2306.15724v4 [cs.RO] 16 Oct 2023

arxiv

REFLECT: Summarizing Robot
Experiences for FaiLure Explanation and CorrecTion

Zeyi Liu* Arpit Bahety* Shuran Song
Columbia University, New York, NY, United States
https://robot-reflect.github.io/

Abstract: The ability to detect and analyze failed executions automatically is crucial for
an explainable and robust robotic system. Recently, Large Language Models (LLMs)
have demonstrated strong reasoning abilities on textual inputs. To leverage the power
of LLMs for robot failure explanation, we introduce REFLECT, a framework which
queries LLM for failure reasoning based on a hierarchical summary of robot past
experiences generated from multisensory observations. The failure explanation can
further guide a language-based planner to correct the failure and complete the task.
To systematically evaluate the framework, we create the RoboFail dataset with a variety
of tasks and failure scenarios. We demonstrate that the LL.M-based framework is able
to generate informative failure explanations that assist successful correction planning.

Keywords: Large Language Model, Explainable Al, Task Planning

The REFLECT Framework RoboFail Dataset Examples
Action: PI ti t Task: f coffe
Multisensory Hierarchical ction: Place carrot in po as Serve acupo co.ee
Robot Summary Task: Heat potato , Failure:
= Carrot = Missed step
—— feII out /\ 7 to toggle on
T=T=) N cofee
— no coffee Machine
HEEEE

Actlon Plck up bowl Task: Store apple in fridge

Failed to Failure:
Chose the

wrong bowl|

i ion: @ Failure Correction: 2 ﬂ
Try to turn on microwave =— 1. Close Microwave Door

Failure Explanation
when door is open 2. Turn on Microwave Execution Failures Planning Failures

Fig 1: A framework for robot failure explanation and correction. On the left, we show the REFLECT framework
that converts multisensory observations (RGB-D, audio, robot states) to a hierarchical summary of robot experiences.
The summary is then used to query a Large Language Model (LLM) for failure explanation and correction. The right
shows a few example failure cases in the RoboFail dataset.

1 Introduction

With the increasing expectations for robots to work on long-horizon tasks in complex environments,
failures are inevitable. It is thus an essential capability for a robotic system to reflect on its past experiences
and explain its failures in natural language. The failure explanations can either help a human user to debug
the robotic system without having to read through the tedious execution logs, or guide the robot to correct
the failure by itself.

We hypothesize that an effective failure reasoning framework requires several key components: first, a
component to summarize “what happened” by converting unstructured, multimodal robot sensory data
into a structured, unified format; second, a component to reason “what was wrong” by inferring from
the summary whether expected outcomes of the robot plan were achieved; and finally, the ability to plan
“what to do” based on the failure reasoning to correct the failure and complete the task.

“indicates equal contribution

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://robot-reflect.github.io/

Recently, Large Language Models (LLMs) [1, 2, 3] have been shown to exhibit strong reasoning [4, 5, 6]
and planning [7, 8, 9] capabilities, making it a promising component for explainable and robust robotic sys-
tems. However, the remaining challenges lie in how to generate a textual summary of robot sensory data and
systematically query LLMs for failure reasoning. In other words, how do we transform the robot failure rea-
soning task into a language reasoning task? We observe two important attributes of a good robot summary:

* Multisensory. The summary should cover all sensory modalities the robot has access to, such as
visual, audio, contact, etc. This is because certain failures can be more easily identified through one
type of sensory data than another. For example, it is easier to determine if an object is dropped or
if water is running from the faucet using auditory cues rather than visual ones.

* Hierarchical. To support effective failure explanations, the robot summary requires multiple levels
of abstraction: to quickly localize the failure, the highest summary level should focus on identifying
misalignment between the robot high-level plan and execution outcomes; while the lower summary
levels should maintain enough environmental context for LLMs to generate an informative explanation
that is useful for correction planning.

Based on these observations, we introduce REFLECT, a framework that summarizes robot experiences
for failure explanation and correction. The framework first processes post-execution robot observations to
generate a hierarchical summary with three levels of abstraction. Equipped with this summary, we propose
a progressive failure explanation algorithm for failure reasoning. Through our experiments, we demonstrate
that the framework is able to generate informative failure explanations as assessed by human evaluators,
and also guide a language-based planner to generate correction plans for several failure scenarios.

To systematically evaluate REFLECT, we also create the RoboFail dataset, which includes 100 failure
demonstrations generated in the AI2THOR simulation [10] and 30 real-world failure demonstrations
collected with a URSe robot arm. We hope the dataset will encourage development of more explainable
and robust embodied Al systems.

2 Related Work

Dense Video Captioning for human activity videos has been a challenging task in computer vision. Recent
video captioning methods typically train transformer-based models to jointly localize and caption events
in videos [11, 12, 13, 14, 15]. Yet it remains a challenge to caption robot videos due to a lack of data. With
the emergence of large foundation models, zero-shot video captioning is made possible [16, 17, 18]. These
works combine VLMs and LLMs to caption egocentric human activity videos in a zero-shot manner. Extend-
ing upon prior works, our approach generates captions that are task-centric and action-centric for temporal
robot sensory data in a zero-shot manner, which helps downstream tasks such as robot behavior analysis [19].

Robot Failure Explanation is an important task long studied in the HRI community to increase human
trust in robotic systems [20, 21] and allow non-expert users to better assist robots under failure scenarios
[22, 23]. However, prior works are limited as each only address a specific set of failure scenarios: Das
and Chernova [23] specifically study failure cases in picking, Diehl and Ramirez-Amaro [24] study two
pick-and-place tasks, Song et al. [25] focus on object navigation failures whereas Inceoglu et al. [26]
focus on detecting failures in a few short-horizon object manipulation tasks. By leveraging the advanced
reasoning ability of LLM, our framework is able to detect and explain a wide range of failure scenarios
without assumptions on the task configuration or failure type.

Task Planning with Large Language Models Large Language Models can be leveraged to decompose
high-level, abstract task instructions into low-level step-by-step actions executable by agents [7, 9, 27, 28].
Recent works have also demonstrated the self-reflective and self-corrective ability of LLMs based on
environment feedback [8, 29, 30, 31, 32]. However, they all assume ground truth environment feedback
associated with one or few actions. In this work, we explore the reflective ability of LLMs directly on mul-
tisensory robot observations and its temporal reasoning ability on long-horizon robot task executions. Our
framework is able to directly operate on real-world robot task execution data with various failure scenarios.

2

c)L2 00:30. Goal: Put pot in sink. Visual: sink, faucet (
Subgoal-Based Caption Caption Caption), pot (). potis sink. pot is

Summary [00:20] [00:30] [00:40] dish sponge. nothing is inside robot gripper.

* * * 2, 00:40. Goal: Toggle onAfaucet. Visual: pot (
), faucet, sink. ... Auditory: faucet turns on

b)L1

Event-Based Caption Caption Caption Caption Robot
Summary ©o:1s] | [00:20] 100:30] 100:40] Holding 1) "°"°
? Neay == Obj-robot relations
a) Lo sink
Sensory-Input '"I pot D Tsask-infgrmid
g (Z ;) (l ; g ;; g Z g ; ; CZ ; g cene Gra
summert ’
f Audio: Faucet turns onﬁ
Audio L
RGB-D B i y | cen g ! i Aggregated
. = ol semantic
78 1 \: . point cloud

Visual
2 g
Move to Sink Put Pot in Sink Toggle on Faucet — o =

Robot Plan

Fig 2: Hierarchical robot summary is composed of: a) a sensory-input summary that converts multisensory robot
observations (RGB-D, sound, robot states) into task-informed scene graphs and audio summary; b) an event-based
summary that generates captions for key event frames; c) a subgoal-based summary that contains the end frame of
each subgoal.

3 Method: the REFLECT Framework

The REFLECT framework summarizes a robot’s past experiences for failure explanation and correction.
It contains three modules: a hierarchical robot summary module that summarizes multisensory robot
data with three levels of abstraction (§3.1), a progressive failure explanation module that queries LLM
to detect and explain the failure (§3.2), and finally a failure correction planner that generates an executable
correction plan (§3.3).

3.1 Hierarchical Robot Summary

To perform effective failure explanation and correction, we propose a hierarchical summary structure to
1) aggregate and convert robot sensory data over time into a unified structure; 2) summarize the robot
experiences for efficient failure localization and explanation. The hierarchical summary structure contains
three levels: sensory-input summary, event-based summary, and subgoal-based summary.

3.1.1 Sensory-Input Summary

The sensory-input summary processes unstructured, multimodal robot sensory observations into a unified
structure that stores necessary information for failure explanation.

Visual summary with task-informed scene graphs. To understand a robot’s interactions with its
surrounding environment, it is important to extract inter-object relations, robot-object relations, and object
state information from the observations. Given the RGB-D observation at timestep ¢, we run object
detection on the RGB image to obtain a semantic segmentation /;° and project it to a 3D semantic point
cloud using the observed depth. In addition, for objects that can change states (e.g. microwave can be
turned on and off), we crop the image based on the object’s detected bounding box and compute the cosine
similarity of the CLIP embedding [33] between the cropped image and a pre-defined list of object state
labels (see details in §B.3). Given the semantic point cloud, heuristics are applied to compute inter-object
spatial relations for 8 commonly-used spatial relations': inside, on top of, on the left, on the right, above,
below, occluding, and near. We also infer the robot-object relation from gripper state and object detection
results. To aggregate the 3D point cloud over time frames, we use a similar approach as Li et al. [34]
to align the newly observed point cloud p; with the accumulated point cloud from all previous time steps
P,_ using 4 heuristic operations: add, update, replace, and delete.'

Once having the aggregated point cloud, we construct a scene graph Gy = {N + {n,obot }, E'}, which
describes the object nodes (V) and their spatial relations (E). Each node is defined as n; = (¢;,s;), where ¢;
is the object class, s; is the object state if any. Each edge contains the spatial relation between the two objects.
We add the robot as an additional node n..,p0¢ and a special relation “inside robot gripper”. To make the

"Details of all heuristics can be found in appendix.

summary succinct and reduce computation and memory cost, we only consider objects that are relevant to
the task (as extracted from the original robot plan), and objects spatially related to the task-relevant objects.

Audio summary. Audio is a useful modality for failure reasoning as it provides immediate feedback
of failure events (e.g. something drops from gripper to the ground) and detects state changes when visual
cues are limited (e.g. stove burner turns on but occluded by an object on top).

Given an input audio stream, we first segment the whole audio clip into several sub-clips by filtering
out ranges where the volume is below a certain threshold ¢. Then for each sub-clip s, we compute its
audio-lingual embedding with a pre-trained audio-language model (e.g. AudioCLIP [35], Wav2CLIP [36]).
We calculate the cosine similarity between the audio embedding and the CLIP embeddings for a list of can-
didate audio event labels L, where the highest-scoring label I* is selected: I* =argmax;; [C(s,l)], C=

% where f; is the embedding function for audio, f5 is the embedding function for text.

3.1.2 Event-Based Summary

Given that the sensory-input summary (§3.1.1) computes a scene graph for each frame and thus contains
redundant information, the goal of the event-based summary is to select key frames and generate text
captions from the corresponding scene graphs.

We design a key frame selection mechanism based on visual, audio, and robot states. More specifically,
a frame is selected if it satisfies any of the conditions below: 1) The task-informed scene graph of the
current frame G is different from the previous frame G;_1. 2) The frame is the start or end of an audio
event. 3) The frame marks the end of a subgoal execution.

For each key frame, we convert the scene graph into text with the following format.> When constructing
the visual observation, we only consider objects that are visible in the current frame.

Action:
Visual observation: object] [state], object2, object3 [state] ...
objectl is [spatial relation] object?2 ...
object3 is inside robot gripper.
Auditory observation: [audio summary].

3.1.3 Subgoal-Based Summary

The event-based summary (in §3.1.2) stores environment observations throughout the robot task execution.
However, it’s hard for LLM to infer the expected outcomes and identify failures for every one of the
low-level actions. As a result, we introduce the subgoal-based summary, which consists of observations
at the end of each subgoal, for LLM to identify misalignment between the robot execution outcomes and
its high-level plan (e.g. move to the toaster, put bread slice in the toaster). The subgoal-based summary
enables the failure explanation module to quickly process the robot experience summary by checking
whether each subgoal is satisfied while ignoring low-level execution details. Once a failure is detected,
relevant environment information stored in the event-based summary or sensory-input summary can be
retrieved for detailed failure explanation.

3.2 Progressive Failure Explanation

The failure explanation algorithm should handle both execution and planning failures, where the former
requires action-level observation details and the latter requires task-level information such as task
description and robot plan. To do so, the algorithm first identifies the type of failure and then retrieves
relevant information from the hierarchical summary to construct the query to LLM. As shown in Fig. 3,
the algorithm first iterates through the subgoals and verifies success using the following prompt: 3

The robot subgoal is . Given
Q: Is the subgoal satisfied? A: Yes

2text color: blue: visual , green: audio , light blue: contact, s
, , blue highlight: LLM output
3Examples of full prompts are shown in the appendix.

Success Verification Plan Analysis (w. plan + fi
w. subgoal-based summary

te) Failure Explanation with LLM Stove burner
mismatch

The robot task is to <boil wa A: The robot placed the pot on the fourth

stove burner but turned on the second stove

o Sy : 'f)"ass o DTl P S B burner, causing a mismatch between the
summa summary verifications ; - R :
vy v verificationg Q: What's wrong with the robot plan? pot’s location and the active burner.

Execution Analysis (w. event-ba

Q: Is the subgoal satisfied? Pot dropped

Answer by LLM: Yes / No . A failure is identified at <00:44> A: The robot dropped the pot filled /
se Given <event summary up to 00:44> __ with water at 00:36 while moving to v

Repeat for all subgoals Q: Explain the failure. the fourth stove burner.

By

Fig 3: Progressive failure explanation verifies success for each subgoal. If a subgoal fails, the algorithm enters the
execution analysis stage for detailed explanation. If all subgoals are satisfied, the algorithm enters planning analysis
stage to check errors in the robot plan.

The LLM is instructed to output ’Yes’ or 'No’. If a subgoal is not achieved, then we retrieve history
observations stored in event-based summary for failure explanation as follows:

The robot task is to [task name]|. A failure is identified at ¢. Given
Q: Briefly explain what happened at ¢ and what caused the failure?
A: At 00:44, the robot attempted to put the pot on the fourth stove burner, but the pot was not in its gripper. The

failure was caused by the robot dropping the pot filled with water at 00:36 while moving to the fourth stove burner.

In case all subgoals are achieved but the task still failed, then it’s likely that the plan itself was incorrect.
We use the robot original plan and the final state of the environment to identify errors in the robot plan.
The final state is obtained from the scene graph generated from the aggregated semantic point cloud in
the last time step without view-specific relations (on the left, on the right, occluding).

The robot task is to [task name]. The task is successful if [goal state].

The robot plan is [original robot plan]. Given

Q: What’s wrong with the robot plan that caused the robot to fail?

A: The robot placed the pot on the fourth stove burner but turned on the second stove burner, causing a mismatch
between the pot’s location and the active burner.

Q: Which time step is most relevant to the above failure?

A: 00:49

3.3 Failure Correction Planner

A failure correction planner should generate an executable plan for the robot to correct the failure and
complete the task, starting from the final state of the original task execution. Prior work [22] has shown
that good failure explanations help non-expert users better understand the failure and assist the robot.
Analogously, we hypothesize that the failure explanation can also guide a language planner to generate
a high-level correction plan that leads to task success. The prompt is formatted as below:*

The robot task is to [task name]. The original robot plan is [original robot plan].
Given and [goal state]
Correction plan: toggle_off (stoveburner-2), toggle_on (stoveburner-4)

To make sure the plan generated by the language model is executable in the environment, we adopt the
idea of Huang et al. [28] to map each LLM-generated action to its closest executable action in the task
environment using a large pre-trained sentence embedding model.

4 The RoboFail Dataset

In simulation, we generate task execution data in AI2THOR and manually inject failures. The dataset
contains a total of 100 failure scenarios, with 10 cases for each of the 10 tasks (see details in §B.1). We
store the RGB-D observations, sound (20 classes in total), robot state data, as well as ground truth metadata
obtained from simulation. The real-world dataset is collected by human teleoperation of a URSe robot
arm in a toy kitchen environment. The dataset contains 11 tasks with a total of 30 failure scenarios. We
store the RGB-D observations (with Intel RealSense D415), recorded sound (with RODE VideoMic Pro+),
and robot proprioception data. A taxonomy of failure scenarios are visualized in Fig. 4.

Turn on the microwave

i 0, .
before closing its door Unexpected dynamics (11%) ObEI dropped

Wrong action order (11%) -

Failed execution: Cannot pick up knife due

The plan does not specify ~Ambiguous environment (13%) 10 a pot blocking

which stove burner to use reference (5%) |

1 ‘ Planning Execution
Attempt to place a | Failures Failures Failed execution: Cannot toggl th
Wi . . : ggle on the
non-microwavable cup rong:/chons W 5% 45% low-level (15%) faucet successfully
inside the microwave (21%) L

. Missi N
Neve;i<2£eunlje§1h2h§gr‘;l(7r)g§;2 a;tsiil:sg(ﬁ%) V Perception error (6%) /dentify pan as pot

Fig 4: RoboFail Failure Taxonomy

5 Evaluation

We systematically evaluate the ability of REFLECT to localize, explain and correct robot failures. In
AI2THOR simulation, the agent interacts with the environment through action primitives, such as pick
up, toggle on, move left. We assume the framework has access to ground truth object detection and state
detection in simulation. We also evaluate the ability of the framework to summarize real-world robot
sensory data. The real-world failure data is collected by a human teleoperating a URSe robot arm to mimic
robot policies according to a provided high-level plan. We use MDETR [37] for object detection, CLIP
[33] for object state detection, and AudioCLIP [35] for sound detection. We use GPT-4 [38] as the LLM.
The below metrics are evaluated in our experiments:

» Exp (explanation): percentage of predicted failure explanations that are correct and informative as
determined by human evaluators®*.

* Loc (localization): percentage of predicted failure time that align with actual failure time. A predicted
time is considered aligned if it falls within the annotated failure time ranges in the dataset.

* Co-plan (correction planning success rate): percentage of tasks that succeed after executing the cor-
rection plan. Task success is determined by comparing the final state and the specified goal condition.

To demonstrate advantages of our framework, we compare with the following baselines/ablations:

* BLIP2 caption: caption key frames with BLIP2, a state-of-the-art image caption model [39].

* w/o sound: our approach without the audio modality.

* w/o progressive: similar to open-ended Q&A in Socratic Models [16], directly query LLM for failure
explanation given the robot summary without progressive failure explanation.

* Subgoal only: using only subgoal-based summary for failure explanation.

e LLM summary: convert all sensory-input summary to text and prompt LLM to summarize the text
for failure explanation.

* w/o explanation: query LLLM for a correction plan without failure explanation.

By evaluating REFLECT on the RoboFail dataset and

comparing with the above baselines/ablations, we have Execution failure | Planning failure
Method Exp Loc Co-plan |Exp Loc Co-plan

the below findings: -
w/o progressive 46.5 62.8 60.5 |61.4 702 649

REFLECT is able to generate informative failure Subgoalonly 76.7 74.4 512 \71.9 73.7 754

lanati h . ion planni Tab, LLMsummary 558 674 651 |579 544 667
explanations | :.1t assist correc.tlon planning. Tab. y;explanation - - 419 | - - 561
1 and 2 sun?manze ﬂ1§ evaluation result, Where RE— REFLECT 884 960 791 |842 807 807
FLECT achieves the highest performance in explain- — - -
ing, localizing, and correcting failures in both simula- ~ Table 1: Result in Simulation Environments

tion and the real world. The performance slightly decreases in real world due to perception errors. We find
that localization is slightly harder for planning failures as the failure is usually not associated with a single
time step. In simulation, our framework achieves around 80% correction planning success rates for both
failure types.

Audio data is useful for failure explanation. As shown in Tab. 2, the explanation and localization
accuracy for [w/o sound] both decrease around 20% on execution failures as compared to REFLECT. This
is because some unexpected events (e.g. object dropping on floor) or object states hard to identify using
visual detectors (e.g. stove burner occluded by a pot on top) are easier to be detected through audio.

“Details can be found in appendix.

Input: Execution Output: Explanation Correction Correction Execution
“'v Task: Make coffee 3
Sy, 1. pick_up (cup)
- 2. put_on (cup, countertop)

- | At 00:48, the robot attempted to put | 3. pick_up (mug)

the mug into the coffee machine 4. put_in (mug, coffee machine)
while there was already a cup inside | 5.toggle_on (coffee machine)
the machine, causing a failure due to 6. toggle_off (coffee machine)
li the occupied space. H

Task: Toast bread

The robot plan failed because it 1. toggle_off (toaster)

turned on the toaster before putting 2 PleTUP (rsad .SI":e)
A L 3. put_in (bread slice, toaster)

the bread slice inside it, resulting in 4. toggle_on (toaster)

the bread slice being placed on top) -

of the toaster instead of inside it.

Task: Make salad 3

} . 5. put_on (potato, countertop)
The robot plan failed to include the 6. pick_up (knife)

step of slicing the potato before 7. slice (potato)

putting it in the bowl, resulting in an 8. put_on (knife, countertop)
incomplete salad with an unsliced 9. pick_up (potato slice)
potato. 10. put_in (potato slice, bowl)

Fig 5: Qualitative results in simulation. Given a failed robot task execution, REFLECT is able to generate informative
failure explanations for both execution and planning failures. Conditioned on the explanation, a language planner can
generate a high-level plan for the robot to correct the failure and complete the task.

Task-relevant object spatial and state information is crucial. As shown
in Tab. 2, [BLIP2 caption] achieves the worst performance in all scenarios
because the captions generated by BLIP2 lack necessary information for
failure explanation. In contrast, our zero-shot caption method is designed to
capture environment information such as object states and spatial relations,

. . . . BLIP2 caption: a robot is holding a
which are task-relevant and crucial for failure explanation. The figure on the | bowi in a kitchen.

right shows that REFLECT is able to summarize object states such as “fridge |rerLECT: fridge (with door open),

. (1) . . 13 . . . 2 apple, white bowl, dark blue bowl.
(with door open)” and spatial relations such as “apple inside white bowl”, | 770> 500 5 o biue

which are not present in the BLIP2 caption. bowi is inside robot gripper.

Progressive failure explanation is important. Our pro- — —

ive fail lanation aleorithm 1 the hi Execution failure | Planning failure
gressive failure explanation algori everages the hi- Method Exp Loc |Exp Loc
erarchical summary to first identify the failure w1th the BLIP2 caption 625 250|357 571
subgoal-based summary, and then query LLM for failure wiosound 50.0 688 |786 786
explanation accordingly. Comparing to [w/o progressive] ~ W/oprogressive 438 813 714 786
. . . . Subgoal only 56.3 62.5 714 786
in Tab. 1 and 2, thf? progressive algorlt'hm helps \ylth LLM summary 37.5 750 |643 714
more accurate locahzatlop and 1nf0rmat1ye gplanahon. REFLECT 688 938 |786 786
To better understand the difference, a qualitative example
is shown in Fig. 6: although [w/o progressive] mentions
that the task failed because the robot did not have an egg in its gripper to put in the pan, it does not reason
why the egg was not present. In contrast, REFLECT identifies failure in the “pick up egg” action and then
queries the event-based summary to infer the exact failure cause — “fridge was closed”.

Table 2: Result in Real-world Environments

Hierarchical structure iS 1mp0rtant. The per— Task: cook egg fridge closed LLM summary:

formance decrease of [Subgoal only] shows the | 0644 The robot tree! to pick up the
importance of event-based summary as it stores °09. butihe arpperremaied empty.
intermediate environment observations that are use-

ful for failure explanation. Consider the scenario 01:53 - The robot fried to put the
when the robot accidentally dropped the pot it was | wio progressive: The robo aied to cook an egg | Sreciec 209 b T par, but ihe

because it did not have the egg in its gripper when

holding when mOVing to stove burner. [Subgoal attempting to crack it and put it in the pan. The S

visual observations show that the robot's gripper

only] only infers that the object was not in the | emety duing these actons. el i

it was unable to pick up the

o : REFLECT: At 00:14, the robot attempted to pick up | egg with its gripper, resulting in an
rObOt grlpper at the end Of the SUbgoal eXeCuthn. an egg while the fridge was still closed, causing empty gripper throughout the task

. the failt Th bot should have d the d ting the fi bei

In contrast, the event-based summary Stores audi- | riige teore iying i pick v e st | erached and naced e pan
tory observation of “something drops on ground”
and visual observation of “nothing is inside robot

gripper”’, which helps identify that the pot was dropped and the exact time step the failure occurred.

01:52 - The robot attempted to crack
the egg, but the gripper was still
empty.

Fig 6: [w/o progressive] vs. [LLM summary] vs. Ours

Real World Task Execution
wliong placements,

e objects
LA

isk: sauté c;rﬁ, 5

L
- N8> stove burner
table”™” o
carrot (not sllced)‘

Caption

02:15. Action: Put knife in fridge. Visual
observation: fridge , knife,
pear, drawer . knife is inside fridge.
nothing is inside robot gripper.

01:44. Action: Put knife on table. Visual
observation: stove burner, saucepan, carrot

, table. saucepan is on top of
stove burner. carrot is on top of table.
nothing is inside robot gripper.

02:04. Action: Pick up cup. Visual
observation: coffee machine, blue cup, pink
cup, table. blue cup is inside coffee
machine. pink cup is inside robot gripper.

Explanation

The robot plan failed because it placed the
knife in the fridge instead of its most
suitable container, and the pear was placed
in the drawer rather than the fridge.

At 01:18, the robot failed to sauté the carrot
because it had not successfully sliced the
carrot. The failure was caused by the robot
dropping the knife at 00:55 while
attempting to slice the carrot, leaving it
with an empty gripper.

At 02:27, the robot failed to serve coffee
because it picked up the pink cup instead
of the blue cup that was inside the coffee
machine at 02:04. This led to the robot
placing an empty pink cup on the table

pink cup
‘ A /V

instead of a filled blue cup.

Fig 7: Qualitative results in real world. REFLECT is able to summarize and generate informative failure explanations
for real-world robot executions. The above figure shows three failed task executions on the left, the corresponding
scene graph and caption for one key frame in the middle, and the LLM-generated failure explanation on the right.

In addition, the hierarchical structure is a better way to condense the sensory-input summary for failure
explanation. We implement an alternative [LLM summary], which prompts LLM to summarize the
sensory-input summary. The performance decreases significantly in both simulation and real world as the
LLM-generated summary loses information that is relevant for failure explanation. As shown in Fig. 6, the
summary and explanation of [LLM summary] only mention that the robot tried to pick up the egg and the
gripper remained empty, but did not mention that the fridge was closed, which is the actual failure cause.

Failure explanation helps correction. From
Tab. 1, we observe that the correction planning
success rate significantly decreases for [w/o expla-
nation]. This is because the failure explanation can
guide LLM to generate a correction plan based on
the failure cause. As shown in Fig. 8, given the
failure reason that the mug cannot be put inside
the coffee machine due to presence of a cup, RE-
FLECT generates a plan to move the cup away
and then proceed with the task. Whereas [w/o ex-
planation] simply repeats the original plan without
taking any actions to address the cause of failure.

Explanation: At 00:48, the robot
attempted to put the mug into the coffee
machine while there was already a cup
inside the machine, causing a failure due
to the occupied space.

w/o explanation:

1. pick_up (mug)

2. put_on (mug, sink basin)

3. toggle_on (faucet)

4. toggle_off (faucet)

5. pick_up (mug)

6. pour_liquid_from (mug, sink)
7. put_in (mug, coffee machine)
8. toggle_on (coffee machine)
9. toggle_off (coffee machine)
10. pick_up (mug)

11. put_on (mug, countertop)

REFLECT:

1. pick_up (cup)

2. put_on (cup, countertop)

3. pick_up (mug)

4. put_in (mug, coffee machine)
5. toggle_on (coffee machine)
6. toggle_off (coffee machine)
7. pick_up (mug)

8. put_on (mug, countertop)

Fig 8: Failure explanation helps correction planning.

Limitations. There are a few limitations in the method used to convert sensory data into textual summary.
Even though the heuristics used to generate scene graphs is sufficient for scenarios studied in the paper, it
may fall short in more complex environments. Either training a large spatial reasoning model or fine-tuning
an existing model on robotics data could be a promising solution [40, 41, 42]. In addition, the object state
detection method assumes a given list of candidate object states, which can be potentially relaxed by a
method (e.g. prompting a LLM) that output possible states given the object category.

The framework also assumes the rest of the environment will remain static throughout the robot task
execution. Finally, given the information (object detection, object states, spatial relations) that the robot
summary contains, it is less effective for handling low-level control failures. Future work may consider
developing better perception methods that capture more low-level state information.

6 Conclusion

We propose a framework, REFLECT, which converts multisensory observations into a hierarchical sum-
mary of robot past experiences and queries LLM progressively for failure explanation. The generated
explanation can then guide a language planner to correct the failure and complete the task. To evaluate the
framework, we create a dataset of robot failed executions in both simulation and real world and show that
REFLECT achieves better performance as compared to several baselines and ablations. We encourage
future work to extend upon the framework and explore more use cases of the robot summary.

Acknowledgments

We would like to thank Cheng Chi and Zhenjia Xu for their help in setting up real world experiments, and
Huy Ha, Mandi Zhao, Samir Gadre, Mengda Xu, Dominik Bauer for valuable discussions and feedback.
This work was supported in part by NSF Award #2143601, #2037101, and #2132519. We would like to
thank Google for the URS robot hardware. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies, either expressed or
implied, of the sponsors.

References

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877-1901, 2020.

[2] S.Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li,
S. Lundberg, et al. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv
preprint arXiv:2303.12712, 2023.

[3] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Roziere, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

[4] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought prompting
elicits reasoning in large language models. arXiv preprint arXiv:2201.11903, 2022.

[5] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa. Large language models are zero-shot
reasoners. arXiv preprint arXiv:2205.11916, 2022.

[6] S. Yao, J. Zhao, D. Yu, N. Du, . Shafran, K. Narasimhan, and Y. Cao. React: Synergizing reasoning
and acting in language models. arXiv preprint arXiv:2210.03629, 2022.

[7]1 M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakrishnan,
K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey,
S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L. Luu,
C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan,
A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng. Do as i can and not as
i say: Grounding language in robotic affordances. In arXiv preprint arXiv:2204.01691, 2022.

[8] W. Huang, E Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, 1. Mordatch,
Y. Chebotar, P. Sermanet, N. Brown, T. Jackson, L. Luu, S. Levine, K. Hausman, and B. Ichter.
Inner monologue: Embodied reasoning through planning with language models. In arXiv preprint
arXiv:2207.05608, 2022.

[9] L Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A. Garg.
Progprompt: Generating situated robot task plans using large language models. arXiv preprint
arXiv:2209.11302, 2022.

[10] E.Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, M. Deitke, K. Ehsani, D. Gordon,
Y. Zhu, et al. Ai2-thor: An interactive 3d environment for visual ai. arXiv preprint arXiv:1712.05474,
2017.

[11] T. Wang, R. Zhang, Z. Lu, F. Zheng, R. Cheng, and P. Luo. End-to-end dense video captioning with
parallel decoding. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 6847-6857, 2021.

[12] C.Deng, S. Chen, D. Chen, Y. He, and Q. Wu. Sketch, ground, and refine: Top-down dense video
captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 234-243, June 2021.

[13] Q. Zhang, Y. Song, and Q. Jin. Unifying event detection and captioning as sequence generation via
pre-training. In Computer Vision—-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23-27, 2022, Proceedings, Part XXXVI, pages 363-379. Springer, 2022.

[14] W. Zhu, B. Pang, A. V. Thapliyal, W. Y. Wang, and R. Soricut. End-to-end dense video captioning
as sequence generation. In Proceedings of the 29th International Conference on Computational
Linguistics, pages 5651-5665, 2022.

[15] A. Yang, A. Nagrani, P. H. Seo, A. Miech, J. Pont-Tuset, I. Laptev, J. Sivic, and C. Schmid. Vid2seq:
Large-scale pretraining of a visual language model for dense video captioning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10714-10726, 2023.

[16] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari, A. Purohit,
M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke, and P. Florence. Socratic models: Composing
zero-shot multimodal reasoning with language. arXiv, 2022.

[17] Z. Wang, M. Li, R. Xu, L. Zhou, J. Lei, X. Lin, S. Wang, Z. Yang, C. Zhu, D. Hoiem, et al.
Language models with image descriptors are strong few-shot video-language learners. arXiv preprint
arXiv:2205.10747, 2022.

[18] R.-G. Pasca, A. Gavryushin, Y.-L. Kuo, O. Hilliges, and X. Wang. Summarize the past to predict the
future: Natural language descriptions of context boost multimodal object interaction. arXiv preprint
arXiv:2301.09209, 2023.

[19] C. DeChant and D. Bauer. Summarizing a virtual robot’s past actions in natural language. arXiv
preprint arXiv:2203.06671, 2022.

[20] P. Khanna, E. Yadollahi, M. Bjorkman, I. Leite, and C. Smith. User study exploring the role of
explanation of failures by robots in human robot collaboration tasks. arXiv preprint arXiv:2303.16010,
2023.

[21] S. Ye, G. Neville, M. Schrum, M. Gombolay, S. Chernova, and A. Howard. Human trust after
robot mistakes: Study of the effects of different forms of robot communication. In 2019 28th IEEE
International Conference on Robot and Human Interactive Communication (RO-MAN), pages 1-7,
2019. doi:10.1109/RO-MAN46459.2019.8956424.

[22] D. Das, S. Banerjee, and S. Chernova. Explainable ai for robot failures: Generating explanations
that improve user assistance in fault recovery. In Proceedings of the 2021 ACM/IEEE International
Conference on Human-Robot Interaction, pages 351-360, 2021.

[23] D. Das and S. Chernova. Semantic-based explainable ai: Leveraging semantic scene graphs and
pairwise ranking to explain robot failures. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3034-3041. IEEE, 2021.

[24] M. Diehl and K. Ramirez-Amaro. Why did i fail? a causal-based method to find explanations for
robot failures. IEEE Robotics and Automation Letters, 7(4):8925-8932, 2022.

[25] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, and Y. Su. Llm-planner: Few-shot
grounded planning for embodied agents with large language models. arXiv preprint arXiv:2212.04088,
2022.

[26] A. Inceoglu, E. E. Aksoy, A. C. Ak, and S. Sariel. Fino-net: A deep multimodal sensor fusion
framework for manipulation failure detection. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 6841-6847. IEEE, 2021.

[27] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as policies:
Language model programs for embodied control. arXiv preprint arXiv:2209.07753, 2022.

10

http://dx.doi.org/10.1109/RO-MAN46459.2019.8956424

[28] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners: Extracting
actionable knowledge for embodied agents. In International Conference on Machine Learning, pages
9118-9147. PMLR, 2022.

[29] S.S.Raman, V. Cohen, E. Rosen, 1. Idrees, D. Paulius, and S. Tellex. Planning with large language
models via corrective re-prompting. arXiv preprint arXiv:2211.09935, 2022.

[30] N. Shinn, B. Labash, and A. Gopinath. Reflexion: an autonomous agent with dynamic memory and
self-reflection. arXiv preprint arXiv:2303.11366, 2023.

[31] M. Skreta, N. Yoshikawa, S. Arellano-Rubach, Z. Ji, L. B. Kristensen, K. Darvish, A. Aspuru-Guzik,
F. Shkurti, and A. Garg. Errors are useful prompts: Instruction guided task programming with
verifier-assisted iterative prompting. arXiv preprint arXiv:2303.14100, 2023.

[32] T. Silver, S. Dan, K. Srinivas, J. B. Tenenbaum, L. P. Kaelbling, and M. Katz. Generalized planning
in pddl domains with pretrained large language models. arXiv preprint arXiv:2305.11014, 2023.

[33] A.Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748-8763. PMLR, 2021.

[34] X.Li, D. Guo, H. Liu, and F. Sun. Embodied semantic scene graph generation. In A. Faust, D. Hsu,
and G. Neumann, editors, Proceedings of the 5th Conference on Robot Learning, volume 164 of
Proceedings of Machine Learning Research, pages 1585-1594. PMLR, 08-11 Nov 2022.

[35] A. Guzhov, F. Raue, J. Hees, and A. Dengel. Audioclip: Extending clip to image, text and audio.
In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 976-980. IEEE, 2022.

[36] H.-H. Wu, P. Seetharaman, K. Kumar, and J. P. Bello. Wav2clip: Learning robust audio representations
from clip. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4563-4567. IEEE, 2022.

[37] A. Kamath, M. Singh, Y. LeCun, G. Synnaeve, I. Misra, and N. Carion. Mdetr-modulated detection
for end-to-end multi-modal understanding. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 1780-1790, 2021.

[38] OpenAl. Gpt-4 technical report, 2023.

[39] J.Li, D. Li, S. Savarese, and S. Hoi. Blip-2: Bootstrapping language-image pre-training with frozen
image encoders and large language models. arXiv preprint arXiv:2301.12597, 2023.

[40] X.Li, D. Guo, H. Liu, and F. Sun. Embodied semantic scene graph generation. In Conference on
Robot Learning, pages 1585-1594. PMLR, 2022.

[41] E Liu, G. Emerson, and N. Collier. Visual spatial reasoning. Transactions of the Association for
Computational Linguistics, 11:635-651, 2023.

[42] A. Kurenkov, M. Lingelbach, T. Agarwal, E. Jin, C. Li, R. Zhang, L. Fei-Fei, J. Wu, S. Savarese,
and R. Martin-Martin. Modeling dynamic environments with scene graph memory. In International
Conference on Machine Learning, pages 17976-17993. PMLR, 2023.

11

Appendix

A Method Details

A.1 Spatial Relation Heuristics

We implement a total of 8 object spatial relation heuristics given the aggregated semantic point cloud and
3D object bounding boxes. We consider two in-contact relations when the minimum distance between the
object point clouds is smaller than 5cm:

1. Inside. Object A is considered inside object B if over 50% percent of object A’s point cloud is inside
the convex hull of object B.

2. On top of. Object A is considered on top of object B if it satisfies the following two conditions: a)
over 70% of object A’s point cloud lies within a XY-plane projected from object B’s 3D bounding
box. b) over 70% of object A’s points are above the upper Z bound of object B’s bounding box.

If the object point cloud distance is larger than Scm but smaller than 40cm, we subtract the center points of
object A and B’s 3D bounding box, transform it back to camera coordinates (Y-up) and normalize to get a
3 dimensional unit vector. The following relations are considered:

1. Above & Below. If the y-component of the vector is over 0.9, then object A is above object B. If the
y-component is smaller than -0.9, then object A is below object B.

2. On the left & On the right. If the x-component of the vector is over 0.8, then object A is on the
right of object B. If the x-component is smaller than -0.8, then object A is on the left of object B.

3. Occluding. If 90% of object A’s points have a smaller depth than object B’s minimum depth and
object A’s projected 2D bounding box (projected in current image space from its aggregated 3D point
cloud) overlaps more than 50% with that of object B’s projected bounding box, then object B is
considered occluding object A.

4. Near. If none of the above relations satisfy but the object distance is smaller than 10cm, then object
A is near object B.

A.2 Scene Graph Aggregation Heuristics

We aggregate the 3D point cloud over time frames with a similar approach as Li et al. [34]. Consider
the point cloud observed in the current time step p; and the accumulated point cloud from all previous
time steps P;_1, we can obtain the accumulated point cloud P; up to time step ¢ with 4 operations: ADD,
UPDATE, REPLACE, and DELETE.

1. ADD. If an object is observed in p; but not in P,_1, we consider it a newly appeared object and add it
as a new node. If the node is task-relevant, then its relations with all existing objects will be computed
and added as edges. If the node is not task-relevant, then its relations with existing task-relevant
objects will be computed and added as edges.

2. UPDATE. If an object is in both p; and P;_1, and the object point cloud is aligned, we update the
object point cloud by concatenating the newly observed points and updating its existing edges with
other objects by recomputing the spatial relations.

3. REPLACE. If an object is in both p; and P;_1, but the misalignment of the object point clouds is
larger than a threshold d, indicating the object has moved. We remove the old node in P;_; and add
the object as a new node.

4. DELETE. If an object is in P;,_1 but not in p;, and the robot is interacting with the object, then we
remove the object from the accumulated point cloud since its location becomes unknown.

12

A.3 Example Prompts
A.3.1 Subgoal Verification
system prompt:

You are a success verifier that outputs *Yes’ or ’No’ to indicate whether the robot goal is satisfied given the robot
observations.

user prompt:

The robot goal is to [SUBGOAL]. Here are the robot observations after execution: [OBSERVATION]
Q: Is the goal satisfied?
A: Yes

The [SUBGOAL] and [OBSERVATION] entry will be filled in when prompting for each subgoal. Here’s a
complete example of a failed execution during the task ‘boil water’. The robot accidentally dropped the pot
when navigating to the stove burner and then attempted to put the pot on the stove burner:

The robot goal is to pick up pot. Here are the robot observations after execution:
Visual observation: pot (empty and clean). pot is inside robot gripper.

Q: Is the goal satisfied?

A: Yes

The robot goal is to put pot in sink. Here are the robot observations after execution:

Visual observation: faucet (turned off), pot (empty and clean), sink. pot (empty and clean) is inside sink. pot (empty
and clean) is on the right of soap bottle. nothing is inside robot gripper.

Q: Is the goal satisfied?

A: Yes

The robot goal is to toggle on faucet. Here are the robot observations after execution:

Visual observation: pot (filled with water and clean), faucet (turned on), sink. pot (filled with water and clean) is
inside sink. pot (filled with water and clean) is on the right of soap bottle. nothing is inside robot gripper. Auditory
observation: water runs in sink.

Q: Is the goal satisfied?

A: Yes

The robot goal is to toggle off faucet. Here are the robot observations after execution:

Visual observation: pot (filled with water and clean), faucet (turned off), sink. pot (filled with water and clean) is
inside sink. pot (filled with water and clean) is on the right of soap bottle. nothing is inside robot gripper.

Q: Is the goal satisfied?

A: Yes

The robot goal is to pick up pot. Here are the robot observations after execution:

Visual observation: pot (filled with water and clean), faucet (turned off), sink. pot is inside robot gripper.
Q: Is the goal satisfied?

A: Yes

The robot goal is to put pot on fourth stove burner. Here are the robot observations after execution:

Visual observation: second stove burner (turned off), first stove burner (turned off), third stove burner (turned off),
fourth stove burner (turned off). nothing is inside robot gripper.

Q: Is the goal satisfied?

A: No

Here a subgoal is not satisfied, the program enters the execution analysis mode: history observations
stored in the event-based summary are retrieved to query LLM for failure explanation.

13

A.3.2 Failure explanation: execution analysis
system prompt:

You are expected to provide explanation for a robot failure. You are given the robot actions and observations so far.
Briefly explain the failure in 1-2 sentence. Mention relevant time steps if possible.

user prompt:

The robot task is to . At 00:44, a failure was identified.

Q: Infer from [Robot actions and observations before 00:44] or [Observation at the end of 00:44], briefly
explain what happened at 00:44 and what caused the failure.

A: At 00:44, the robot attempted to put the pot on the fourth stove burner, but the pot was not in its gripper. The
failure was caused by the robot dropping the pot filled with water at 00:36 while moving to the fourth stove burner.

The failure steps 00:36 and 00:44 can be extracted from the answer by prompting LLM to extract time
steps from the output failure explanation.

A.3.3 Failure explanation: planning analysis

In case all subgoals are satisfied, then there’s likely mistakes in the robot original plan. The program will
enter planning analysis mode. Take the failure scenario when the robot plan is wrong during the task ‘boil
water’ as the robot placed the pot on one stove burner but toggled on another:

system prompt:

14

You are expected to provide explanation for a robot failure. You are given the current robot state, the goal condition,
and the robot plan. Briefly explain what was wrong with the robot plan in 1-2 sentence.

user prompt:

The robot task is to boil water. The task is considered successful if a pot is filled with water, the pot is on top of a
stove burner that is turned on.

Here’s the robot observation at the end of the task execution:

faucet (turned off), second stove burner (turned on), sink, pot (filled with water and clean), fourth stove burner (turned
off), third stove burner (turned off), first stove burner (turned off). pot (filled with water and clean) is on top of fourth
stove burner (turned off). nothing is inside robot gripper.

The robot plan is:

00:18. Goal: Pick up pot.

00:25. Goal: Put pot in sink.

00:28. Goal: Toggle on faucet.

00:31. Goal: Toggle off faucet.

00:34. Goal: Pick up pot.

00:46. Goal: Put pot on stove burner.

00:49. Goal: Toggle on stove burner.

Q: Known that all actions in the robot plan were executed successfully, what’s wrong with the robot plan that caused
the robot to fail?
A: The robot placed the pot on the fourth stove burner but turned on the second stove burner, causing a mismatch

between the pot’s location and the active burner.

The failure time step can be obtained by a follow-up query to the LLM with the prompt below:

Q: Which time step is most relevant to the above failure?
A:00:49

A.34 Correction

Still take the failure scenario when the robot plan is wrong so that the robot placed the pot on one stove
burner but toggled on another. A complete prompt for generating the failure correction plan is as follows:

system prompt:

Provide a plan with the available actions for the robot to recover from the failure and finish the task.

Available actions: pick up, put in some container, put on some receptacle, open (e.g. fridge), close, toggle on (e.g.
faucet), toggle off, slice object, crack object (e.g. egg), pour (liquid) from A to B. The robot can only hold one object
in its gripper, in other words, if there’s object in the robot gripper, it can no longer pick up another object.

The plan should 1) not contain any if statements 2) contain only the available actions 3) resemble the format of the
initial plan.

user prompt:

Task: boil water

Initial plan:

1. pick_up (pot)

2. put_in (pot, sink)

3. toggle_on (faucet)

4. toggle_off (faucet)

. pick_up (pot)

6. put_on (pot, stove burner)

7. toggle_on (stove burner)

Failure reason: The robot placed the pot on the fourth stove burner but turned on the second stove burner, causing a
mismatch between the pot’s location and the active burner.

Current state: sink, pot (filled with water and clean), fourth stove burner (turned off), third stove burner (turned off),
faucet (turned off), first stove burner (turned off), second stove burner (turned on). pot (filled with water and clean) is
on top of fourth stove burner (turned off). nothing is inside robot gripper.

Success state: a pot is filled with water, the pot is on top of a stove burner that is turned on.

Correction plan: toggle_off (stoveburner-2), toggle_on (stoveburner-4)

W

15

B Evaluation Details

B.1 Dataset Details

Descriptions for the 10 simulation tasks and 11 real-world tasks in the RoboFail dataset are shown below.

Task Task Description / Goal State

boil water A pot is filled with water, the pot is on top of a stove burner that is turned on
toast bread A bread slice is inside a toaster that is turned on

fry egg A cracked egg is in a pan, the pan is on top a stove burner that is turned on
heat potato A potato is on a plate and inside a microwave that is turned on

serve coffee A clean mug is filled with coffee and on top of the countertop

store egg A bowl with an egg is stored inside the fridge

make salad A bowl of sliced lettuce, tomato and potato is stored inside the fridge
water plant The house plant is filled with water

switch devices Laptop is closed on the TV stand and the television is turned on

serve warm water | A mug of water is heated in the microwave and served on the dining table

Table 3: Simulation Tasks

Task Task Description / Goal State

boil water A pot is filled with water, the pot is on top of a stove burner that is turned on
sauté carrot A sliced carrot is inside a pan, the pan is on top of a stove burner that is turned on
heat potato A potato is heated in the microwave and then put on the countertop

serve coffee A mug is filled with coffee and on top of the countertop

store egg A bowl with an egg is stored inside the fridge

secure objects | Knife is stored in a drawer and pear is stored in the fridge

apple in bowl | Apple is inside bowl

pear in drawer | Pear is inside a closed drawer

cut carrot Carrot is sliced

fruits in bowl | All visible fruits are inside a bowl

heat pot A pot is on top of a stove burner that is turned on

Table 4: Real-world Tasks

B.2 Comparison with GPT-3.5

We use GPT-4 for evaluation in our experiments. Here

Execution failure | Planning failure

we provide a comparison of performance with the more Method Loc Co-plan |Loc Co-plan
accesmblg GPT-3.5. We have' observed th'at GPT+4 exce.eds GPT35 478 304 |519 407
GPT-3.5 in terms of both failure reasoning and planning

GPT4 68.8 938 |786 786

abilities. The failure localization accuracy decreases as
GPT-3.5 is less capable than GPT-4 to process irrelevant

Table 5: Comparison with GPT-3.5

information in the summary and thus often wrongly local-

ize the failure. The correction planning success rate with GPT-3.5 decreases more significantly due to the
combined factors of less accurate failure explanations and less planning ability even given correct failure
explanations. We also show one qualitative example of the failure explanations generated by GPT-4 and
GPT-3.5, which shows that GPT-4 is better at reasoning the root cause of the failure than GPT-3.5:

GPT-3.5: The robot plan failed because the robot did not successfully put the bread slice in the toaster, even though it
successfully turned on the toaster.

GPT-4: The robot plan failed because it turned on the toaster before putting the bread slice inside it, resulting in the
bread slice being placed on top of the toaster instead of inside it.

16

B.3 Object states

We list the object state candidates considered for all objects that can change states in our experiments. In
general, the states are assigned based on object properties.

Object Type Actionable Properties Simulation States Real-world States

Pot Fillable, Dirtyable filled, empty, dirty, clean filled with water, empty
Faucet Toggleable toggled on, toggled off toggled on, toggled off
StoveBurner Toggleable toggled on, toggled off toggled on, toggled off
Bread Sliceable sliced, unsliced N/A

Toaster Toggleable toggled on, toggled off N/A

Fridge Openable open, closed open, closed

Pan Dirtyable dirty, clean N/A

Egg Sliceable, Breakable sliced, unsliced, cracked, uncracked N/A

Potato Sliceable, Cookable sliced, unsliced, cooked, uncooked N/A

Plate Breakable (Some), Dirtyable broken, dirty, clean N/A

Microwave Toggeable, Openable toggled on, toggled off, open, closed toggled on, toggled off, open, closed
Mug Fillable, Breakable, Dirtyable filled, empty, broken, dirty, clean filled with coffee, empty
CoffeeMachine | Toggeable toggled on, toggled off toggled on, toggled off
HousePlant Fillable watered, not watered N/A

Tomato Sliceable sliced, unsliced N/A

Lettuce Sliceable sliced, unsliced N/A

Bowl Fillable, Breakable (Some), Dirtyable | filled, empty, broken, dirty, clean N/A

Laptop Openable, Toggleable, Breakable open, closed, toggled on, toggled off, broken | N/A

Television Toggleable, Breakable toggled on, toggled off, broken N/A

Carrot Sliceable N/A sliced, unsliced

Drawer Openable N/A open, closed

Table 6: Object States

B.4 Human Evaluation

Similar to the approach for human evaluation in Ahn et al. [7], we ask 2 groups of users, 3 in each group
to compare the ground truth failure explanation labelled in the dataset and REFLECT-generated failure
explanation for each failure scenario. The failure scenarios are randomly shuffled in the questionnaires sent
to the users. The users are instructed to score O if the predicted explanation is incorrect, 1 if the predicted
explanation is correct, and 2 if they are unsure. The final score reflected in the tables are the majority vote
without counting “unsure”. If there’s a tie in the answers or more than one “unsure” is given, we will ask
the users to re-score the specific case.

17

	Introduction
	Related Work
	Method: the REFLECT Framework
	Hierarchical Robot Summary
	Sensory-Input Summary
	Event-Based Summary
	Subgoal-Based Summary

	Progressive Failure Explanation
	Failure Correction Planner

	The RoboFail Dataset
	Evaluation
	Conclusion
	Method Details
	Spatial Relation Heuristics
	Scene Graph Aggregation Heuristics
	Example Prompts
	Subgoal Verification
	Failure explanation: execution analysis
	Failure explanation: planning analysis
	Correction

	Evaluation Details
	Dataset Details
	Comparison with GPT-3.5
	Object states
	Human Evaluation

