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Abstract
Researchers have shown that recent CPU extensions sup-

port practical, low-overhead driver isolation to protect kernels
from defects and vulnerabilities in device drivers. With perfor-
mance no longer being the main roadblock, the complexity of
isolating device drivers has become the main challenge. De-
vice drivers and kernel extensions are developed in a shared
memory environment in which the state shared between the
kernel and the driver is mixed in a complex hierarchy of data
structures, making it difficult for programmers to ensure that
the shared state is synchronized correctly. In this paper, we
present KSplit, a new framework for isolating unmodified de-
vice drivers in a modern, full-featured kernel. KSplit performs
automated analyses on the unmodified source code of the ker-
nel and the driver to: 1) identify the state shared between
the kernel and driver and 2) to compute the synchronization
requirements for just this shared state for efficient isolation.
While some kernel idioms present ambiguities that cannot
be resolved automatically at present, KSplit classifies most
ambiguous pointers and identifies ones requiring manual in-
tervention. We evaluate our solution on nine subsystems in
the Linux kernel by applying KSplit to 354 device drivers and
validating isolation for 10 drivers. For example, for a complex
Ixgbe driver KSplit requires only 53 lines of manual changes
to 2,476 lines of automatically generated interface specifica-
tions and 19 lines of changes to the driver’s code. The KSplit
analysis of the 354 drivers shows a similar fraction of manual
work is expected, showing that KSplit is a practical tool for
automating key tasks to enable driver isolation.

1 Introduction
Device drivers have long been and continue to be a major
source of defects and vulnerabilities in modern kernels [19,32,
50, 65]. Drivers are expected to support a variety of complex
protocols and comply with numerous kernel conventions [23,
76, 77], creating challenges in ensuring that device drivers
operate correctly in the face of concurrent and asynchronous
accesses on multiple CPU cores. In addition, while the core
kernel is relatively stable, the number of kernel extensions
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and device drivers is large and continues to grow. A modern
Linux 5.12 kernel contains around 8,960 device drivers that
account for 67.7% of the kernel source [3], a number that has
nearly doubled since 2013. With a rate of 80,000 commits
a year, defects and vulnerabilities are an inherent part of the
fast growing and evolving driver codebase.

The recent availability of hardware features for efficient
isolation [1, 5] and system support that leverages such fea-
tures [40, 43, 47, 61, 63, 82] have made low-overhead device
isolation frameworks practical [66, 68]. The upcoming hard-
ware extensions, e.g., native page-granularity support for iso-
lation of kernel code [5], and 16 byte-granularity isolation
with memory tagging extensions (MTE) [1], which are key for
enabling low-overhead SFI implementations [53], will reduce
overheads of isolation even more.

Despite availability of low-overhead isolation mechanisms
the task of isolating existing driver code remains challenging.
For decades, device drivers and kernel extensions have been
developed in a shared memory environment of a monolithic
kernel, where they freely exchange references to large and
complex data structures (e.g., many data and pointer fields,
hierarchical, and cyclic) that mix the state of the driver and
the kernel. Isolating a driver requires a careful analysis of
the flow of execution between isolated subsystems to identify
how the complex state of the system is accessed on both sides
of the isolation boundary.

Recent techniques to isolate legacy driver code utilize man-
ual analysis of complex kernel-driver dependencies [18, 62,
66, 68, 80], requiring an immense decomposition effort that
limits their applicability, and proposed techniques to auto-
mate such analyses [33, 72] only address a small fraction of
the task. For example, LXFI, an SFI framework, utilized an
iterative procedure to identify all the state required for exe-
cution of a driver, iteratively annotating the missing parts of
the shared state [62]. The scale and complexity of modern
drivers make such manual analysis impractical. In the Linux
kernel, even simple drivers like MSR that provide an interface
to model specific CPU registers (MSRs) require analysis of
459 functions and around 10,000 object fields that are transi-
tively reachable from the 21 functions of the driver interface.
A more complex network driver, Ixgbe, requires analysis of



5,782 functions and over 900,000 object fields—a number that
is well beyond the reach of manual analysis. Decaf [72] and
Microdrivers [33] took initial steps towards automated analy-
sis for driver isolation prior to the advent of efficient isolation
hardware, so these works focused on techniques to isolate
only non-critical path driver functionalty. As a result, many
challenging parts of the drivers, e.g., interrupt handlers and
optimized data plane functions, remain inside the unisolated
kernel. In addition, these techniques do not aim to minimize
data synchronization effort and leave several manual tasks.

In this paper, we present KSplit, a new framework for iso-
lating device drivers in the Linux kernel. KSplit performs a
collection of static analyses on the source code of the ker-
nel and the driver to generate the synchronization code that
is required to execute the driver in isolation. Specifically,
KSplit identifies the shared state that is accessed by both
driver and kernel, computing how this state is accessed on
either side of the isolation boundary, and how it should be syn-
chronized on each kernel-driver invocation, or when a shared
synchronization primitive (e.g. a spinlock or an RCU) is in-
voked. The result of the analysis is a collection of procedure
call specifications in the KSplit interface definition language
(IDL). The KSplit IDL compiler then generates glue code that
ensures synchronization of data structures between isolated
subsystems. Some kernel idioms, such as concurrency and
complex data structures, present ambiguities that cannot be
resolved automatically at present, so KSplit also identifies
these specific problems for developers to focus their effort.
This allows one to take an existing driver and produce the data
synchronization code necessary to run the driver in isolation,
automatically if possible, and identify remaining tasks that
require manual intervention, if needed.

Kernel software presents several challenges for developing
accurate and scalable analyses for automating the isolation of
legacy drivers that we address in the design of KSplit1.

First, modern kernels have evolved to share fine-grained
access to large, hierarchical data structures with their drivers,
which enables joint, optimized operation over shared state
using complex memory references. To compute shared state
accurately, KSplit employs a field-sensitive data flow analysis
using a modular alias analysis to identify shared fields while
accounting for memory references accurately. To compute
shared state scalably, KSplit provides a two-stage analysis
to identify the kernel functions that could possibly share ac-
cess to a data structure with a particular driver, enabling the
accurate analysis to be targeted to the relevant subset of the
kernel.

Second, modern drivers provide concurrent access to a
variety of functionality, even using kernel code, which com-
plicates the challenge of ensuring that the shared state is
synchronized correctly when the driver is isolated. KSplit pro-
vides algorithms to ensure correct synchronization of shared

1KSplit is developed for Linux, but our techniques can be applied to
other commodity kernels.

state for driver invocations, nested calls to kernel functions
by drivers, and a variety of concurrency primitives, including
spin and sequential locks, read-copy-update (RCU), mutexes,
and atomics. KSplit provides an analysis to identify concur-
rency primitives that operate over shared data, finding that
such primitives rarely cross the kernel-driver boundary.

Third, kernels utilize a wide range of low-level idioms that
create ambiguities for marshaling in synchronization, e.g.,
sentinel and sized arrays, tagged and anonymous unions, self-
referential data structures like linked lists, etc. To separate
complete drivers, many of these ambiguities need to be re-
solved automatically. KSplit partitions these data structures
into classes to apply algorithms to determine whether mar-
shaling requirements can be inferred or not. KSplit is able to
automate most cases and provide warnings for the rest.

We develop KSplit for the Linux kernel and a recent de-
vice driver isolation framework, LVDs [68]. KSplit is a fully
parallel analysis that takes only a few seconds to complete
for simple drivers, and completes within minutes for complex
device drivers like Ixgbe. We evaluate driver isolation using
KSplit on 10 Linux device drivers, intentionally choosing
device drivers representing a wide variety of functionality
and kernel programming idioms. Simple device drivers like
MSR can be isolated with no changes to their code, and only
2 lines of IDL changes are required to resolve ambiguities
in the driver’s IDL. More complex drivers like Ixgbe require
less than 20 lines of driver code changes and only 53 lines
of IDL changes for the 2,476 lines of device interface def-
initions. We also apply the KSplit analysis to 354 drivers,
finding that the amount of manual effort is expected to be
a similar fraction of the driver size. Drivers isolated using
KSplit leverage the low-overhead hardware and software iso-
lation mechanisms, remaining with 5.4–18.7% of non-isolated
systems’ performance. Our experience with isolating device
drivers confirms that KSplit is a practical tool for enabling
isolation of complete, legacy device drivers through the use
of emerging low-overhead hardware and software isolation
mechanisms.

2 Background: Device Driver Isolation
Over the years a range of techniques to isolate kernel exten-
sions explored execution of device drivers in clean-slate mi-
crokernels [10, 12, 13, 27, 30, 35, 39, 44–46, 49, 57] and virtual
machines [14, 15, 31, 34, 55, 70, 75], re-implementing device
drivers in safe programming languages [9,11,37,48,56,67,84],
developing backward-compatible driver execution frame-
works [8,17,22,24,29,36,38,42,52,71,81,83,86], and finally
isolating unmodified driver code with hardware [33,66,68,80]
and software [18, 25, 62] mechanisms. While it is possi-
ble to enforce isolation of the driver code through pro-
gramming language safety [11, 48, 56] and formal verifi-
cation [7, 20], to achieve isolation of unmodified drivers,
driver isolation frameworks rely on either hardware isola-
tion mechanisms (e.g., segmentation, paging, EPT switching,



core-isolation [66], or techniques of software fault isolation
(SFI) [18, 25, 62, 85]. instrumentation of control flow and
memory instructions [18, 25, 62].

The main challenge in isolating legacy drivers is to provide
controlled access to the state that is shared by the kernel and
the isolated driver. Commodity operating systems allow ker-
nels to share an address space and hence its entire state with
drivers, implementing driver operations on objects jointly ac-
cessible to both the kernel and the driver. Often these objects
have a complex, hierarchical structure, e.g., sk_buff network
packets, but only a fraction of these objects (i.e., a small subset
of their fields) are accessed by both the kernel and the driver
in practice, forming the shared state. In order for the isolated
driver to work correctly, KSplit must identify this shared state
comprehensively, but to provide efficient isolation, KSplit
must not overapproximate the shared state significantly.

Hardware and SFI frameworks take different approaches
to protecting access to the state shared between the kernel
and the driver. Hardware approaches control access by ex-
ecuting the driver on an isolated copy of the shared state
that is synchronized with the kernel on each driver invoca-
tion [33, 66, 68, 80]. SFI approaches, in contrast, execute the
driver and the kernel on a single copy of the shared state. This
eliminates the need for maintaining two copies of the shared
state, but requires access-control checks on each memory ac-
cess to the shared state [62]. To provide fine-grained access
control on the kernel state, SFI systems implement a concept
of “capability tables” that allow quick byte-granularity lookup
of each kernel field accessible to the driver [62].

Irrespective of the isolation mechanism, however, both so-
lutions require analysis of which state can be accessed by the
driver and the kernel and when each access is allowed [62].
Decaf [72] and Microdrivers [33] took a first step in automated
generation of shared state for isolated drivers by computing
the state accessed by the driver on each invocation. However,
not all of this state is shared with the kernel, as we find that
drivers operate on a significant amount of state that is private
to the driver. In addition, these projects only decomposed the
non-critical path driver code into isolated domains to retain
reasonable performance.

Historically, isolation in the kernel remained prohibitive
due to the high overhead of hardware and software isola-
tion mechanisms. Recent CPUs, however, signal the growing
support for low-overhead isolation primitives. Extended page-
table (EPT) switching with VM functions [6] and user-space
memory protection keys (MPKs) [6] already provide support
for memory isolation with overheads comparable to system
calls for Intel machines [43, 63, 68, 82], and the next genera-
tion of Intel machines promises to extend MPK with native
support for isolation of ring 0 code [5]. Similarly, the newest
ARM CPUs provide support for 16 byte-granularity isolation
with memory tagging extensions (MTE) [1], which is key for
enabling low-overhead SFI implementations [53].

For device driver isolation, recent work has shown that

using domain-based isolation can be practical. LXDs [66]
and LVDs [68] develop a Nooks-like isolation framework us-
ing extended page tables (EPTs) to improve boundary cross-
ing performance, providing an interface definition language
(IDL) for specifying which data requires synchronization
from driver interfaces. This work demonstrates the poten-
tial for efficient hardware-based protection domain isolation
of legacy drivers. However, such isolation required a signifi-
cant manual effort to configure IDL definitions for complete
drivers. While previous work [33, 72] proposed a method to
generate the base IDL, configuring the marshalling require-
ments for a variety of complex data types and handling con-
currency was performed manually. While SFI does not require
synchronization on boundary crossings, SFI methods must
compute essentially the same information to enable correct
isolation for good performance.

A variety of projects have explored techniques to au-
tomate various aspects of decomposing user-space pro-
grams [16, 21, 41, 58–61, 74, 87–89], called privilege sepa-
ration [78], but these techniques fail to address issues critical
to isolating kernel code. For example, PtrSplit [59] proposed
techniques to compute marshalling requirements for objects
based on runtime tracking, but this adds non-trivial overhead.
In addition, these techniques are not designed to handle multi-
threaded programs like a kernel.

3 KSplit Overview
KSplit transforms complete, shared memory device drivers
into equivalent drivers that can execute in an isolated domain
and on an isolated copy of the driver state. Specifically, KSplit
identifies the subset of the kernel state that is required for
an isolated driver to run and derives how this state has to be
synchronized on invocations between the kernel and the driver
that cross the isolation boundary and at the points where the
driver uses concurrency primitives2, e.g., atomics, spinlocks,
mutexes, ready-copy-update (RCU), etc.

For example, when the kernel submits a network packet to
a network device with the ndo_start_xmit() function, KSplit
ensures that all the shared fields (i.e., between the kernel and
driver) of all the data structures that are recursively reachable
from the two input arguments (i.e., sk_buff and net_device)
and all global kernel variables are synchronized with the
driver. After the invocation completes, the fields updated by
the driver are synchronized back to the kernel. Nested invo-
cations into the kernel also trigger synchronization to ensure
that the kernel and driver use the current state. If the driver
code uses a concurrency primitive that is shared with the ker-
nel, e.g., a global lock, like the rtnl_lock used by network
device drivers to register with the kernel, KSplit synchronizes
the state of the driver with the kernel on entry and exit from
the atomic region to maintain current copies in both domains.

2To distinguish between the synchronization of shared state in general
with primitives to synchronize state used in concurrent operations, we refer
the latter as concurrency primitives in this paper.



KSplit provides software analysis algorithms to isolate
legacy drivers to achieve these goals that 1) compute the sub-
set of the kernel state that is accessed by the driver (i.e., the
shared state) and 2) synchronize that shared state on cross-
domain invocations and concurrency primitives that access
shared state. While appearing to be conceptually straightfor-
ward, isolating legacy drivers is complicated by several factors
caused by how drivers are currently deployed in monolithic
kernels, specifically:
Complex shared state Kernel data structures often consist
of a large number of fields and may be referenced in a vari-
ety of ways. The sk_buff structure that represents a network
packet has 66 fields (5 pointers and 2 offsets) through which
3,132 fields (1,214 pointers) are recursively reachable in other
data structures. The kernel and driver operate jointly on only
a small fraction (52 shared fields) of these fields. In addition,
like many kernel data structures, the sk_buff structure is ac-
cessed through complex memory references. For example,
some sk_buff pointers are used to ensure in-place access to
parts of the network packet, i.e., head and data mark the be-
ginning of the packet header and data regions from which the
packet is assembled, respectively.

To compute shared state accurately under these re-
quiements, KSplit employs a field-sensitive data flow analysis
using a modular alias analysis to capture field references com-
mon between the kernel and driver. To do this efficiently,
we apply the parameter tree approach [59], which computes
aliases intra-procedurally [79] and propagates those alias re-
sults inter-procedurally. This approach was employed previ-
ously in user-space privilege separation [59]. However, user-
space privilege separation aims to isolate sensitive data se-
lected manually by programmers, whereas KSplit needs to
identify the data shared between the kernel and a driver auto-
matically. Prior techniques to estimate sharing between the
kernel and a driver [33, 72] greatly overestimate shared data
because they collect all the fields that the driver will access
instead of those that are actually shared.
Size and complexity of the kernel In order for the isolated
driver and kernel to operate correctly, we must identify all
the shared state. Using a sound alias analysis, we can over-
approximate the shared state, but the kernel is too large (e.g.,
contains 53,000 functions) to apply the field-sensitive analy-
sis needed to compute shared state accurately. KSplit handles
this challenge by first performing an analysis to identify the
subset of kernel functions that can access the state involved in
interaction with the driver. Then, KSplit performs an accurate
shared state analysis on this subset of the kernel functions
along with the driver.
Concurrency and parallelism KSplit must ensure that the
kernel and the isolated driver operate on current shared state
regardless of how the kernel and driver interact. The kernel,
however, invokes functions of the driver in parallel on multiple
CPUs and device drivers are concurrent and fully-reentrant.
As a result, it is possible that the driver updates the shared

state that is concurrently accessed by the kernel or vice versa,
using one of various concurrency primitives. For example,
most drivers use the read-copy-update (RCU) synchronization
pattern to synchronize their state across multiple invocations
in a lightweight manner, e.g., the Ixgbe network driver holds
an rcu_read_lock to access the ring statistics to prevent deallo-
cation of driver queues by a concurrent thread. However, many
drivers rely on atomic primitives and critical sections (e.g.,
Ixgbe communicates state updates to the New-API (NAPI)
state to the softirq framework with atomic variables). Finally,
some device subsystems rely on global locks (e.g., rtnl_lock
in the network subsystem) during the driver registration.

KSplit leverages a critical observation that synchroniza-
tion mechanisms rarely cross the driver-kernel boundary, e.g.,
out of 73 uses of concurrency primitives in the Ixgbe driver
only 3 atomic primitives synchronize state across the isolation
boundary. We develop a collection of algorithms that care-
fully classify shared and private critical sections for a range of
kernel concurrency primitives (mutexes, spinlocks, sequential
locks, atomic primitives, and RCU locks). For shared concur-
rency primitives, KSplit computes the state that is accessed
within the critical section and requires synchronization.

Low-level C idioms The kernel code utilizes a range of low-
level idioms that create ambiguities for static analysis (Fig-
ure 1). For example, device drivers rely on sentinel values
(e.g., null) to represent variable size arrays, e.g., the PCI sub-
system uses the pci_id_table array to store a set of devices
supported by a particular driver (Figure 1a). Further, the lack
of a fast array or vector abstraction forces the kernel to use
references in place of arrays and keep the length as a separate
field. Some memory regions like user and device I/O mem-
ory requires special treatment when passed into an isolated
driver (Figure 1c). Tagged and anonymous unions are used
by the driver to implement polymorphic functions that can
take generic arguments of a union type (Figure 1e). KSplit
provides support for these cases and the necessary IDL anno-
tations and library support to generate correct code.

Prior approaches assumed that programmers would provide
annotations to resolve ambiguities in marshaling manually
for most cases [33,51,62,66,68], but that is impractical when
isolating complete device drivers. Instead, KSplit takes the
opposite approach, aiming to resolve ambiguities in most
cases and providing warnings in the remaining cases. For
example, char * references, as for the head* and tail* fields
in the sk_buff data structure, may refer to singletons, arrays,
strings, or even other data types (e.g., for type casts). KSplit
utilizes a series of classification methods to distinguish among
these cases automatically, enabling nearly all ambiguities to
be resolved for the drivers we have isolated.

Prior work Microdrivers [33], Decaf [72], and FGFT [51]
developed static analysis aimed at isolation of legacy driver
code. Due to the sheer complexity of the whole driver analysis,
these past approaches were limited to isolating only select
driver functions (e.g., non-critical path), and supported only



1 struct pci_dev { // sized array
2 struct resource resource[DEVICE_COUNT_RESOURCE];
3 };
4
5 static const struct pci_device_id ixgbe_pci_tbl[]
6 = {
7 { PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82598),
8 board_82598 },
9 { }, /* sentinel */

10 };

(a) Sized and sentinel arrays

1 #define skb_shinfo(SKB) \
2 ((struct skb_shared_info *)(SKB->end))
3
4 static inline void
5 *blk_mq_rq_to_pdu(struct request *rq)
6 {
7 return rq + 1;
8 }

(b) Collocated data structures

1 ssize_t msr_read(struct file *file,
2 char __user *buf, ...)
3
4 dev->bar = ioremap(pci_resource_start(pdev, 0),
5 8192);

(c) Special memory regions.

1 struct skb_shared_info {
2 struct sk_buff *frag_list;
3 };

(d) Recursive data structures

1 union acpi_object {
2 acpi_object_type type; /* tag */
3 struct {
4 acpi_object_type type;
5 u64 value;
6 } integer;
7 ...
8 };

(e) Tagged unions

1 static int ixgbe_set_mac(struct net_device *netdev,
2 void *p) {
3 struct sockaddr *addr = p;
4 memcpy(netdev->dev_addr, addr->sa_data,
5 netdev->addr_len);
6 ...
7 }

(f) Opaque pointers

Figure 1: Code idioms typical of the Linux kernel

a limited subset of kernel idioms. KSplit leverages advances
in static analysis, specifically, a combination of an accurate
Program Dependence Graph representation and modular alias
analysis with parameter trees [59]. This allows KSplit to scale
the analysis and implement isolation of the entire driver. A
clean separation of shared and private state allows us to scale
static analysis and resolve almost all ambiguous annotations
required for marshalling of the low-level driver code.

3.1 Threat Model and Security Goal
The goal of KSplit is the same as the majority of prior re-
search on driver isolation [35, 66, 68, 80] in that KSplit aims
to improve kernel reliability, i.e., prevent flaws in the driver
domain, such as memory errors, from affecting the rest of
the kernel. We trust that the kernel domain is free of soft-
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IDL Compiler Interface

Code

Figure 2: KSplit workflow.

ware flaws, but assume that the driver domain may contain
flaws that, for example, may result in writes to kernel memory
possibly causing the kernel to crash.

We leave the feasibility analysis of whether KSplit driver
isolation prevents attacks originating from a driver as fu-
ture work. We note that LXFI [62] prevents certain driver-
originated attacks by generating dynamic checks based on
user-specified safety conditions at the kernel-driver boundary.
However, identifying and specifying safety conditions for indi-
vidual drivers are labor-intensive tasks and a range of security
attacks are still possible, such as resource exhaustion (e.g.,
driver can allocate objects to consume memory), protocol vio-
lations (e.g., driver can unregister itself from the kernel), and
even use-after-free (e.g., driver can trigger deallocations of
objects reachable from the kernel in an unexpected way). We,
however, believe that KSplit is a critical step towards shaping
the foundation of the future isolation mechanisms. We plan
to study what security guarantees may be possible to achieve
automatically as future work, e.g., by extending our analyses
to produce changes to the kernel-driver boundary required to
address the security problems above.

Finally, speculative execution and side-channel attacks are
out of the scope of this work as well.

4 KSplit Static Analysis
Figure 2 presents KSplit’s workflow. KSplit takes the source
code (i.e., the code of the kernel and a device driver) as input
and converts it into LLVM IR using Clang, LLVM’s fron-
tend. KSplit then provides analyses to: (1) identify shared
data between the kernel and the driver; (2) compute data syn-
chronization on each boundary crossing for that shared data;
(3) compute data synchronization for concurrency primitives
that access shared data; and (4) infer marshaling requirements
for data types where such requirements are ambiguous, e.g.,
tagged unions, void pointers, arrays, linked data structures,
etc. The result of the analysis is a collection of definitions for
the KSplit interface definition language (IDL) compiler. For
some cases whose IDL configuration (e.g., size and/or format)
remains ambiguous after analysis, KSplit generates warnings
for developers to resolve the ambiguity. These warnings must
be resolved by developers to obtain a working IDL. The IDL



compiler then generates glue code that ensures synchroniza-
tion of data structures between isolated subsystems.

In this section, we present KSplit’s core static-analysis
algorithms to address the aforementioned problems. The al-
gorithms are designed to solve these problems in general, but
the C language is ambiguous about some key information
required by the algorithms (e.g., pointer type information).
We defer to Section 5 for a discussion of how we leverage
C programming idioms used in the Linux kernel to resolve
these ambiguities in many cases. While some of these idioms
are commonly applied in C programs, some idioms may need
to be replaced for other kernels.

4.1 Program Dependence Graph
KSplit reasons about the kernel and drivers using an inter-
procedural program-dependence graph (PDG) [59]. PDG rep-
resents individual LLVM instructions as nodes with edges
that capture control and data dependence among instructions.
An instruction n1 is control dependent on n2 if, intuitively,
n2’s outcome decides whether n1 gets executed [26]. An in-
struction n1 is data dependent on instruction n2 if n1 uses
some data produced by n2. Data dependence is critical for
determining how the data structures that are exchanged be-
tween the driver and the kernel are used in cross-domain
invocations. Specifically, KSplit computes how the objects
are used by each side of the isolation boundary to compute
data synchronization requirements as described in Section 4.3.
In particular, we need to find all operations that may read or
write data, which should be marshaled across a boundary.

Scaling alias analysis with parameter trees A common
type of data dependence happens when an instruction writes
to a piece of memory from which another instruction reads.
Computing such memory-related data dependence requires
alias analysis, which computes the variables or expressions
that may reference (i.e., point to) the same memory object,
which are called aliases. We need to compute aliases in KSplit
because we need to detect all objects that may be accessed
by both the kernel and drivers. Further, the isolation of the
driver code further requires an interprocedural alias analysis
as both the kernel and driver code may pass pointers to data
objects across function boundaries as well as through global
variables. The alias analysis problem is known to be undecid-
able; devising a precise analysis that is guaranteed to capture
all aliases and scales well is a challenge. Current interproce-
dural alias analysis techniques (e.g., [54, 79]), however, do
not scale to low-level kernel code with its complex uses of
memory references. Instead, we propose to deploy a modular
form of alias analysis that enables us to manage scalability
more effectively.

In the KSplit approach to modular alias analysis, we employ
SVF [79] to compute aliases intra-procedurally and propagate
those alias results inter-procedurally using the parameter tree
approach [59], allowing us to efficiently compute memory de-
pendence across function boundaries in a context-insensitive

*file: struct file

Kernel

Driver

call msr_read

file: struct file*

msr_read

*file: struct file

file: struct file*

f_inode: struct inode*

count: int

count: int

if(file->f_op->read)

file->f_inode

if(count % 8)

__vfs_read

Control dependency

Parameter tree

Data dependency

Figure 3: Partial PDG for the msr_read() function which is
invoked with the call instruction from the __vfs_read() func-
tion.

way. Specifically, it first constructs PDGs for each function
of the program (which includes intra-procedural memory de-
pendence) and then glues them together by connecting actual
parameter trees for arguments at function call sites and formal
parameter trees for parameters; details can be found in [59].

To illustrate the idea of parameter trees, consider the
msr_read() function of the MSR driver. For each argument of
the function we construct a parameter tree that represents stor-
age locations that the callee can access. For example, Figure 3
shows a parameter tree for two arguments of the msr_read()

function: 1) the file argument of type struct file * and
2) the int argument count. The parameter tree for the file

argument has a root node labeled “file:struct file*” for rep-
resenting the storage of the pointer, and a child node labeled
“*file:struct file” for the memory region that the pointer
points to. The references of each storage location in the pro-
gram are connected with corresponding tree node through
data dependency edges. We note that for brevity the figure
does not show the fields of the file struct; the actual repre-
sentation represents each field by a separate node for field
sensitivity.

4.2 Computing Shared and Private Data
Accurate separation of shared and private state is critical for
precision and scalability of KSplit analyses. However, the
size of the kernel makes it impractical to perform an accurate
analysis to find the shared state at the level of fields (i.e., field-
sensitive analysis). On the other hand, the kernel’s use of
interrupt handlers makes it difficult to ensure that all the code
that may impact a particular driver interface invocation has
been accounted for. For example, an interrupt handler does



not have an explicit caller and is thus unreachable in a typical
control-flow graph (CFG) from the driver or regular kernel
code. It only runs in response to the corresponding interrupt.

As a result, we develop a shared state algorithm that first
determines the scope of code in the kernel and driver to con-
sider (i.e., the functions and data types that may be shared),
as described in steps (1) and (2) of the detailed algorithm
below. Then, we perform an accurate, field-sensitive analysis
on the PDG leveraging the modular alias analysis above to
capture the shared state of the kernel and driver in terms of
data structure fields.

The detailed algorithm steps are as follows: (1) the algo-
rithm computes a set of struct types that are accessible by
both sides of the isolation boundary. This is performed by
collecting all the struct types that are accessible transitively
through interface function parameters, global variables, and
interrupt handlers. These struct types are referred as shared
struct types. (2) For each shared struct type, we identify the
functions in the kernel and driver that contain variables whose
type matches one of the shared struct types. The functions
accessible from isolation boundary in step (1) and those found
in step (2) are used to compute the shared state in (3) below.
Steps (1) and (2) do not use the CFG and work even for in-
terrupt handlers (unreachable in the CFG). (3) For each set
of variables that match a shared struct type, we use the PDG
to analyze the accesses via the variables to collect the fields
accesses for that type. (4) For each field, if the field has ac-
cesses from both the kernel and the driver, we consider the
field as shared. Otherwise, the field is private.

The output of the algorithm is a set of shared struct types
associated with their shared and private fields. For illustra-
tion, the struct net_device type contains the following fields
(among others): wanted_features, features, and hw_features.
By analyzing the ixgbe driver and the kernel code, our analy-
sis determines that the features field has accesses from both
the driver and the kernel, while the other two fields have only
accesses in the kernel. Therefore, our algorithm decides that
features is shared, while the other two are kernel private.

This algorithm relies on two assumptions. First, in step
(2), we assume that any state shared between the kernel and
driver are accessed using one of the shared struct types from
step (1). While this is not guaranteed, the kernel generally
obeys typing for the types shared with drivers. If we miss a
data type, we may under-approximate shared state causing
correctness issues, but we have not found any exceptions to
date. Second, we rely on the observation that the type of a
composite object correlates with how it is shared across the
isolation boundary. In other words, it is uncommon for differ-
ent instances of the same composite type to be either shared
or private; e.g., if a device driver accesses the inode field of
the struct file * object, it is likely that inode is shared for all
instances of the struct file * type. Thus, the analysis cannot
determine whether a field of one instance is shared while the
same field of another instance is private. The algorithm may

over-approximate the shared state, which may cause unneces-
sary data synchronization but does not affect correctness.

4.3 Cross-Domain Synchronization
When a function invocation crosses the domain boundary,
KSplit synchronizes the shared state that is required by the
callee domain to execute the call. Similarly, when the function
returns, the changes the callee made to any shared state have
to be synchronized back to the caller reflecting updates on its
copy. We develop parameter access analysis that computes all
data structures and their fields that require synchronization.
Basic parameter access analysis At a high level, this algo-
rithm tracks the parameter reads that require data to be syn-
chronized on calls and parameter writes that require data to be
synchronized on responses for each cross-domain invocation
and any functions reachable from that invocation. Algorithm 1
presents a worklist-based algorithm: 1) for each function in
the worklist, it performs an intraprocedural parameter access
analysis; 2) it collects call instructions in the function being
analyzed and performs an interprocedural analysis; and 3) it
repeats steps (1) and (2) until the analysis reaches a fixpoint
(when the worklist becomes empty). Algorithm 1 computes
field usage that is dependent on parameters passed between
domains only. Dependence is computed using the parameter
tree alias analysis to ensure an overapproximation.

Algorithm 1: Parameter access analysis
Input: G is a PDG, T is a parameter tree, f is the target function of

a cross-domain call
Output: Access Information Map AM

1 initialize AM to be empty
2 worklist←{ f}
3 while worklist is not empty do
4 f1← remove_any(worklist)
5 for node n in T do
6 for instruction i in f1 do
7 if G has a dependence edge from i to n then
8 AL← the edge’s access label
9 AM[n]← AM[n]∪AL

10 else if i calls f2 then
11 worklist← worklist ∪{ f2}
12 end
13 end
14 end
15 end

The analysis goal is to compute a set of access labels (AL)
for each parameter tree node of a function parameter. The
access label of a node represents how the storage represented
by the node is used by the callee of a cross-domain call
(READ/WRITE). We further define a global map AM, which
maps from parameter tree nodes to sets of access labels AL.
For example, if there is a read access to the f_inode field of
the file data structure, we associate a READ label with the
parameter tree node that represents the storage of the f_inode.
After AM is computed, the fields for shared state correspond-
ing to nodes with the READ label are copied from the caller



to the callee when the call happens, and those for shared state
with the WRITE label are copied from the callee to the caller
when the callee returns.

The previous analysis generates correct state to synchro-
nize, but might include unnecessary fields because of nested
boundary crossings, which cause the call-graph transitive clo-
sure to include functions from both sides of the isolation
boundary. KSplit distinguishes reads and writes of different
domains and avoids sending shared data to a callee if the data
is only used in the caller’s domain due to a nested call. Simi-
larly, KSplit avoids copying shared data back to the caller if
the writes only occur in the caller domain, To do this, KSplit
removes shared fields accessed only in the caller domain from
the closure computed in Algorithm 1. For the above example,
suppose the driver function d reads shared field fd1 and k′

reads shared field fd2. The previous analysis determines both
fd1 and fd2 need to be sent when k calls d. However, our
optimization distinguishes the two reads and sends only fd1.

4.4 Critical Sections and Atomic Primitives
Modern device drivers are often invoked in parallel on all
CPUs of the system, and are fully concurrent outside of small
critical sections. Kernel and drivers synchronize accesses to
the shared state through a variety of concurrency mechanisms
provided by the kernel: atomic operations, spinlocks, sequen-
tial and reader/writer locks, read-copy-update critical sections
(RCU), etc. To support correct execution of an isolated driver,
we provide support for concurrency primitives across the iso-
lation boundary. We identify two large classes of concurrency
primitives: locking and lock-free (i.e., atomic operations). For
atomic update primitives, e.g., atomic_inc(), atomic_set(), we
perform all updates on the primary copy of the data main-
tained in the kernel; i.e., drivers call outside to update the
primary copy. For synchronization primitives that acquire and
release a lock (we support spinlocks, seqlocks, RCU, read-
er/writer locks, and mutexes), we compute the state that is
accessed in each critical section and synchronize it across the
isolation boundary. To enforce atomicity across isolated do-
mains, we rely on the mechanism similar to combolocks [33].

The high-level steps for the analysis are as follows: 1) iden-
tify shared critical sections where cross-subsystem synchro-
nization is required; and 2) collect read/write accesses to
shared data in critical sections.

Identifying critical sections To identify critical sections, we
perform a search in the CFG of the program, looking for a set
of function invocations that implement critical section syn-
chronization primitives, e.g., spin_lock, mutex_lock, etc. For
each call to a function marking the beginning of a critical sec-
tion we follow the CFG to identify a matching invocation that
marks its end, i.e., spin_unlock for spin_lock. Next, we use
alias analysis to check whether the beginning (lock) and end
(unlock) use the same lock. Finally, we output only critical
sections defined by lock/unlock call pairs found by the CFG
that are associated with the same lock.

Shared data accesses in critical sections Given a critical
section, we identify all shared state that is modified within
the critical section. Our goal is to: 1) classify critical sections
and atomic operations as private or shared, i.e., whether the
data accessed is private or shared, and then 2) if the critical
section operates on shared data, compute the state required
for correct synchronization. Specifically, we identify read and
write accesses to shared data from inside the critical section
(similar to Algorithm 1). For read accesses we ensure that tha
state is synchronized right after entering the critical section—
this ensures that the code inside operates on a consistent,
fresh copy of the state. For write accesses we synchronize
all updates by sending it to the other side of the isolation
boundary right before exiting the critical section.

Handling optimized primitives KSplit has support for a va-
riety of concurrency primitives that are optimized to reduce
the use of locking. In most cases, such as sequential locks, the
main issue is to determine the corresponding reader and writer
critical sections accurately without explicitly locking. For ex-
ample, we describe how KSplit handles RCU primitives. An
RCU lock is often used in manipulating linked list data struc-
tures inside the kernel to enable multiple readers and a single
writer to access the same data structure concurrently, which
reduces the time-consuming lock obtain/release operations.
In KSplit, we consider the non-preemptable reader implemen-
tation of RCU locks. In this implementation, the start and
end of a reader section is defined by calls to rcu_read_lock

and rcu_read_unlock functions, respectively. The reader criti-
cal section disables preemption. For an RCU writer, KSplit
searches for the call sites of functions that may update the
pointed data of an RCU pointer such as rcu_assign_pointer

and rcu_replace_pointer. After identifying those reader and
writer sections, the same synchronization algorithm as before
is used. While this design impacts the optimization obtained
by RCU locks, fortunately RCU locks are rarely used for
shared state. Designing a more optimal cross-domain primi-
tive is future work.

5 Low-Level Kernel Programming Idioms
Interface definition language KSplit IDL builds on the
ideas from existing driver isolation projects [33, 62, 66].
Specifically, we borrow the idea of “projections” that describe
the state synchronized across domains from LXDs [66] and
extend them with rich IDL annotations that provide support
for marshaling of low-level C idioms [33]. For every function
crossing the boundary of isolated domains an IDL rpc dec-
laration is generated. These declarations include projections
for each composite type. Each projection is defined to include
only the shared state fields that are read or written by the callee
function, as determined by the parameter access analysis.
For ambiguous cases, additional annnotations are included for
format (e.g., whether a pointer refers to a singleton or an array
and type-specific formatting, such as null-termination) and
size. KSplit aims to produce these annotations automatically



or warnings for programmers to address.
Pointer classification The main challenge for the static anal-
ysis is to infer IDL specifications for format and size to mar-
shal data correctly from the low-level type information avail-
able in C. For each data type in a projection whose marshaling
requirements are ambiguous, we leverage our PDG represen-
tation to compute: 1) the def-use chain and aliases for the
references that can be assigned to the ambiguous argument to
determine what kinds of operations may be performed on the
argument (e.g., to distinguish singletons and arrays) and 2) all
the call sites in which the ambiguous argument is used to infer
semantics from uses (e.g., to infer strings from argument use
in string manipulation functions).

KSplit uses this information to iteratively refine knowledge
about the marshaling requirements of arguments, resolving
the ambiguities in some cases and producing specific warn-
ings in other cases. For example, suppose that an argument
has the type char *, but we do not know whether this type
refers to a singleton, an array, a null-terminated array (i.e.,
sentinel array), or another data type altogether (e.g., due to a
type cast). KSplit resolves such an ambiguity by leveraging
the def-use information of its aliases to classify the argu-
ment and apply further analyses to determine if the ambiguity
can be resolved. For classification, we employ the CCured
method [69] as implemented for LLVM in the NesCheck
system [64]. CCured classifies pointers by whether they are
involved in type casts (wild), are referenced using pointer
arithmetic (sequential), or neither (safe). Pointers classified
as safe by CCured/NesCheck are singletons, as these pointers
reference only one location. Sequential pointers may be ei-
ther arrays or structures, although these can be distinguished
based on the way they are accessed. Finally, wild pointers
involve type cast operations making their types ambiguous,
although we can still infer type information in several cases
for common patterns.

Once we have performed the classification, we then per-
form specialized analyses based on the class for further dis-
ambiguation:
Sized and null-terminated arrays KSplit can identify ar-
rays whose size is determined at allocation time. It statically
detects strings from uses of pointer aliases in any string ma-
nipulation functions.
Tagged and anonymous unions Deriving projections for
union types is challenging: the type and union field name
information is lost at the level of LLVM IR as compiler treats
unions as raw bytes and simply accesses the fields as offsets.
We develop an analysis algorithm that reconstructs field name
information by matching offset accessed by the IR instruc-
tions with the offsets of each field. To marshal the union, the
IDL compiler relies on a user-supplied discriminator function
to determine the type of the union at runtime.
Recursive data structures KSplit supports marshaling of
generic recursive data structures, e.g., linked lists, trees, and
graphs. For example, to support a linked list, the static analysis

generates a projection that includes a pointer to a projection
of the same type as one of the fields. The marshaling code
generated by the IDL compiler traverses all the pointers creat-
ing a map of visited objects until a fixed point is reached on
cyclic graphs.

Opaque pointers and pointer errors If an argument is
found to be wild, KSplit can resolve the type for some cases,
including for void pointers cast to a single type [33]. KSplit
handles some other common cases, such as the pattern where
kernel APIs may return a reference to either an object or an
error.

Other idioms KSplit is able to detect other special cases,
such as buffers from user space, co-located data structures,
and “container of”/“member of” data structures, to enable
special handling (e.g., checks for user-defined memory) and
targeted warnings (e.g., for marshaling ad hoc objects within
a data structure).

6 Implementation

The KSplit system consists of a set of LLVM passes to per-
form the static analyses, an IDL compiler to generate synchro-
nization code, and runtime support for isolation and track-
ing allocations and deallocations. The LLVM static analyses
consist of 8,373 SLOC in C++ for PDG construction [59],
shared data analysis (see Section 4.2), parameter access anal-
ysis (see Section 4.3), and atomic region analysis (see Sec-
tion 4.4). PDG construction additionally uses the SVF alias
analysis [79] for the intra-procedural alias analysis. We also
use NesCheck [64] to classify pointers for resolving ambigui-
ties in kernel idioms. LLVM analyses use bitcode produced
using the O0 optimization level to preserve source semantics.

We implement KSplit for the LVDs framework that sup-
ports isolation of privileged kernel code through a combi-
nation of hardware-assisted virtualization and EPT switch-
ing [68]. Specifically, we rely on the LVDs execution envi-
ronment to run the driver. We, however, implement a new
IDL compiler to support synchronization between subsys-
tems; LVDs supported synchronization of only basic types
and data structures, but lacked support for arrays, unions, and
recursive data structures. The compiler is implemented from
scratch in 4,100 lines of C++.

Object lifetimes The main challenge of the runtime is to
ensure that objects allocated or deallocated on one side of
the isolation boundary are available or removed, respectively,
from the other side. However, the tight integration of kernel
and drivers historically has created irregular allocation and
deallocation patterns. KSplit relies on a hybrid static and
dynamic approach in which the execution runtime tracks new
objects and allocates them each time a new object is passed
across the isolation boundary. We, however, rely on static
analysis to identify deallocation sites and instrument them to
propagate deallocations across the isolation boundary.
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SLOC 562 194 27K 3K 615 2K 690 54 218 10K
Drv.→kern. 21 14 134 61 36 15 36 3 16 45
Kern.→drv. 2 11 81 26 17 1 9 2 5 27
Functions 643 1K 5K 3K 1K 912 1K 133 459 1K

(a) Complexity of driver analysis
Deep copy 31K 46K 999K 214K 153K 24K 75K 11K 24K 134K
Access analysis [33] 127 231 4K 1K 696 91 562 29 66 375
Shared analysis 87 156 3K 831 368 70 406 21 55 265
Boundary analysis 87 155 2K 806 333 70 379 21 51 194

(b) Total number of fields marshaled across all interface functions by each algorithm
Pointers 12K/76 19K/96 404K/1,529 84K/356 60K/178 9K/58 29K/220 4K/16 9K/44 51K/189
Unions 0/0 5/3 114/33 29/17 22/30 0/0 1/12 0/0 0/0 0/7
Critical sections 5/0 5/1 70/3 25/2 19/2 2/0 31/0 0/0 8/0 10/0
RCU 0/0 1/0 8/0 6/0 9/0 0/0 6/0 0/0 0/0 0/0
Seqlock 0/0 0/0 3/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
Atomic operations 0/0 25/1 173/35 59/22 49/1 5/0 37/2 3/0 3/0 50/4
Container of 225/4 557/2 2K/20 1K/12 749/8 419/0 627/5 73/3 68/2 1K/6

(c) Impact of shared state optimizations (private/shared)
Singleton 70/0 84/0 1,251/0 310/0 147/0 39/0 183/0 15/0 41/0 172/0
Array 0/1 3/2 92/27 32/2 21/5 5/6 10/5 0/0 0/1 1/0
String 1/0 1/0 2/0 0/0 0/0 2/0 2/0 0/0 1/0 0/0
Wild pointer (void) 2/1 4/0 142/1 12/0 5/0 3/0 17/0 1/0 1/0 16/0
Wild pointer (other) 1/0 0/2 1/3 0/3 0/0 0/3 0/3 0/0 0/0 0/0

(d) Inference type semantics on shared pointers (handled/manual)
Time 17 217 546 190 135 22 490 5 7 238

(e) Analysis execution time (seconds)
Statements 70% 86% 50% 72% 79% 63% 79% 85% 77% 55%
Branches 57% 81% 48% 76% 79% 65% 91% 100% 96% 53%

(f) Test coverage
IDL (LOC) 163 221 2K 674 470 236 306 47 109 1K
IDL changes (LOC) 1 5 52 25 30 5 11 0 2 7
Drv. changes (LOC) 10 6 19 11 12 0 0 0 0 0
False positives 1 25 129 43 30 6 34 2 5 12
Ptr. misclassifications 0 0 7 3 2 2 3 0 2 0
Warnings 1 8 65 22 35 5 20 0 3 7

(g) Manual effort

Table 1: Driver complexity and impact of shared state optimizations.

7 Evaluation

To evaluate KSplit, we utilize CloudLab [73] c220g2 servers
configured with two Intel E5-2660 v3 10-core Haswell CPUs
running at 2.60 GHz, 160 GB RAM, and a dual-port Intel
X520 10Gb NIC. We use an Intel i7-4790K desktop for evalu-
ation of alx network, xhci USB host-controller and Intel ME
drivers. Both machines run 64-bit Ubuntu 18.04 Linux with
kernel version 4.8.4.

7.1 Generality of Static Analysis

The main question is whether KSplit can be used as a general
tool for the isolation of device drivers in the Linux kernel. To
answer this question, we use the KSplit analysis to produce
IDL for 354 drivers from multiple Linux subsystems (Table 2)
and then evaluate the effectiveness of the analysis and IDL
generation algorithms by isolating and validating the correct-
ness of 10 drivers (Table 1). We chose a range of device and
protocol drivers that represent typical kernel programming
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SLOC 1047 2535 13302 896 556 471 1340
Drv.→kern. 11 60 25 18 10 14 16
Kern.→drv. 10 16 47 4 5 3 13
Functions 546 2588 2691 839 462 772 784

(a) Complexity of driver interfaces

Pointers
15K
/64

53K
/310

73K
/353

16K
/107

10K
/61

12K
/71

18K
/92

Unions 0/2 3/12 7/6 0/2 <1/<1 0/2 <1/4
Crit. sec. 5/<1 51/<1 25/<1 5/<1 6/<1 9/<1 9/<1
Atomic op. <1/0 6/0 2/0 0/0 <1/0 <1/0 <1/<1
RCU <1/0 <1/0 <1/0 0/0 <1/0 0/0 <1/<1
Seqlock 9/<1 45/2 45/11 6/0 <1/<1 4/0 10/<1
Container of 145/4 833/3 1K/9 338/2 133/2 207/2 215/3

(b) Impact of shared state optimizations (private/shared)
Singleton 53/0 26/0 303/0 84/0 56/0 66/0 81/0
Array 5/2 27/15 44/20 22/6 2/<1 4/2 4/1
String <1/0 3/0 <1/0 2/0 <1/0 <1/0 <1/0
Wild (void) 5/<1 18/0 12/1 3/0 1/<1 2/<1 6/<1
Wild (other) 0/<1 0/2 0/3 0/3 0/<1 0/<1 0/2

(c) Inferred type semantics on shared pointers (handled/manual)

Table 2: Performance and complexity metrics across several subsys-
tems (average per driver).

Reference ixgbe skx_edac
nullnet alx sb_edac

Shared rpcs 11 73 13
Shared rpcs IDL∆ +0/-51 +12/-29 +1/-1
Shared rpcs Annotat.∆ 0 +3/-3 0
New IDL 77 36 0

Table 3: Similarity within a class
and communication idioms: 1) msr: a high-level interface to
the model specific registers (MSRs) on the Intel CPUs; it
exercises several patterns typical for nearly every Linux de-
vice driver—dynamic registration of interfaces and callbacks,
synchronization of null-terminated and statically sized arrays;
2) nullnet: a software-only network driver that emulates an
infinitely fast network adapter; it relies on complex alloca-
tion of objects on both sides of the isolation boundary, and
implements a fast data plane requiring careful handling of
data structures to achieve optimal performance; 3) coretemp:
temperature monitoring for CPU cores; it utilizes void point-
ers and two dimensional arrays; 4) sb_edac: error detection
and correction (EDAC) for the Intel Skylake server integrated
memory controllers; it requires marshaling of a graph of ob-
jects that describe the hierarchy of DRAM banks and mem-
ory controllers across the isolation boundary; 5) null_blk: a
software-only emulation of the NVMe interface; it is similar
to nullnet, which allows us to stress overheads of the isolation
on a fast NVMe interface; 6) ixgbe: an Intel 82599 10Gbps
Ethernet driver; it exhibits several critical characteristics inter-
esting for decomposition: first, it relies on atomic operations

to update packet statistics in the kernel; second, it exhibits a
broad range of asynchronous accesses from system calls, in-
terrupt contexts, software IRQs and New API (NAPI) threads
that implement submission of packets and polling; third, it re-
lies on system timers for several control plane operations that
allow us to test static analysis for support of callback func-
tions dynamically registered with the kernel; 7) alx: Linux
Qualcomm Atheros ethernet driver; it is chosen to compare
complexity and manual effort of decomposing device drivers
within the same device class (i.e., we compare two ethernet
drivers: ixgbe and alx); 8) can_raw: raw CAN protocol driver
using the sockets API; it represents a protocol (i.e., not a
device) driver and exhibits typical protocol layer patterns by
interacting with the kernel network stack; 9) dm_zero is chosen
to evaluate if we can fully automate (with no manual effort)
for simple device drivers; 10) xhci-hcd: xHCI protocol driver
for supporting USB 3.0; it handles complex interactions of
the USB communication protocol as well as interacting with
multiple kernel subsystems (PCIe, USB, and DMA).

By generating the IDL for a wide variety of drivers, we
examine the generality of the KSplit analyses for producing
IDL specifications and assessing the manual effort required
for isolating many Linux kernel drivers. While we did not run
all the 354 drivers, as we need the appropriate hardware, we
compare metrics related to the effort of isolating an average
driver to those we validated. To validate the 10 drivers, we
perform the manual tasks required to complete the IDL as
specified by the warnings generated by KSplit, and we per-
form static and runtime tests to determine the precision and
accuracy of the KSplit static analysis.

Complexity of driver interfaces To justify the need for au-
tomated analysis techniques, we collect several metrics that il-
lustrate the complexity of the 10 drivers isolated using KSplit
(Table 1a). The two most complex drivers are ixgbe (over 27K
SLOC) and xhci (over 10K SLOC). The ixgbe driver consists
of over 2,000 functions, registers 81 callback functions with
the kernel, and relies on 134 kernel functions for its operation.
Isolation of the ixgbe driver involves analysis of 5,782 func-
tions that may access the state shared between the kernel and
the driver. A total of 999,136 fields and scalar arguments are
transitively reachable from the arguments of driver functions
that define its isolation boundary (Table 1b). While partial
isolation of the ixgbe driver was demonstrated before [66,68],
isolation of the complete driver is beyond the reach of manual
human analysis.

Impact of shared state optimizations KSplit distinguishes
the shared state from the private state, which is critical for
scalability of the analysis algorithms (Section 4.3). We collect
the total number of fields in all data structures that are recur-
sively reachable from all the arguments passed across the
isolation boundary, i.e., previous approaches relied on naive
“deep copy” [59] and field access approaches [33] (Table 1b).
Out of 999,136 fields reachable through the isolation bound-
ary of the ixgbe driver, only 4,509 fields are accessed, and an



even smaller fraction of them, or 3,029, are shared (Table 1a).
Furthermore, by reasoning about nested crossings of the isola-
tion boundary, we reduce this number to 2,669. Most critically,
the shared state optimization radically simplifies isolation of
the driver, as in many cases complex low-level idioms, e.g.,
tagged unions, stay on one side of the isolation boundary (Ta-
ble 1c). For example, out of 73 critical sections in ixgbe, only
3 are shared (ixgbe relies on the global rtnl_lock to register
the driver with the kernel); all RCU and seqlocks are private,
and do not trigger cross-boundary synchronization.
Pointer classification To understand how well KSplit sup-
ports classification of pointer references, we characterize the
number of supported and problematic pointer patterns in our
drivers (Table 1d). In many cases, KSplit is able to infer the
types and sizes to enable IDL generation automatically. Ta-
ble 1d shows that for ixgbe, out of 1,529 pointers (see the
“Pointers” row in Table 1c) that require marshalling across
the isolation boundary, only 31 require manual inspection to
generate correct marshaling attributes. There are a small num-
ber of misclassified pointers as shown in Table 1g in the row
of pointer misclassifications (“Ptr. Misclassifications”). We
found that these misclassified pointers are sequential point-
ers that are wrongly classified as singleton pointers, because
CCured fails to identify pointer-arithmetic operations on them.
A detailed study of these misclassified pointers revealed the
main reason for misclassification is due to not analyzing li-
brary code. For example, the ixgbe driver calls the kernel
function pci_request_selected_regions() with a reference to
the driver name string, but the kernel function itself does not
perform pointer-arithmetic operations on the reference; in-
stead it passes the reference to string library functions for
processing the string. This causes CCured to misclassify the
pointer as a singleton pointer. We could resolve many of these
misclassification cases by manually encoding how pointers
are used in library functions. For example, if a pointer is
passed to logging functions such as printk() or other string
library functions, e.g, strcmp(), we can classify the pointer as
a sequential pointer.
Analysis execution time To understand practicality of
KSplit and its ability to be part of the kernel development
toolchain, we measure the execution time of the analysis
(Table 1e). The execution time is largely influenced by the
number of functions that are involved in the analysis (this
number is determined primarily by the size of the driver and
by the size of the kernel subsystem the driver interacts with).
Complex device drivers that interact with multiple subsystems
(e.g., can_raw, null_blk, xhci, and ixgbe), require 190-546 sec-
onds to complete. Simple device drivers finish in under a
minute.
Precision of the analysis and manual effort To understand
the precision of the analysis and the manual effort involved in
isolation of a driver, we compare an automatically generated
IDL with the final IDL used for isolation of the driver. As
we do not have the ground truth, to gain confidence in the

correctness of the isolated driver, we execute a collection of
tests on each driver. We use Gcov to collect the code coverage
metrics for the tests we run (Table 1f). The code coverage
is less than 50% in some cases as we can only trigger ex-
ecution of a subset of the driver code (i.e., EDAC drivers
support multiple generations of Intel CPUs from Ivy Bridge
to Xeon Phi; ixgbe supports multiple hardware interfaces,
e.g., x540, 82599, 82598; xhci, being a protocol driver, has a
lot of error handling code, e.g., in a representative function
handle_tx_event() that handles all the usb transmit events, out
of 348 total source lines, 198 (or 56%) lines are error handling
code that we cannot trigger without fault injection; sb_edac
driver consists of 1162 lines of code, out of which only 492
(42%) are executable on our Haswell hardware, out of which
our tests cover 373 lines of code (thus increasing our coverage
from 63% to 76%).

The statistics for the automatically-generated IDL and the
manual effort required in resolving warnings are shown in
Table 1g. An IDL of a complex driver, like ixgbe, generated
by KSplit, consists of 2,476 lines of code. Isolation of the
driver required changing 53 lines of the automatically gener-
ated IDL (or 2% of the IDL). We only had to introduce 19
lines of changes to the code of the driver, which mostly in-
volve redefinition of certain macros as helper functions (e.g.,
setup_timer, INIT_WORK, etc.). KSplit misclassified 7 out of 999
pointers shared across the isolation boundary. Two pointers
were strings that were passed across the isolation boundary,
but were not accessed through pointer arithmetic or string ma-
nipulation functions. One pointer was referring to a region of
DMA’ed memory (again, not used in any pointer arithmetic).
Four pointers were misclassified due to being passed as argu-
ments to the memcpy() function. For smaller drivers, isolation
requires less than 30 lines of IDL changes. Furthermore, most
small drivers require no changes to the driver code.

The “False Positives” row indicates the number of fields
identified by KSplit that are not found to be necessary based
on our manual analysis and driver profiling. The ground truth
may be incomplete, so this number represents an upper bound
in the number of false positives. The fraction of false posi-
tives is generally low (<10%). The dominant reason for false
positives are aliases in the shared data analyses (shared data
uses a type-based approach that leads to overapproximation
of fields and in/out attributes).

Finally, the “Warnings” row shows the number of warnings
KSplit’s static analyses generate for each driver. These warn-
ings must be resolved by developers to obtain a working IDL.

Similarity within a class A key insight for isolation of a
large fraction of the drivers in the kernel is based on the
assumption that drivers within the same class have significant
degree of similarity across their interfaces. Isolation of one
driver within the class, therefore, could guide the isolation
of other drivers in a relatively straightforward manner, hence
amortizing manual effort across the class. To understand the



Null Integer Array String Void Union

Bytes 0 8 32 * 8 256 4096 24 + 32
Cycles 502 532 690 1310 919 710

Table 4: Overhead of marshaling various data structures
effort involved in isolating multiple drivers in the same class,
we choose a base driver within a class and compare it with
other drivers in the class (Table 3). For example, for network
drivers we compare alx and nullnet to the base ixgbe driver.
The alx driver shares 73 function definitions (rpcs) with ixgbe

(the total number of functions crossing the isolation boundary
in both directions is in Table 1a). After ixgbe was decomposed,
decomposition of alx required changes to 6 annotations and a
total 41 lines of changeset in the shared part of the IDL.
Generality of IDL generation To judge if KSplit can be
used as an isolation tool for the entire population of drivers,
we apply it to 354 drivers (Table 2) across nine subsystems
in the Linux kernel. To make a prediction about the manual
effort involved of isolation of an average driver, we collect the
same metrics as the ones collected for the validated drivers
(Table 1), although all the counts in Table 2 are averages per
driver. In general, we see a huge impact due to the shared state
optimizations (Table 2b) and a low number of problematic
pointer instances (i.e., cases that are not “singletons”) that
could result in warnings (Table 2c). We therefore believe that
the effort of isolating an average driver in these subsystems is
comparable to the drivers we validated.
IDL warnings KSplit produces IDL warnings for the follow-
ing patterns in Table 2c: 1) arrays (including “strings”) with
undetermined size; 2) wild pointers whose type cannot be
inferred deterministically from “wild (void)”; 3) anonymous
unions in “wild (other)”; and 4) potential cases of collocated
data structures in “wild (other)”. In general, the number of
IDL warnings for each driver is dependent not only on the
size of the driver, i.e., lines of code, and complexity of the
driver interface, i.e., lines of IDL code, but also on the types
of kernel idioms used for communication across the isolation
boundary. For example, isolation of the alx driver involves an
IDL file that consists of 674 lines of code and requires anal-
ysis of 22 warnings. The alx driver contains 17 anonymous
unions, 2 undetermined size arrays and 3 non-void wild point-
ers. At the same time, isolation of the can-raw driver that uses
a smaller IDL (470 lines of IDL code) yields 35 warnings.
The high number of warnings for can-raw is attributed to the
30 instances of anonymous unions and 5 indeterminate-size
arrays in its interface.

7.1.1 Case Study: Ixgbe Network Driver

To illustate the process of decomposition, we consider an ex-
ample, the ixgbe driver, that combines a representative set of
complex kernel data structures, low-level idioms, and synchro-
nization patterns. As discussed above, separation of shared
and private state is critical for reducing complexity of the IDL
required for isolation of ixgbe. KSplit automatically resolves

1 projection<struct sk_buff> skb_xmit {
2 projection net_device *dev;
3 unsigned int len;
4 unsigned int data_len;
5 ...
6 void * [alloc_sized<callee>(self->true_size)] head;
7 void * [within<self->head, self->true_size>] data;
8 unsigned int [within<_, self->true_size>] tail;
9 unsigned int [within<_, self->true_size>] end;

10 };

Listing 1: Projection of an sk_buff data structure

all function pointers that ixgbe registers with the kernel as
its interface, identifies five “user” and “ioremap” memory re-
gions used by the interfaces of the driver, and ixgbe exchanges
119 opaque pointers across the isolation boundary, where only
one requires manual intervention. ixgbe uses one function that
returns a pointer-as-error, which is successfully identified by
KSplit.

One of the most challenging parts of isolation is the proper
handling of the sk_buff data structure, representing a network
packet (Listing 1). Several integer fields are used as offsets
into the data: 1) tail – to mark the end of the packet’s data,
and 2) end to represent the start of the skb_shinfo structure.
The low-level PDG representation of the program allows us to
derive that the skb_shinfo data structure is allocated within the
data object. As the tail and end fields participate in pointer
arithmetic operations, KSplit generates a special bounds IDL
attribute that instructs the marshaling code to check that the
field is within a specific range, but these bounds have to be
specified manually.

KSplit support for recursive data structures allows us to
marshal sk_buff buffers that consist of multiple fragments
(sk_buff contains an optional list of fragments).

7.2 Performance
In general, the performance of the isolated driver is largely de-
termined by the performance of an underlying isolation frame-
work, i.e., LVDs in our current implementation [68]. We, how-
ever, quantify the impact of the KSplit-specific marshaling
protocol, and conduct an end-to-end performance measure-
ment of an application running on top of the isolated Ixgbe
driver.
Marshaling overheads We perform microbenchmarks to
evaluate the overheads of marshaling various data structures
that are commonly used in the Linux kernel (Table 4). For
each data structure, the test involves marshaling the data struc-
ture, passing it across the isolation boundary, and unmarshal-
ing it. We perform ten million iterations and report an average.
On the LVDs system, a null call-reply invocation takes 502
cycles which includes the overhead of executing the vmfunc

instruction, saving and restoring general registers, and picking
a stack inside the driver domain. KSplit adds 30 cycles for
marshaling simple scalar fields such as integers. For marshal-
ing tagged unions, we rely on a user-supplied discriminator
function that identifies the tag and marshals the union accord-
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Figure 4: Memcached performance
ing to the type it represents. In our experiment, we marshal a
union that represents a string of 32 characters, which incurs
an overhead of 208 cycles.
Memcached To understand end-to-end overheads of isola-
tion on real application workloads, we utilize an experiment
that runs memcached, a high-performance, in-memory object
caching system [4] and compare a native, non-isolated kernel
with the performance of a system that utilizes an isolated ver-
sion of the Ixgbe network driver. We run memcached version
1.5.12 with a single service thread and a cache size of 5GB.
We use the memaslap [2] load-generator to send random UDP
requests of 64B keys and 1024B values to the server (90%
get and 10% set) with a concurrency of 128. To make a fair
comparison, we limit the number of available cores to 10, as
we are limited by the performance of a 10Gbps adapter (all 20
cores would allow isolated drivers to bridge the performance
gap but at a cost of a higher CPU utilization). We report both
the number of key-value transactions per second and total net-
work bandwidth (Figure 4). For experiments with 1-4 threads,
KSplit stays within 5.4-18.7% of the non-isolated system’s
performance. With 10 threads, both isolated and native drivers
saturate the network interface and hence demonstrate a nearly
identical performance (albeit at a higher CPU utilization due
to domain crossings).

8 Conclusions
After decades of research, commodity CPUs are converging
on a set of practical hardware mechanisms capable of provid-
ing support for low-overhead isolation. With the performance
no longer being the main roadblock, complexity becomes the
main challenge for enabling isolation in commodity systems.
Our work on KSplit takes a step forward by enabling iso-
lation of unmodified device drivers in the Linux kernel. A
combination of practical static analysis techniques allows us
to address the daunting complexity of the driver interfaces—
KSplit supports isolation of complex, fully-featured device
drivers with only minimal changes and human involvement.
While our current implementation works with Linux and a
specific isolation framework, we argue that our analysis and
state-synchronization techniques are general and can serve as
a foundation for a range of isolation solutions enabled by the
emerging hardware mechanisms.
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A Artifact Appendix
Abstract
We release the source code of all software used in this paper
along with detailed build instructions and automated scripts
used for running the benchmarks as a collection of publicly-
hosted Git repositories.

Scope
The artifact allows one to run static analysis on the set of
drivers we isolated for this paper and collect metrics that are
reported in Table 1, Table 2, and Table 4.

Contents
The artifact consists of the source code for the following
subsystems: 1) KSplit analysis framework used to generate
interface definition language (IDL) files https://github.

com/ksplit/pdg; 2) LLVM bitcode files for the drivers ana-
lyzed in the paper https://github.com/ksplit/bc-files
(we provide detailed instructions for how to re-generate
the bitcode files, however, to simplify the process of re-
creating results reported in the paper, we provide a collection
of pre-generated files); 3) KSplit IDL compiler that gener-
ates the glue code required to execute the driver in isola-
tion from the IDL files https://github.com/ksplit/idlc;
4) a modified Linux kernel that executes isolated drivers
in Lightweight Virtualized Domains (LVDs) [68] https:

//github.com/ksplit/lvd-linux; and 5) a modified Bare-
flank hypervisor that provides secure and efficient isolation
boundary based on VMFUNC EPT switching interface used
by LVDs https://github.com/ksplit/bflank.
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Hosting
The artifact is hosted on GitHub. The README.md file
under https://github.com/ksplit/ksplit-artifacts de-
tails the steps required to build and run the benchmarks.

We conduct all experiments in the openly-available Cloud-
Lab cloud infrastructure testbed [28] and make our experi-
mentation environment available via an open CloudLab [73]
profile that automatically instantiates the software setup re-
quired to run KSplit: https://github.com/ksplit/ksplit-
cloudlab/.

Requirements
The KSplit build infrastructure was tested on an x86-64
Ubuntu 18.04 LTS system. The static analysis framework is

built and tested against LLVM v10.0.1. We rely on LVDs [68]
to execute isolated drivers. LVDs run on any modern Intel
x86-64 hardware (Haswell or later) that supports virtualiza-
tion (Intel VT-x) and EPTP switching via VMFUNC. LVDs
rely on a customized Bareflank hypervisor and a modified
Linux kernel based on v4.8.4. We have tested KSplit on the
following hardware (available in CloudLab): a Cisco UCS
C220 machine configured with an Intel Xeon E5-2660 CPU,
and a Dell PowerEdge C6420 machine configured with an
Intel Xeon Gold 6142 CPU.

https://github.com/ksplit/ksplit-artifacts
https://github.com/ksplit/ksplit-cloudlab/
https://github.com/ksplit/ksplit-cloudlab/

	Introduction
	Background: Device Driver Isolation
	KSplit Overview
	Threat Model and Security Goal

	KSplit Static Analysis
	Program Dependence Graph
	Computing Shared and Private Data
	Cross-Domain Synchronization
	Critical Sections and Atomic Primitives

	Low-Level Kernel Programming Idioms
	Implementation
	Evaluation
	Generality of Static Analysis
	Case Study: Ixgbe Network Driver

	Performance

	Conclusions
	Acknowledgments
	Artifact Appendix

