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Abstract

Parameter-space regularization in neural network

optimization is a fundamental tool for improv-

ing generalization. However, standard parameter-

space regularization methods make it challeng-

ing to encode explicit preferences about desired

predictive functions into neural network training.

In this work, we approach regularization in neu-

ral networks from a probabilistic perspective and

show that by viewing parameter-space regular-

ization as specifying an empirical prior distribu-

tion over the model parameters, we can derive

a probabilistically well-motivated regularization

technique that allows explicitly encoding infor-

mation about desired predictive functions into

neural network training. This method—which

we refer to as function-space empirical Bayes

(FS-EB)—includes both parameter- and function-

space regularization, is mathematically simple,

easy to implement, and incurs only minimal com-

putational overhead compared to standard regular-

ization techniques. We evaluate the utility of this

regularization technique empirically and demon-

strate that the proposed method leads to near-

perfect semantic shift detection, highly-calibrated

predictive uncertainty estimates, successful task

adaption from pre-trained models, and improved

generalization under covariate shift.

1. Introduction

The primary goal of machine learning is to find functions

that represent relationships in data. Yet, most regularization

methods in modern machine learning are expressed solely in

terms of desired function parameters instead of the desired

functions themselves.
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Figure 1: Predictive distributions obtained by training on

the Two Moons datasets using standard parameter-space

maximum a posteriori estimation (Left) and empirical varia-

tional inference (FS-EB) (Right) in a two-layer MLP. FS-EB

results in better-calibrated predictive uncertainty away from

the training data, reflecting the inductive bias of the empiri-

cal prior distribution over the neural network parameters.

In this work, we propose a probabilistic inference method

that results in an optimization objective that features both

explicit parameter- and function-space regularization. To

obtain such an optimization objective, we approach function-

space regularization in deep neural networks from a proba-

bilistic perspective and define an empirical prior distribution

over parameters that allows explicitly encoding relevant

prior information about the data-generating process into

training. The resulting regularizer is mathematically simple,

easy to implement, and effectively induces training dynam-

ics that encourage solutions in parameter space that are

consistent with both the encoded prior information about

the network parameters and the desired functions. We re-

fer to the probabilistic method as function-space empirical

Bayes (FS-EB).

To derive an optimization objective that explicitly features

parameter- and function-space regularization, we consider

an empirical Bayes framework and specify an empirical

prior distribution that reflects our prior beliefs about the
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model parameter and the predictive function induced by

them. More specifically, we consider a two-part inference

problem: (i) an auxiliary inference problem for finding a

posterior that can be used as an empirical prior and (ii) a

primary inference problem, where we use the empirical prior

and an observation model of the data to perform Bayesian

inference.

To obtain an empirical prior that includes both parameter-

and function-spaces regularizers, we consider an auxiliary

inference problem, where the posterior distribution would

reflect both prior beliefs about the neural network parame-

ters (via a prior distribution over the parameters) as well as

preferences about desired predictive functions (via a likeli-

hood function that favors functions consistent with a specific

distribution over functions).

We evaluate deterministic neural networks trained with the

proposed regularized optimization objective on a broad

range of standard classification, real-world domain adap-

tion, and machine learning safety benchmarking tasks. We

find that the proposed method successfully biases neural

network training dynamics towards solutions that reflect the

inductive biases of prior distributions over neural network

functions, which can yield improved predictive performance

and leads to significantly improved uncertainty quantifica-

tion vis-à-vis standard parameter-space regularization and

state-of-the-art function-space regularization methods.

To summarize, our key contributions are as follows:

• In Section 3.1, we specify an auxiliary inference problem,

which allows us to obtain an analytically tractable un-

normalized empirical prior distribution that reflects both

prior beliefs about the neural network parameters and

preferences about desired predictive functions.

• In Sections 3.2 and 3.3, we show how to perform tractable

maximum a posteriori estimation and approximate pos-

terior inference in neural networks using this unnormal-

ized empirical prior and derive an optimization objective

that features both parameter- and function-spaces regu-

larization. We refer to this approach as function-space

empirical Bayes (FS-EB).

• In Section 5, we present an empirical evaluation in

which we compare highly-tuned parameter- and function-

space regularization baselines to neural networks trained

with FS-EB regularization and find that FS-EB yields

(i) near-perfect semantic shift detection, (ii) highly-cal-

ibrated predictive uncertainty estimates, (iii) successful

task adaption from pre-trained models, and (iv) improved

generalization under covariate shift.

The code for our experiments can be accessed at:

https://github.com/timrudner/

function-space-empirical-bayes.

2. Background

We will first review relevant background on probabilistic

inference and related parameter-space and function-space

regularization methods.

Consider supervised learning problems with N i.i.d. data

realizations D = {x(n), y(n)}Nn=1 = (xD,yD) of inputs

x ∈ X and targets Y ∈ Y with input space X ⊆ R
D and

target space Y ⊆ R
K for regression and Y ⊆ {0, 1}K for

classification tasks with K classes.

2.1. Parameter-

Space Maximum A Posteriori Estimation

For supervised learning tasks, we define a paramet-

ric observation model pY |X,Θ(y |x, θ; f) with mapping

f(· ; θ) =̇h(· ; θh)θL and a prior distribution over the pa-

rameters, pΘ(θ). Maximum a posteriori (MAP) estimation

seeks to find the most likely setting θMAP of the quantity θ
(under the probabilistic model) given the data. Since, by

Bayes’ Theorem, the implied posterior is proportional to the

joint probability density given by the product of the likeli-

hood of the parameters under the data pY |X,Θ(yD |xD, θ)
and the prior, that is,

pΘ|Y,X(θ | yD, xD) ∝ pY |X,Θ(yD |xD, θ)pΘ(θ),

MAP estimation seeks to find the mode of the joint prob-

ability density p(yD |xD, θ)p(θ) (Bishop, 2006; Murphy,

2013). Under a likelihood that factorizes across the data

points given parameters θ,

p(yD |xD, θ) =̇
N∏

n=1

p(y
(n)
D |x

(n)
D , θ), (1)

the MAP optimization objective can be expressed as

LMAP(θ) =
N∑

n=1

log pY |X,Θ(y
(n)
D |x

(n)
D , θ) + log pΘ(θ).

The log-likelihood in the MAP optimization objective cor-

responds to a scaled negative mean squared error (MSE)

loss function under a Gaussian likelihood (used for regres-

sion) and to a negative cross-entropy loss function under a

categorical likelihood (used for classification).

The most common instantiations of parameter-space MAP

estimation are L1- and L2-norm parameter regularization,

which are also known as LASSO regression and weight

decay or ridge regression, respectively. More specifically,

choosing a prior p(θ) = N (θ;0, σ2
0I) leads to the standard

L2-norm regularization (also known as weight decay) and

p(θ) = Laplace(θ;0, bI) leads to the sparsity-inducing L1-

norm regularization (also known as LASSO) (Bishop, 2006;

Murphy, 2013), making parameter-space MAP estimation

one of the most widely used optimization frameworks in

modern machine learning.
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2.2. Function-Space Maximum A Posteriori Estimation

Wolpert (1993) considered posterior inference over

functions evaluated at a finite set of context points,

x̂ =̇ {x1, ..., xM} to find the most likely parameters that

represent the most likely function under the posterior distri-

bution over functions.

Letting the set of input points x̂ at which the function is

evaluated contain the training data such that xD ⊆ x̂, we

can write the posterior distribution over functions at x̂ as

p(f(x̂) | yD, x̂) = p(yD |xD, f(x̂))p(f(x̂) | x̂)/p(yD | x̂)

and express the mode of the posterior via the finite-point

function-space MAP estimate f(x̂; θFSMAP) where θFSMAP is

the mode of the finite-point function-space posterior:

θFSMAP =̇ argmax
θ∈RP

p(yD | f(x̂; θ))p(f(x̂; θ) | x̂).

To find the finite-points function-space MAP estimate, we

need to be able to maximize the joint density

p(yD | f(x̂; θ))p(f(x̂; θ) | x̂)

with respect to θ. While the first term is the likelihood

of the data given model parameters θ, the prior density

p(f(x̂; θ) | x̂) is not in general tractable. However, assuming

that f is a neural network with a standard parameterization

(e.g., a multi-layer perceptron) and the set of evaluation

points is sufficiently large so that MK ≥ P , using a gener-

alization of the change-of-variables formula, Wolpert (1993)

showed that the induced prior density is given by

p(f(x̂ ; θ)) = p(θ) det−1/2(G(θ)),

where G(θ) is a P -by-P matrix defined by

G(θ) =̇ (∂f(x̂ ; θ)/∂θ)>(∂f(x̂ ; θ)/∂θ)

and ∂f(x̂ ; θ)/∂θ is the MK-by-P Jacobian matrix of

f(x̂ ; θ) with respect to the parameters θ. To find θFSMAP,

one can maximize the log-joint density function,

log p(f(x̂; θ) | yD, x̂)

= log p(yD | f(x̂; θ)) + log p(θ)−
1

2
log det(G(θ)).

That is, function-space MAP estimation results in an opti-

mization objective that includes parameter- and function-

space regularization. Unfortunately, computing the cor-

rection term is analytically intractable and computation-

ally infeasible for large neural networks. Motivated by

function-space MAP estimation, in Section 3.2, we present

an alternative probabilistic model that also features both

parameter- and function-space regularization but is analyti-

cally tractable and scalable to large neural networks.

2.3. Function-Space Variational Inference

Bayesian neural networks (BNNs) are stochastic neural net-

works trained using (approximate) Bayesian inference. De-

noting the parameters of such a stochastic neural network

by the multivariate random variable Θ ∈ R
P and letting the

function mapping defined by a neural network architecture

be given by f : X × R
P → R

K , then f(· ; Θ) is a random

function. For a parameter realization θ, we obtain a function

realization, f(· ; θ), and when evaluated at a finite collec-

tion of points x̂ =̇ {x1, ..., xM}, f(x̂; Θ) is a multivariate

random variable.

Instead of seeking to infer a posterior distribution over pa-

rameters, we may equivalently frame Bayesian inference

in stochastic neural networks as inferring a posterior dis-

tribution over functions (Sun et al., 2019b; Rudner et al.,

2022a). Given a prior distribution over parameters p(θ),
the probability density of the corresponding induced prior

distribution over functions p(f(·)) evaluated at a finite set

of evaluation points x, can be expressed as

pF (x)(f(x)) =

∫

RP

pΘ(θ
′) δ(f(x; θ)− f(x; θ′)) dθ′,

where δ(·) is the Dirac delta function. The probability den-

sity of the posterior distribution over functions p(f(·)|D) in-

duced by the posterior distribution over parameters p(θ|D),
evaluated at a finite set of points, can be defined analogously

and is given by

pF (x)|D(f(x) | D)

=

∫

RP

pΘ|D(θ
′ | D) δ(f(x ; θ)− f(x ; θ′)) dθ′.

Finally, defining a variational distribution over functions

q(F (·)) induced by a variational distribution over parame-

ters q(θ), we can frame inference over

qF (x)(f(x)) =

∫

RP

qΘ(θ
′) δ(f(x; θ)− f(x; θ′)) dθ′,

we can frame posterior inference over stochastic functions

F (·) variationally as

min
qΘ∈Q

DKL(qF (·) ‖ pF (·)|D),

where Q is a variational family. Equivalently, we can ex-

press the inference problem as

max
qΘ∈Q

EqF (·)
[log p(yD |xD, F (·))]− DKL(qF (·) ‖ pF (·)),

where DKL(qF (·) ‖ pF (·)) is an explicit regularizer on the

variational distribution over functions q(F (·)). Rudner et al.

(2022a), Sun et al. (2019b), and Ma & Hernández-Lobato

(2021) have proposed tractable approximations to this ob-

jective. The function-space variational inference (FS-VI)

approach by Rudner et al. (2022a) is a state-of-the-art ap-

proximate inference method for BNNs.
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3. Function-Space Empirical Bayes

Instead of considering standard, uninformative prior dis-

tributions over parameters, we consider an empirical prior

distribution over parameters, which allows us to obtain an

optimization objective that combines the benefits of both

standard parameter-space and explicit function-space regu-

larization. To obtain such an objective, we will consider a

two-part inference procedure. First, we will consider an aux-

iliary inference problem to derive an analytically tractable

unnormalized empirical prior distribution. We will then

show how to incorporate this empirical prior into MAP es-

timation and variational inference for the neural network

parameters. The resulting optimization objectives feature

both explicit parameter- and function-space regularization.

3.1. Empirical Priors via Distributions over Functions

We begin by specifying the auxiliary inference problem.

Let x̂ = {x1, ..., xM}, be a set of context points with cor-

responding labels ŷ, and define a corresponding likelihood

function p̂Y |X,Θ(ŷ | x̂, θ; f) and a prior over the model pa-

rameters, pΘ(θ). For notational simplicity, we will drop the

subscripts going forward except when needed for clarity. By

Bayes’ Theorem, the posterior under the context points and

labels is given by

p̂(θ | ŷ, x̂) ∝ p̂(ŷ | x̂, θ; f)p(θ). (2)

To define a likelihood function that induces a posterior with

desirable properties, we consider the following stochastic

linear model for an arbitrary set of points x =̇ {x1, ..., xM ′},

Zk(x) =̇h(x;φ0)Ψk + ε

with Ψk ∼ N (ψ;µ, τ−1
f I) and ε ∼ N (0, τ−1

f I),

for output dimensions k = 1, ...,K, where h(· ;φ0) is the

feature mapping used to define f evaluated at a set of fixed

feature parameters φ0, µ is a set of mean parameters, and

τf is a precision parameter. This stochastic linear model in-

duces a distribution over functions, which—when evaluated

at x̂—is given by

N (zk(x̂);h(x̂;φ0)µk, τ
−1
f K(x̂, x̂;φ0)),

where

K(x̂, x̂;φ0) =̇h(x̂;φ0)h(x̂;φ0)
> + I (3)

is an M -by-M covariance matrix. Letting µ = 0, we obtain

p(zk | x̂) = N (zk;0, τ
−1
f K(x̂, x̂;φ0)).

Viewing this probability density over function evaluations

as a likelihood function parameterized by θ, we define

p̂(ŷk | x̂, θ; f) =̇N (ŷk; f(x̂; θ)k, τ
−1
f K(x̂, x̂;φ0)), (4)

with labels ŷ =̇ {0, ...,0}. This likelihood function favors

parameters θ for which f(x̂; θ) has high likelihood under

the induced prior distribution over functions in Equation (4).

Letting the likelihood factorize across output dimensions,

p̂(ŷ | x̂, θ; f) =̇
K∏

k=1

p̂(ŷk | x̂, θ; f),

defining the prior distribution over parameters as

p(θ) = N (θ;0, τ−1
θ ), and taking the log of the analytically

tractable joint density p̂(ŷ | x̂, θ; f)p(θ), we obtain

log p̂(ŷ | x̂, θ; f) + log p(θ)

∝ −
K∑

k=1

τf
2
f(x̂; θ)>kK(x̂, x̂;φ0)

−1f(x̂; θ)k −
τθ
2
‖θ‖22,

with proportionality up to an additive constant independent

of θ. Defining

J (θ, x̂) =̇ −
K∑

k=1

τf
2
dM (f(x̂; θ)k,K(x̂, x̂;φ0))−

τθ
2
‖θ‖22,

(5)

where dM (v,K) =̇ v>K−1v is the Mahalanobis distance

between v and 0. We therefore obtain

argmax
θ

p̂(θ | ŷ, x̂) = argmax
θ

J (θ, x̂).

and hence, maximizing J (θ, x̂) with respect to θ is mathe-

matically equivalent to maximizing the posterior p̂(θ | ŷ, x̂)
and leads to functions that are likely under the distribution

over functions induced by the neural network mapping while

being consistent with the prior over the network paramters.

3.2. Empirical Bayes Maximum A Posteriori Estimation

We can now move on to the main inference problem. Using

the training data D, we wish to find a predictive function

that fits the training data, generalizes well, and has well-

calibrated predictive uncertainty. To obtain such a predic-

tive function, we will perform MAP estimation using the

posterior p̂(θ | ŷ, x̂) as an empirical prior over parameters.

Since the posterior considered above is proportional to an

analytically tractable joint distribution, performing MAP

estimation using the posterior from the secondary inference

problem as an empirical prior is straightforward. Defining a

probabilistic model with the empirical prior,

p(θ | yD, xD) ∝ p(yD |xD, θ)p̂(θ | ŷ, x̂), (6)

we can perform MAP estimation by maximizing the

empirical-MAP optimization objective,

log p(θ | yD, xD) ∝ log p(yD |xD, θ) + log p̂(θ | ŷ, x̂),

which is analytically tractable and can be expressed as

LEB-MAP(θ) =̇

N∑

n=1

log p(y
(n)
D |x

(n)
D , θ)+J (θ, x̂). (7)
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This objective contains explicit penalties on both the param-

eter values (via the parameter norm ‖θ‖22) as well as the

induced function values on the set of context points (via the

Mahalanobis distance between function evaluations and the

zero vector, dM (f(x̂; θ)k,K(x̂, x̂;φ0))).

3.3. Empirical Bayes Variational Inference

While the regularizer in Equation (5) may induce the de-

sired behavior for a given set of context points x̂, we may

instead wish to specify a distribution over context points to

cover a larger region of input space. To obtain a tractable

objective function for this setting, we consider a variational

formulation of the inference problem. Slightly changing the

notation (using θ′ instead of θ), the probabilistic model in

which we wish to perform inference—defined in terms of

both the empirical prior and a prior distribution over the set

of context points—is given by

p(θ′, x̂ | yD, xD) ∝ p(yD |xD, θ
′)p̂(θ′ | ŷ, x̂)p(x̂), (8)

with the empirical prior

p̂(θ′ | ŷ, x̂) ∝ p̂(ŷ | x̂, θ′; f)p(θ′). (9)

Now, defining a variational distribution

q(θ′, x̂) =̇ q(θ′)q(x̂),

we can frame the inference problem of finding the posterior

p(θ′, x̂ | yD, xD) as a problem of optimization,

min
qΘ′,X̂

∈Q
DKL(qΘ′,X̂ ‖ pΘ′,X̂ |YD,XD

),

where Q is a variational family. If qΘ′,X̂ ∈ Q, then the

solution to the variational minimization problem is equal

to the exact posterior. Defining q(x̂) =̇ p(x̂), which further

constrains the variational family, the optimization problem

simplifies to

min
qΘ′∈Q

Ep
X̂

[
DKL(qΘ′ ‖ pΘ′ |YD,XD

)
]
,

which can equivalently be expressed as maximizing the

variational objective

EqΘ′
[log p(yD |xD,Θ

′; f)]− Ep
X̂
[DKL(qΘ′ ‖ pΘ′ | Ŷ ,X̂)].

To obtain a tractable estimator of the regularization term,

we first note that we can write

Ep
X̂
[DKL(qΘ′ ‖ pΘ′ | Ŷ ,X̂)]]

= Ep
X̂
[EqΘ′

[log q(Θ′)]− EqΘ′
[log p(Θ′ | Ŷ , X̂)]],

where the first term is the negative entropy and the second

term is the negative cross-entropy. Defining a mean-field

variational distribution q(θ′) =̇N (θ′; θ, σ2I) with learnable

θ and very small and fixed σ2 (e.g., σ2 = 10−20), the

negative entropy term will be constant in θ, and letting

p(θ) = N (θ;0, τ−1
θ ) as before, we get

Ep
X̂
[EqΘ′

[log p(Θ′ | Ŷ , X̂)]]

∝ Ep
X̂

[
EqΘ′

[
log p̂(Ŷ | X̂,Θ′; f)

]
+ EqΘ′

[
−
τθ
2
‖Θ′||22

]]
,

up to an additive constant independent of θ. From this

expression, we can obtain an unbiased estimator of the KL

divergence using simple Monte Carlo estimation:

F(θ) =̇ −
1

IJ

I∑

i=1

J∑

j=1

J (θ + σε(j), X̂(i)) + C (10)

with X̂(i) ∼ pX̂ and ε(j) ∼ N (0, I)

for i = 1, ..., I , j = 1, ..., J , and an additive constant C
independent of θ. This regularizer is an estimator of the

expectation of J (Θ, X̂) under qΘ′ and pX̂ . Finally, we

obtain the variational objective

LEB-VI(θ) =
1

S

N∑

n=1

S∑

s=1

log p(y
(n)
D |x

(n)
D , θ + σε(s)) + F(θ),

(11)

with ε(s) ∼ N (0, I). This objective factorizes across train-

ing data points and, as such, is amenable to stochastic

gradient descent. This objective is used in the empirical

evaluation in Section 5. We will refer to this method as

function-space empirical Bayes (FS-EB).

3.4. Function-Space Regularization via Empirical Priors

The tractable empirical-Bayes MAP estimation and varia-

tional inference objectives in Equations (7) and (11), re-

spectively, are both defined in terms of the empirical-Bayes

regularizer J(θ, x̂) given in Equation (5).

First, unlike function-space regularizers proposed in prior

work (e.g., Bietti et al., 2019; Benjamin et al., 2018; Sun

et al., 2019b; Rudner et al., 2022a;b; Chen et al., 2022),

the regularizer J (θ, x̂), explicitly features parameter-space

regularization. Prior distributions over parameters, such as

isotropic Gaussians or the Laplace distribution, are well-

established and have been demonstrated to yield parameter

MAP estimates that define predictive functions that general-

ize well. Second, via the labels ŷ = {0, ...,0} used in the

likelihood function, the parameters θ are encouraged to be

concentrated around values that fit the training data and are

consistent with both the prior distribution over parameters—

which favors parameters θ with small norm ‖θ‖22—and the

likelihood function—which favors parameters θ that pro-

duce zero predictions, corresponding to high-entropy pre-

dictive distributions in classification settings and a reversion

to the data mean in regression settings with normalized

data. Third, for non-singleton sets of context points x̂, the

likelihood function enforces a smoothness constraint via its

5



Function-Space Regularization in Neural Networks: A Probabilistic Perspective

covariance matrix and encourages parameters that induce

functions that have high likelihood under the induced distri-

bution over functions defined Equation (4)—which has been

shown introduce desirable inductive biases into the learned

model (Wilson & Izmailov, 2020; Rudner et al., 2022a;b).

3.5. Specifying Distributions over Sets of Context Points

Careful specification of pX̂ is crucial for ensuring that the

empirical-Bayes regularizer effectively encourages desired

properties in the learned predictive functions. A simple

approach to specifying pX̂ is to define the context distribu-

tion as an empirical distribution given by a dataset that is

meaningfully related to the training data. For example, we

may choose an unaltered subset of the training data, cor-

ruptions/augmentations of the training data (using standard

augmentations such as cropping, blurring, pixelation, etc.),

or a related dataset, such as KMNIST when training on Fash-

ionMNIST or CIFAR-100 when training on CIFAR-10, as

the context distribution. In principle, the more the most rel-

evant regions of a given problem-specific input space (e.g.,

the space of natural images for general image classification)

are covered by a context distribution pX̂ , the more likely the

learned function will be drawn towards the prior distribution

over functions evaluated at these parts of input space.

3.6. Specifying Prior Distributions over Functions

When a pretrained model is available, a likelihood

p̂(ŷ | x̂, θ; f) can be constructed from a prior distribution

over functions by specifying φ0 in h(x̂;φ0) to be the pre-

trained model parameters. If a pretrained model is unavail-

able, φ0 can be specified by randomly initializing the net-

work parameters using any standard initialization scheme,

which also induces desirable inductive biases (Wilson &

Izmailov, 2020).

4. Related Work

Krogh & Hertz (1991) argued that explicit regularization via

weight decay, that is, an L2-norm penalty on the parameters,

can significantly improve generalization. This approach

is now standard practice for training parametric models,

including large neural networks. Weight decay corresponds

to maximum a posteriori estimation in probabilistic models

with a Gaussian prior distribution over the model parameters.

Joo & Chung (2020) further demonstrated the effectiveness

of explicit regularization for calibration of neural networks.

Our work takes this case further by regularizing directly in

the function space.

Wolpert (1993) argued that the true goal of maximum a

posteriori estimation in parametric models—and, as such,

of parameter-space regularization—is to find the most likely

function mapping that describes the given data and the prior

while the parameter-space representation of the network is

only a means to an end. However, in non-linear paramet-

ric models, since maximum a posteriori estimation is not

invariant under parameterization, the function implied by

the most likely parameters can differ significantly from the

most probable function (Denker & LeCun, 1990). Using the

generalized change-of-variables formula for probability dis-

tributions to get the implied distribution over functions from

the distribution over parameters, Wolpert (1993) introduced

a correction term to standard parameter-space regulariza-

tion with weight decay limited to small neural networks.

In contrast, we provide an alternative model formulation

that leads to tractable function-space regularization for any

neural network architecture.

Wang et al. (2019) reasoned why a good approximation to

the parameter-space posterior does not necessarily corre-

spond to better predictive performance because of symme-

tries in overparameterized neural networks. Empirically, Joo

& Chung (2020) provided evidence that Lp norm regular-

ization in function space improves generalization in neural

network models while also improving calibration. Bietti

et al. (2019) proposed to use the Jacobian norm as a lower

bound on the function norm and Bietti & Mairal (2018) con-

structed an RKHS which contains CNN prediction functions.

Chen et al. (2022) use a Mahalanobis distance regularizer

between logits, with the covariance matrix given by the

empirical neural tangent kernel. In this work, we instead

take an empirical Bayes approach to derive a function-space

regularization objective from inference in a probabilistic

model of the data-generating process.

In the context of approximate Bayesian inference, Sun et al.

(2019a) proposed to minimize the divergence between two

distributions over functions via a function-space evidence

lower bound (ELBO), but Burt et al. (2020) showed that

the inference problem as considered in Sun et al. (2019b)

is not well-defined for neural network variational distribu-

tions with Gaussian process priors. Other approaches to

approximate function-space inference have been proposed

(Ma et al., 2018; Ober & Aitchison, 2020; Ma & Hernández-

Lobato, 2021). By instead linearizing the function mapping

to obtain a tractable distribution over functions, Rudner et al.

(2022a) introduced an effective and scalable approxima-

tion to make function-space variational inference effective

and scalable to deep neural networks. Titsias et al. (2019)

applied functional regularization using Gaussian process

priors to handle catastrophic forgetting in continual learning

and Rudner et al. (2022b) use function-space variational

inference to prevent catastrophic forgetting by encouraging

neural networks to match an empirical prior distribution

over functions. We reiterate, however, that our work does

not aim to propose a new approximate Bayesian inference

approach. Instead, we investigate the utility of approximate

inference with a function-space regularizer specified via

empirical Bayes on the parameters.
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5. Empirical Evaluation

In this section, we evaluate empirical variational inference

(FS-EB) along various dimensions—generalization (accu-

racy), uncertainty quantification (selective prediction, cali-

bration), robustness (semantic shift detection, generalization

under covariate shift), and transfer learning.

Overview. We assess whether FS-EB can improve the re-

liability of neural networks. We put a special emphasis on

benchmarking tasks and evaluation metrics that assess reli-

ability as a function of predictive accuracy and predictive

uncertainty estimates. Across all benchmarking tasks, we

find that FS-EB results in improved predictive uncertainty,

evaluated in terms of log-likelihood, expected calibration

error (ECE), and selective prediction when compared to

standard parameter-space MAP (denoted by PS-MAP). No-

tably, we achieve near-perfect semantic shift detection on

both CIFAR-10 and FashionMNIST against samples from

datasets that were unseen during training and do not belong

to the same distribution. We further demonstrate that FS-EB

can often improve robustness to corruptions compared to

parameter-space inference.

Illustrative Example. In Figure 1, we illustrate the effect

of FS-EB on the Two Moons classification dataset. On one

hand, a standard data fit using standard parameter-space

MAP estimation shows that the model learns a decision

boundary which roughly splits the space into two regions

within which the model makes predictions with very high

confidence. FS-EB, on the other hand, exhibits an increase

in predictive uncertainty in regions further away from the

training data, where it encourages the neural network to

match the prior distribution over functions (via the empirical

prior), providing a more reliable solution that aligns with

our a priori desire of lower confidence predictions in regions

of input space far away from the training data.

Setup. All of our methods are trained using a ResNet-18

architecture (He et al., 2016) with momentum SGD. All

results are reported with mean and standard error over five

trials. See Appendix A for details about hyperparameters.

Implementation. The optimization objective in Equa-

tion (11) can be implemented on top of standard training

routines. It only requires the neural network feature h(x̂;φ0)
and the predictions f(x̂; θ) for a given sample of context

points x̂. In practice, we use only a single Monte Carlo

sample per gradient step, that is, I = J = 1.

5.1. Selective Prediction

Selective prediction modifies the standard prediction

pipeline by introducing a “reject option”, ⊥, via a gating

mechanism defined by a selection function s : X → R that

determines whether a prediction should be made for a given

input point x ∈ X (El-Yaniv & Wiener, 2010; Rabanser

et al., 2022). For a rejection threshold τ , the prediction

model is then given by

(p(y | ·,θ; f), s)(x) =

{
p(y |x,θ; f) s ≤ τ

⊥ otherwise.
(12)

To evaluate the predictive performance of a prediction model

(p(y | ·,θ; f), s)(x), we compute the predictive performance

of the classifier p(y |x,θ; f) over a range of thresholds τ ,

and summarize as the area under the selective prediction ac-

curacy curve. Successful selective prediction models obtain

high cumulative accuracy over many thresholds and can be

applied in safety-critical real-world tasks where uncertainty-

aware predictive accuracy is especially important.

Figure 2 shows that FS-EB can often provide better out-of-

the-box for certain standard image corruptions, tested on

the Corrupted CIFAR-10 (Hendrycks & Dietterich, 2019)

dataset. We plot the selective prediction accuracy curves,

that is, accuracy versus confidence, such that below a cho-

sen confidence level τ , the sample is not being classified.

Additionally, in Tables 1 and 2, we see that FS-EB improves

the area under selective prediction curves, while improving

the generalization of the classifier as measured by accuracy.

In practice, a fraction 1 − τ of the samples could get re-

ferred to a human expert for manual review. The area under

the selective prediction accuracy curves, therefore, provides

information about the reliability of a classifier.

5.2. Calibrated Predictive Uncertainty

As shown in Figure 1, PS-MAP tends to be very confident

even far away from data. Such predictive behavior may often

be undesirable. The expected calibration error (ECE; Naeini

et al. (2015)) computes the alignment between accuracy

and prediction of a classifier. In line with our illustration,

through our benchmark experiments, we provide evidence

that FS-EB is able to significantly improve classification

calibration.

Following Naeini et al. (2015), an empirical ECE estimator

is constructed by binning the maximum output probability

of each sample into m bins Bj ∀ j ∈ [1, . . . ,m], such that

ÊCE =

n∑

i=1

Bi

n
|Accuracy(Bi)− Confidence(Bi)| ,

(13)

where Acc. is the accuracy of each sample within each

bin Bi, and Conf. is the mean of all maximum probability

outputs of a classifier for each sample within the bin Bj .

Therefore, a perfectly calibrated model has an ECE of zero,

implying perfect alignment between the accuracy of the

classifier and its confidence in the predictions.

In Tables 1 and 2, we verify that FS-EB significantly im-

proves calibration while improving the generalization of the

classifier as measured by accuracy.
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Table 1: We report the accuracy (ACC.), negative log-

likelihood (NLL), expected calibration error (ECE), and area

under the selective prediction accuracy curve (SEL. PRED.)

for FashionMNIST (Xiao et al., 2017) and FS-EB improves

performance while improving calibration. xC = KMNIST.

Means and standard errors are computed over five seeds.

METHOD ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓

PS-MAP 93.8%±0.0 98.9%±0.0 0.26±0.00 3.6%±0.0

FS-EB 94.1%±0.1 98.8%±0.0 0.19±0.00 1.8%±0.1

FS-VI 94.1%±0.0 98.4%±0.0 0.24±0.00 2.6%±0.1

Table 2: We report the accuracy (ACC.), negative log-

likelihood (NLL), expected calibration error (ECE), and area

under the selective prediction accuracy curve (SEL. PRED.)

for CIFAR-10 (Krizhevsky, 2010) and FS-EB improves pre-

dictive performance and calibration. xC = CIFAR-100.

Means and standard errors are computed over five seeds.

METHOD ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓

PS-MAP 94.9%±0.2 99.3%±0.0 0.21±0.01 3.0%±0.1

FS-EB 95.1%±0.1 99.4%±0.0 0.20±0.00 2.1%±0.1

FS-VI 92.9%±0.1 98.0%±0.0 0.31±0.00 4.0%±0.1
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(a) Corruption Level 3 (b) Corruption Level 5

Figure 2: For a selected subset of corruptions as constructed by Corrupted CIFAR-10 (Hendrycks & Dietterich, 2019), we

show the selective prediction curves for (a) corruption level 3 and (b) corruption level 5. A higher curve indicates better

calibration for “reject option” in classification (El-Yaniv & Wiener, 2010). We find that FS-EB is often better out-of-the-box

for certain standard image blurring and noise corruptions, indicating better calibration when compared to standard PS-MAP.

5.3. Highly-Accurate Semantic Shift Detection

So far, we have demonstrated that FS-EB can improve the

quality of neural networks’ predictive uncertainty on in-

domain data. Another hallmark of a reliable model is its

ability to detect semantic shifts in the data (Band et al.,

2021; Nado et al., 2021). We assess whether the FS-EB

generates predictive uncertainty estimates that enable suc-

cessful semantic shift detection, that is, detection of input

points whose true labels are semantically different from the

training labels, and find that FS-EB can achieve near-perfect

semantic shift detection in two image classification tasks.

To simulate semantic shift, we present a classifier trained on

FashionMNIST (Xiao et al., 2017), a grayscale collection

of fashion items to distinguish against KMNIST (Clanuwat

et al., 2018), with a dataset of handwritten Kuzushiji digits.

Using the predictive entropy of the classifier for each input

sample from both FashionMNIST and KMNIST, we build

another binary classifier to detect semantic shifts using sim-

ply the threshold of predictive entropy. We are able to detect

semantic shift with near-perfect accuracy of 99.9%. We

come to a similar conclusion when detecting semantic shift

between CIFAR-10 (Krizhevsky, 2010), a collection of tiny

images of objects and SVHN (Netzer et al., 2011), a collec-

tion of street view house numbers. Numerical results are

summarized in Table 3.

Table 3: We compute the area under the ROC of a classifier

using the predictive entropy on the in-distribution samples

and out-of-distribution samples xOOD with semantic shift.

For FashionMNIST, we use xOOD = MNIST; for CIFAR-

10, we use xOOD = SVHN.

DATASET METHOD OOD AUROC ↑

FMNIST

PS-MAP 94.9%±0.4

FS-EB (xC = KMNIST) 99.9%±0.0

FS-VI 98.0%±0.4

CIFAR-10

PS-MAP 93.0%±0.4

FS-EB (xC = CIFAR100) 99.4%±0.1

FS-VI 99.0%±0.1
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Figure 3: For a randomly selected subset of corruptions as constructed by Corrupted CIFAR-10 (Hendrycks & Dietterich,

2019), we show that (a) FS-EB and PS-MAP achieve similar predictive accuracy, but (b) FS-EB leads to better selective

prediction (as measured by the area under the selective prediction accuracy curve). The improvement in selective prediction

indicates that FS-EB produces more accurate uncertainty estimates and is thus able to use the “reject option” more effectively,

leading to more reliable classification. See Figures 4 and 5 in Appendix A for results on other common corruptions.

5.4. Generalization under Covariate Shift

Another essential property of a reliable classifier is graceful

degradation under covariate shift. We assess the perfor-

mance of FS-EB in terms of generalization under covariate

shift. Using the CIFAR-10 Corrupted dataset (Hendrycks

& Dietterich, 2019) at five different corruption intensity

levels, we find that FS-EB can still generalize well. In Fig-

ure 3, we find that FS-EB often works out-of-the-box for

generalization under common visual corruptions.

5.5. Improved Transfer Learning

In addition to training from scratch, we also investigate the

utility of FS-EB for transfer learning, a paradigm that is now

very common with the advent of large pretrained neural

network models (Brown et al., 2020; Radford et al., 2021;

Tran et al., 2022; Touvron et al., 2023).

We find that FS-EB improves uncertainty quantification of

transfer-learned models without compromising predictive

performance. Table 4 shows that FS-EB and PS-MAP reach

the same level of accuracy and selective prediction AUC,

but FS-EB significantly improves NLL, calibration as mea-

sured by ECE, and effective semantic shift detection, using

a ResNet-18 (He et al., 2016) pretrained on ImageNet (Rus-

sakovsky et al., 2014).

In addition, we evaluate transfer-learned classifiers with FS-

EB on real-world datasets. Using a ResNet-50 pretrained on

ImageNet, we train classifiers on blindness detection, leaf

disease classification, and melanoma detection and find that

FS-EB often outperforms PS-MAP in generalization while

significantly improving uncertainty quantification. These

results are presented in Appendix A.8.

Table 4: Starting from a pretrained checkpoint of ResNet18

on ImageNet (Russakovsky et al., 2014), we report the per-

formance on CIFAR-10 (Recht et al., 2018). FS-EB benefits

predictive performance and calibration. Means and standard

errors are computed over five seeds.

METHOD ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓ OOD ↑

PS-MAP 96.2%±0.1 99.6%±0.0 0.13±0.01 3.2%±0.2 96.3%±0.7

FS-EB 96.2%±0.1 99.6%±0.0 0.11±0.00 1.3%±0.1 98.9%±0.1

6. Conclusion

We presented a probabilistic perspective on function-space

regularization in neural networks and used it to derive

function-space empirical Bayes (FS-EB)—a method that

combines parameter- and function-spaces regularization.

We demonstrated that FS-EB exhibits desirable empirical

properties, such as significantly improved predictive uncer-

tainty quantification both in-distribution and under semantic

shift. FS-EB is scalable, can be applied to any neural net-

work architecture, can be used with pretrained models, and

allows effectively incorporating prior information in a prob-

abilistically principled manner.
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Appendix

A. Additional Details and Experiments

A.1. Hyperparameters

In Table 5, we provide the key hyperparameters used with FS-EB. We operate over the search space using randomized grid

search. In addition to the learning rate η, cosine scheduler α, and weight decay used by standard PS-MAP, we use two more

hyperparameters—the prior variance τ−1
f and the number of Monte Carlo samples J .

Table 5: Hyperparameter Ranges

HYPERPARAMETER RANGE

LEARNING RATE η [10−10, 10−1]
SCHEDULER α [0, 1]

WEIGHT DECAY τ−1
θ [10−10, 1]

PRIOR VARIANCE τ−1
f [10−7, 5× 104]

MONTE CARLO SAMPLES J {1, 2, 5, 10}

A.2. Deep Ensembles

Lakshminarayanan et al. (2017) propose a simple alternative to Bayesian neural networks by computing the Bayesian model

average using a set of independently trained neural networks, i.e. the softmax outputs from each independent network

are averaged to provide the final predictive distribution for classification. This method is called Deep Ensembles. Across

literature, Deep Ensembles have been observed to provide improved generalization and better calibration. Subsequently, in

Table 6, we quantify the benefit of Deep Ensembles for FS-EB. Surprisingly, we find that Deep Ensembles benefit PS-MAP

more than they do FS-EB. A key property of ensemble components that lead to better generalization is the induced diversity

(Breiman, 2001). We speculate that FS-EB may enforce a bias that makes the components of an ensemble less diverse, since

it has a more informative prior than standard weight decay.

Table 6: We report the accuracy (ACC.), negative log-likelihood (NLL), expected calibration error (ECE), area under selective

prediction accuracy curve (SEL. PRED.), and area under OOD prediction accuracy curve (OOD) for FashionMNIST (Xiao

et al., 2017) and CIFAR-10 (Krizhevsky, 2010) with FS-EB deep ensembles (Lakshminarayanan et al., 2017).

FASHIONMNIST CIFAR-10

METHOD ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓ OOD ↑ ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓ OOD ↑

PS-MAP-ENSEMBLE 94.5% 99.3% 0.18 1.6% 94.9% 96.0% 99.6% 0.13 0.7% 95.7%
FS-EB-ENSEMBLE 94.7% 98.9% 0.21 3.7% 99.9% 95.8% 99.5% 0.17 3.0% 99.1%

A.3. Performance with CIFAR-10.1

Recht et al. (2018) introduce an extended set of test samples similar in distribution to CIFAR-10 meant as a safeguard

against overfitting of methods to benchmark classification task of CIFAR-10. In Table 7, we report the performance metrics

for CIFAR-10 trained models evaluated on the CIFAR-10.1 test set.

Table 7: We report the accuracy (ACC.), negative log-likelihood (NLL), expected calibration error (ECE), area under selective

prediction accuracy curve (SEL. PRED.), and area under OOD prediction accuracy curve (OOD) for CIFAR-10.1 (Recht

et al., 2018) using models trained on CIFAR-10. Means and standard errors are computed over five seeds.

METHOD ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓

PS-MAP 88.0%± 0.1 97.5%± 0.1 0.49± 0.00 7.6%± 0.1
FS-EB 86.8%± 0.4 97.2%± 0.2 0.49± 0.01 4.0%± 0.2
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A.4. Model Robustness with CIFAR-10 Corrupted

Hendrycks & Dietterich (2019) propose the CIFAR-10 Corrupted dataset as a test for model robustness, which consists of 19

commonly observed corruptions of images including blur, noise, and pixelation. All corruptions are created with CIFAR-10

test images at five different levels.

In continuation of the discussion around Figure 3, we summarize the accuracy and selective accuracy across all the

corruptions in Figures 4 and 5.
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Figure 4: Accuracy on CIFAR-10 Corrupted
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Figure 5: Selective Accuracy on CIFAR-10 Corrupted
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A.5. Effect of Training Data Size

In Tables 8 and 9, we quantify the performance of FS-EB in the low-data regime. For various fractions (10%, 25%, 50%, 75%)

of the full training dataset, we train both PS-MAP and FS-EB. Across all metrics, we find that FS-EB overall tends to

outperform PS-MAP significantly.

Table 8: We assess the performance of FS-EB in the low training data regime for FashionMNIST. Overall, we find that FS-EB

tends to generalize significantly better under small data, similar to our findings for FashionMNIST in Table 9. Means and

standard errors are computed over five seeds.

FRACTION METHOD ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓ OOD AUROC ↑

10%
FS-EB 89.0%±0.1 97.2%±0.1 0.47±0.01 6.7%±0.1 98.1%±0.4

PS-MAP 88.1%±0.2 97.0%±0.1 0.49±0.00 7.4%±0.1 88.1%±2.1

25%
FS-EB 91.5%±0.1 98.0%±0.1 0.35±0.01 5.2%±0.1 98.6%±0.2

PS-MAP 91.1%±0.1 98.3%±0.0 0.36±0.00 5.4%±0.1 88.6%±1.3

50%
FS-EB 92.9%±0.0 98.2%±0.1 0.31±0.00 4.6%±0.1 99.5%±0.1

PS-MAP 92.5%±0.1 98.7%±0.0 0.30±0.01 4.5%±0.1 93.0%±0.2

75%
FS-EB 93.6%±0.1 98.3%±0.0 0.29±0.00 4.4%±0.1 99.8%±0.0

PS-MAP 93.2%±0.1 98.9%±0.0 0.28±0.00 4.2%±0.1 93.1%±0.7

100%
FS-EB 94.1%±0.1 98.8%±0.0 0.19±0.00 1.8%±0.1 99.9%±0.0

PS-MAP 93.8%±0.0 98.9%±0.0 0.26±0.00 3.6%±0.0 94.9%±0.4

PS-MAP 91.1%±0.1 98.3%±0.0 0.36±0.00 5.4%±0.1 88.6%±1.3

Table 9: We assess the performance of FS-EB in the low training data regime for CIFAR-10. Overall, we find that FS-EB

tends to generalize significantly better under small data, similar to our findings for FashionMNIST in Table 8. Means and

standard errors are computed over five seeds.

FRACTION METHOD ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓ OOD AUROC ↑

10%
FS-EB 78.3%±0.1 93.2%±0.0 0.83±0.00 11.1%±0.3 95.9%±0.3

PS-MAP 72.7%±0.1 89.9%±0.1 1.36±0.00 19.7%±0.0 66.2%±1.0

25%
FS-EB 87.6%±0.0 97.2%±0.0 0.47±0.00 6.0%±0.1 99.6%±0.0

PS-MAP 87.1%±0.4 97.1%±0.1 0.54±0.01 7.9%±0.2 74.8%±2.5

50%
FS-EB 92.0%±0.1 98.7%±0.0 0.30±0.00 2.6%±0.1 99.9%±0.0

PS-MAP 92.5%±0.0 98.7%±0.0 0.32±0.01 4.7%±0.1 85.9%±1.3

75%
FS-EB 93.9%±0.1 99.1%±0.0 0.23±0.0 1.8%±0.0 99.9%±0.0

PS-MAP 94.4%±0.0 99.1%±0.0 0.23±0.00 3.4%±0.0 91.6%±0.8

100%
FS-EB 95.1%±0.1 99.4%±0.0 0.20±0.00 2.1%±0.1 99.4%±0.0

PS-MAP 94.9%±0.1 99.3%±0.0 0.21±0.01 3.0%±0.0 93.0%±0.2

A.6. Effect of Context Set Batch Size

During each gradient step of FS-EB training, we use a subset of points from the context distribution, sampled uniformly at

random as described in Section 3. The number of samples is what we call the context set batch size. In Table 10, we vary

this batch size and find that most metrics are not very sensitive to this hyperparameter choice.

Table 10: We vary the size of the context set batch size ad assess the effect on predictive performance.

FASHIONMNIST CIFAR-10

BATCH SIZE ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓ OOD ↑ ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓ OOD ↑

32 94.1%± 0.0 98.4%± 0.1 0.27± 0.00 4.1%± 0.0 98.9%± 0.1 95.0%± 0.1 99.3%± 0.0 0.19± 0.00 1.5%± 0.1 99.9%± 0.0
64 94.1%± 0.0 98.3%± 0.0 0.27± 0.00 4.1%± 0.0 99.5%± 0.0 94.9%± 0.1 99.3%± 0.0 0.19± 0.0 1.4%± 0.0 99.9%± 0.0
128 94.1%± 0.0 98.3%± 0.0 0.28± 0.00 4.2%± 0.0 99.9%± 0.0 95.1%± 0.1 99.4%± 0.0 0.20± 0.00 2.1%± 0.1 99.4%± 0.0
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A.7. Effect of Training Context Distribution

We study the effect of different context set distributions. In our main experiments, we use KMNIST (Clanuwat et al., 2018)

as the context distribution for FashionMNIST and CIFAR-100 as the context distribution for CIFAR-10. In Table 11, we

evaluate the performance of FS-EB with the context set being (i) the training inputs and (ii) corrupted training inputs.

Table 11: We vary the context set (CTX. SET) distribution to be (i) the training set, and (ii) the training set with data

augmentations and quantify the performance of FS-EB. XC = KMNIST for FashionMNIST and XC = CIFAR-100 for

CIFAR-10. Changing the context set distribution does have a significant impact on generalization performance in terms of

accuracy and can also lead to significant improvement in out-of-distribution detection.

FASHIONMNIST CIFAR-10

CTX. SET ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓ OOD ↑ ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓ OOD ↑

TRAIN 93.9%±0.0 98.3%±0.1 0.28±0.00 4.2%±0.0 97.6%±0.5 94.9%±0.1 99.3%±0.0 0.19±0.00 1.7%±0.1 92.1%±0.6

TRAIN CORR. 94.1%±0.0 98.4%±0.0 0.27±0.00 4.1%±0.0 97.7%±0.5 94.7%±0.1 99.2%±0.0 0.20±0.00 1.4%±0.0 99.9%±0.0

XC 94.1%±0.1 98.8%±0.0 0.19±0.00 1.8%±0.1 99.9%±0.0 95.1%±0.1 99.4%±0.0 0.20±0.00 2.1%±0.1 99.4%±0.1

A.8. Transfer Learning on Real-World Datasets

In addition to standard benchmark datasets, we also consider three additional real-world datasets - APTOS Blindness

Detection (Asia Pacific Tele-Ophthalmology Society, 2019; Xu, 2019), Melanoma Classification (SIIM & ISIC, 2020; Ha

et al., 2020; Pan, 2020), and Cassava Leaf Disease Classification (Mwebaze et al., 2019; Hanke, 2021)

Table 12: Performance on Real-World Datasets, transfer learning from an ImageNet-pretrained ResNet-50 (He et al., 2016).

DATASET METHOD ACC. ↑ SEL. PRED. ↑ NLL ↓ ECE ↓

APTOS
FS-EB 83.2% 94.2% 0.78 11.3%
PS-MAP 83.7% 93.7% 0.83 12.8%

MELANOMA
FS-EB 98.6% 99.8% 0.05 1.6%
PS-MAP 98.2% 99.7% 0.08 1.8%

CASSAVA
FS-EB 86.5% 96.5% 0.64 9.0%
PS-MAP 86.5% 95.6% 0.80 10.9%

Using an ImageNet-pretrained (Russakovsky et al., 2014) ResNet-50 (He et al., 2016), similar in spirit to Fang et al. (2023),

we conduct a transfer learning experiment. In Table 12, we provide the performance of FS-EB on these datasets and find that

FS-EB can often provide improvements in the data fit in terms of the data likelihood and much better calibration in terms of

ECE (Naeini et al., 2015).

A.9. Runtimes

For reference, we provide approximate runtimes of FS-EB and PS-MAP in Table 13.

Table 13: Approximate runtime for a single gradient step and one full epoch of training for FashionMNIST and CIFAR-10.

Dataset Method Gradient Step (ms) ↓ Epoch (s) ↑

FashionMNIST

PS-MAP 40 18
FS-EB 129 60
FS-VI 319 144

CIFAR-10

PS-MAP 55 21
FS-EB 137 61
FS-VI 389 189
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