
Learning from Active Human Involvement through
Proxy Value Propagation

Zhenghao Peng§, Wenjie Mo§, Chenda Duan§, Quanyi Li†, Bolei Zhou§
§University of California, Los Angeles, †University of Edinburgh

Abstract

Learning from active human involvement enables the human subject to actively
intervene and demonstrate to the AI agent during training. The interaction and
corrective feedback from human brings safety and AI alignment to the learning
process. In this work, we propose a new reward-free active human involvement
method called Proxy Value Propagation for policy optimization. Our key insight is
that a proxy value function can be designed to express human intents, wherein state-
action pairs in the human demonstration are labeled with high values, while those
agents’ actions that are intervened receive low values. Through the TD-learning
framework, labeled values of demonstrated state-action pairs are further propagated
to other unlabeled data generated from agents’ exploration. The proxy value
function thus induces a policy that faithfully emulates human behaviors. Human-
in-the-loop experiments show the generality and efficiency of our method. With
minimal modification to existing reinforcement learning algorithms, our method
can learn to solve continuous and discrete control tasks with various human control
devices, including the challenging task of driving in Grand Theft Auto V. Demo
video and code are available at: https://metadriverse.github.io/pvp.

1 Introduction

Reinforcement learning (RL) has been successfully applied in many domains, ranging from board
game Go [46], strategy game StarCraft II [42], autonomous driving [18], and even nuclear fusion [7].
Existing RL methods assume the manually designed reward functions can fully express human
intents and preferences. However, the resulting agents might exhibit biased, misguided, or undesired
behaviors due to faulty reward functions [23, 40, 20]. Moreover, the poor sample efficiency as well
as the safety concern due to the trial-and-error exploration prevent the real-world deployment of RL.

Human-in-the-loop methods are promising to achieve alignment, learning efficiency, and safety.
Human-in-the-loop policy learning relies on human subjects to oversee the learning process of the
autonomous agents, thus it can better align the learned behaviors with the preferences of humans
compared with handcrafted reward functions. Different forms of human involvement in human-in-
the-loop policy learning have been studied over the years. Human subjects can advise actions upon
the requests of the robots [28] or provide preference-based feedback to assess the relative value
of the collected trajectories [53, 5, 38, 52, 36, 11, 34]. These methods learn from passive human
involvement, where the human subjects do not provide real-time feedback and intervention during
data collection. For safety-critical tasks such as autonomous driving, safety is undoubtedly the first
priority in human preference and the passive involvement methods yield unbounded risks in such
settings. An increasing body of works focuses on active human involvement, where human subjects
actively intervene and provide demonstrations during the execution time [17, 47, 29, 26]. With online
correction and demonstration from human subjects, AI alignment and training-time safety of the
system can be substantially enhanced.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://metadriverse.github.io/pvp

In this work, we focus on learning from active human involvement and develop a simple yet effective
method that can turn a common value-based RL method into a reward-free human-in-the-loop method
with minimal modification. Our key insight is that we can learn a proxy value function from active
human involvement, such that the proxy values encode human intents and guide policy learning to
emulate human behaviors. Specifically, we propose the Proxy Value Propagation (PVP) method
which labels high Q values to human actions and low Q values to agent actions that are intervened
by the human subjects. The proxy values are then propagated to unlabeled state-action pairs in the
agent’s exploration through TD-learning. Value-based RL methods soon learn policies that align
with human intents because of the value-maximization nature. Experiments show that PVP can
be successfully applied to both continuous and discrete action spaces, and achieve higher learning
efficiency compared to baselines in various tasks, including driving in Grand Theft Auto V (GTA
V). It is also compatible with different forms of human control devices, including gamepad, driving
wheel, and keyboard. We summarize our main contributions as follows:

1) We propose a simple yet effective method, Proxy Value Propagation, that can be integrated into
existing RL algorithms to learn from active human involvement. Our method is reward-free and
can be generalized across various task settings and human control devices.

2) The experiments show that the proposed PVP method enables superior performance and high
learning efficiency in various tasks from the MiniGrid, MetaDrive, CARLA, to GTA V environment.
User study further shows that PVP achieves better performance and is more user-friendly compared
to other human-in-the-loop baselines.

2 Related Work

AI alignment is one of the major issues in learning trustworthy intelligent agents for real-world
applications. It is difficult to represent various human preferences into a scalar reward function
in existing Reinforcement Learning (RL) methods [40, 6]. Meanwhile, the manually designed
reward function, which might be misaligned with human preferences, often leads to undesired
behaviors [23, 20]. As a promising complement to RL, Human-in-the-loop Learning (HL) can
overcome costly reward engineering and convey human intents to the learning process directly through
human involvement. Compared to imitation learning (IL) [14, 9], where the agent learns directly
from high-quality human demonstration, HL methods benefit from interactive human involvement
and feedback during the training, mitigating the possible distributional shift that usually happens
when learning from offline data [39].

Preference-based RL. A large body of work focuses on learning human preference via ranking pair
of trajectories generated by the learning agent [5, 11, 38, 52, 41, 36, 22, 51]. InstructGPT [34] aligns
language models by first supervised learning in demonstration and then finetuning by the reward
learned from human preference feedback. Preference learning can be applied to the tasks that human
can not conduct, such as moving a six-legged Ant robot by assigning exact torque at each joint [5].
For those tasks that human can demonstrate, these methods do not fully utilize real-time feedback
from human subjects during agent-environment interaction.

HL with Passive Human Involvement. Different from preference-based RL, human subjects can
provide direct feedback to the learning agent during training through passive human involvement.
Some works learn policy from human-provided evaluative feedback, a Boolean flagging correct
or wrong actions [19, 3, 32]. This is similar to the intervention in our framework. However, in
[32], humans provide high-level instructions, e.g. pointing to the left/right, while in PVP humans
provide intervention and low-level demonstrations. The other line of work allows the neural policy
to operate the robot and the human subjects can provide demonstration upon the requests from the
learning agents [28, 30, 16]. The expert policy will intervene when uncertainty is huge, where the
agent uncertainty is estimated by the variance of actions [30]. These methods reduce the cost of
human resources but have potential risks to human subjects since they do not fully control the system.
For example, when human subjects use these algorithms to train autopilot AI, they are exposed to
significant risks if they are in a self-driving cars due to unpredictable agent behaviors.

Learning from Active Human Involvement. For safety-critical tasks such as autonomous driving,
the safety of both the controlled vehicles and the human subjects is the top priority. There are many
works that allow human subjects to proactively involve the agent-environment interactions based
on their own judgment to ensure safety, which we call active human involvement. Human subjects

2

can terminate the episode if a near-accidental situation happens and such intervention policy can be
learned [56, 1, 43, 35, 54, 50]. Recent studies explore active human involvement methods through
intervention and demonstration in the human-agent shared autonomy [27, 30, 17, 47, 26, 16, 54].
However, previous methods do not fully utilize the power of human involvement. COACH [27] treats
human labels as indications of advantage instead of simply as reward. Compared to COACH, our
method accepts not only the feedback (the intervention signal) but also the human demonstration. Our
method does not consider the time delay of human subjects explicitly as COACH does. Interactive
imitation learning method (HG-DAgger) [17] does not leverage data collected by agents, while
Intervention Weighted Regression (IWR) [29] does not suppress undesired actions likely intervened
by human. Meanwhile, Expert Intervention Learning (EIL) [47] and IWR [29] focus on optimizing
actions step-wise without considering the temporal correlation between steps. These drawbacks
harm learning efficiency and thus incur more human involvement. Moreover, previous methods lack
experiments to demonstrate the generalizability to different task settings and human control devices.

3 Problem Formulation

Policy learning aims at finding a policy to solve the sequential decision-making problem, which
is usually modeled by a Markov decision process (MDP). MDP is defined by the tuple M =
hS,A,P, r, �, d0i consisting of a state space S, an action space A, a state transition function
P : S ⇥A! S , a reward function r : S ⇥A! [Rmin, Rmax], a discount factor � 2 (0, 1), and an
initial state distribution d0 : S ! [0, 1]. The goal of conventional reinforcement learning is to learn
a novice policy ⇡n(a|s) : S ⇥A! [0, 1] that can maximize the expected cumulative return: ⇡n =

argmax⇡n E⌧⇠P⇡n
[
PT

t=0 �
tr(st, at)], wherein ⌧ = (s0, a0, ..., sT , aT) is the trajectory sampled

from trajectory distribution P⇡n induced by ⇡n, d0 and P . Here ⇡n defines a stochastic policy, while
deterministic policy can be denoted as µn(s) : S ! A and its action distribution is a Dirac delta
distribution ⇡n(a|s) = �(a� µn(s)).

The reward function imposes an assumption that the reward can fully reflect the intentions of the users
and incentivize desired behaviors. However, this assumption may not always hold and the learned
agent may obtain biased behaviors or figure out the loophole to finish the task [23, 40]. Revisiting
the primal goal when developing learning systems, we find the reward is not a necessity since what
we really want to achieve is the realization of human preference in the learned behaviors and, as
suggested by [40], the ultimate source of information about human preferences are human behaviors.

Imitation Learning (IL) methods directly learn ⇡n from human behaviors. Assuming a human expert
has a human policy ⇡h(ah|s) : S ⇥ A ! [0, 1], which outputs human action ah 2 A. Note that
human action shares the same action space as novice action. IL learns from the trajectories generated
by human policy ⌧h ⇠ P⇡h and optimizes the novice policy to close the gap between ⌧n ⇠ P⇡n

and ⌧h. Instead of generating an offline dataset and training novice policy against it [14, 9], we can
incorporate a human subject into the loop of training for providing online data. This can mitigate the
distributional shift since the data generated with human-in-the-loop has closer state distribution to
that of the novice policy [39]. This can be modeled by introducing an intervention policy I(·|s, an)
to describe human subjects’ intervention behaviors. In earlier methods such as DAgger [39], the
intervention policy is a Bernoulli distribution and the control authority switches back and forth
between the novice and the expert. It is unrealistic to invite a real human subject to be involved in
such training. Later studies allow the human subjects to intervene and take full control [49, 43, 26, 54],
which we call such setting as learning from active human involvement. During training, a human
subject accompanies the novice policy and can intervene with the agent by taking over the control to
demonstrate desired behaviors. The intervention policy can be considered as a deterministic policy
denoted by I(s, an) : S ⇥A! {0, 1} where an ⇠ ⇡n(·|s) is agent’s action. With notations above,
the behavior policy ⇡b that generates actions during training is:

⇡b(a|s) = (1� I(s, µn(s)))�(a� µn(s)) + I(s, µn(s))⇡h(a|s). (1)

With such a model of active human involvement, we can now formulate our objectives.

Task-specified metrics. Our primal goal is to find novice agents whose behaviors are well-aligned
with human preferences. In this work, we inform the human subjects of the primal goal of the
tasks, e.g. navigating to the destination in driving tasks. They are also aware of how task-specified
metrics, such as success rate and route completion provided by the test environments, are computed.

3

These metrics serve as a proxy for human preferences in evaluating trained agents’ performance.
Unlike prior work where these metrics were used as rewards, our learning agent cannot access them.
The only supervision sources in our method are human interventions, I(s, a), and demonstrations,
ah ⇠ ⇡h(·|s).
Preference Alignment. In our method, humans can intervene at any time. Most interventions occur
in near-accidental situations or when agents are performing poorly. Conversely, lack of intervention
indicates alignment with human preferences. Hence, another goal is to develop a novice policy that
minimizes human interventions during shared control. In the next section, we will discuss our insights
and how we build a concise, general, and efficient learning method to achieve these objectives.

4 Method

We propose the Proxy Value Propagation (PVP) method which can transform a value-based RL
method into an efficient reward-free human-in-the-loop policy optimization method that learns from
active human involvement. PVP is compatible with various task settings, such as continuous and
discrete action spaces, as well as various human control devices. In this section, we first summarize
the basic workflow of value-based RL before introducing the motivation and the design of PVP. We
then describe the implementation details.

Value-based RL: The proposed human-in-the-loop method results from the minimum modification
of existing reinforcement learning methods. Thus, we briefly introduce the background of related
methods. Value-based RL optimizes the value function and policy iteratively. On the value function
side, we denote the state-action value and state value of policy ⇡ as Q(s, a) = E [

P1
t=0 �

tr (st, at)]
and V (s) = Ea⇠⇡(·|s)Q(s, a), respectively. A neural network is commonly used to estimate the
value function with Bellman backup: Q(s, a) r(s, a) + �maxa0 Q(s0, a0), where s0 is the next
state. To learn the value network Q✓ parameterized by ✓, stochastic gradient descent on the temporal
difference (TD) loss is conducted JTD(✓) = E(s,a,s0) |Q✓(s, a)� (r(s, a) + �maxa0 Q✓̂(s

0, a0))|2,
where Q✓̂ can be a delay-updated target network. In this work, we adopt the TD learning in the
reward-free setting. Remove the reward in the TD loss, the TD loss becomes:

JTD(✓) = E
(s,a,s0)

|Q✓(s, a)� �max
a0

Q✓̂(s
0, a0)|2. (2)

On the policy side, based on the learned value function, the deterministic policy µn parameterized
by � can be learned by maximizing the Q values: J(�) = Es Q(s, µn(s;�)). The optimal policy is
expected to maximize Q values:

µn(s) = argmax
a

Q(s, a). (3)

4.1 Proxy Value Propagation

We illustrate the active human involvement of PVP in Fig. 1. During training, the human subject
supervises the agent-environment interactions (Fig. 1 A). Those exploratory transitions by the
agent are stored in the Novice Buffer Bn = {(s, an, s0)}. At any time, the human subject can
intervene the free exploration of the agent by pressing a button in the control device (Fig. 1 B).
While pressing the button, the human takes over the control and provides a demonstration of how to
behave. During human involvement, both human and novice actions will be recorded into the Human
Buffer Bh = {(s, an, ah, s0)}. Concurrently with the human-agent shared control, our method keeps
updating the novice policy by the novel Proxy Value Propagation mechanism (Fig. 1 C), which will
be discussed later.

In the shared human-agent control, human intervention serves as a distinct indicator of suboptimal
agent performance, which could result from the agent executing perilous actions or exhibiting
ineffective behaviors. Thus, the optimal policy learned by the agent should (1) strive to approximate
the behaviors demonstrated by the human subjects and (2) avoid performing actions that are intervened
by humans.

The key insight of this work is that we can manipulate the Q values to induce desired behaviors, given
that value-based RL has the nature to seek value-maximizing policy as Eq. 3. As shown in Fig. 1
C, for emulating human behavior and minimizing intervention, we sample data (s, an, ah) from the

4

+1 +1 +1

-1 -1 -1(A) Human oversees agent's exploration

(B) Human intervenes and provides demonstration

Human
Buffer

Novice
Buffer

Record

(C) Label proxy values and propagate through buffers

Agent's exploratory
trajectory Human-involved trajectory

Human action

Agent action

Human
Buffer

Human
Buffer

Novice
Buffer

Proxy Value Loss
Temporal Difference

Loss

Figure 1: Illustration of Proxy Value Propagation. (A) Human oversees the agent’s trial-and-error
exploration with the environment. When the human subject does not intervene, the transitions will be
recorded into the novice buffer Bn. (B) When the human intervenes, both novice action an and human
action ah will be recorded into the human buffer Bh but only the human action will be applied to the
environment. (C) In training, we use the human buffer to compute proxy value loss and propagate the
human intent knowledge to all transitions via TD loss without access to the reward.

human buffer and label the Q value of the human action ah with +1 and the novice action an with
�1. This is achieved by fitting the Q network directly with PV loss:

JPV(✓) = E
(s,an,ah)

[|Q✓(s, ah)� 1|2 + |Q✓(s, an) + 1|2]I(s, an). (4)

The transitions in the novice buffer are not intervened by the human subject, meaning they are aligned
with human preferences. Meanwhile, those transitions also contain information of the forward
dynamics [24, 55]. To exploit the information contained in these transitions, instead of discarding
these data as in [17], we propagate the proxy values to these states via TD learning in Eq. 2 and use
those transitions together with those human-involved transitions for the policy learning. The final
value loss is evaluated as follows:

J(✓) = JPV(✓) + JTD(✓) = E
(s,an,ah)⇠Bh

[|Q✓(s, ah)� 1|2 + |Q✓(s, an) + 1|2]I(s, an)

+ E
(s,a,s0)⇠Bh

S
Bn

|Q✓(s, a)� �max
a0

Q✓̂(s
0, a0)|2

(5)

Then we follow the policy update process outlined in the base RL methods.

4.2 Analysis

Connection to CQL. The proposed PVP method can be interpreted as adopting the Conservative
Q-Learning (CQL) [21] objective for reward-free and online learning settings. It augments the
CQL objective with an extra L2 regularization term imposed on the Q-values for human-involved
transitions. In our online learning setting, Eq. 5 can be reformulated as:

J(✓) = E
Bh,I(s,an)=1

[Q2
✓(s, an) +Q2

✓(s, ah)| {z }
L2 Regularization on Q

+2 + 2(Q✓(s, an)�Q✓(s, ah))] + TD loss.| {z }
CQL Loss

(6)

CQL was originally proposed to mitigate the problem of overestimated Q-values in offline RL settings.
These overestimations often lead to suboptimal policies due to the optimistic selection of actions with
misleadingly high values. In our work, we deal with human actions and novice actions sampled from
two different distributions, where overestimation might also occur. However, unlike CQL, PVP does
not have access to a reward function, meaning the Q-values are not grounded in an estimation of true
values. The additional L2 regularizer therefore serves to impose constraints on the Q-values, helping
to prevent unbounded growth and potential overfitting. In Sec. 5.4, we compare the learned proxy
Q-values under both CQL and PVP objectives. Our results indicate that human and agent actions are
more distinguishable when learned through PVP.

5

MiniGrid-KeyboardMetaDrive-Gamepad CARLA-Wheel GTA V-Keyboard

Figure 2: Evaluation of PVP under four different environments with human control devices. For each
environment, we plot the test-time performance curve of the agent trained by the proposed PVP and
the RL counterpart TD3. The x-coordinate is the total number of environment interactions, which
indicates the time steps the training agent (in RL method) or the human-agent system (in our method)
experiences during training. Compared to the RL counterpart, the proposed method achieves much
higher performance with superior learning efficiency.

Alternative to Reward Assignment. On the other hand, a more straightforward idea than PVP is to
assign a reward of +1 to human actions and -1 to agent actions during intervention. Unfortunately, it is
not practical since the Bellman backup is conducted on the transition triplet (s, a, s0), where one has
to use future states’ values to estimate current values. Therefore, the reward must correspond to the
action from the behavior policy, the action a causes the transitions from s to s0. In our context, during
involvement, the action a = ah must come from human policy as the human subject is taking control.
Though we can assign +1 reward and compute value target in those human-involving transitions,
we have no way to assign �1 to the agent’s actions because we don’t know the next states caused
by those actions and thus we can’t compute the value target. It is also not practical to query the
environment to get the next state s00 ⇠ P(s, an) as the an is a potentially danger or undesired action
and replaying it in the real-world environment is not feasible. In our preliminary experiment, we find
the policy fails to learn anything regardless of the amount of human involvement provided. This is
because the reward will be +1 for all the human-involving transitions and the learning agent will find
a pitfall to maximize its rewards: it always demonstrates undesired behaviors so that humans will
always take control, which yields a +1 reward.

4.3 Implementation Details

Base RL Methods. Our method can be implemented for both continuous and discrete action spaces
by extending TD3 [10] and DQN [31] with PV loss and the balanced buffer. While TD3 uses a
deterministic policy, DQN adopts epsilon-greedy exploration that makes the policy stochastic. We
remove the action noise in DQN and simply follow the argmax rule to select actions. Therefore, our
method enjoys deterministic novice policy in both cases. The primary reason is that according to the
feedback of human subjects, stochastic novice makes human subjects experience excessive fatigue
due to the difficulty in monitoring and correcting agents’ noisy actions. This design choice makes our
method more user-friendly, as shown in the user study in Sec. 5.3.

Balanced Buffers. The intervention gradually becomes sparse as the agent learns to reduce human
intervention. However, those sparse intervention signals contain even more important information
on how to behave under critical situations. Previous method [26] stores agent data and human
data into one buffer and samples them uniformly. Abusing the notations, the ratio between the
transitions from the agent’s exploration and from human involvement is |Bn| : |Bh| in each SGD
batch. The human demonstrations are overwhelmed by the amount of agent-generated trajectories,

6

Table 1: Comparison of different approaches in MetaDrive-Keyboard. The overall intervention rate is
given besides the human data usage.

Method

Training Testing

Human
Data

Usage

Total
Data

Usage

Total
Safety
Cost

Episodic
Return

Episodic
Safety
Cost

Success
Rate

SAC - 1M 2.76K ± 0.95K 386.77 ±35.1 0.73 ±1.18 0.82 ±0.18

PPO - 1M 24.34K ±3.56K 335.39 ±12.41 3.41 ±1.11 0.69±0.08

TD3 - 1M 1.74K ± 0.62K 318.12 ±21.9 0.47 ±0.08 0.70 ±0.09

SAC-Lag - 1M 1.84K ± 0.49K 351.96 ±101.88 0.72 ±0.49 0.73 ±0.29

PPO-Lag - 1M 11.64K ± 4.16K 299.99 ±49.46 1.18 ±0.83 0.51 ±0.17

CPO - 1M 4.36K ±2.22K 194.06 ±108.86 1.71 ±1.02 0.21 ±0.29

Human Demo. 30K - 39 347.523 0.39 0.97

BC 30K (1.0) - - 113.32 ±10.21 2.171 ±0.65 0.073 ±0.02

GAIL 30K (0.015) 2M 25.90K ± 8.15K 81.51 ± 9.43 1.308 ± 0.23 0.0 ± 0.0

HG-Dagger 39.0K (0.76) 51K 56 116.393 1.979 0.045
IWR 35.8K (0.79) 45K 52 226.221 1.457 0.465

HACO 19.2K (0.48) 40K 130 143.287 1.645 0.139

PVP w/o TD 13.5K (0.34) 40.5K 70 252.447 1.277 0.220
PVP w/ Reward 12.8K (0.32) 40K 30 319.383 0.767 0.755

PVP (Ours) 14.6K (0.37) 40K 76.8 ±9.3 353.636 ±23.7 0.898 ±0.15 0.857 ±0.04

leading to inefficient learning of those critical human behaviors and even catastrophic forgetting. For
example, the driving policy sometimes fails to master acceleration at the beginning of an episode,
even though the human subject has already demonstrated the expected maneuver multiple times.
This is because the demonstration of initial acceleration only lasts a short period of time and thus
is scarce in the buffer. To address this issue, we balance the transitions coming from the human
buffer and the novice buffer. In each training iteration, we sample two equally-sized batches bn and
bh from Bn and Bh respectively, each has N/2 samples. N is the batch size for the policy update.
By concatenating bn and bh, our method can balance the data from the human’s demonstration and
from the agent’s exploration, and hence the ratio between two types of data in each SGD batch keeps
1 : 1. Therefore, in the initial acceleration example above, the balanced buffer recalls the acceleration
behavior, preventing catastrophic forgetting.

5 Experiments

5.1 Experimental Setting

Tasks. We conduct experiments on various control tasks with different observation and action spaces.
For continuous action space, we use three driving environments, MetaDrive safety benchmark [25],
CARLA Town01 [8], and a customized driving environment built upon Grand Theft Auto V (GTA
V), a popular video game. In these tasks, the agent needs to steer the target vehicle with low-
level acceleration, braking, and steering, to reach its destination. Specifically, in MetaDrive safety
environments, the agent needs to avoid any crash in the heavy-traffic scene with normal vehicles,
obstacles, and parked vehicles. In MetaDrive, there exists a split of training and test environments,
and we present the performance of the learned agent in a held-out test environment. To examine our
method with different observation modalities, we use the sensory state vector in MetaDrive and GTA
V and the bird-eye view image in CARLA as observation. For discrete action space, we use MiniGrid
Two Room task [4], which involves agent exploration such as moving toward a door and opening the
door before reaching the destination. The observation of MiniGrid is the semantic map of the agent’s
local neighborhood. Please refer to Appendix E for more information about the environment setup.

Evaluation Metrics. In MetaDrive safety benchmark, we report total safety cost as the number
of crashes during training, which reflects the number of potential dangers exposed to the human
subject during training. We also report episodic return, episodic safety cost, and success rate as
the test performance of the agents. Episodic safety cost is the average number of crashes in one

7

Table 2: Results of different approaches in
CARLA.

Method
Human

Data
Total
Data

Route
Completion

Success
Rate

PPO - 1M 0.24 ± 0.013 0.0 ± 0.0

TD3 - 1M 0.11 ± 0.05 0.0 ± 0.0

BC 5K - 0.42 ± 0.08 0.20 ± 0.10

HG-DAgger 6.8K 24K 0.64 0.47
IWR 5.7K 24K 0.69 0.60

HACO 4.8K 24K 0.52 0.40

PVP (Ours) 6.6K 24K 0.92 ± 0.05 0.73 ± 0.08

HACO

PVP

Figure 3: We visualize the action sequences
generated by HACO and PVP agents in the
same MetaDrive map who are trained to 40K
steps. PVP has much smoother actions.

episode. The success rate is the ratio of episodes in which agents reach the destination to the total test
episodes. In CARLA, we report route completion and success rate. Route completion is the ratio of
the traveled distance to the length of the complete route. GTA V uses route completion and MiniGrid
uses success rate to measure the performance. Except for total safety cost, the aforementioned metrics
measure the test-time performance, which is tested when the agent runs independently without human
involvement. For human-in-the-loop experiments, we also report the total number of human-involved
transitions (human data usage) and the overall intervention rate, which is the ratio of human data
usage to total data usage. These show how much effort humans make to teach the agents. We also
design a user study to measure the experience of human subjects in Sec. 5.3.

Human Interfaces. To examine the generalizability of our method, we leverage multiple control
devices: Xbox Wireless Controller (Gamepad), keyboard, and Logitech G29 Racing Wheel. We
denote the MetaDrive tasks with three devices as MetaDrive-Gamepad/Keyboard/Wheel. As shown in
Fig. 2, human subjects can takeover through control devices and monitor the training process through
the visualization of environments on the screen. The Ethics statement is provided in Appendix A.

Experimental Details. We implement most of the code with Stable-Baselines3 [37]. Training results
of various baselines in MetaDrive tasks are obtained from the open-source code by [26]. The RL
baselines are repeated 5 times with different random seeds, while other human-in-the-loop methods
are repeated fewer times due to limited human resources. In the training of the human-in-the-loop
methods, a real human subject participates in each experiment and we do not use any simulated user
input. During testing, there is no form of human involvement. For each experiment, we evaluate each
checkpoint in the environment for multiple runs and report the average task-specified metrics as the
performance of this checkpoint. We report the performance of the best checkpoint as the result of the
experiment. We provide the standard deviation if the experiments are repeated multiple runs in tables
and figures. All experiments with humans are conducted on a local computer with an Nvidia GeForce
RTX 3080. The local computer can support real-time simulation and training. Hyper-parameters and
other details are given in Appendix E and G.

Baselines. We test four native RL baselines: PPO [45], SAC [13], TD3 [10] and DQN [31]. We
also test three safe RL baselines: Constraint Policy Optimization (CPO) [2], PPO-Lagrangian [48],
SAC-Lagrangian [12]. In all baselines above, the reward function and cost function (for MetaDrive
Safety Benchmark) are defined by the environment and can be accessed by the agents. We also test IL
methods Behavior Cloning (BC) and GAIL [14]. Human-in-the-loop methods that learn from active
human involvement are tested: Human-Gated DAgger (HG-DAgger) [17], Intervention Weighted
Regression (IWR) [29] and Human-AI Copilot Optimization (HACO) [26].

5.2 Baseline Comparison

Comparing with RL Counterparts. Fig. 2 shows the curves of test-time performance. In MetaDrive-
Gamepad, our method achieves 350 returns in 37K steps. This takes about one hour in the real-world
HL experiment. TD3 baseline fails to achieve comparable results even after 300K steps of training.
In CARLA, PVP agents learn to drive within 30 minutes with our method, while TD3 cannot solve
the task. In GTA V, PVP can solve the task with 1.2K human data usage and 20K total data usage.
The whole experiment takes only 16 minutes. TD3 instead utilizes 300K steps to achieve similar

8

Table 3: User study result. The maximum score
for each item is 5.

HG-DAgger IWR HACO PVP

Compliance 3.0 ± 0.8 4.0± 0.8 3.0 ± 0.2 4.8 ± 0.5

Performance 2.2 ± 1.0 3.7 ± 0.9 3.3 ± 0.9 4.8 ± 0.5

Stress 3.2 ± 0.9 4.5 ± 0.5 2.3 ± 0.9 4.7 ± 0.6 Figure 4: Evolution of proxy values.

performance. In MiniGrid tasks, our method successfully solves the tasks while vanilla DQN fails,
showing that PVP can learn an exploratory solution and can be incorporated into discrete action space.
We also show experiments on one easier and one harder MiniGrid environment in Appendix F.2,
where PVP greatly improves learning efficiency.

Comparing with Human-in-the-loop Baselines. Table 1 suggests all tested HL methods achieve
extremely low safety violations in training compared to vanilla RL and Safe RL methods, empirically
supporting the preference alignment of the active human involvement, if we consider human prefer-
ence is to avoid safety violation. Compared to other human-in-the-loop methods, our method costs
the lowest human efforts in terms of human data usage and overall intervention rate, while greatly
outperforming baselines in testing performance. Since MetaDrive has a training and test environment
split, the result suggests PVP can learn high-quality agents with generalizability. Similar results
are shown in CARLA in Table 2. Compared to RL baselines, HL methods achieve decent success
rates and route completion rates even with only 24K environmental interactions. Compared to HL
baselines, PVP achieves the best route completion rate.

Visualization. In Fig. 3, we visualize the action sequences of the agents trained by PVP and a
human-agent shared control baseline HACO [26]. The angle and length of each arrow represent
the steering and acceleration, respectively. The human subject’s actions are marked with yellow.
Compared to HACO method, PVP agent produces smoother actions, which explains its high user
study scores shown in the next section.

5.3 User Study

We design a user study questionnaire to assess the experience of human subjects. Details are provided
in the human subject research protocol in Appendix B. Three aspects are considered: (1) Compliance
measures whether the behaviors of the agent satisfy human intents. For example, a highly compliant
agent behaves like human such that the human subjects feel like they are completing objectives by
themselves. (2) Performance is the subjective evaluation from human subjects on whether the agent
can solve the primal task, e.g. driving to the destination in navigation tasks. This score should be low
if the agent cannot learn a particular behavior or forgets it even though human subjects have taught
the agent multiple times. (3) Stress gauges the cognitive cost human subjects pay to train the agent.
A typical source of stress is the annoying oscillation and jitter the agent demonstrates. Unexpected
behavior that requires human’s instant reaction also creates stress. A lower score means more stress.

Table 3 shows our method is the most user-friendly method. On the one hand, we use a deterministic
novice policy that greatly alleviates the jitter and unexpected behaviors, reducing stress. On the other
hand, our method masters human behaviors and suppresses undesired actions with the balanced buffer
and proxy value, improving the user experience in compliance and performance.

5.4 Ablation Studies

TD learning: As shown in Table 1 “PVP w/o TD”, disabling TD learning via setting JTD(Q) = 0
significantly damages the performance of PVP, suggesting that propagating information from human-
involved states to other states is critical to the success of PVP.

PVP with reward: Both MetaDrive and CARLA results in Table 1 and 4 show that adding the
environmental reward doesn’t bring significant improvement in the learning performance, which might
be caused by the fact that the native reward function might not be aligned with human preference.

9

Table 4: Ablation studies in CARLA.

Method
Human

Data
Route

Completion
Success

Rate
HACO 4.8K 0.52 0.40

HACO w/o SP 5.1K 0.49 0.20

PVP w/o BB 2.8K 0.62 0.33
PVP w/o NB 4.2K 0.708 0.33
PVP w/ Rew. 4.4K 0.793 0.467
PVP w/ SP 12.3K 0.40 0.20

PVP w/ CQL 8.0K 0.622 0.266
PVP (Ours) 6.6K 0.92 ± 0.05 0.73 ± 0.08

Balanced buffer: We find that disabling balanced
buffers (PVP w/o BB) makes the training unsta-
ble and leads to poor performance. This design
avoids the catastrophic forgetting when the agent-
generated data overwhelms the human demonstra-
tions as in HACO [26].

Novice buffer: We find that PVP without the
Novice buffer (PVP w/o NB) yields poor perfor-
mance. The agent data stored in the novice buffer
contains information on human preference and
the forward dynamics of the environment. Thus,
PVP does not discard the agent exploratory data
as opposed to HG-DAgger [17].

Stochastic policy: We implement PVP based on Soft Actor-critic [13] so that the novice policy
is now a stochastic policy. As shown in the “PVP w/ SP” in Table 4, introducing randomness in
novice actions greatly reduces the performance. The human subjects report that the novice agents
with stochastic policy oscillate frequently, making it hard to respond when the agents suddenly
drive toward the side road. HACO [26] has similar human-AI shared control as PVP, but it adopts a
stochastic policy. For comparison, we also implement HACO without a stochastic policy. “HACO
w/o SP” suggests deterministic policy can not bring significant improvement to HACO.

Regularization on Q values: As discussed in Sec. 4.2, PVP objective can be interpreted as CQL with
a newly introduced L2 regularization term on the Q values. We conduct the experiment to evaluate the
performance of the vanilla CQL objective with other PVP designs in our reward-free online learning
settings. As shown in “PVP w/ CQL” in Table 4, CQL objective yields worse performance. This
experiment shows that the vanilla CQL doesn’t work in this human active involvement setting. As
shown in Fig. 4, the proxy value in the vanilla CQL method has a much larger magnitude which
makes the values of behavior actions (the actions applied to the environment) and agent actions hard
to distinguish. PVP has smoother proxy values with a clear margin between behavior and novice Q.
CQL does not set a bound for the proxy value, thus proxy values in those extreme human actions are
reinforced without a bound, making the novice policy rapidly learn those extreme actions, whereas
PVP has bounded proxy values, leading to more stable training and better overall performance.

6 Conclusion

Learning through active human involvement is a promising approach enabling safe and efficient
policy learning. In this work, we propose Proxy Value Propagation (PVP) that can effectively learn
from the intervention and the corrective feedback from active human involvement. PVP can be
seamlessly integrated into existing value-based RL methods and achieves highly efficient reward-free
policy learning, without offline pretraining and reward engineering. Human-in-the-loop experiments
show the proposed method achieves superior performance and better user experience across diverse
environments with different action spaces and human control devices, showing that the learning from
active human involvement is a efficient policy learning method aligning human preference.

Limitations. (1) We only apply our method to two value-based RL methods. Advanced techniques
such as exploration encouraging [33] and prioritized replay buffer [44] can be added to further improve
the result. (2) Our method is not applicable to tasks where humans can not provide demonstrations.
(3) We assume that human always demonstrates desired actions. We will show in Appendix D that
suboptimal human behaviors will damage learning. In this case, we can define a sparse cost function
in the training environment and utilize constrained optimization [2] to penalize bad demonstrations.
(4) We assume that human subjects are available and attentive throughout the entire training. While
our method is proven to be effective even under heavy traffic environments, we plan to further
enhance its sample efficiency. We will achieve this goal by conducting offline RL training and policy
evaluation in the background or passively involving human subjects whenever the model is uncertain
about the environment.

Acknowledgment: This work was supported by the National Science Foundation under Grant No.
2235012. The human experiment in this study is approved through the IRB#23-000116 at UCLA.

10

References
[1] David Abel, John Salvatier, Andreas Stuhlmüller, and Owain Evans. Agent-agnostic human-in-the-loop

reinforcement learning. ArXiv preprint, abs/1701.04079, 2017.

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning
Research, pages 22–31. PMLR, 2017.

[3] Carlos Celemin and Javier Ruiz-del Solar. An interactive framework for learning continuous actions
policies based on corrective feedback. Journal of Intelligent & Robotic Systems, 95(1):77–97, 2019.

[4] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment for
openai gym. https://github.com/maximecb/gym-minigrid, 2018.

[5] Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 4299–4307, 2017.

[6] Allan Dafoe, Edward Hughes, Yoram Bachrach, Tantum Collins, Kevin R McKee, Joel Z Leibo, Kate
Larson, and Thore Graepel. Open problems in cooperative ai. arXiv preprint arXiv:2012.08630, 2020.

[7] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Magnetic control of tokamak
plasmas through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

[8] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. CARLA: An
open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages
1–16, 2017.

[9] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse reinforcement
learning. In International Conference on Learning Representations, 2018.

[10] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages 1582–1591. PMLR, 2018.

[11] Lin Guan, Mudit Verma, Sihang Guo, Ruohan Zhang, and Subbarao Kambhampati. Widening the pipeline
in human-guided reinforcement learning with explanation and context-aware data augmentation. Advances
in Neural Information Processing Systems, 34, 2021.

[12] Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to walk in the real world with
minimal human effort, 2020.

[13] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
1856–1865. PMLR, 2018.

[14] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural In-
formation Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, pages 4565–4573, 2016.

[15] Braden Hurl, Krzysztof Czarnecki, and Steven L. Waslander. Precise synthetic image and lidar (presil)
dataset for autonomous vehicle perception. CoRR, abs/1905.00160, 2019.

[16] Ananth Jonnavittula and Dylan P Losey. Learning to share autonomy across repeated interaction. In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1851–1858. IEEE,
2021.

[17] Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Hg-dagger:
Interactive imitation learning with human experts. In 2019 International Conference on Robotics and
Automation (ICRA), pages 8077–8083. IEEE, 2019.

11

https://github.com/maximecb/gym-minigrid

[18] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-Mark Allen, Vinh-Dieu
Lam, Alex Bewley, and Amar Shah. Learning to drive in a day. In 2019 International Conference on
Robotics and Automation (ICRA), pages 8248–8254. IEEE, 2019.

[19] W Bradley Knox and Peter Stone. Reinforcement learning from human reward: Discounting in episodic
tasks. In 2012 IEEE RO-MAN: The 21st IEEE international symposium on robot and human interactive
communication, pages 878–885. IEEE, 2012.

[20] Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, Matthew Rahtz, Tom Everitt, Ramana Kumar, Zac
Kenton, Jan Leike, and Shane Legg. Specification gaming: the flip side of ai ingenuity. DeepMind Blog,
2020.

[21] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[22] Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement learning
via relabeling experience and unsupervised pre-training. arXiv preprint arXiv:2106.05091, 2021.

[23] Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable agent
alignment via reward modeling: a research direction. arXiv preprint arXiv:1811.07871, 2018.

[24] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. ArXiv preprint, abs/2005.01643, 2020.

[25] Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou. Metadrive:
Composing diverse driving scenarios for generalizable reinforcement learning. IEEE transactions on
pattern analysis and machine intelligence, 2022.

[26] Quanyi Li, Zhenghao Peng, and Bolei Zhou. Efficient learning of safe driving policy via human-ai copilot
optimization. In International Conference on Learning Representations, 2022.

[27] James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, Guan Wang, David L Roberts, Matthew E Taylor,
and Michael L Littman. Interactive learning from policy-dependent human feedback. In International
conference on machine learning, pages 2285–2294. PMLR, 2017.

[28] Travis Mandel, Yun-En Liu, Emma Brunskill, and Zoran Popovic. Where to add actions in human-in-
the-loop reinforcement learning. In Satinder P. Singh and Shaul Markovitch, editors, Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA, pages 2322–2328. AAAI Press, 2017.

[29] Ajay Mandlekar, Danfei Xu, Roberto Martín-Martín, Yuke Zhu, Li Fei-Fei, and Silvio Savarese. Human-
in-the-loop imitation learning using remote teleoperation. ArXiv preprint, abs/2012.06733, 2020.

[30] Kunal Menda, Katherine Driggs-Campbell, and Mykel J Kochenderfer. Ensembledagger: A bayesian
approach to safe imitation learning. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5041–5048. IEEE, 2019.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

[32] Anis Najar, Olivier Sigaud, and Mohamed Chetouani. Interactively shaping robot behaviour with unlabeled
human instructions. Autonomous Agents and Multi-Agent Systems, 34(2):1–35, 2020.

[33] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped
DQN. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 4026–4034, 2016.

[34] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. arXiv preprint arXiv:2203.02155, 2022.

[35] Erfan Pakdamanian, Shili Sheng, Sonia Baee, Seongkook Heo, Sarit Kraus, and Lu Feng. Deeptake:
Prediction of driver takeover behavior using multimodal data. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, pages 1–14, 2021.

12

[36] Malayandi Palan, Gleb Shevchuk, Nicholas Charles Landolfi, and Dorsa Sadigh. Learning reward functions
by integrating human demonstrations and preferences. In Robotics: Science and Systems, 2019.

[37] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning
Research, 22(268):1–8, 2021.

[38] Siddharth Reddy, Anca D Dragan, and Sergey Levine. Shared autonomy via deep reinforcement learning.
Robotics: Science and Systems, 2018.

[39] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pages 661–668. JMLR Workshop
and Conference Proceedings, 2010.

[40] Stuart Russell. Human compatible: Artificial intelligence and the problem of control. Penguin, 2019.

[41] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based learning of
reward functions. UC Berkeley, 2017.

[42] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The starcraft
multi-agent challenge. ArXiv preprint, abs/1902.04043, 2019.

[43] William Saunders, Girish Sastry, Andreas Stuhlmueller, and Owain Evans. Trial without error: Towards
safe reinforcement learning via human intervention. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pages 2067–2069. International Foundation for Autonomous
Agents and Multiagent Systems, 2018.

[44] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

[45] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv preprint, abs/1707.06347, 2017.

[46] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

[47] Jonathan Spencer, Sanjiban Choudhury, Matthew Barnes, Matthew Schmittle, Mung Chiang, Peter Ra-
madge, and Siddhartha Srinivasa. Learning from interventions. In Robotics: Science and Systems (RSS),
2020.

[48] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by PID
lagrangian methods. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
9133–9143. PMLR, 2020.

[49] Fan Wang, Bo Zhou, Ke Chen, Tingxiang Fan, Xi Zhang, Jiangyong Li, Hao Tian, and Jia Pan. Intervention
aided reinforcement learning for safe and practical policy optimization in navigation. In Conference on
Robot Learning, pages 410–421. PMLR, 2018.

[50] Zizhao Wang, Xuesu Xiao, Bo Liu, Garrett Warnell, and Peter Stone. Appli: Adaptive planner parameter
learning from interventions. In 2021 IEEE international conference on robotics and automation (ICRA),
pages 6079–6085. IEEE, 2021.

[51] Zizhao Wang, Xuesu Xiao, Garrett Warnell, and Peter Stone. Apple: Adaptive planner parameter learning
from evaluative feedback. IEEE Robotics and Automation Letters, 6(4):7744–7749, 2021.

[52] Garrett Warnell, Nicholas R. Waytowich, Vernon Lawhern, and Peter Stone. Deep TAMER: interactive
agent shaping in high-dimensional state spaces. In Sheila A. McIlraith and Kilian Q. Weinberger, editors,
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 1545–1554.
AAAI Press, 2018.

[53] Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz, et al. A survey of preference-based
reinforcement learning methods. Journal of Machine Learning Research, 18(136):1–46, 2017.

13

[54] Yunkun Xu, Zhenyu Liu, Guifang Duan, Jiangcheng Zhu, Xiaolong Bai, and Jianrong Tan. Look before
you leap: Safe model-based reinforcement learning with human intervention. In Conference on Robot
Learning, pages 332–341. PMLR, 2022.

[55] Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine. How to
leverage unlabeled data in offline reinforcement learning. arXiv preprint arXiv:2202.01741, 2022.

[56] Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for end-to-end simulated driving. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

14

A Ethics Statement

Human subjects get paid to participate in the experiments. They can pause or stop the experiment
if any discomfort happens. No human subjects are injured because all tasks we test are in virtual
simulation. Each experiment will not last longer than one hour and subjects will rest at least three
hours after one experiment. During training and data processing, no personal information is revealed
in the collected dataset or the trained agents. We have obtained IRB approval to conduct this project.

B Human Subject Research Protocol

Recruiting and Requirement. For our study, we recruit 5 human subjects. All of them are college
students and have the age from 20 to 30 years. Furthermore, every participant are required to have a
valid driver’s license and have experience in playing video game. Participation in our study is entirely
voluntary. We ensure transparency by informing all subjects about the nature of the experiments and
how their demonstrations would be used. Every subject provide written consent, confirming they are
fully aware and in agreement. Additionally, the study is conducted with the IRB approval.

Onboarding Period. Participants are required to undergo a practice session, during which they drive
under complete control to get a sense of the control devices (wheel, gamepad and keyboard), the
environment interface, the dynamics of each environment and how an episode will fail or success.
Each subject get familiar with all the control devices and all the environments, which is indicating by
performing at least 10 successful episodes, before they participate in the main experiments.

Main Experiment. During the initial stages of the formal experiment, subjects are advised to retain
full control of the agent for the first one or two episodes. Subsequently, they may begin to let the
agents taking control and intervene as necessary. The objective in all driving experiments is twofold:
firstly, to safely navigate the vehicle to its designated destination, and secondly, to ensure the vehicle’s
operation aligns with traffic regulations and human preferences.

Subjects are encouraged to perform intervention whenever they perceive the vehicle might be in a
dangerous situation, in violation of traffic rules, or in whatever scenario the human subjects feel they
wouldn’t behave in the way the novice policies do.

To ensure data integrity and counter potential proficiency biases, the order of experiments with
different control devices, tasks and training algorithms is randomized for each subject. By doing this
we mitigate the bias that a subject might become more familiar with the task when experimenting
different algorithms.

User Study Questionnaire. We design a user study questionnaire to assess the experience of human
subjects. The questionnaire is provided in Appendix B. Three aspects are considered:

• Compliance measures whether the behaviors of the agent satisfy human intents. For example,
a highly compliant agent behaves like human such that the human subjects feel like they are
completing objectives by themselves.

• Performance is the subjective evaluation from human subjects on whether the agent can solve
the primal task, e.g. driving to the destination in navigation tasks. This score should be low if the
agent cannot learn a particular behavior or forget it even though human subjects have taught the
agent multiple times.

• Stress gauges the cognitive cost human subjects pay to train the agent. A typical source of stress
is the annoying oscillation and jitter the agent demonstrates. Unexpected behavior that requires
human’s instant reaction also creates stress. A lower score means more stress.

The same questions are repeated for each algorithm the human subject experimenting on.

15

Compliance: Generally, do you think the agent trained with this method complies with your intention?
The higher score the better.
Examples:
(+) Good: Agent drives as you so that you don’t even need to take over.
(-) Bad: Sudden unexpected behavior makes you mad.
Choices: 1, 2, 3, 4, 5

Performance: Do you think the agent trained with this method learns fast and performs well in terms
of solving the task? The higher score the better.
Examples:
(+) Good: The agent learns fast so I don’t need to take over too much in the later period.
(-) Bad: The agent forgets what it learns so I have to re-teach it.
(-) Bad: The agent never learns a specific behavior like accelerating or turning even though I have
taught it so many times.
Choices: 1, 2, 3, 4, 5

Stress: Do you think training with this agent is tired or stressed? The lower score the more fatigue
and stress. A higher score means you are more relaxed.
Tiredness might come from many sources: Oscillating trajectory, unexpected behaviors, degrading
performance that you have to re-teach, etc.
It is possible that your agent is not performing well but you don’t feel tired training it. On the other
hand, it is possible that your agent has good performance but still causes fatigue due to unexpected
behaviors.
Choices: 1, 2, 3, 4, 5

C Demo Video

Please find our demo video in the supplementary material. This video shows the footage of human
experiments and the comparisons between agents learned by the baselines and the proposed method.
The video contains three sections:

1. The first section shows how we learn the driving policy in CARLA task within 20 minutes.
We also compare the behavior of agents learned from PVP and TD3 baseline.

2. In the second section, we show the footage of MetaDrive human experiment where the
human subject uses a gamepad as the control device. We present the behavior comparison
between PVP and TD3 baseline.

3. In the third section, we show the applicability of our method to other tasks. PVP performs
well in GTA V and can drive smoothly on the highway. In the discrete control tasks, the
behavior comparison between PVP and DQN baseline in MiniGrid Empty Room and Four
Room are provided.

D Preference Alignment

Here we provide a conceptual framework to describe the compliance of human intention. First, we
introduce a ground-truth indicator C : S ⇥A! {0, 1} of the intention violation, denoting whether
the action is undesired. C is not revealed to the learning algorithm.

C(s, a) =

⇢
1, if a violates human intention
0, otherwise.

(7)

We will derive the upper bound of the discounted occurrence of intent violation, a measure of training
time human intent compliance:

S⇡b = S⇡b(s0) = E
⌧⇠P⇡b

X

t

�tC(st, at), (8)

where P⇡b denotes the probability distribution of trajectories deduced by the behavior policy ⇡b.

16

During training, a human subject shares control with the learning agent. The agent’s policy is a
deterministic policy µn(s), the human’s policy is a stochastic policy ⇡h(a|s). The human subject
intervenes I(s, a) = True under certain state and agent’s action an. The mixed behavior policy ⇡b
that produces the real actions to the environment is denoted as:

⇡b(a|s) = (1� I(s, µn(s)))�(a� µn(s)) + I(s, µn(s))⇡h(a|s), (9)

where we use Dirac delta distribution to represent the deterministic novice policy.

Two important assumptions on the human subject are introduced:
Assumption D.1 (Error rate of human policy). During human-AI shared control, the probability that
the human subject produces an undesired action is bounded by a small value ✏ < 1:

E
s⇠P⇡b

,a⇠⇡h(·|s)
C(s, a)  ✏. (10)

Assumption D.2 (Error rate of intervention policy). During human-AI shared control, the probability
that the human subject does not intervene when the action is undesired is bounded by a small value
 < 1:

E
s⇠P⇡b

(1� I(s, µ(s)))C(s, µ(s))  . (11)

We introduce the following theorem and give the proof as follows.
Theorem D.3 (Upper bound of intent violation). The discounted occurrence of intent violation S⇡b

of the behavior policy ⇡b is bounded by the error rate of the human action ✏, the error rate of the
human intervention  and the intervention rate = Es⇠P⇡b

I(s, an):

S⇡b 
1

1� �(+ ✏). (12)

Proof. Consider Eq. 9, we have:

E
s⇠P⇡b

,a⇠⇡b(·|s)
C(s, a) = E

s⇠P⇡b

{[1� I(s, µn(s))]C(s, µn(s)) + I(s, µn(s)) E
a⇠⇡h(·|s)

C(s, a)}

 + ✏ E
s⇠P⇡b

I(s, µn(s)) = + ✏

(13)

The upper bound of S⇡b :

S⇡b = E
⌧⇠P⇡b

X

t=0

�tC(st, at) 
X

t=0

�t(+ ✏) =
1

1� �(+ ✏) (14)

E Environment Details

Figure 5: MetaDrive Safety benchmark. Figure 6: CARLA Town01.

17

Figure 7: GTA V Training Environment. Figure 8: MiniGrid (Four Room).

Table 5: Summary of the experiment environments.

Environment Human Input Device Observation Format Action Space
Training &

Test Set Split

MetaDrive Gamepad, Keyboard, Wheel State Vector Continuous Yes
CARLA Wheel Bird-eye View Image Continuous No
GTA V Keyboard State Vector Continuous Yes
MiniGrid Keyboard Semantic Map Discrete No

To avoid the potential risks of employing human subjects in physical experiments, we benchmark
different approaches in four virtual simulated environments. We conduct experiments on various
tasks with different observation and action spaces and human input devices. Table 5 summarizes the
differences.

Continuous action space environments. For continuous action space, we use MetaDrive Safety
Benchmark [25], CARLA Town01 environment [8] and a customized policy learning environment
built upon Grand Theft Auto V (GTA V). In these tasks, the agent needs to steer the target car with
low-level acceleration, brake and steering and move toward the destination.

MetaDrive Safety Benchmark preserves the capacity to evaluate the safety and generalizability in
unseen environments since it uses procedural generation to synthesize an unlimited number of driving
maps for the split of training and test sets, which is useful to benchmark the generalization capability
of different approaches in the context of safe driving. We train agents in the training set, which
contains 50 different scenes, and roll out the learning agents in the test set, which contains another 50
unique scenes. At each episode, the scene (road network) and the spawn location of traffic vehicles
and ego vehicle are randomized. We use sensory state vector in MetaDrive as the observation for
agents and thus apply MLP network architecture. When running pure RL methods in MetaDrive
Safety Benchmark, a -1 penalty will be added to the reward when a crash happens. This is for a fair
comparison with the safe RL methods who have access to the cost function directly. Specifically, we
follow the default reward scheme in MetaDrive. The reward function in MetaDrive safety benchmark
is composed of four parts as follows:

R = cdispRdisp + cspeedRspeed + ccollisionRcollision +Rterm. (15)

1. The displacement reward: Rdisp = dt � dt�1, wherein the dt and dt�1 denotes the longitu-
dinal movement in meters of the target vehicle in Frenet coordinates of the target trajectory
between two consecutive time steps. If the agent drives in the wrong way then the displace-
ment reward will be multiplied by �1. The displacement reward provides a dense reward
to encourage the agent to move forward. We set cdisp = 1.

2. The speed reward: Rspeed = vt/vmax, where vt, vmax denotes current speed and maximum
allow speed in current road in km/h, respectively. If the agent drives in wrong way then the
speed reward will be multiplied by �1. We set cspeed = 0.1.

3. The collision reward: Rcollision = 1 if a collision with a vehicle, human, or object happens.
Otherwise, it is 0. The coefficient ccollision = 5.

18

4. The terminal reward: Rterm is non-zero only at the last time step. At that step, we set
Rdisp = Rspeed = Rcollision = 0 and assign Rterm according to the terminal state. Rterm

is set to +10 if the vehicle reaches the destination (successes) and �5 if the vehicle drives
out of the road.

For measuring the safety, collision to vehicles, obstacles, sidewalk raises a cost +1 at each time step.
The sum of cost generated in one episode is the episodic cost.

In CARLA, we train and test agents in the Town01 environment. There exist many predefined routes
in the town with different spawn locations and destinations. The length and spawn point of each route
is randomized for each episode. We use the bird-eye view image in CARLA as observation and thus
CNN is used as the feature extractor. In CARLA environment the reward function follows the reward
function in MetaDrive safety benchmark.

In GTA V, we manually pick start and end coordinates in the world map to form multiple routes in
different scenes. We split those scenes to the training and test sets. The training set contains two
scenes with straight roads, turns, and medium traffic. The test set contains one different scene. For
each episode, the traffic condition is randomized by the game engine. In GTA V environment the
reward function follows the reward function in MetaDrive safety benchmark. The terminations
include arriving at the destination (success), crashing with objects or vehicles for more than five
frames (failure), and timeout (failure). The discrete keyboard input will be translated into continuous
steering and acceleration signals for controls. Our customized human-in-the-loop compatible policy
learning environment builds upon GTA V with a full set of well-defined observation, reward and
termination conditions. The environment will be open-sourced and available to the community 1.

For these tasks, the reward function is composed of two parts: a sparse termination reward (+10 when
reaching the destination) and a dense moving reward (the distance moving toward the destination
within one step).

Discrete action space environment. For discrete action space, we test on MiniGrid Two Room
task [4]. MiniGrid Two Room is a task requiring heavy exploration since the agent needs to move
toward a door and open the door before reaching the destination. The spawn locations, the destinations,
door locations and the geometry of each room are randomized. The observation of MiniGrid is the
semantic map of agent’s local neighborhood. MiniGrid tasks only support using the keyboard as
the input device. Only in the MiniGrid task, we render the agent’s action in the environment so
that the human can decide whether to take over or return back based on both the current state and
agent’s action. But this is not feasible in other tasks since other tasks require real-time responses from
humans and there is not enough time for humans to observe agent’s actions even if we plot those
actions in the visualization interface. Following the default reward function as in original repository,
in MiniGrid environment a sparse reward is used. When the agent reach the goal, +1 reward is given
and otherwise the reward is always 0.

Real-time experiment. Note that the local computer we use for human-in-the-loop experiments,
which has an Nvidia GeForce RTX 3080 gpu, can support real-time simulation and training. In
MetaDrive and CARLA, the physics simulation is run at 10Hz in the virtual world and in GTA V
the frequency is 30Hz. That is, each environmental step will cause the virtual world advancing 0.1 /
0.033 seconds. After each environment interaction, PVP updates its policy once, inferring and back-
propagating one SGD batch. Our experience suggests that the local computer can effortlessly support
concurrent running of the simulation with human-agent shared control as well as the background
policy update at the frequency in wall-time higher than the simulation frequency in the virtual world.
That is, our training can run at frequency higher than 10Hz / 30Hz so that the time-elapse is actually
faster in the real world than in the virtual world. We will limit the FPS to the system frequency so
that the human subjects experience realistic time-elapse.

Control devices. CARLA tasks use a Wheel, GTA V tasks use a keyboard, and MiniGrid tasks
use a keyboard (provide discrete control signals). In all devices, a button is configured to indicate
intervention. There is another button in the devices that activates an emergency stop. If any discomfort
happens, human subjects can pause or stop the experiment immediately.

1The customized environment builds upon prior efforts on the communication between GTA V engine
and Python interface: https://github.com/aitorzip/DeepGTAV, https://github.com/gdpinchina/
DeeperGTAV, https://github.com/aitorzip/VPilot

19

https://github.com/aitorzip/DeepGTAV
https://github.com/gdpinchina/DeeperGTAV
https://github.com/gdpinchina/DeeperGTAV
https://github.com/aitorzip/VPilot

F Extra Experimental Results

F.1 Impact of Control Devices

Table 6: The impact of different human input devices in MetaDrive benchmark.

Input
Device Method

Training Testing

Human
Data

Usage

Total
Data

Usage

Total
Safety
Cost

Episodic
Return

Episodic
Safety
Cost

Success
Rate

Wheel HACO 21.2K (0.53) 40K 42 250.039 1.453 0.355

PVP 10.3K (0.26) 40K 12 336.657 1.543 0.808

Gamepad HACO 28.4K (0.71) 40K 55 71.37 1.97 0.0

PVP 7.4K (0.19) 40K 21 356.99 1.31 0.920

Keyboard HACO 19.2K (0.48) 40K 130 143.28 1.645 0.139

PVP 14.6K (0.37) 40K 76 353.636 0.898 0.857

Table 6 presents the experiment results with different input devices in MetaDrive benchmark. In all
settings, PVP agents outperform baseline method, showing the generalizability of PVP on different
control devices. We observe that HACO [26] has performance discrepancy with different input devices.
When using Gamepad, human subjects tend to push and pull the stick to the limits, producing extreme
values. Extreme actions are particularly harmful to previous method as it does not incorporate the
regularization terms on Q function to bound the Q values. When using the keyboard, the human
subjects press arrow keys to indicate increasing/decreasing current steering/acceleration values for an
increment. Therefore there will be fewer extreme values happening than using a Gamepad, which
explains why the baseline HACO performs better with the keyboard compared to Gamepad. Due to
less extreme values, when using Steering Wheel, HACO achieves good performance.

A case study in a toy environment. We retrieve the agents stored during the training of HACO
and PVP in CARLA task. We test them in a straight road in CARLA town and plot their actuating
signals in Fig. 9. In this task, the steering should be always close to zero. However, we find that as
the training iterations increase, the HACO agents gradually demonstrate unstable steering and their
steering is deviating. In human-AI shared control, such unstable behaviors force human subjects to
involve frequently. In contrast, the PVP policies learn a much better solution in lane keeping.

Figure 9: Control signals in a straight road in CARLA.

Visualization of action sequences in training. In Fig. 10, we present the visualization of the
trajectories during human-robot shared control. Comparing the visualization of HACO and PVP,
we find that PVP generates smoother trajectories. Stable and smooth agent actions greatly improve
human subjects’ experience and relieve their stress during human-robot shared control. We can
also find that as the training goes, PVP requires less human involvement. These results explain the
performance of PVP and is aligned with the behavior shown in the supplementary video.

20

HACO @ 10K steps

HACO @ 20K steps

HACO @ 30K steps

HACO @ 40K steps

PVP @ 10K steps

PVP @ 20K steps

PVP @ 30K steps

PVP @ 40K steps

Figure 10: In MetaDrive task, we use the top-down view to plot the trajectories of human-agent
shared control. We use dense arrows to represent the actions that are applied to the environments. The
arrow starts at the position of the car at that time step and its direction is the steering angle, projected
into ego car’s local coordination. The length of the arrow represents the acceleration. We use green
and yellow arrows to denote agent’s actions and human’s actions, respectively.

21

F.2 Extra Results in MiniGrid

(a) MiniGrid-Empty-Random-6x6-v0 (b) MiniGrid-TwoRooms-v0 (c) MiniGrid-FourRooms-v0

Figure 11: MiniGrid results.

In Fig. 11, we present the extra results in two additional MiniGrid environments. PVP achieves
superior performance compared to RL baseline. Note that we use a CNN without recurrent module
as the feature extractor. The performance of PVP can be further improved if we utilize the neural
architecture with memory capability.

G Hyper-parameters

In MetaDrive safety benchmark [25] task, the observation is a state vector. There exists a split of
training and test environments in MetaDrive. We present the result of the learned agent performing in
the test environment.

In CARLA [8], the observation is the bird-eye view image in [84, 84, 5] shape, where 5 is the number
of semantic channels. We train and evaluate the agents in the same NoCrashTown01 environment.

In GTA V, the observation is a state vector containing 2D LiDAR scanning for 240 total sampling
points with max range 50m [15], vehicle state variables (speed, throttle, steering, heading), and
navigation state variables (distance to road borders, distance to the next navigation point, collision to
objects). There exists a split of training and test environments in GTA V. We present the result of the
learned agent performing in the test environment.

In MiniGrid tasks [4] MiniGrid-Empty-Random-6x6-v0 (Empty Room), MiniGrid-MultiRoom-
N2-S4-v0 (Two Room) and MiniGrid-MultiRoom-N4-S5-v0 (Four Room), the observation is the
top-down view semantic map in shape [7, 7, 3].

In MetaDrive and GTA V, we use a MLP with two hidden layers, each has 256 units and ReLU
activation, as the network architecture for the value network and policy network.

For CARLA task, since the input image has the same size of [84, 84] pixels, we use the same 5-layers
CNN architecture with [16, 32, 64, 128, 256] filters in each layer. The corresponding kernel-size is
[[4, 4], [3, 3], [3, 3], [3, 3], [4, 4]], and strides [3, 2, 2, 2, 4]. We use ReLU as activation functions
between each layer.

For MiniGrid tasks, we use a 3-layer CNN architecture with [16, 16, 32] filters in each layer. All
three layers have kernel-size 2 and there is a max-pooling layer between the first two layers. We use
ReLU as activation functions between each layer.

22

Table 7: PVP (MetaDrive)
Hyper-parameter Value

Discounted Factor � 0.99
⌧ for Target Network Update 0.005
Learning Rate 0.0001
Steps before Learning Start 100
Steps per Iteration 1
Gradient Steps per Iteration 1
Train Batch Size 100
Q Value Bound 1

Table 8: PVP (CARLA)
Hyper-parameter Value

Discounted Factor � 0.99
⌧ for Target Network Update 0.005
Learning Rate 0.0001
Steps before Learning Start 100
Steps per Iteration 1
Gradient Steps per Iteration 1
Train Batch Size 128
Q Value Bound 1

Table 9: PVP (GTA V)
Hyper-parameter Value

Discounted Factor � 0.99
⌧ for Target Network Update 0.005
Learning Rate 0.0001
Steps before Learning Start 100
Steps per Iteration 1
Gradient Steps per Iteration 1
Train Batch Size 100
Q Value Bound 1

Table 10: PVP (MiniGrid)
Hyper-parameter Value

Discounted Factor � 0.99
⌧ for Target Network Update 0.005
Learning Rate 0.0001
Steps before Learning Start 50
Steps per Iteration 1
Gradient Steps per Iteration 32
Target Network Update Interval 1
Train Batch Size 256
Q Value Bound 1
Exploration Reducing Fraction 0
Random Action Probability Initial Value 0
Random Action Probability Final Value 0

Table 11: HACO (MetaDrive)
Hyper-parameter Value

Discounted Factor � 0.99
⌧ for Target Network Update 0.005
Learning Rate Actor 0.0003
Learning Rate Critic 0.0003
Learning Rate Entropy 0.0003
Steps before Learning Start 100
Steps per Iteration 1
Gradient Steps per Iteration 1
Target Network Update Interval 1
Train Batch Size 128
CQL Loss Temperature 1.0

Table 12: HACO (Carla)
Hyper-parameter Value

Discounted Factor � 0.99
⌧ for Target Network Update 0.005
Learning Rate Actor 0.0003
Learning Rate Critic 0.0003
Learning Rate Entropy 0.0003
Steps before Learning Start 100
Steps per Iteration 1
Gradient Steps per Iteration 1
Target Network Update Interval 1
Train Batch Size 128
CQL Loss Temperature 1.0

Table 13: TD3 (MetaDrive)
Hyper-parameter Value

Discounted Factor � 0.99
⌧ for Target Network Update 0.005
Learning Rate 0.0001
Steps before Learning Start 10000
Steps per Iteration 1
Gradient Steps per Iteration 1
Train Batch Size 100

Table 14: TD3 (Carla)
Hyper-parameter Value

Discounted Factor � 0.99
⌧ for Target Network Update 0.005
Learning Rate 0.0001
Steps before Learning Start 10000
Steps per Iteration 1
Gradient Steps per Iteration 1
Train Batch Size 100

23

Table 15: TD3 (GTA V)
Hyper-parameter Value

Discounted Factor � 0.99
⌧ for Target Network Update 0.005
Learning Rate 0.0001
Steps before Learning Start 10000
Steps per Iteration 1
Gradient Steps per Iteration 1
Train Batch Size 100

Table 16: DQN (MiniGrid)
Hyper-parameter Value

Discounted Factor � 0.99
⌧ for Target Network Update 0.005
Learning Rate 0.0001
Steps before Learning Start 50
Steps per Iteration 1
Gradient Steps per Iteration 32
Target Network Update Interval 1
Train Batch Size 256
Exploration Reducing Fraction 0.3
Random Action Probability Initial Value 0
Random Action Probability Final Value 0.05

24

	Introduction
	Related Work
	Problem Formulation
	Method
	Proxy Value Propagation
	Analysis
	Implementation Details

	Experiments
	Experimental Setting
	Baseline Comparison
	User Study
	Ablation Studies

	Conclusion
	Ethics Statement
	Human Subject Research Protocol
	Demo Video
	Preference Alignment
	Environment Details
	Extra Experimental Results
	Impact of Control Devices
	Extra Results in MiniGrid

	Hyper-parameters

