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Abstract—The execution of large deep neural networks (DNN)

at mobile edge devices requires considerable consumption of

critical resources, such as energy, while imposing demands on

hardware capabilities. In approaches based on edge computing

the execution of the models is offloaded to a compute-capable

device positioned at the edge of 5G infrastructures. The main

issue of the latter class of approaches is the need to transport

information-rich signals over wireless links with limited and

time-varying capacity. The recent split computing paradigm

attempts to resolve this impasse by distributing the execution

of DNN models across the layers of the systems to reduce

the amount of data to be transmitted while imposing minimal

computing load on mobile devices. In this context, we propose

a novel split computing approach based on slimmable ensemble

encoders. The key advantage of our design is the ability to adapt

computational load and transmitted data size in real-time with

minimal overhead and time. This is in contrast with existing

approaches, where the same adaptation requires costly context

switching and model loading. Moreover, our model outperforms

existing solutions in terms of compression efficacy and execution

time, especially in the context of weak mobile devices. We

present a comprehensive comparison with the most advanced

split computing solutions, as well as an experimental evaluation

on GPU-less devices.

Index Terms—Edge Computing, Split Deep Neural Networks,

Internet of Things, Slimmable Encoders.

I. INTRODUCTION

Bringing the full power of deep learning to edge and mobile
devices requires overcoming two critical resource constraints:
computing power and channel bandwidth. If the algorithms
are executed locally at the mobile devices, then the main issue
is the weak computing power and small energy reservoir of
this class of devices, which likely results in low performance
and/or high latency and limited lifetime. If the execution of
the algorithms is offloaded to infrastructure-level devices –
e.g., edge servers, then the limited and time-varying capacity
of the communication channels connecting the mobile/edge
devices to the servers may result in large latency and latency
variance, while also posing considerable infrastructure-level
resource consumption (e.g., channel capacity and server time).
The two options induce an intuitive tradeoff on resource
usage at different layers of the overall system, as well as on
crucial performance metrics. Recently, further expanding the
array of computing options and thus operating points in the
tradeoff, the Split Computing (SC) [1] paradigm emerged as
an important research trend.
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Fig. 1: Overall schematics of the proposed system, where
slimmable encoders are trained to produce adaptive compres-
sion toward an object detection task.

In SC, deep neural networks (DNN) are split into two
sections, executed on the mobile/edge device and an edge
server, respectively. The ultimate objective is to balance energy
consumption, channel usage, task performance, and overall
latency. Early approaches use the original architecture and
weights [2], [3], and thus the inherent “compression” capa-
bilities of DNN architectures to cast optimization problems
focused on the tradeoff between computing load at the mo-
bile device, channel usage, and latency. In more recent SC
approaches [1], the architecture and training of the DNNs
are altered to boost the ability of the network to compress
information in the early layers, thus improving the operating
point in the compute/communication tradeoff. Importantly, this
latter class of models often exploits the fact that the output
representation of the compression portion of the altered model
is not meant to reconstruct the original input but to support
the computing task itself. Notably, in computer vision tasks
this also results in improved privacy provided by the system.

SC approaches can produce more than an order of mag-
nitude compression ratios compared to classical approaches
such as JPEG, thus enabling the support of complex DNN-
based analysis in systems with constrained channel capacity.
Nonetheless, the practicality of SC in real-world settings
remains to be proven, especially due to two main shortcomings
of existing SC frameworks:

1 - No dedicated hardware: unlike JPEG/MPEG codecs, most
devices either do not possess hardware dedicated to executing
DNNs, or are equipped with GPUs which are likely shared
with graphical tasks necessary to core system functions. As
a consequence, the portion of the DNN executed at the edge
device needs to have extremely low complexity.
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2 - Heterogeneous Hardware and Operational Conditions:
Most SC solutions need to be designed to match the specific
characteristics of the edge device, and offer limited portability
as well as limited ability to adapt to temporal variations. For
instance, the complexity of the network portion executed at the
mobile device is typically modified by changing the splitting
point, but this maps to harsh tradeoffs with channel usage.
Moreover, switching from one DNN model to another comes
at the price of perceivable loading time of the model into the
GPU memory. In this work, we tackle these challenges by
proposing an innovative SC architecture that provides low-
overhead low-latency online adaptability and is suited for
CPU-only devices. At a high level, by altering the model ar-
chitecture, advanced SC techniques introduce in the model two
sections corresponding to a neural encoder and decoder. The
encoder portion attempts to produce a compact representation
used by the decoder and tail portions to complete the original
model’s task.

Our proposed strategy results in a minimalist and highly
adaptive encoder design. The proposed base encoder utilizes
only 76M Flops and 1.2M activations, and the complexity can
be increased or decreased at runtime to match computational
needs and desired accuracy. This capability is granted by
the proposed slimmable ensemble technique. Furthermore,
bandwidth usage is also tunable by using flexible quantization
levels based on the ensemble size and target output data size.
By combining these techniques, the encoder portion of the
model can be adapted at runtime both from the point of view
of computing load and channel usage independently, providing
the needed flexibility to adapt to channel state variations and
device general capabilities and current state (e.g., residual
energy). This training technique is not only novel in the
use of slimmable training for ensembles, which has its own
particularities in terms of aggregation, but also opens the
possibility of slimmable models computed at different devices
since each individual encoder is independent of the other.

Although the principles behind our approach are general,
we provide a full implementation of our design for an object
detection task. Specifically, we modify the architecture of
the state-of-the-art model EfficientDet-D2 [4]. We compare
its performance and characteristics with the main competitors
available in the literature and demonstrate that our architecture
is the only one enabling run-time adaptation on commodity
hardware while providing up to 4x reduction in encoder
latency and reducing memory usage by up to 2.8. Overall, our
design has very high configurability with 16 possible modes of
operation. Finally, we show experiments on a proof-of-concept
system based on the Bluetooth 4.0 communication technology
and demonstrate that our model can achieve near-real-time
(⇠200ms) end-to-end latency. In this context, we illustrate its
ability to adapt computational load and bandwidth usage as
the channel characteristics shift due to device mobility in an
indoor setting – with up to 9m of distance between the mobile
device and the edge server and data rate variability between
80kB/s and 200kB/s. To the extent of our knowledge, this is
the first attempt to quantify the dynamic behavior of an SC

framework.
The organization of the paper is as follows. Section II

provides a discussion of prior work, with a particular emphasis
on recent SC approaches that achieve state-of-the-art perfor-
mance. These approaches will serve as the baseline for our ex-
perimental evaluation. In Section III-A, we present an analysis
of the tradeoffs commonly addressed in SC framework design,
and specifically we discuss how the relationship between the
encoder, decoder, and bottleneck sizes affects design choices.
In the remaining of Section III, we present our framework
and model, describing in detail the model architecture and
the proposed novel slimmable ensemble technique. Section IV
presents results assessing the performance of our design and
is organized into three parts. First, we validate our proposed
training strategy by decoupling its components. Then, we
perform an on-device comparison of the encoder performance
with respect to the models in the literature with the highest
performance. To this aim, we use a Raspberry Pi 4 (RPi4)
board as a reference, showing that our solution has the best
performance even on weak GPU-less devices. Finally, we
present a full-system evaluation of the overall Round Trip
Time (RTT) under static and dynamic network conditions.
Section V concludes the paper.

II. LITERATURE REVIEW

In this section, we position our work within the SC area and
provide background on critical components of our solution.

A. Split Computing
First, we provide a review of key concepts and results

related to SC. For a more comprehensive review of past work
and future challenges, we refer the reader to [1], [5].

Early attempts at splitting neural networks focused on off-
the-shelf models to demonstrate the feasibility of the proposed
techniques [2], [3]. In contrast, current SC frameworks feature
partially or entirely custom architectures with a bottleneck sec-
tion meant to reduce the dimensionality of the representation
at the split and use discretization/quantization of tensors to
reduce bitrate [6]–[8].

Most work so far, including this paper, resorted to a
transform-coding paradigm common in traditional image com-
pression. In fact, borrowing modern techniques from deep im-
age compression often results in excessively complex encoders
that require desktop-level GPUs to be executed and whose
deployment on mobile devices is unfeasible [9]. Moreover,
the widespread use of costly floating-point generalized divisive
normalization (GDN) activation functions [10] is detrimental
to constrained devices prevalent in the SC community. How-
ever, we note that there have been recent attempts at importing
modern entropy model approaches into SC techniques [11],
[12], and in this paper, we use uniform noise regularization to
improve quantization, as made popular by [13].

In this work, we focus on object detection, more specifically
on the COCO2017 dataset [14] - the most used dataset in
the object detection literature. We report our findings for the
mean Average Precision (mAP)@50:95 metric, obtained by



averaging the mean Intersection over Union (mIoU) precision
under the thresholds between 50% and 95% with 5% steps.
We chose this setting to ensure a fair and uniform comparison,
as it is the most used in the context of SC [15]. However,
we note that other contributions used variations of the COCO
dataset [8], [16].

We identify three main works that are the most related to our
contribution. First, we consider the framework in [11], whose
SC design makes use of an entropy model [17] embedded into
a RetinaNet (with a ResNet backbone) baseline architecture.
The design is validated on constrained devices such as RPi4.
In [15], the authors propose the first flexible architecture for
SC with scalable encoders. Different from this work, the
solution is based on standard channel reduction techniques.
Finally, Lee et al [18] proposed an encoder with remarkable
efficiency by leveraging an aggressive 1-bit quantization of the
bottleneck representation on a YoloV5 baseline architecture.
The main proposition is a concurrent encoder downscaling
with asymmetric decoder upscaling, resulting in almost no
drop in accuracy when reducing the size of the compressed
representation. The technique is demonstrated on multiple split
points and validated in devices of the NVIDIA Jetson family.

In addition to the conceptual innovation contained in our
work, we show that our proposed approach significantly im-
proves performance compared to existing solutions. To this
aim, we have re-implemented the encoder architecture of the
competing solutions (Fig. 6) and obtained results detailed in
Section IV-B.

B. Flexible Split Computing
The design of neural networks that can be reconfigured at

runtime to match different operational conditions is a rather
recent trend in the field of deep learning. One of the main lines
of contributions proposes the development of slimmable neural
networks [19], which provides a tool to navigate the precision-
computation tradeoff for convolutional neural networks. This
technique has been further advanced in [20] and later given
a formalized treatment in the context of network subspaces
in [21], [22].

We note that the use of slimmable techniques in split com-
puting was first proposed in [15]. However, our design realizes
robust improvements providing independent configurations of
bandwidth usage and computing load, and achieves orders of
magnitude better efficiency (as shown in Section IV-B).

III. FLEXIBLE ENCODING IN SC

In this section, we describe the framework enabling flexible
encoding in the context of SC. Our solution can easily transi-
tion across operating points in the trade-off between bandwidth
usage and computing load. First, we describe the tradeoff,
then, we present a general formulation of the concept and
the specific implementation that is used in our experiments.

A. Tradeoffs In Split Computing
As pointed out in the previous sections, compression plays a

central role in SC design. In this section, we emphasize how
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Fig. 2: The Direct-Inverse Tradeoff is widely used in the
literature but explored on a trial-and-error basis. Computing
power on both the encoder and decoder, as well as bandwidth,
are empirically known to have a monotonic increasing rela-
tionship with precision. Changing both of these resources at
once however, such as in changing split points, is expected
to have a monotonic decreasing relationship when precision
is kept fixed, but the overall behavior of this tradeoff is still
unclear.

SC generates tradeoffs that include other important aspects,
such as computational costs. One of the main motivations
to use SC is to enable DNN models in settings where edge
devices do not have enough computational power to perform
a given inference task at all or to perform it in a feasible time.

In SC, both compression and inference are performed in
an end-to-end manner, so that the restrictions in terms of
bandwidth and computing are almost indistinguishable. This
becomes more clear using the example of a simple task such
as image classification. In classification, the highest achiev-
able compression rate is obtained when the whole model is
executed locally by the edge device, which then transmits the
few bits indicating the resulting class prediction. Intuitively,
this approach collapses to solutions based solely on local
computing. Most image classification architectures are built
in such a way that successively smaller layers are used.
Thus, many SC approaches simply choose the latest feasible
bottleneck that can be computed by the mobile device and
alter it to reduce the number of nodes. Thus, split computing
is usually portrayed as a task-oriented form of compression
under a computational budget.

In this paper, we frame the problem as a 3-dimensional
tradeoff: namely the Compute-Bandwidth-Precision (CBP)
tradeoff induced in the encoder design, best understood vi-
sually with the help of Fig. 2. We note preliminary attempts
in this direction by [23]; and [24], where a technique for



optimizing all three dimensions simultaneously is presented,
but here we expect not only to describe its nuances further but
also to allow the users to obtain the best CBP operating point
for the specific context with a single model.

The components of the CBP tradeoff can hardly be analyzed
separately due to their interdependence. For instance, when
the size of the encoder is fixed, resizing the decoder changes
the operating point [18] and vice-versa [15]. If we fix the
overall architecture, but change the splitting point, we also
obtain non-trivial trends, as compression usually entails the
addition of a reduction component exogenous to the model
itself, which invalidates the assumption of a fixed architecture.
A possible solution is to use the ratio between encoder and
decoder as feature [25]. The key advantage is that the tradeoff
between computation and precision on the overall model is
often monotonic with respect to this ratio.

The motivation for split computing mostly originates from
the restrictions on the encoder (e.g., number of parameters
and output size). As a result, most SC solutions focus on
the design of the encoder. In this context, we identify two
main tradeoffs. The Direct Tradeoff describes the monotonic
increase of resource usage as we increase the output precision.
This setup includes the present work and prior contributions
such as [7], [11], [15]. In the direct tradeoff, both computation
and bandwidth constraints limit the model’s expressiveness
with a direct impact on precision. More widely explored,
though least understood, is the Inverse Tradeoff, where the
ratio between encoder and decoder is controlled, typically by
splitting a primer architecture at a different location [6], [18],
[23], [26], [27]. In this setting, a target precision is fixed while
trading a larger computing load for a smaller encoder output’s
size. However, it is unclear whether the resulting trend is
monotonic or continuous even in the architecture space.

B. Model Design
First, we lay the ground for our SC settings. Let’s assume

an existing architecture is split into two sections: an encoder
z = f 0(x) and a decoder ŷ = g0(z), where x is the input, z0 is
the intermediary representation and ŷ0 is the inference result.
As explained earlier, our goal is to achieve a desirable size
of the representation z0 – under a complexity budget. This
requires the structural modification of both the encoder and
decoder, which we call z = f(x) and ŷ = g(z) respectively.
Then, a quantization/dequantization stage is applied to the
intermediary representation to further reduce the represen-
tation size. We denote these operations with zQ = Q(z),
z̃ = Q�1(zQ), as the whole SC sequence can be expressed as

ŷ = g �Q�1 �Q � f(x). (1)

In this context, our solution adopts a distillation training
approach inspired by that proposed in [28], where the network
is trained using a Mean Square Error (MSE) loss between the
original (teacher) and modified (student) architectures. Both
the teacher’s decoder g0 and the student’s decoder g are further
split into trainable and frozen sections g0 = g0t � g0f and g =
gt�gf . Notably, while at deployment time we need to compute

Algorithm 1 Ensemble Slimmable Training
sn  [1, . . . N ]
Teacher  g0t � f 0

Student gt �Q�1 �Q � fs

for Sample(x) in Dataset(D) do

l 0
l l + Lmse(Student(1, x), T eacher(x))
l l + Lmse(Student(N, x), T eacher(x))
for i in range(S � 2) do

l l+Lmse(Student(choice(sn), x), T eacher(x))
end for

end for

ŷ, during training the models are only executed up to r = gt(z̃)
and r0 = g0t(z). The training loss, then, is:

Lmse =
||r � r0||2

dim(r)
. (2)

This formulation has the advantage of faster convergence as
there is no need to train the whole model from scratch, and,
most importantly, results in a self-supervised form of training,
meaning that training does not require the labels.

One of the key novelties of our design is the use of an
ensemble of N encoders fi(x), i 2 [1 . . . N ] as a drop-in
replacement for the regular encoder. At any inference round,
the ensemble can be subsampled in an ordered fashion, which
is equivalent to selecting the index (size) s 2 [1 . . . N ]. The
output of an encoder of size s is then calculated as:

fs(x) =
sX

i=1

1

2i�1
fi(x). (3)

We will explain in detail the architecture of the ensemble
encoders in the next section, where we focus on a specific
task and model.

In general, removing members of a jointly trained ensemble
could cause unpredictable performance degradation. We pre-
vent this effect by introducing a slimmable training technique
to achieve a monotonic tradeoff between the ensemble size
and precision, as well as by normalizing each output fi(x)
such that the range of z = f(x) is predictable, improving
training stability. At each step of training, being x the training
sample and D the dataset, we sample a set of S sizes. This
set always contains the smallest and largest sizes, that is,
s = 1 and s = N , and a choice of S � 2 random sizes in
s 2 [1 . . . N ]. The fixed choice of the smallest and largest
sizes is known as the ”sandwich rule” [20], which improves
the quality of slimmable channel training and has been verified
empirically to provide good performance in ensembles. A
precise description of the training procedure is reported in
Algorithm 1 and depicted in Fig. 3.

Furthermore, to abate the size of the transmitted data,
we convert the natural 32-bit representation into a quantized
representation. To this aim, we use a quantization with variable
bounds, that gracefully accommodates ensembles of different
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At each step, multiple copies of the encoder with different
sizes are replicated. Noise regularization is added between the
encoder and decoder to improve robustness to quantization.

sizes. The quantization function Q(z) and dequantization
Q�1(zQ) are described by the equations

zQ =

�
Clip

✓
(2b � 1)

✓
z

b ⇤ �(z) + 0.5

◆
, 0, 2b � 1

◆⇡
, (4)

z̃ =

✓
zQ

2b � 1
� 0.5

◆
⇤ b ⇤ �(zQ), (5)

where b is the bitrate per symbol and � is the standard
deviation.

Finally, we employ a commonly used technique to improve
robustness to uniform quantization: the addition of uniform
noise during training. In our setting, we need to scale noise
to match the size of the ensemble:

z̃ = Q�1 �Q(z) = z + U(�2�s, 2�s). (6)

C. Model Implementation

We now describe the implementation of the framework
previously presented by focusing on an object detection task.
We select as a baseline the EfficientDet(D2) architecture [4].
The original model1 is split after the second bottleneck into
encoder f 0 and decoder g0, and is used as a teacher model by
splitting g0 at the output points r0 = [P3, P4, P5]. Referring to

1The reference implementation can be found in the repository
github.com/zylo117/Yet-Another-EfficientDet-Pytorch
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common object detection nomenclature, we use the connec-
tions between the backbone and the neck [29] of the model
as distillation points, as shown in Fig. 3.

In order to describe f and g, we first define a basic
building block, repeated across layers, used in all our custom
modules: a modified version of the EfficientNetV2 block [30].
In our version, we use instance normalization instead of
batch normalization, but for simplicity, we will keep the
original nomenclature of Fused-MBConv when referring to it.
Additionally, transpose convolutions are used when upscaling
is required, which we will refer to as Fused-MBConvT. A
visual representation of this module is provided in Fig. 5.

Squeeze Excite (SE=0.25)

Conv 1x1

Conv KxK
ConvTranspose KxK

InstanceNorm2D
Swish

InstanceNorm2D

H,W,C

H’,W’, SR*C

H’,W’,C

Fig. 5: Fused-MBConv blocks use regular convolutions and
Fused-MBConvT use transpose convolutions.



TABLE II: Encoder Architecture

Stage Operator C S K Skip

1 Conv2D 6 2 3 -
2 Fused-MBConv, SR1 4 1 3 True
3 Fused-MBConv, SR1 4 1 3 True
4 Fused-MBConv, SR6 6 2 3 True
5 Fused-MBConv, SR6 6 1 3 True
6 Fused-MBConv, SR6 6 1 3 False

TABLE III: Reconstructor Architecture

Stage Operator C S K Skip

1 Fused-MBConv, SR6 48 1 1 False
2 Fused-MBConv, SR6 48 1 3 True
3 Fused-MBConvT, SR6 48 2 3 False
4 Fused-MBConv, SR6 48 1 3 True
6 Fused-MBConv, SR6 24 1 3 False

The original encoder is discarded in favor of a custom
slimmable ensemble f with maximum size N = 4. Each
individual encoder fi is an identical copy of the sequential
architecture described in Table II, all outputs are normalized by
the InstanceNorm layers and all inputs are equal but the size is
downscaled from the original input size 768x768 to 384x384.
Furthermore, the decoder is augmented with a reconstructor
module gr, that is g = g0 � gr. This reconstructor model,
described in Table III, has a much larger size compared to
the encoder. This choice makes more pronounced the asym-
metric relationship between the encoder and decoder, which is
necessary to achieve the desired precision while keeping the
encoder size extremely small.

IV. EXPERIMENTS AND RESULTS

In this section, we assess the performance of the proposed
solution and compare it thoroughly with the best-performing
alternatives.

A. Model Training
First, we assess the proposed training technique (Section

III-B) given the implementation described in Section III-C.
Training was performed using the ADAM optimizer over 20
epochs with a learning rate of 0.05, halving the learning rate
every 5 epochs, all ensembles tested had maximum size N =
4. Full results are presented in Table I.

We perform two forms of ablation to evaluate our technique,
first, we compare a single encoder (i.e. N = 1) with our
ensemble encoder and show that even if when we set s = 1
– that is, a single active encoder – our ensemble has a
better performance compared to standard training (37.7% vs
37.2%). This outcome may result from an implicit form of
regularization induced by training and motivates the use of our
training technique even if only one encoder is incorporated in
the architecture.

Subsequently, we explore the impact of quantization and
regularization on the overall performance, each column in
the table corresponds to one degree of numerical precision,
from the original 32-bit floating point(fp32) up to a single
bit of quantization(1). As expected, quantization results in a
loss of precision, but, as we can see on the right-side panel
in the table, the regularized versions outperform the non-
regularized ones in all ensemble configurations, especially
for more aggressive quantizations. Also, no degradation in
performance is observed due to regularization, even for non-
quantized results, in all but the s = 1 setting.

Based on these results, we perform all subsequent experi-
ments with the regularized version of our ensemble encoder,
as quantization is often necessary in real-world settings.

B. Mobile device Perfomance

We now evaluate the encoder’s performance on target hard-
ware compared to existing solutions. In this section, we restrict
our experiments to the encoder portion of the model, which
is often the most critical section due to the more stringent
limitations of edge devices compared to edge servers. All
experiments were performed on a RPi4 using the torchscript
runtime environment2.

First, we analyze the impact of switching encoders at run-
time. The results measuring RAM usage, disk load time, and
warmup time are reported in Table IV. We show that in order
to switch between models at run-time, it is necessary to keep
them in memory, as loading directly from disk and the subse-
quent model warmups require orders of magnitude larger time
compared to inference time. However, the storage of multiple

2Operations not available in the torchscript environment, such as entropy
coding were removed with no impact on the comparison.

TABLE I: Ensemble Size: Ensemble encoders are all trained with a maximum size of 4 and compared with a single encoder
trained with no ensemble. One can see that in almost all cases the ensemble training beats the single encoder even when s = 1.
Quantization Performace: We compare trainings with added uniform quantization as described in section III. Overall results
are improved by the noise regularization when quantization is applied.

mAP

Encoder No Regularization Noise Regularization

fp32 4bits 3 2 1 fp32 4bits 3 2 1
Single 37.2 34.7 30.5 20.0 3.5 34.4 32.9 31.4 26.6 12.1
Ensemble(s=1) 37.7 33.3 29.0 20.1 5.3 35.7 34.3 32.0 27.7 14.5
Ensemble(s=2) 37.9 35.0 31.3 23.0 7.2 38.0 36.1 34.1 29.4 16.5
Ensemble(s=3) 38.4 35.2 31.6 23.0 7.1 38.3 36.4 34.2 29.4 16.4
Ensemble(s=4) 38.5 35.5 31.8 23.2 7.2 38.6 36.8 34.6 29.7 16.6



Fig. 6: Encoder Performance Comparison between split object detection architectures on the CBP axis. Inference times
values were measured on a RPi4 device and are labeled and represented by size at each point.

models in memory comes at the obvious price of memory
usage, a precious resource, also due to the multifaceted role of
computing resources in edge devices. Importantly, our design
provides the largest number of available configurations, while
minimizing the memory necessary to load all configurations
of the available models at the same time.

TABLE IV: Model Switching Performance: Switching be-
tween model configs at runtime requires either re-loading each
model from memory or keeping multiple models in memory
resulting in aggregated memory usage

Model Configs RAM(MB) Disk(ms) Warmup(ms)

Ours 16 85.7 954.0 1811.5
Assine2022 12 204.9 1207.0 9913.6

Matsubara2022 4 239.9 709.9 12785.1
Lee2021 5 153.4 1264.5 5045.5

Furthermore, we present a runtime comparison of all models
on the CBP metrics in Fig. 6. We note that such comparison
may be limited as different models may follow different
trajectories of the CBP tradeoff. For instance, the two most
competitive models, ours and Lee2021 [18], result in different
trends. While we control both computation and output size
directly impacting precision, their solution increases comput-
ing load in exchange for smaller compressed representations
by designing models based on multiple split points. On the
target device, our model is the only one capable of achieving a
latency meeting typical requirements of real-time applications.
For comparison, we also present statistics of all models in the
picture in table V, with common proxies for complexity such
as the number of parameters, floating-point operations, and
activations.

C. System Evaluation

In this section, we present an evaluation of an end-to-end
system executing the proposed neural architecture. The system
is comprised of a RPi4 acting as a sensor device, and a CPU

TABLE V: Encoder Comparison: Common statistics of
computation performance such as Floating-Point Operations
(FLOPs), number of parameters (Par) and activations (Act), as
well as output size (Out) and mAP (Mean Average Precision)

Model FLOPs(M) Par(K) mAP Out(KB) Act(M)

Ours (s=1, 1 bit) 75.7 6.3 14.5 6.9 1.2
Ours (s=2, 2 bits) 151.4 12.7 29.4 13.8 2.5
Ours (s=3, 3 bits) 227.1 19.0 34.2 20.7 3.7
Ours (s=1, 4 bits) 75.7 6.3 34.3 27.6 1.2
Ours (s=2, 4 bits) 151.4 12.7 36.1 27.6 2.5
Ours (s=3, 4 bits) 227.1 19.0 36.4 27.6 3.7
Ours (s=4, 4 bits) 302.8 25.3 36.8 27.6 5.0
Lee2021 (layer 3) 541.5 29.8 36.8 30.5 5.3
Lee2021 (layer 5) 913.0 143.3 36.7 16.2 7.6
Lee2021 (layer 7) 1282.3 595.7 36.5 8.8 8.7
Lee2021 (layer 10) 1480.0 1089.8 36.4 4.7 9.2
Matsubara2022 (1) 2897.1 63.3 36.1 180.0 11.5
Matsubara2022 (2) 2897.1 63.3 35.9 90.0 11.5
Matsubara2022 (3) 2897.1 63.3 34.0 23.0 11.5
Matsubara2022 (4) 2897.1 63.3 29.5 15.0 11.5
Matsubara2022 (5) 2897.1 63.3 26.0 8.0 11.5
Assine2022 (↵=0.25) 613.8 24.8 31.6 110.0 27.2
Assine2022 (↵=0.50) 1083.4 60.1 37.8 220.0 42.5
Assine2022 (↵=0.75) 1747.3 110.5 39.9 330.0 57.9
Assine2022 (↵=1.00) 2605.4 176.9 39.6 440.0 73.3

server-side equipped with an Intel(R) Core(TM) i9-9820X and
an NVIDIA GeForce RTX 2080 Ti GPU. The device and
server are connected via Bluetooth 4.1.

The objective of our experiments is to assess the round-
trip time (RTT), from data acquisition to the availability of
the task outcome. While pipelining on both server and device
could lead to much higher frames per second providing an
improved experience to the end user, the most important aspect
for real-time applications is the total latency.

First, we present in Table VI the results for all configurations
on an optimistic scenario, where the edge device and server are
in close proximity (<1m). For instance, this could correspond
to a setting where both server and device are carried by
the user (e.g., such as an augmented reality glasses and
smartphone pair). It can be seen that in this setting near-real-
time values of the RTTs are achievable.



TABLE VI: RTT under Ideal System Conditions

ms mAP Size Bits
211.2 14.5 1 1
253.8 27.7 1 2
289.9 16.5 2 1
294.7 32.0 1 3
330.8 34.3 1 4
331.4 29.4 2 2
361.7 16.4 3 1
369.4 34.1 2 3
399.8 29.4 3 2
410.7 36.1 2 4
438.2 16.6 4 1
439.3 34.2 3 3
476.8 29.7 4 2
482.6 36.4 3 4
515.3 34.6 4 3
553.8 36.8 4 4

Furthermore, we evaluate a scenario corresponding to de-
ployment adaptation, where the device is given a RTT deadline
target set by the user and at each step, a new configuration
is selected based on a feedback loop. The feedback loop
chooses the best possible configuration based on a table lookup
containing the knowledge of the encoder execution time and
the received decoder execution time provided by the server.
We test our system on several transmission positions within a
typical office space, graphically shown in Fig. 7. This typical
use case for Bluetooth of a close-ranged application provides
a predictable pattern of available capacity as a function of the
distance and propagation characteristics between server and
device, with bandwidth rapidly decaying in the first few meters
(<5m), and a pattern dominated by line-of-sight availability
after that. We test our dynamic system at each distance with
two RTT deadlines: 300ms and 600ms. A breakdown of
latency and average mAP is shown in Fig. 8. It can be noticed
that the system is capable to adapt its configuration to channel
variations at each placement with precision values decreasing
as the distance increases. This trend does not apply to 5m,
which had the worst average data rate, resulting in degraded
precision. We attribute this result to unfortunate propagation
characteristics of that position due to obstructions.

1m

3m

5m7m
9m

Fig. 7: Device placements on the testing environment (a
typical office space). In the tests, we vary the distance between
the edge device and the server.

Fig. 8: Breakdown of RTT delay for multiple deadlines
and device placements. Numbers on top of the bars represent
average mAP.

Finally, we show the full dynamic behavior of the system
in Figure 9, where the user walks with the device in a
range of distances between 1 and 9m configured for a target
deadline of 400ms. From these results, we can see that most
of the switching occurs on the model bandwidth, which is
expected. Bandwidth is a much more stringent factor for the
algorithm precision and only when bandwidth is plenty, and
transmitting the full 4-bit bitrate does not meet the deadline,
larger ensemble sizes are chosen by the algorithm.

Fig. 9: Dynamic behavior of the system.



V. CONCLUSIONS

In this paper, we presented a novel architecture and training
for the design of encoders in the context of split computing.
Different from existing solutions, the one we propose provides
low-overhead low-complexity adaptation at runtime. The per-
formance and adaptation capabilities of the proposed model
are assessed by means of real-world experimentation on widely
used platforms and communication devices.
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