j(⊥)
− p̃j(x)

1 − p̃j(⊥)

∣∣∣∣


(12)

=
∑

x∈Bj

ˆ̃pj(x)
∣∣ˆ̃pj(⊥) − p̃j(⊥)

∣∣
(
1 − ˆ̃pj(⊥)

)
(1 − p̃j(⊥))

+

∑
x∈Bj

∣∣ˆ̃pj(x) − p̃j(x)
∣∣

1 − p̃j(⊥)
(13)

=

∣∣ˆ̃pj(⊥) − p̃j(⊥)
∣∣+
∑

x∈Bj

∣∣ˆ̃pj(x) − p̃j(x)
∣∣

1 − p̃j(⊥)
(14)

=
dTV

(
ˆ̃pj , p̃j

)

1 − p̃j(⊥)
. (15)

Noting that 1 − p̃j(⊥) = Θ(mp(Bj) ∧ 1) completes the proof of Lemma 4.4.

Finally to prove Theorem 4.3, recall that

dTV

(
ˆ̃pj , p̃j

)
= O

(√
(k/m)2

(n/m)eε


= O

(√
k2

mneε


.

Therefore,

∑

j∈[t]

p(Bj)E[dTV(p̂j , p̄j)] ≤ O


∑

j∈[t]

p(Bj)

mp(Bj) ∧ 1
E
[
dTV

(
ˆ̃pj , p̃j

)]



= O

(√
k2

mneε


·
∑

j∈[m]


p(Bj) +

1

m


= O

(√
k2

mneε


.

Combining with (6) completes the proof of Theorem 4.3.

B.2 k/eε < m < k

We provide the detailed proof for m ≤ k/eε/2. Recall that in this regime we use the algorithm for m ≤ k/eε. Since
m ≤ k/eε/2, by Theorem 3.1

E[dTV(p̂B , pB)] = O

√
m

n


= O

(√
k

neε/2



However, since each block only has k/m ≤ eε elements, the error for estimating p̃j satisfies

E
[
dTV

(
ˆ̃pj , p̃j

)]
= O

(√
k/m

(n/t)


= O

(√
k

n


.

Using the same argument as m ≤ k/eε, we have

E[dTV(p̂, p)] = O

(√
k

n


= O

(√
k ln(k/m + 1)

nε


.

The final equality is due to ε/2 ≤ ln(k/m).
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C Connection to central DP and the shuffle model.

In this section, we provide the proof of Theorem 2.1. The bound can be obtained by a combination of amplification by
shuffling (Theorem 1.4) and the upper bound results in Theorem 3.1 and Theorem 4.3. We assume without shuffling, each
user sends an ε0-LDP message.

Small ε0 : ε0 ≤ 1. Note that in this case, in the shuffle model, ε = O


ε0

√
log(1/δ)

n


. More specifically, for ε <

√
9e log(4/δ)

n , there exists ε0 = ε ·
√

n
9e log(4/δ) < 1 such that the ε0-LDP algorithm is (ε, δ)-DP in the shuffle model.

Plugging this into Theorem 3.1, we get the desired bound in Theorem 2.1.

Large ε0 : 1 ≤ ε0 ≤ log(k/m). In this case, in the shuffling model, ε = O

√
eε0 log(1/δ)

n


. More specifically, when

ε <
√

k log(1/δ)2

mn , there exists ε0 = 1
2 log nε2

log(1/δ) < log(k/m) such that the ε0-LDP algorithm is (ε, δ)-DP in the shuffle
model. Plugging this into Theorem 4.3, we get the desired bound in Theorem 2.1.

D Missing proofs for the lower bounds

In this section, we present complete proofs for lower bound part of Theorem 3.1, Theorem 4.3, and Theorem 4.2. We use
the information contraction framework in Acharya et al. (2020) and the lower bound construction in Acharya et al. (2021a).
Our hard instances are from the ªPaninskiº family Paninski (2008). Let γ ∈ (0, 1/2) be a parameter related to the expected
error. We consider a family of distributions defined as follows: for each vector z ∈ Z := ¶−1, 1♢k/2, define a discrete
distribution pz as

pz(2i − 1) =
1 + γzi

k
, pz(2i) =

1 − γzi

k
.

The m samples observed by each user can be viewed as a k-dimensional vector indicating the histogram from a multi-
nomial distribution. We denote this distribution as pmul

z = Multinomial(m, pz). In this section, we use m =
(m(1), m(2), . . . , m(k)) to denote the histogram observed from pmul

z where m(x) denotes the number of times x ap-
pears in the observed m samples.

When m is large (m ≥ k), we will consider the ªPoissonization" of the multinomial distribution, which we denote
as ppoi

z = Poisson(m, pz). To generate a sample from ppoi
z , first a random integer M is generated from Poi(m)

and the final observed samples are generated from Multinomial(M, pz). It is a folklore (e.g., Canonne (2020)) for
m = (m(1), m(2), . . . , m(k)) ∼ ppoi

z , we have: (1) All m(x)’s are mutually independent; (2) ∀x ∈ [k], m(x) fol-
lows a Poisson distribution with mean mpz(x).

As discussed in Section 5, we provide our proof in two separate regimes. In Appendix D.2, we prove the lower bound part
of Theorem 3.1 and Theorem 4.3 by directly analyzing the multinomial setting. In Appendix D.3, we prove Theorem 4.2
using the Poissonization trick introduced above. We first introduce the information contraction framework in Acharya et al.
(2020) and necessary results.

D.1 Information contraction bounds

Let Z := ¶−1, +1♢k and ¶qz♢z∈Z be a collection of distributions over X , indexed by z ∈ Z . For z ∈ Z , denote by
z⊕i ∈ Z the vector obtained by flipping the sign of the ith coordinate of z. The following two assumptions on the density
functions are needed.

Assumption 1. For every z ∈ Z and i ∈ [k] it holds that qz⊕i ≪ qz , and there exist measurable functions ϕz,i : X → R

such that
dqz⊕i

dqz
= 1 + αz,iϕz,i,

where ♣αz,i♣ ≤ α for some constant α ∈ R independent of z, i. Moreover, for all z ∈ Z and i, j ∈ [k], Eqz
[ϕz,iϕz,j ] =

1¶i = j♢. (In particular, Epz [ϕ2
z,i] = 1.)

Assumption 2. There exists some σ ≥ 0 such that, for all z ∈ Z , the random vector ϕz(X) := (ϕz,i(X))i∈[k] ∈ R
k is

σ2-subgaussian for X ∼ qz , with independent coordinates.
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Consider the following generating process. We first pick Z uniformly at random from Z . Then each user observes a
sample from qZ . The users follow the protocol Π where each user uses a messaging scheme from a constrained set W
(e.g., Wε denotes all ε-LDP schemes) to send a message Yi about there sample. The server observes all the messages Y n

and estimate the distribution as p̂.

We denote the distribution of Y n when the samples are from qZ as qY n

Z . We also denote the mixture of message dis-
tributions conditioned on a fixed Zi as the following qY n

+i := E
[
qY n

Z

∣∣ Zi = 1
]
, qY n

−i := E
[
qY n

Z

∣∣ Zi = 1
]
. Note that

dTV

(
qY n

+i , qY n

−i

)
can be viewed as an information measure that describes how much information Y n carries about Zi. The

following theorem provides an upper bound on this information measure.

Theorem D.1 (Main theorem of Acharya et al. (2020)). Let Π be a sequentially interactive protocol using messaging

schemes from W and (Y n, U) be the transcript of Π when the input X1, . . . , Xn is i.i.d. with common distribution qZ .

Then, under Assumption 1, we have

(
1

k

k∑

i=1

dTV

(
qY n

+i , qY n

−i

2

≤ 7

k
nα2 max

z∈Z
max
W ∈W

∑

y∈Y

Varqz
[W (y ♣ X)]

Eqz
[W (y ♣ X)]

, (16)

Finally, if Assumption 2 holds as well, we have

(
1

k

k∑

i=1

dTV

(
qY n

+i , qY n

−i

2

≤ 14 ln 2

k
nα2σ2 max

z∈Z
max
W ∈W

I(qz; W ), (17)

where I(qz; W ) denotes the mutual information I(X; Y ) between the input X ∼ qz and the output Y of the channel W
with X as input.

In particular, it is proved in Acharya et al. (2020) that when Wε is the set of all ε-LDP channels, we have for any qz ,

max
z∈Z

max
W ∈Wε

∑

y∈Y

Varqz
[W (y ♣ X)]

Eqz
[W (y ♣ X)]

≤ min
{

4ε2, eε
}

. (18)

D.2 m ≤ k/eε or ε < 1

We prove the minimax lower bound presented below.

Theorem D.2. The minimax error rate satsifies

R(ε, k, n, m) = Ω

(√
k

mn
∨
√

k2

mn(ε2 ∧ eε)



Note that when ε < 1, ε2 is the dominating term, leading to the tight lower bound in the high privacy regime (Theorem 3.1).
When ε ≥ 1, eε is the dominating term, which yields the desired lower bound for m < k/eε (Theorem 4.2).

Proof. The first term is the lower bound in the centralized setting. We will mainly focus on the second term. Consider the
same generating process described in Appendix D.1 with qz = pmul

z . The following lemma shows that if Π, p̂ is a good
estimator for pZ , we must be able to extract enough information about Z from Y n. The result follows from (Acharya
et al., 2020, Lemma).

Lemma D.3. If Π, p̂ satisfies

E[dTV(p̂(Y n), p)] ≤ γ

4
,

we must have

k/2∑

i=1

dTV

(
p

mul,Y n

+i , p
mul,Y n

−i


= Ω(k). (19)

Next we upper bound the left hand side of (19) using Theorem D.1. In particular, we will prove pmul
z satisfies Assumption 1

with appropriate parameters..
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Lemma D.4. ¶pmul
z ♢z∈Z satisfies Assumption 1 with α = O(

√
mγ2/k) for γ < min¶1/2,

√
k/(8m + k)♢.

Proof. For a vector m = (m1, . . . , mk) ∈ N
k, the probability mass is

pmul
z (m) = m!

k∏

i=1

pz(i)mi

mi!
.

Therefore,
pmul

z⊕i (m)

pmul
z (m)

=


1 − γzi

1 + γzi

m2i−1


1 + γzi

1 − γzi

m2i

=


1 + γzi

1 − γzi

m2i−m2i−1

.

We want to compute

Epmul
z


pmul

z⊕i (m)

pmul
z (m)

− 1

2
]

= Epmul
z


pmul

z⊕i (m)

pmul
z (m)

2
]

− 1.

First let N = m2i−1 + m2i. For fixed N , m2i follows Bin(N, p) where p = (1 − γzi)/2. Hence we have

E


pmul

z⊕i (m)

pmul
z (m)

2
∣∣∣∣∣ N

]
= Em2i∼Bin(N,p)


1 + γzi

1 − γzi

4m2i−2N
]

=


1 + γzi

1 − γzi

−2N
(

p


1 + γzi

1 − γzi

4

+ 1 − p

N

=


1 + γzi

1 − γzi

−2N
(

1 + γzi

2

(
1 + γzi

1 − γzi

3

+ 1

N

=


1

2


(1 + γzi)

2

1 − γzi
+

(1 − γzi)
2

1 + γzi

N

=


1 + 3γ2

1 − γ2

N

.

The second equality follows by the generating function of binomial distribution. Notice that N ∼ Bin(m, 2/k). Hence,

E


pmul

z⊕i (m)

pmul
z (m)

− 1

2
]

= E


E


pmul

z⊕i (m)

pmul
z (m)

2
∣∣∣∣∣ N

]]
− 1

= EN∼Bin(m,2/k)


1 + 3γ2

1 − γ2

N
]

− 1

=


2

k

1 + 3γ2

1 − γ2
+ 1 − 2

k

m

− 1

=


1 +

8γ2

k(1 − γ2)

m

− 1 =: α = O(mγ2/k).

Setting αz,i =

√√√√Epmul
z


p

mul

z⊕i
(m)

pmul
z (m)

− 1

2
]

and ϕz,i =


p

mul

z⊕i (m)

pmul
z (m)

− 1


/αzi yields the desired result. It is obvious that

E[ϕz,iϕz,j ] = 1¶i = j♢.

Combining Lemma D.4, Theorem D.1, and Eq. (18), we get:

γ = Ω

(√
k2

mn min¶ε2, eε♢


,

completing the proof.
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D.3 Large m: m > k.

We prove Theorem 4.2, restated below.

Theorem D.5. For n > (k/ε)2, m ≥ k, and ε > 1, the minimax error rate satisfies

R(ε, k, n, m) = Ω

(√
k

mn
∨
√

k2

mnε


.

For m > k, we prove the lower bound via Poissonization. Formally, define the following problems.

MULTINOMIAL(W, n, m): each of the n users obtains m samples from p, and chooses a channel from W . The mn
samples are i.i.d.

POISSONIZED(W, n, m): For 1 ≤ t ≤ n, user t observes Mt samples from p, where (Mt)1≤t≤n are independent
Poi(m), and chooses a channel from W . The

∑n
t=1 Mt samples are i.i.d.

We do not reduce MULTINOMIAL(Wε, n, m) to POISSONIZED(Wε, n, m) as (Acharya et al., 2021a, Lemma C.1) suggests.
Instead, we consider the following channel.

Definition D.6. We define the family of channels ‘ε-LDP+1bit’, denoted as Wε,1. A channel W = W1 ⊗ W2 ∈ Wε,1

consists of two independent channels such that satisfies the following property given X , each user can send two messages
Y1, Y2 through two independent channels W1 and W2: Y1 ∈ ¶0, 1♢, and Y2 satisfies LDP constraints.

We have the following lemma:

Lemma D.7. If there exists a protocol that solves MULTINOMIAL(Wε, n, m) with accuracy γ, then there also exists a

protocol that solves POISSONIZED(Wε,1, 20n, 2m) with accuracy γ + e−2n/3. Moreover, the latter one is non-interactive

if the former one is.

Proof. To design an algorithm that solves POISSONIZED(Wε,1, 20n, 2m) with an algorithm for
MULTINOMIAL(Wε, n, m), user u first sends a bit Yu,1 indicating whether it receives more than m samples. Then, if the
user has more than m samples, then it keeps only m samples and sends a message Yu,2 according to the ε-LDP protocol
for MULTINOMIAL(Wε, n, m). Otherwise, duplicate the existing samples so that the user has m samples, and also send
Yu,2 according to the ε-LDP protocol. Yu,2 obviously satisfies ε-LDP constraints. Hence Yu = (Yu,1, Yu,2) is a valid
message from a channel in Wε,1.

The server keeps the messages such that Yu,1 = 1, and use the corresponding Yu,2 to estimate the underlying distribution.

To bound the accuracy of the above protocol, first note that for M ∼ Poi(2m), we have

Pr[ M < E[M ]/2 = m ] ≤ e−m/6 ≤ e−1/6.

Therefore, each user receives at least m samples with probability at least 1 − e−1/6 > 3/20. Using Chernoff bound, with
probability at least 1 − δ := 1 − e2n/3, at least n users has at least m samples. Hence the expected error is at most

γ(1 − δ) + δ ≤ γ + e−2n/3.

Next we focus on the Poisonized setting. Similar to Lemma D.8, we can obtain the following lemma.

Lemma D.8. Under the Poissonized sampling model, if Π, p̂ satisfies

E[dTV(p̂(Y n), p)] ≤ γ

4
,

we must have

k/2∑

i=1

dTV

(
p

poi,Y n

+i , p
poi,Y n

−i


= Ω(k). (20)
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Following the proof of (Acharya et al., 2021a, Theorem C.7, C.10), we can obtain the following upper bound on the
obtained information for the Poissonized problem under Wε,1.

Lemma D.9. For any interactive protocol with channels from Wε,1, when m > k log k, we have there exists a constant C
such that

k/2∑

i=1

dTV

(
p

poi,Y n

+i , p
poi,Y n

−i


≤ C · n

γ2m

k
·


mγ2 + max
z∈Z

max
W ∈Wε,1

I(ppoi
z ; W )


.

The final ingredient is to prove a mutual information bound for Wε,1 to apply (Acharya et al., 2021a, Theorem 2)

Lemma D.10. The mutual information maxz∈Z maxW ∈Wε,1
I(ppoi

z ; W ) ≤ ε log2 e + 1.

Proof. Let X ∼ ppoi
z and Y = (Y1, Y2) be a message sent through a channel in Wε,1.

I(Y1, Y2; X) = EX

[
KL
(
pY ♣X ♣♣ pY

) ]

= EX


∑

y

pY ♣X(y) log
pY ♣X(y)

pY (y)

]

= EX


∑

y1

W1(y1♣X)
∑

y2

W2(y2♣X)


log

W (y2♣X)

pY (y2♣y1)
+ log

W (y1♣X)

pY (y1)

]

= EX


∑

y1

W1(y1♣X)
∑

y2

W2(y2♣X) log
W (y2♣X)

pY (y2♣y1)
+ KL

(
pY1♣X ♣♣ pY1

)
]

≤ ε log e + I(Y1; X)

≤ ε log e + 1

The second to last inequality is due to LDP constraint on Y2. The final inequality is due to I(Y1; X) ≤ H(pW1) where
pW1 = Ep[ W1(Y1♣X) ]. Since Y1 ∈ ¶0, 1♢, the entropy must be at most 1.

Combining Lemma D.8, Lemma D.9, and Lemma D.10, we have

n
mγ2

k
(ε + 1 + mγ2)) = Ω(k),

which implies

γ = Ω

(
min

{√
k2

mnε
,

√
k

m
√

n

}
= Ω

(√
k2

mnε



The final equality is due to n > (k/ε)2. By Lemma D.7 the same bound holds for MULTINOMIAL(Wε, n, m) up to
constant factors.

E Additional experiment results

E.1 Interactive algorithm

In this section, we present additional experiment results for our interactive algorithms.

High privacy regime ε ≤ 1 We show an additional result with larger alphabet size (k = 100). We can see that our
algorithm outperforms 1-sample HR by a large margin, and the error is always within a constant factor of all-sample HR.
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the non-interactive algorithm is less stable and usually performs worse than the interactive one. We view our work mainly
as a theoretical investigation of the role of multiple samples in user-level LDP, and the experiments are mainly used to
demonstrate algorithmic ideas. We leave optimizing the constants and implementation details to make the algorithm more
stable as future work.


