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Figure 1. FLEX generates diverse full-body poses for grasping 3D objects in complex scenes. It does not use any full-body grasping data,
and fully relies on body-pose priors (without grasps) and hand grasping priors (without full-body poses).

Abstract
Synthesizing 3D human avatars interacting realistically

with a scene is an important problem with applications in
AR/VR, video games, and robotics. Towards this goal, we
address the task of generating a virtual human – hands and
full body – grasping everyday objects. Existing methods ap-
proach this problem by collecting a 3D dataset of humans
interacting with objects and training on this data. However,
1) these methods do not generalize to different object po-
sitions and orientations or to the presence of furniture in
the scene, and 2) the diversity of their generated full-body
poses is very limited. In this work, we address all the above
challenges to generate realistic, diverse full-body grasps in
everyday scenes without requiring any 3D full-body grasp-
ing data. Our key insight is to leverage the existence of
both full-body pose and hand-grasping priors, composing
them using 3D geometrical constraints to obtain full-body
grasps. We empirically validate that these constraints can
generate a variety of feasible human grasps that are supe-
rior to baselines both quantitatively and qualitatively. See
our webpage for more details: flex.cs.columbia.edu.

1. Introduction
Generating realistic virtual humans is an exciting step

towards building better animation tools, video games, im-
mersive VR technology and more realistic simulators with
human presence. Towards this goal, the research commu-
nity has invested a lot of effort in collecting large-scale
3D datasets of humans [1–18]. However, the reliance on
data collection will be a major bottleneck when scaling to
broader scenarios, for two main reasons. First, data col-
lection using optical marker-based motion capture (MoCap)
systems is quite tedious to work with. This becomes even
more complicated when objects [19] or scenes [20] are in-
volved, requiring expertise in specialized hardware systems
[21–23], as well as commercial software [24–27]. Even
with the best combination of state-of-the-art solutions, this
process often requires multiple skilled technicians to ensure
clean data [19].

Second, it is practically impossible to capture all possible
ways of interacting with the ever-changing physical world.
The number of scenarios grows exponentially with every
considered variable (such as human pose, object class, task,
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or scene characteristics). For this reason, models trained on
task-specific datasets suffer from the limitations of the data.
For example, methods that are supervised on the GRAB
dataset [19] for full-body grasping [28, 29] fail to grasp ob-
jects when the object position and/or orientation is changed,
and generate poses with virtually no diversity. This is under-
standable since the GRAB dataset mostly consists of stand-
ing humans grasping objects at a fixed height, interacting
with them in a relatively small range of physical motions.
However in realistic scenarios, we expect to see objects in
all sorts of configurations - lying on the floor, on the top
shelf of a cupboard, inside a kitchen sink, etc.

To build human models that work in realistic scene con-
figurations, we need to fundamentally re-think how to solve
3D tasks without needing any additional data, effectively
utilizing existing data. In this paper, we address the task of
generating full-body grasps for everyday objects in realistic
household environments, by leveraging the success of hand
grasping models [19, 30–32] and recent advances in human
body pose modeling [1, 33].

Our key observation is that we can compose different
3D generative models via geometrical and anatomical con-
straints. Having a strong prior over full-body human poses
(knowing what poses are feasible and natural), when com-
bined with strong grasping priors, allows us to express full-
body grasping poses. This combination leads to full-body
poses which satisfy both priors resulting in natural poses
that are suited for grasping objects, as well as hand grasps
that human poses can easily match.

Our contributions are as follows. First, we propose
FLEX, a framework to generate full-body grasps without
full-body grasping data. Given a pre-trained hand-only
grasping model as well as a pre-trained body pose prior,
we search in the latent spaces of these models to generate
a human mesh whose hand matches that of the hand grasp,
while simultaneously handling the constraints imposed by
the scene, such as avoiding obstacles. To achieve this, we
introduce a novel obstacle-avoidance loss that treats the hu-
man as a connected graph which breaks when intersected by
an obstacle. In addition, we show both quantitatively and
qualitatively that FLEX allows us to generate a wide range
of natural grasping poses for a variety of scenarios, greatly
improving on previous approaches. Finally, we introduce
the ReplicaGrasp dataset, built by spawning 3D objects in-
side ReplicaCAD [34] scenes using Habitat [35].

2. Related Work

Object grasping. Generating a 3D hand for grasping
objects is a widely studied task in robotics [31, 36–43],
graphics [44–51] and 3D computer vision [19, 30, 52–55].
Many works have also studied the anatomy of human hands
to create grasp taxonomies [33, 56–59]. Most existing
work tries to imitate static hand-grasping positions from
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Figure 2. Overview. We leverage existing body pose priors and
hand-grasping models (left) to perform full-body grasping in com-
plex scenes (right). Our method does not rely on any data for
full-body grasping and surpasses methods requiring it, in terms of
diversity and generalization to complex scenes.

data [19, 30, 52, 53], while other efforts generate stable dy-
namic grasps using either motion-based grasping data [32]
or reinforcement learning [60]. Recently, Turpin et al. [31]
used a differentiable physics simulator to generate grasps
that are physically stable. All these methods have looked
at generating grasps for objects in presence of simple or no
obstacles (e.g., placed on a counter-top). Instead, we focus
on generating hand grasps for objects in more realistic sce-
narios (e.g., objects in refrigerator, drawers, kitchen sink).

Full-body grasping. Instead of synthesizing just hand-
object interactions, the community has recently started
generating full-body interactions with objects. GRAB
dataset [19] for full-body object interaction was collected
using motion capture. GOAL [28] and SAGA [29] use
GRAB to build generative models for full-body grasping.
Synthesizing full-body interactions has also been explored
to create simulators (VirtualHome) for studying house-hold
activities [61]. VirtualHome uses pre-defined animations
but they are not very realistic and intersect with other ob-
jects. In this work, we generate realistic full-body grasps
without using full-body data and in presence of obstacles.

Test-time optimization. Test-time optimization has been
used to improve neural network generalization by either us-
ing task-specific constraints or self-supervision during in-
ference [62–67]. This principle is applied to the hand-
object grasping problem [19, 28–30] by first generating a
coarse grasp and later refining it using test-time optimiza-
tion. These methods are especially suitable for tasks where
constraints are easy to specify. Zhang et al. [68] use “3D
common sense” constraints to resolve ambiguity in 3D spa-
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Figure 3. Method. Given pre-trained hand-grasping and human pose priors, our method performs a gradient-based search procedure over
five different landscapes to minimize the hand matching, obstacle and gaze losses. Additionally, our data-driven pose-ground prior ensures
that the pose is reasonable with respect to the ground. In the figure, the parameters we optimize are shown in yellow, the differentiable
(frozen) layers are shown in pink, and the activations are shown in blue.

tial arrangements of humans and objects jointly from 2D,
while Liu et al. [69] use shadows as a constraint for infer-
ring the 3D structure of an occluded object. Similarly, we
obtain full-body grasps by combining different priors satis-
fying intuitive geometrical constraints.

3. ReplicaGrasp Dataset
Existing benchmarks for full-body object grasping [19]

only consider objects in a limited height range without any
other objects in their vicinity. To make the task more chal-
lenging and representative of the real-world, we build the
ReplicaGrasp dataset. ReplicaGrasp contains 50 every-
day objects from GRAB (such as wineglass or cellphone)
present in 48 receptacles of ReplicaCAD [34], simulated
with the Habitat simulator [35] to be in a variety of feasible
positions, leading to a total of 4.8k instances. The recepta-
cles include surfaces of both rigid and articulated furniture
items, such as drawers, which may be open to different de-
grees, leading to interesting cases like objects being deep
inside on the bottom shelf of refrigerator, or on the top shelf
of a cupboard. We refer to the furniture on which the target
object to-be-grasped is spawned as the ‘obstacle’ for that in-
stance. Succeeding on this dataset requires generating full-
body human grasps that are “scene-aware”—not intersect-
ing with obstacles—, as well as natural and feasible.

4. Approach
Given a 3D object mesh and a set of 3D obstacle meshes

in its vicinity, our goal is to generate a 3D human mesh
grasping the object without intersecting with the obstacles.

4.1. Preliminaries

Hand model. We use the MANO [70] differentiable 3D
hand model, that takes as input the full-finger articulated
pose θh ∈ R15x3, the wrist translation th ∈ R3, and the
wrist global orientation Rh ∈ R3, and outputs a 3D mesh
Mh, with vertices Vh in a global coordinate system.

Human body model. We use the SMPL-X [33] statistical
3D whole-body model, which jointly represents the body,
head, face and hands. SMPL-X is a differentiable function
that takes as input the full-body pose θb ∈ R21x3, the full-
finger articulated pose θh ∈ R15x3, the pelvis translation
tb ∈ R3 and orientation Rb ∈ R3, and optionally, body
shape parameters and facial expression, and outputs a 3D
mesh Mb, with vertices Vb in a global coordinate system.

Pre-trained generative models. We use a pre-trained gen-
erative model P that has learned a prior over body poses. It
takes as input a latent vector v and generates a body pose
which can be used as input to SMPL-X. Similarly, G gen-
erates right hand grasps. It takes as input a latent vector w,
an approaching angle α and an object O, represented by its
vertices, and generates a hand pose, including its translation
and rotation, to be used as input to MANO. We implement
P using VPoser [33] and G using GrabNet [19].

4.2. Method
Given a pre-trained right hand grasping model G that

can predict global MANO parameters {θh, th, Rh} for
a given object, as well as a pre-trained pose prior P
that can generate feasible full-body poses θb, our ap-
proach called FLEX (Full-body Latent Exploration) gen-
erates a 3D human grasping the desired object. To do
so, FLEX searches in the latent spaces of G and P to find
the latent variables w and v, respectively, as well as over
the space of approaching angles α, SMPL-X translations tb
and global orientations Rb, which are represented in ‘yaw-
pitch-roll’ format. See Fig. 3 for an overview of the method.

This search, or latent-space exploration, is done via
model inversion, by backpropagating the gradient of a loss
at the output of our model, and finding the inputs that min-
imize it. This procedure is done iteratively, until the loss
is minimized. During the search, we keep the weights of
G and P frozen. Therefore, we do not perform any train-
ing; the procedure described in this section takes place at
inference time. We describe the losses we use next.
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Figure 4. Body connectivity. When a body crosses an obsta-
cle, the obstacle divides the body in two or more components, the
break happening at the vertices that lie inside of the obstacle (in
yellow). We penalize the vertices in all the connected components
of the resulting body graph other than the largest one.

4.3. Losses

Hand matching loss. The main intuition of our paper is
that we can combine generative models using constraints
based on the geometry of their outputs. Specifically, we can
combine the generated hand and body meshes because there
exists a connection between them: the hands have to match.
Given vertices Vb (output from SMPL-X) and Vh (output
from MANO), we align them by minimizing:

Lhm =
1

|Vh|

|Vh|∑
i=1

dvv(Vhi ,Vh
bi), (1)

where dvv(., .) is the L2 distance between two vertices in
the 3D space. Vh

b represents the vertices within Vb that cor-
respond to the right hand—the rest are not used in this loss.

Obstacle loss. To succeed at grasping objects in a scene, the
humans that are generated need to avoid all the obstacles.
We introduce a novel obstacle-avoidance loss that penalizes
body-obstacle penetration, and consists of two parts: body-
obstacle intersection and body mesh connectivity.

1. Body-obstacle intersection loss. We represent obsta-
cles as watertight meshes, and compute the signed distance
from every vertex in Vb to the obstacle mesh: negative dis-
tances represent points inside the obstacle. This loss sums
the absolute values of the vertex-obstacle distances for all
the vertices that lie inside the obstacle:

Linter
o =

1

|Vb|

|Vb|∑
i=1

∣∣min (0, dvm(Vbi ,Mobstacle))
∣∣, (2)

where dvm(., .) is the signed distance function between a
vertex (3D point) and a mesh.

2. Body mesh connectivity loss. The previous loss alone
does not penalize the parts of the body that penetrate the
obstacle and resurface at the other side of the obstacle since

Figure 5. Pose-ground prior. Given a body pose, the position of
the ground can be predicted. This determines the pitch and the roll
of the body orientation, removing two degrees of freedom from
our optimization. In this example, the human on the right should
rotate to their right (pitch) and slightly forwards (roll) to get to a
correct orientation with respect to the ground.

these vertices are considered as “outside” vertices. To pe-
nalize them, we treat the human mesh as a graph. When part
of the body penetrates an obstacle, two (or more) compo-
nents of this graph get separated by the obstacle, resulting
in a disconnected graph, composed of multiple connected
components. The graph breaks precisely at the vertices that
are inside of the obstacle (see Fig. 4). Therefore, we penal-
ize all the vertices that are not part of the largest connected
components of the resulting graph, and the penalization is
the distance from those vertices to the obstacle. Mathemat-
ically, the body mesh connectivity loss is:

Lcon
o =

1

|Vb|

|Vdiscon
b |∑
i=1

dvm(Vdiscon
bi ,Mobstacle), (3)

where the sum is over the set of vertices Vdiscon
b ⊂ Vb that

are outside of the obstacle mesh and belong to connected
components of the resulting graph that are not the largest
connected component, such as the pink one in Fig. 4. For
efficiency, this loss uses a subsampled version of Mb. The
final obstacle loss is the sum of the two: Lo = Linter

o +Lcon
o .

Gaze loss. In addition to the main losses described above,
we also incorporate an explicit gaze loss to encourage the
human to look at the target object. We use the head direction
vector from Taheri et al. [28] which goes from the back to
the front of the head Vb→ f . Then we compute the vector
from the back of the head to the target object Vb→ o. The
gaze loss minimizes the angle between these two vectors:

Lg = cos−1 Vb→ f · Vb→ o

|Vb→ f ||Vb→ o|
(4)

During inference, we minimize a combination of the
three losses: L = λhmLhm + λoLo + λgLg.

4
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Figure 6. FLEXibility. We showcase FLEX’s ability to generate a variety of diverse, feasible full-body grasps in a number of challenging
scenarios. Different colors indicate the top-5 generations. Bubbles zoom in on diverse hand grasps.

4.4. Pose-Ground Prior

Enforcing the previous losses can lead to perfect grasps,
but potentially “flying” humans. To ensure that the hu-
man pose is also reasonable with respect to the ground,
we learn a prior over the relationship between human pose
and ground location. Specifically, we use the AMASS
dataset [1,71], which uses the xy-plane as the floor, to train a
2-layer MLP that predicts the roll and pitch components of
the human pelvis orientation with respect to the floor, given
a human pose θb. This MLP is trained using MSE regres-
sion, and it is kept frozen during inference. As exemplified
in Fig. 5, given a specific human pose, the only actual de-
gree of freedom for the human to have a natural orientation
with respect to the ground is the yaw (shown in blue in the
figure). The pitch and roll are constrained by the position of
the ground.

Additionally, we fix the vertical component of the
human body translation tzb such that the lowest vertex of
the predicted body mesh touches the ground.

4.5. One Latent to Rule Them All
Our framework requires optimizing the values of sev-

eral interdependent parameters—for example, the angle of
the hand grasp α constrains the human body orientation Rb
and pose v. Making sense of these relationships is required
in order to smoothly search over the different parameters.
Therefore, we delegate the burden of controlling the mul-
tiple parameters to a single controllable latent vector z that
can abstract away the low-level dependencies of the individ-
ual latent variables. Specifically, following Liu et al. [72],
we learn a mapping network (MLP in Fig. 3) from the latent
vector z to the different parameters and latents we defined
above. At inference time, we optimize the values of z and
the weights of the MLP. The rest of the parameters are given
as activations (outputs) of the MLP.

For every example (scene and object), we optimize N la-
tent vectors (z), with different initializations, and at the end
of the optimization process, we select the ones that result in
the smallest loss. The parameters of the mapping network
(a 2-layer MLP) are shared across the N latent vectors. See
Appendix A.2 for more implementation details.
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ReplicaGrasp GRAB

Method Obj Cont
(%) ↑

Obj Penet
(%) ↓

Obst
Penet (%)

↓

Divsamp
(cm) ↑

Divall
(cm) ↑

Ground
(cm) ↓

Obj Cont
(%) ↑

Obj Penet
(%) ↓

Divsamp
(cm) ↑

Divall
(cm) ↑

Ground
(cm) ↓

GOAL [28] 1.14 2.14 6.87 0.20 37.89 5.31 1.62 3.50 0.11 7.87 3.56
SAGA [29] 1.21 0.29 7.27 1.10 43.84 9.40 2.19 3.43 1.06 17.35 2.39
FLEX (ours) 2.20 2.49 0.53 10.37 69.78 0.00 1.63 2.73 24.94 46.46 0.00

Table 1. Results for ReplicaGrasp and GRAB. We report contact and penetration with the object, obstacle penetration, diversity and
distance from ground. FLEX almost always outperforms baselines, even though it was not trained on fully-body grasp data (GRAB).

5. Experiments
We conduct experiments on two datasets: our challeng-

ing 1) ReplicaGrasp and 2) GRAB [19]. GRAB is a MoCap
dataset of humans interacting with everyday objects without
any other obstacles. Since baselines are trained and evalu-
ated on GRAB, we evaluate if FLEX can perform compara-
bly despite it not using GRAB’s full-body grasping data.

5.1. Baselines

We compare with the only two existing works that
perform full-body human grasping: GOAL [28] and
SAGA [29]. Both methods use a conditional variational
auto-encoder (cVAE) [73] to reconstruct 3D humans con-
ditioned on the object’s position and orientation, and have
been trained on the full-body grasps of GRAB. GOAL re-
constructs a sub-sampled set of body vertices, while SAGA
reconstructs surface body markers. Both use test-time op-
timization for refining the full-body grasp by leveraging
fine-grained human–object contact information. Since these
methods do not work when the objects are out of distribu-
tion in the horizontal xy-plane, we evaluate them for objects
placed at (x, y) = (0, 0). We then translate the resulting
human-object pair to the correct (x, y) for visualization.

5.2. Ablations

To understand the impact of the key elements of our ap-
proach, we perform ablation studies on a validation set of
ReplicaGrasp containing 500 random object configurations.
We freeze the main optimization parameters independently:
1) hand-grasp latent θh, and 2) human pose latent θb. Ad-
ditionally, we perform ablations to study the effect of: 3)
removing the obstacle loss, and 4) not enforcing a pose-
ground prior.

5.3. Metrics

Similar to prior work [28] we report object-grasping met-
rics, and additionally report obstacle and ground metrics:
• Object contact percentage - percentage of object ver-

tices in contact with the human mesh,
• Object penetration percentage - percentage of object

vertices penetrated by the human mesh.
• Obstacle penetration percentage - percentage of human

vertices penetrating the obstacle mesh.

• Ground distance - absolute vertical distance from the
lowermost vertex of the human mesh to the ground plane.
Higher object contact implies a more stable grasp, while

lower obstacle and object penetration is naturally more pre-
ferred. We only compute object penetration for instances
with non-zero contact. Note that these metrics are not per-
fect – e.g., lower contact could very well lead to a stable
grasp. However, these are reasonably accepted proxies for
automatically evaluating grasps [19, 28–30].

To evaluate the ability of different methods to generate
diverse full-body grasps, following [29] we also report:
• Sample diversity - average vertex-to-vertex L2 distance

for each sampled pair of human meshes for a single in-
stance, averaged across instances.

• Overall diversity - average pairwise diversity across all
pairs of generated samples for all instances of the dataset,
which quantifies the method’s ability to generate a range
of complex human poses.

6. Results
6.1. Comparison to Baselines

The main results comparing our method FLEX to the two
baselines (GOAL [28] and SAGA [29]) are shown in Tab. 1.

FLEX generates diverse full-body grasps, even with ob-
stacles. On ReplicaGrasp, which tests grasping objects in
more realistic scenarios, FLEX achieves the best object
contact score. This is because in many cases where the ob-
ject is either too high or too low, the baselines often fail
to even touch the object. We observed that SAGA per-
forms best on object penetration. This is explained by an
explicit optimization to minimize inference-time collision
loss for 1500 iterations. However, this procedure may lead
to unnatural humans – for example, humans that penetrate
the ground to grasp lower objects (see Fig. 8 i,k) or elon-
gated humans for grasping higher objects (see Fig. 8 a).
This phenomenon is reflected in the ground distance met-
ric, where SAGA generates humans on average 9 cm away
from the ground. Instead, FLEX, which combines the full-
body, hand-grasping, and pose-ground priors, all of which
are data-driven, will be in-distribution with the data by con-
struction. Regarding diversity, FLEX outperforms baselines
by a significant margin, while also avoiding obstacles.
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# Method Obj
Cont
(%) ↑

Obst
Penet
(%) ↓

Ground
(cm) ↓

Divsamp
(cm) ↑

Divall
(cm) ↑

1 Ours 2.19 0.97 0.00 10.15 70.44

2 No grasp optimization 0.88 0.85 0.00 13.19 71.07
3 No pose optimization 2.03 1.87 0.00 0.27 41.55
4 No obstacle loss 2.38 10.57 0.00 21.60 71.86
5 No pose-ground prior 2.13 0.61 71.72 16.88 96.27

Table 2. Ablation Studies of different components FLEX. For
each metric, red represents a significant drop.

GRAB. On the GRAB dataset, FLEX performs compara-
bly to both baselines on the object contact and penetration
metrics. Note that FLEX achieves similar performance (sur-
passing GRAB on both metrics, and SAGA on one) without
using any full-body grasping data. Additionally, FLEX sur-
passes both baselines by large margins on diversity metrics.

6.2. Ablations

We show the importance of different components of
FLEX by demonstrating how performance is negatively im-
pacted when each is removed in Tab. 2.
– No hand grasp optimization leads to the worst hand
grasp with minimal contact. When we do not allow search
in the latent space w of the hand-grasping model (Row 2),
we get a poor grasp. Freezing the hand grasp severely re-
stricts the space of feasible poses, leading to a deadlock
between the hand-matching and obstacle losses. Hence,
avoiding obstacles leads to the object being touched min-
imally. We further demonstrate the importance of searching
for hand-grasps in Fig. 7. While all the hand-grasps are
plausible, upon hallucinating the full-body human accom-
panying the grasp, it is evident that the human will penetrate
the scene for the blue and orange grasps. Thus, searching
over hand grasps will allow the model to pick grasps that
lead to minimal object penetration.
– No body pose optimization leads to high obstacle pene-
tration and lower diversity. By not searching over the full
body latent space v, the model is incapable of FLEXibly
adjusting the human pose to avoid obstacles and thus gener-
ates humans that intersect with them. For the same reason,
there is little variation in overall full-body grasp predictions
as evident from the low diversity numbers.
– No obstacle loss leads to high obstacle penetration.
Comparing Row 4 with Row 1, we see that removing the
obstacle loss (Eqs. (2) and (3)) leads to very high obstacle
penetration. Because humans are not incentivized to avoid
obstacles, there are more feasible body poses, which ex-
plains the significant increase in diversity.
– Removing pose-ground prior results in flying humans.
Removing the pose-ground prior (Row 5) no longer forces
humans to touch the ground, resulting in a very large dis-
tances (71.7 cm) from the ground.

Figure 7. Hand grasp search. We illustrate the benefit of search-
ing in the latent space of the hand grasping model. Hallucinating
the full body associated with each grasp makes the choice easier.

6.3. Qualitative Results

Diversity. Fig. 6 showcases FLEX’s ability to discover a va-
riety of reasonable grasps while simultaneously satisfying
obstacle constraints. For example, in Fig. 6 d,l), FLEX gen-
erates both crouched and standing humans in different
positions and orientations without penetrating the obstacle
or compromising on the quality of the right hand grasp.
When the object is very low, as in Fig. 6 b), FLEX generates
squatting as well as kneeling positions.

Comparison to baselines. Qualitative results for FLEX,
SAGA and GOAL are shown in Fig. 8 in yellow, orange
and blue colored humans, respectively. GOAL’s grasps lack
diversity – the right hand always grasps the object from the
top with very little variation in the distance to the object as
well as the overall pose. When the object is too low, it starts
to generate unnatural legs (see Fig. 8 i,j,k).

SAGA generates more diverse hand grasps (side and bot-
tom grasps in Fig. 8 c,d,h) and full-body poses (slightly bent
legs in Fig. 8 j). However, it often fails when objects are too
low or too high (see Fig. 8 a,i,k).

FLEX is able to generate suitable poses based on the
object placement with respect to the scene. For ex-
ample, when the object is deep inside the refrigerator
(see Fig. 8 f,i), FLEX can generate humans with a care-
fully outstretched hand such that it doesn’t collide with
any obstacles. In Fig. 8 a), where the object is very
high on the shelf, FLEX generates a human on their toes
while in Fig. 8 c), FLEX generates a good right hand
grasp that carefully avoids the protruding component in
the top compartment of the fridge. Fig. 8 e) demonstrates
how FLEX can match the hand grasp of the baselines, and
additionally jut out the rest of the body to avoid the obstacle
when necessary.

Failures. Fig. 10 shows some failures. Most of them are
caused by the limitations of the pre-trained generative mod-
els G and P . Fortunately, FLEX is model agnostic, so it
will only improve as better generative models are devel-
oped. FLEX only requires them to be differentiable.

7
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e) f) g) h)
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Figure 8. Qualitative Comparisons. We show 3D human avatars generated by FLEX, SAGA and GOAL when objects in the ReplicaGrasp
dataset are placed at high (top), medium (middle) and low (bottom) heights. FLEX generates a variety of reasonable poses for grasping
the target objects in a number of scenarios, while SAGA and GOAL fail to generalize especially at extreme heights.

Claim: “This pose is natural and 
realistic for grasping the object”
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Figure 9. Human
Studies We conduct
human studies on
Amazon Mechanical
Turk and ask subjects
to rate 3D human
grasps generated with
FLEX on a Likert scale
of 1-6 for realism. Sub-
jects agree 85% of the
time that our generated
humans grasp objects
realistically.

6.4. Human Evaluation

To evaluate the perceptual quality of our generated full-
body grasps, we conducted human studies on Amazon Me-
chanical Turk (AMT). We chose a subset of FLEX results
covering all 48 receptacles twice for objects in both fallen
and upright orientations. We showed each result to five dif-
ferent subjects on AMT in an interactive 3D interface and
asked them to rate the full-body grasps on a Likert scale of
1 (strongly disagree) to 6 (strongly agree). We filtered out
responses with standard deviation > 1. Results are shown
in Fig. 9. 85% of the time participants agree that our gener-
ations are natural and realistic.

A subject who gave a rating of 2 wrote: “[...] arm that

a) b) c)
Figure 10. Failure cases. a) Our selected grasping model G fails.
b) All our constraints are satisfied, but the human pose is too
stretched / unnatural. c) The pose-ground prior may be imperfect
or result in rare poses while satisfying other constraints.

is grabbing is reaching way too hard to reach object, but
the grasp is natural”, while a subject who gave a rating of
6 wrote: “The bend on the spine and the legs being approx-
imate shoulder width apart is a natural body movement”.

7. Conclusion

In this work, we address the task of generating full-body
humans grasping 3D objects in the presence of obstacles
and introduce a new dataset, ReplicaGrasp, to evaluate the
realism of the generations. We describe an optimization-
based approach that leverages existing hand-grasping mod-
els and human pose priors to solve this task, without using
any 3D full-body grasping data. Experiments show that we
are able to generate realistic avatars that surpass existing
methods, both quantitatively and qualitatively.
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Appendix

A. Implementation details

A.1. Pre-trained Generative Models

Full-body pose prior. For our full-body generative model
P , we use the GitHub implementation of VPoser [33].
VPoser is a variational autoencoder [73] trained on data ob-
tained by applying MoSh [13] on three publicly available
human motion capture datasets: CMU [6], training set of
Human3.6M [74], and the PosePrior dataset [15].

Hand object grasping model. For the right-hand grasp-
ing model G, we use the GitHub implementation of Grab-
Net [19]. GrabNet consists of two networks: 1) CoarseNet
for coarse grasps and 2) RefineNet for refining the coarse
grasps. CoarseNet takes as input a latent vector w, and the
object O, represented by its BPS representation [75], and
generates a hand pose, including its translation and rota-
tion, to be used as input to MANO. RefineNet takes as input
the CoarseNet grasp and the distances D from the coarse
MANO vertices to the object mesh. It then refines the grasp
through 3 iterations as in [76] to give the final grasp. Re-
fineNet has been trained by sampling CoarseNet grasps as
ground truth and perturbing the hand pose parameters to
simulate noisy input estimates.

Object representation. The object to-be-grasped O is rep-
resented in GrabNet using the Basis Point Set (BPS) [75]
representation which is capable of encoding arbitrary 3D
object shapes. Given any object vertices, an approaching
angle α and Nb fixed basis points, the BPS representation
involves rotating the object by the angle α, placing it in the
center of the points and calculating the minimum distance
from each point to the nearest surface of the object. The
outputs of our model are rotated by the inverse of the rota-
tion matrix given by α. We use the implementation from
the bps torch library on GitHub.

A.2. Training Details

• For every example (scene and object), we optimize N =
500 latent vectors z, with different initializations, and at
the end of the optimization process we select the ones that
result in the smallest loss. During training, we periodi-
cally discard the 50% of the latent vectors that produce
the largest losses. At the end of the optimization pro-
cess, we end up with the best 16 samples out of the 500.
The parameters of the mapping network (consisting of a
2-layer MLP) are shared across the N latent vectors.

• We constrain the value of w by normalizing it such that
its norm is always one, following the density of a high-
dimensional Gaussian prior, thus making sure w is within

the distribution of the latent space of G.
• We train with Adam optimizer with a learning rate of
1e− 3 for z, and 1e− 4 for the mapping network. Addi-
tionally, we found that the translation parameters have a
much stronger gradient than the rest, especially the latent
v, so we divide the gradient that goes through txyb by 3,
and multiply the gradient that flows through v by 10. We
train for 500 iterations.

• Empirically, we found that the pre-trained GrabNet model
was much more sensitive to approaching angle α then it
was to the latent w, hence we set w to the zero vector in
our experiments.

• For the hand matching loss, we weigh the vertices around
the wrist more (×3) than the rest, as the alignment around
the wrist is less noisy than in the fingers.

• The values for the loss weights λ in the total loss are set
to: λhm = 20, λo = 1000, λg = 0.01. These do not
necessarily reflect the importance given to each loss, as
the loss values are in completely different scales.

• We additionally found that scaling the output of the MLP
differently for every parameter was helpful. Specifically,
we scale v by 5 (giving more flexibility to the human pose
generator), the translation parameters by 10, and the angle
and orientation by 20.

• We found that some obstacles have very thin walls, so we
make the obstacle mesh Mobstacle thicker by 5mm, which
allows us to model the intersections better.

B. ReplicaGrasp Dataset

Receptacles. We use a total of 48 receptacles from the
ReplicaCAD dataset [34]. Some of the static rigid object re-
ceptacles include: apartment chair, sofa, table top, TV stand
and wall cabinet. The receptacles from articulated objects
include: refrigerator top, middle and bottom; top, middle
and bottom drawers of kitchen counter on both right and
left sides, and kitchen sink; as well as top, middle and bot-
tom compartments of both sides of the kitchen cupboard.
Many of the receptacles are visible in Fig. 1.

Objects. We obtain 50 everyday object meshes from the
GRAB dataset and use the Habitat Simulator [35] to get the
final locations of the objects on the receptacles. We use the
GitHub v0.2.2 release. The simulator runs dynamics for 5
seconds to check for stability of newly placed objects.

C. Quantitative Analysis
We conduct a detailed analysis of the results in Table 1.

Performance as a function of object height. We demon-
strate the need of having a benchmark like ReplicaGrasp
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Figure 11. Object contact percentage varying by
height. FLEX performs more consistently than both base-
lines and is best on average.
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Figure 12. Ground distance varying by height. SAGA performs
worst at lower heights while GOAL performs worst when the ob-
jects are high up.
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Figure 13. Diversity varying by height. GOAL and SAGA
both consistently fail at generating diverse outputs at all heights.
FLEX can generate most diverse grasps at medium heights.

that allows evaluating grasps at different heights. In GRAB,
the object heights varies from a minimum of 0.75 meters to
a maximum of 1.38 meters, with a mean of 1 meter. In
ReplicaGrasp, our object heights have a much larger range
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Figure 14. Sensitivity to threshold σ. Trends stay the same for
all metrics across different thresholds.

from a minimum of 0.12 meters to a maximum of 2.2 me-
ters, with a mean of 1 meter. We show how performance
along different metrics changes by varying the heights of
the objects.

• Object contact percentage - Fig. 11 shows that GOAL
performs well when objects are at heights that have been
seen during training, but sees drops in performance at
other heights. SAGA is more consistent than GOAL even
at varying heights. FLEX outperforms both baselines on
average across all heights without showing much varia-
tion across height changes.

• Ground distance - Fig. 12 shows that when the object is
at a low height, SAGA fails by generating humans with
legs buried below the ground. SAGA is better at higher
heights, although qualitatively the humans appear elon-
gated. GOAL generates humans that try to fly up to grasp
objects at larger heights. GOAL performs better at lower
heights, although qualitatively the humans look unnatural
with awkwardly bent legs.

• Sample diversity - In Fig. 13, we show the average pair-
wise diversity across pairs of samples generated for an in-
stance, averaged across all instances of the dataset. This
quantifies the method’s ability to generate a range of com-
plex human poses. FLEX outperforms both baselines by
a large margin despite having additional constraints of
avoiding obstacles.

Sensitivity of the metrics to the threshold. In order to
compute the metrics, we set a threshold σ that determines
the boundary between contact and penetration with an ob-
ject or an obstacle. In Fig. 14 we report results of our met-
rics for different values of this threshold, and show that the
metrics are not sensitive to its value, and that the trends
shown in the main paper (where we use σ = 1e− 6) hold.

13



a) b) c)

Figure 15. Examples shown to Amazon Mechanical Turk subjects. We provide these three examples to the subjects, which range from
very bad (strongly disagree with the statement) to very good (strongly agree) results.

Figure 16. Human studies. Example of a HIT shown to subjects
on Amazon Mechanical Turk.

D. Evaluation Metrics
We provide equations for each of the metrics described

in Section 5.3.

Object contact percentage.

M contact
obj =

100

|Vo|

|Vo|∑
i=1

1
(
|dvm(Voi ,Mhuman)| ≤ σ

)
, (5)

where Vo are the vertices of the object, Mhuman is the human
mesh, dvm is the signed vertex-to-mesh distance, σ is a small

threshold and 1 is the indicator function.

Object penetration percentage.

M penet
obj =

100

|Vo|

|Vo|∑
i=1

1
(
dvm(Voi ,Mhuman) < −σ

)
(6)

Obstacle penetration percentage.

M penet
obst =

100

|Vb|

|Vb|∑
i=1

1
(
dvm(Vbi ,Mobstacle) < −σ

)
, (7)

where Vb are the vertices of the human body and Mobstacle
is the obstacle mesh. In contrast to Eq. (6), here we average
over the human body (not the obstacle) vertices, because
we care about how much of the human is penetrating an
obstacle, not how much of the obstacle is being penetrated
by the human.

Ground distance.

Mground =
∣∣min(Vz

b )
∣∣, (8)

where Vz
b is the z component of all vertices in Vb.

Sample diversity.

MDivsamp =
2

Ns · (Ns − 1)

∑
i,j∈Ns
i̸= j

dvv(V(i)
b ,V(j)

b ), (9)

where Ns is the number of samples for a single example
and dvv is the L2 vertex-to-vertex distance in the 3D space.
V(i)
b represents the human body vertices corresponding to

the i-th sample.
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a) Strongly agree b) Agree c) Slightly disagree

Figure 17. Examples of human ratings. The figure shows three samples and their corresponding human ratings. See Appendix E for
comments from subjects.

Overall diversity.

MDivall =
2

Nd · (Nd − 1)

∑
i,j∈Nd
i̸= j

dvv(V(i)
b ,V(j)

b ), (10)

where Nd is the total number of instances in the dataset.

E. Human Studies
We conducted perceptual evaluation studies on Amazon

Mechanical Turk (AMT) with a prompt as shown in Fig. 16.
The specific instructions were as follows:

We want to evaluate the realism of the
humans. Some questions to ask yourself
while solving the task:

1) Would you expect to see a human like
this in real-life?

2) Is the hand grasp going to result in a
natural grasp?

3) Is the human stable on the ground?

The scene can be navigated by:
1) Clicking and dragging the mouse, to

rotate the scene.
2) Zooming in and out with the scroll

wheel.
3) Clicking at a point in the scene, to

position that point in the center of
the scene.

See examples for a better intuition.

Further, we showed subjects three examples of how to suc-
cessfully perform the task by showing an example that de-
serves the ratings of 1, 2 and 6 respectively with explana-
tions for the reasoning as shown in Figure 15. We randomly
selected 96 examples of ReplicaGrasp covering objects in
all 48 receptacles in both upright and fallen orientations. We
showed each example to 5 different subjects and we had 30

Sample-wise ↑ Overall ↑

Method Full Body Right-hand Full Body Right-hand

GOAL 0.11 0.04 6.01 12.14
SAGA 1.14 0.09 15.29 13.79
FLEX (ours) 26.91 0.36 39.98 16.40

Table 3. Diversity analysis on GRAB (cm)

unique subjects solve the task. We filtered out cases which
saw high inter-subject disagreement.

Fig. 17 shows some examples of FLEX generations eval-
uated by subjects. Participants generally found the results
realistic – for example, for Fig. 17 b, a participant wrote:
“The stretch of the hand inside the drawer is very realis-
tic”. In some cases where the subjects gave a low rating,
for instance in Fig. 17 c, we received interesting comments:
“Doesn’t need to squat to grab item”. This reveals a short-
coming of our system wherein we do not measure the effort
required to grasp an object. Explicitly modeling physical
effort and its effect on the choice of the human’s pose is an
interesting direction that we leave as future work.

F. Computational Budget
We performed speed and memory comparisons (aver-

aged across 10 runs) for generating 16 different samples
on a single RTX 2080 Ti GPU. FLEX involves using pre-
trained models simultaneously, the memory consumption is
3x (4.8 GB vs 1.4 GB). FLEX takes around 8.5 minutes to
generate 16 samples, while SAGA and GOAL take 6 and 1
minute respectively. We sacrifice computational budget for
significantly better results.

G. Diversity Analysis
Tab. 3 shows diversity metric computed for hand (no-

full-body) and for full-body (no-hand) for all 3 meth-
ods. FLEX has higher diversity in both, but the gains are
significant for full-body.
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Method Obj Cont
(%) ↑

Obj Penet
(%) ↓

Obs Penet
(%) ↓

Ground
(cm) ↓

Random Init 0.15 35.06 2.02 60.32
CMA-ES 0.03 17.39 2.03 58.25
FLEX 2.20 2.50 0.53 0.00

Table 4. Comparison with Optimization methods.
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Figure 18. Object contact, penetration and Obstacle penetration
metrics varying by iterations.

H. Choice of Optimization Framework
FLEX is agnostic to the choice of the optimization

method. We used the recent Liu et al. [72] which smooths
the loss landscape for better convergence. To validate this
choice of a gradient-based optimization framework, we
conduct experiments with non-gradient based methods de-
scribed below:
• Ranking: Instead of optimization, we simply rank a large

the batch of whole-body grasps produced by randomly
sampling the optimization parameters.

• CMA-ES: Covariance matrix adaptation evolution strat-
egy implemented from PyPI.

Results are shown in Tab. 4. As expected, FLEX is superior
to both the baselines.

I. Performance as a function of the number of
optimization steps

Fig. 18 shows average optimization metrics over differ-
ent iterations. Object and obstacle penetration go down with
training. Object contact stays largely unchanged.
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https://pypi.org/project/cmaes/
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