
Auto-Differentiation of Relational Computations for Very Large Scale Machine

Learning

Yuxin Tang 1 Zhimin Ding 1 Dimitrije Jankov 1 Binhang Yuan 2 Daniel Bourgeois 1 Chris Jermaine 1

Abstract

The relational data model was designed to facil-

itate large-scale data management and analytics.

We consider the problem of how to differentiate

computations expressed relationally. We show

experimentally that a relational engine running an

auto-differentiated relational algorithm can easily

scale to very large datasets, and is competitive

with state-of-the-art, special-purpose systems for

large-scale distributed machine learning.

1. Introduction

The relational data model (Codd, 1970) is the basis for

most modern SQL database systems. SQL can be used to

extract and transform data into formats that can be used

to train machine learning models. Furthermore, many data

management systems (MLDB, 2017; BigQuery, 2020; Agar-

wal et al., 2021; Redshift, 2021; PostgreSQL, 2021) now

support in-database machine learning (Feng et al., 2012;

Syed & Vassilvitskii, 2017), where data is stored in rela-

tional databases, and machine learning models are trained

and executed within database management system. This

can improve performance and scalability without extra data

transfer overhead. Also, it is natural to express a large

class of distributed machine learning (ML) computations

relationally. Consider matrix multiplication which is the

workhorse of modern ML, assume two matrices A and B

which have been partitioned into smaller sub-matrices and

stored as relations (Luo et al., 2018; Jankov et al., 2021):

1 A(row INT, col INT, mat MATRIX[][])
2 B(row INT, col INT, mat MATRIX[][])

A simple SQL code specifies a distributed matrix multiply:

1Department of Computer Science, Rice University, Hous-
ton, US 2ETH Zurich, Switzerland. Correspondence to:
Yuxin Tang <yuxintang1995@gmail.com>, Chris Jermaine
<cmj4@rice.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1 SELECT A.row, B.col,
2 SUM (matrix_multiply (A.mat, B.mat))
3 FROM A, B WHERE A.col = B.row
4 GROUP BY A.row, B.col

In addition to scalability, executing such a code on a re-

lational engine has the advantage that the database query

optimizer will automatically distribute the computation, tak-

ing into account the sizes of the two matrices. If A and B are

both large matrices, a database optimizer will consider the

hardware constraints on each compute node (e.g. memory

size) and choose to co-partition both A and B using the join

predicate A.col = B.row. If one of the matrices is rela-

tively small (A, for example) and the other matrix is already

partitioned across nodes, the database will simply broadcast

the smaller matrix. Effectively, the database system is auto-

matically choosing between various distribution paradigms.

The first plan is often referred to as mixed data/model paral-

lelism or tensor parallelism (Shazeer et al., 2018; Jia et al.,

2019; Shoeybi et al., 2019; Lepikhin et al., 2020; Xu et al.,

2021; Zheng et al., 2022; Barham et al., 2022) in the dis-

tributed machine learning literature, and the second plan is

data parallel (Dean et al., 2012; Li et al., 2014), if A is a

model matrix.

Relational systems can run a wide variety of ML compu-

tations (Yuan et al., 2020; Jankov et al., 2021). For exam-

ple, consider graph-based convolution operation (Kipf &

Welling, 2016), which is really a three-way join, followed

by an aggregation. Assume data is stored in two relations:

1 Node(ID INT, vec VECTOR[2048])
2 Edge(srcID INT, dstID INT)

Here, vec is the current embedding of a node. Then a graph

convolution operation can be written as:

1 SELECT n1.ID as n.ID, ReLU(MAT_MUL(AVG (
Normalize(n2.vec)))) as n.vec

2 FROM Node as n1, Edge as e, Node as n2
3 WHERE n1.ID = e.srcID and n2.ID = e.dstID
4 GROUP BY n1.ID

Consider a massive, billion-node, 10-billion-edge graph.

Propagating 2048-dimensional embeddings over 10 billion

edges will require moving 163 TB of data, which a scalable,

distributed database can handle, but will cause problems for

1

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

K R
2×2

⟨0, 0⟩
⟨0, 1⟩
⟨1, 0⟩
⟨1, 1⟩

[1 4
1 2]

[1 2
4 3]

[3 1
2 2]

[2 1
2 2]

Figure 1. RX as a function from a key set {0, 1} × {0, 1} to R
2×2.

most ML systems.

While a relational database may be an excellent platform

for executing a large ML computation, ML systems like

TensorFlow and PyTorch have at least one key advantage:

automatic differentiation (Maclaurin et al., 2015; Seeger

et al., 2017; Van MerriÈenboer et al., 2018; Sheldon et al.,

2018; Baydin et al., 2018; Bolte & Pauwels, 2020; Ablin

et al., 2020; Lee et al., 2020; Oktay et al., 2021; Krieken

et al., 2021; Bolte et al., 2022; Arya et al., 2022; Ament &

Gomes, 2022). We argue that without adding an auto-diff

capability to relational engines, such compute platforms

are unlikely to capture much market share in ML, even for

applications to which they are uniquely suited (Woznica

et al., 2005; Moseley et al., 2020; Jayaram et al., 2021;

Sahni et al., 2021; Agarwal et al., 2021).

In this paper, we describe an auto-diff framework that takes

a computation specified in relational algebra (RA) as in-

put and automatically produces a second RA computation

that evaluates the gradient of input computation, taken with

respect to one or more database tables. A standard SQL

compiler and optimizer can further optimize the generated

auto-diff’ed SQL programs. There are several specific con-

tributions of this work:

• The gradient operation ∇ is a function-to-function

transformation: it takes as input a function F , and

returns a new function∇F that returns the direction of

the fastest increase in F from location x. Classically,

RA is defined operationally (each RA operation takes

one or more relations as input and returns a relation).

As such, we define a functional version of the RA, as

well as gradients of RA functions.

• We propose an algorithm for automatically generating

a functional RA expression that evaluates the gradient

of an input functional RA expression.

• We use our RA auto-diff algorithm to automatically

produce distributed ML computations and show exper-

imentally that computations generated by RA auto-diff

algorithm can easily handle very large-scale ML tasks.

Roadmap. All modern relational database engines are RA

engines, executing relational operations (joins, aggregations,

and so on) over relations (tables). Even if a relational com-

putation is expressed in another language (such as SQL),

it is compiled into RA. Thus, in Section 2, we define a

functional version of RA that is amenable to auto-diff. In

Section 3 we re-define partial derivatives, Jacobians, gradi-

ents, and vector-Jacobian products in the relational domain.

In Section 4, we define efficient, relational implementation

of relation-Jacobian products for table scan, selection, aggre-

gation, and join. Finally, in Section 5, we give a relational

version of the reverse-mode auto-diff algorithm.

2. A Functional Relational Algebra

2.1. Relations

Consider a mathematical computation over a set of binary

relations R0,R1,R2, Each relation Ri contains tuples:

(key, value)

and is a function from some key set K to a value set V . The

corresponding function is defined for every key ∈ K. In a

sparse representation, a tuple of the form (key, value)

may not be present in the underlying implementation of R

for each key ∈ K; in such a case, the value associated

with a missing key is zero or its equivalent.

We make no assumptions about the form of the key; it may

be complex, itself consisting of multiple attributes. In the

general case, V corresponds to all multi-dimensional arrays

whose shape is defined by the vector n, so V = R
n1×n2×....

Viewed in this way, relations can easily represent the stan-

dard data structures in linear algebra (vectors, matrices, and

higher-dimensional tensors) by decomposing the original

data structure into tuples holding ªchunksº or ªblocksº. For

example:

X =









1 4 1 2
1 2 4 3
3 1 2 1
2 2 2 2









can be decomposed into a relation

RX(⟨rowID,colID⟩,value)

as depicted in Figure 1.

In the remainder of this section, we make the simplifying

assumption that V = R (so values are all scalars), and

define F(K) to be the set of all functions from key set K

to R; hence, each relation R with key set K is in F(K).
However, due to performance considerations, large-scale

ML computations implemented relationally should typically

be implemented using chunks rather than scalars (Luo et al.,

2018). Performing computations on a relational engine

over a relation storing sub-matrices will give much better

performance than over a relation storing a massive number

2

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

of scalars. Fortunately, it is straightforward to extend to

arrays stored in relations, rather than scalars (as we discuss

in Section A).

Constant relations vs. queries. RX is an example of a

relation or a simple function; given any value in the key

set, a corresponding real number (or a multi-dimensional

tensor in the general case) is produced. However, to build

queries, we also need some notion of a higher-order function

over relations: a function from one or more input relations

to a output relation. It is over such higher-order functions

that the gradient operation will itself operate. Thus, we

introduce a query, which, given n input key sets K1, ...,Kn

and output key set Ko, is a function from relations to a

relation:

Q : F(K1)× F(K2)× ...× F(Kn)→ F(Ko)

In the remainder of the paper, we use the simplified notation:

Q : F(K1,K2, ...,Kn)→ F(Ko)

Thus, all queries are higher-order functions. A query repre-

sents a ªvariable relationº because while the key set is fixed

at Ko, the actual value from F(Ko) taken by the relation

depends upon n different input relations given as arguments.

2.2. Operations in RA

Operations such as joins and aggregations in our variant of

RA are higher-order functions used to build up queries. We

now go through each of the operations, defining each.

(1) TableScan (denoted using ªτº) is a higher-order func-

tion that accepts a key set K and returns a query that it-

self accepts a relation in F(K) and simply returns exactly

that relation. Formally, τ has type signature τ : K →
(F(K)→ F(K)) and is defined as: τ(K) 7→ ((R) 7→ R) .

(2) Aggregation (denoted using ªΣº) accepts a query, a

grouping function grp, and a commutative, associative

kernel function ⊕ defined over the real numbers and returns

a new query that aggregates the result of the original query.

The function grp : Ki → Ko accepts a key value and

maps it to a new key value; when the result of a query is

aggregated, two tuples t1 and t2 are put into the same group

if grp(t1) = grp(t2) and then aggregated using ⊕. More

precisely, aggregation has type signature:
(

(Ki → Ko)× (R→ R)× (F(K1, ...,Kn)→ F(Ki))
)

→
(

F(K1, ...,Kn)→ F(Ko)
)

And the semantics of aggregation is as follows:

Σ (grp,⊕, Q) 7→
(

(R1, R2, ..., Rn) 7→
{

(key,value)

s.t. for key ∈ Ko and Q′ = Q(R1, R2, ..., Rn),

value = ⊕{Q′(keyIn) s.t. grp (keyIn) = key}
})

A constant grouping function (one that always returns the

same value key) aggregates the result of query Q down to

a single tuple (for example, holding a scalar loss value).

Imagine that we wish to represent a four-by-four matrix X

relationally, and aggregate its contents down to a single two-

by-two matrix. Let KX denote the key set {0, 1} × {0, 1}.
We can build up a function F that does exactly this as F ≡

Σ((key) 7→ ⟨⟩, (v1,v2) 7→ MatAdd(v1,v2), τ(KX))

The resulting function F can be applied to any relation in

F(KX). For example, F ({(⟨0, 0⟩, [1 4
1 2]), (⟨0, 1⟩, [

1 2
4 3]),

(⟨1, 0⟩, [3 1
2 2]), (⟨1, 1⟩, [

2 1
2 2])}) evaluates to {(⟨⟩, [7 8

9 9])}.

(3) Join (denoted using ª1º) accepts two queries Ql and

Qr (with output key sets Kl and Kr, respectively) and

produces a new query that composes Ql and Qr together,

with output key set Ko. In addition to the two queries to

compose, 1 accepts three functions: (1) a boolean predicate

pred : Kl × Kr → {true, false} that takes a key from

the key set for Ql and a key from the key set for Qr and

determines if the two keys match; (2) a projection function

proj : Kl × Kr → Ko that accepts a key from the key

set for Ql and a key from the key set for Qr and composes

them; and (3) a kernel function⊗ : R×R→ R that accepts

two real-valued values and composes them.

Formally, the type signature for 1 is:

1:
(

(Kl ×Kr → {true, false})

× (Kl ×Kr → Ko)× (R× R→ R)

×
(

F(Kl1 ,Kl2 , ...,Kln)
)

→ F(Kl)
)

× (F(Kr1 ,Kr2 , ...,Krm)
)

→ F(Kr))
)

→
(

F(Kl1 , ...,Kln ,Kr1 , ...,Krm)→ F(Ko)
)

And we can define the semantics of 1 as follows:

1(pred,proj,⊗, Ql, Qr) 7→
(

(Rl1 , ..., Rln , Rr1 , ..., Rrm) 7→
{

(key,val)

s.t. for key ∈ Ko and Q′

l = Ql(Rl1 , ..., Rln)

and Q′

r = Qr(Rr1 , ..., Rrm),

val = ⊗ (Q′

l(keyL), Q
′

r(keyR))

s.t. pred(keyL,keyR) = true

∧ proj(keyL,keyR) = key

})

We are creating a function that executes queries Ql and Qr,

and then creates a new relation by finding tuples of the form

(key,val) where key is created by applying proj to the

keys from two tuples, one from each query result, and val

is created by applying ⊗ to the values from the same tuples.

We can now build up computations such as matrix multipli-

cation. Given the key set KX, let:

3

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

• ⊕(val1,val2) 7→ MatAdd(val1,val2)

• grp(key) 7→ ⟨key[0],key[2]⟩

• ⊗(valL,valR) 7→ MatMul(valL,valR)

• pred(keyL,keyR) 7→ keyL[1] = keyR[0]

• proj(keyL,keyR)
7→ ⟨keyL[0],keyL[1],keyR[1]⟩

If K = {0, 1}×{0, 1}, then the following RA builds a func-

tion that multiplies two decomposed four-by-four matrices:

FMatMul ≡ Σ(grp,⊕,1 (pred,proj,⊗, τ(K), τ(K)))

(4) Join with one constant input (denoted using ª1constº).

This is similar to the prior operation, except that one of

the inputs to the join is a constant relation, as opposed to a

query. Generally, we will not perform gradient descent with

respect to all relations; some relations must be constant.

1const accepts the same three functions as 1: pred, proj,

and ⊗, as well as the query and the constant relation to be

joined. The semantics are defined as follows:

1const(pred,proj,⊗, Q,R) 7→
(

(Rl1 , ..., Rln)

7→
{

(key,value)

s.t. for key ∈ Ko and Q′ = Ql(Rl1 , ..., Rln),

value = ⊗ (Q′(keyInL), R(keyInR))

s.t. pred(keyInL,keyInR) = true

∧ proj(keyInL,keyInR) = key

})

(5) Selection (denoted using ªσº) builds a function that

filters tuples from the output of another query Q, but more

importantly, the resulting function can modify the values

in the tuples. σ accepts three functions: (1) a selection

predicate pred : Ki → {true, false} that takes a key from

the input key set for Q and accepts or rejects the key; (2)

a projection proj : Ki → Ko that modifies the key, (3) a

kernel function ⊙ : R→ R that can be used to modify the

value in a tuple. Given this, the type signature for σ is:

σ :
(

(Ki → {true, false})× (Ki → Ko)× (R→ R)

× (F(K1,K2, ...,Kn)→ F(Ki))
)

→ (F(K1,K2, ...,Kn)→ F(Ko))

And the semantics for σ is:

σ(pred,proj,⊙, Q)

7→
(

(R1, ..., Rn) 7→
{

(proj(key),value)

s.t. pred(key) = true)

∧ for Q′ = Q(R1, ..., Rn),value = ⊙ (Q′(key))
})

2.3. Example: Logistic Regression

For a simple application, we can easily implement logis-

tic regression with cross-entropy loss. Consider the sets:

rowID = {0, 1, ..., n−1} and colID = {0, 1, ...,m−1}.
That is, we have n feature vectors identified by the num-

bers in rowID, each of which has m features identified

by the numbers in colID. Now consider the training set,

which consists of feature values for each data point, stored

in the relation Rx ∈ F(rowID× colID), and the set of

labels, stored in the relation Ry ∈ F(rowID). The goal is to

learn the set of regression coefficients, stored in the relation

RΘ ∈ F(colID). Then the forward pass is:

FMatMul ≡Σ(grpMatMul,⊕,1const (predMatMul,

projMatMul,⊗MatMul,Rx, τ(colID))

FPredict ≡σ(predPredict,projPredict,⊙, FMatMul)

FLoss ≡Σ(grpLoss,⊕,1const (predLoss,projLoss,

⊗Loss, FPredict,Ry))

The matrix multiplication uses functions:

• ⊕(val1,val2) 7→ val1+ val2

• grpMatMul(key) 7→ ⟨key[0]⟩

• ⊗MatMul(valL,valR) 7→ valL× valR

• predMatMul(keyL,keyR) 7→ keyL[1] = keyR[0]

• projMatMul(keyL,keyR) 7→ ⟨keyL[0],keyL[1]⟩

The selection utilizes a logistic function to make predictions:

• predPredict(key) 7→ true

• projPredict(key) 7→ key

• ⊙(val) 7→ logistic(val)

And a cross-entropy loss computes the quality of the model:

• grploss(key) 7→ ⟨⟩

• ⊗Loss(yhat,y) 7→ −y log yhat + (y − 1) log(1 −
yhat)

• predLoss(keyL,keyR) 7→ keyL[0] = keyR[0]

• projLoss(keyL,keyR) 7→ ⟨keyL[0]⟩

Now, FLoss is a function from F(colID) to F({⟨⟩}). That

is, executing the query FLoss on a relation that contains all

of the regression coefficients will return a simple tuple with

empty key ⟨⟩ and whose value contains the loss. Figure 5

(in appendix) shows this example on the left part.

4

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

3. Auto-Diffing RA: Preliminaries

3.1. Relational Partial Derivatives and Jacobians

Our goal is ultimately to perform auto-differentiation on

functions such as FLoss to power standard optimization

algorithms such as gradient descent. To do this it is first

necessary to re-define standard concepts such as partial-

derivatives and Jacobians in the relational domain.

Relational partial derivatives. Consider any query Q :
F(Ki) → F(Ko).

1 We denote the partial derivative of Q

with respect to a tuple (k, v) with k ∈ Ki by ∂Q
∂k

. This

partial derivative is itself a function with type signature

F(Ki)→ F(Ko).

To formally define this conceptÐwhich is analogous to the

partial derivative of a multi-variate function F with respect

to a particular input, consider the relation Rh in F(Ki) where

Rh[k] is h, and Rh[k
′] is 0 for k′ ̸= k. Now, let:

• ⊗1(valL,valR) 7→ valL+ valR

• ⊗2(valL,valR) 7→
valR−valL

h

• pred(keyL,keyR) 7→ keyL = keyR

• proj(keyL,keyR) 7→ keyL

Now, we can define ∂Q
∂k

as the function:

(R) 7→ lim
h→0

1

(

pred,proj,⊗2, Q,

Q
(

1const (pred,proj,⊗1,Rh, τ(Ki))
)

)

(R,R)

This is the query that we obtain by creating a ªslightlyº

perturbed version of Q that adds h to the value associated

with key k. We run Q on input relation R as well as the

perturbed version of Q on R, and then join the output of the

two versions of Q to compute how much each output tuple

varies.

Relational Jacobians. In real analysis, a Jacobian is a ma-

trix of functions, where each function is the partial derivative

of a multivariate function with respect to a unique input/out-

put variable pair. We denote a Jacobian of query Q as

JQ : F(Ki)→ F(Ki ×Ko). Consider the functions:

• pred(key) 7→ key[0] = k

• proj(key) 7→ key[1]

• ⊙(val) 7→ val

1In the case that Q takes n > 1 arguments, all of the definitions
in this section apply to Q, given n − 1 constant relations and
partially applying Q to those n − 1 relations to obtain a one-
argument function.

JQ is the Jacobian for query Q, if for every key k ∈ Ki:

σ(pred,proj,⊙, JQ) ≡
∂Q

∂k
.

That is, the relational Jacobian is a query that performs a

relational partial derivative for every possible input key.

Relational gradients. Define the gradient of query Q :
F(Ki)→ F(Ko) with respect to k ∈ Ko in terms of the Ja-

cobian. Let: pred(key) 7→ key[1] = k, proj(key) 7→
key[0], ⊙(val) 7→ val. Then the gradient of query Q

with respect to key k is:

∇kQ ≡ σ(pred,proj,⊙, JQ)

To obtain the gradient, we restrict the Jacobian of query Q

to one of the keys in the output set, filtering out the rest.

Note that if Q has only one output tupleÐif it is computing

a loss value, for exampleÐthen the Jacobian of Q and the

gradient of Q are essentially equivalent, in the sense that

evaluating either over a relation R ∈ F(Ki) will produce

singleton relations with tuples having the same values. In

this case, we drop the key k and write ∇Q.

Multi-relation queries. In the case where a query Q has

multiple table scans (and hence takes multiple relations as

inputs), the notions of relational Jacobian and relational gra-

dients still apply. These are defined by picking the table scan

τi associated with the ith input relation, and partially evalu-

ating Q using given, constant relations for each table scan

τ ̸= τi. This results in a single-argument query, which we

refer to using Qi. The relational Jacobian and relational gra-

dients are then defined with respect to Qi. For an ML com-

putation encoded as a relational query with n input relations

(whose values we want to learn via some form of gradient

descent) having current values R1,R2, ...,Rn, we would typ-

ically want to evaluate ∇Q1(R1),∇Q2(R2), ...,∇Qn(Rn)
to power gradient descent. This is the topic we consider in

the next few sections of the paper.

3.2. Relation-Jacobian Products

As our goal is to build a reverse-mode, relational auto-diff

engine, we next define the analog to the vector-Jacobian

product in the relational domain, which we call the relation-

Jacobian product. Assume that we have a query Q :
F(Ki)→ F(Ko). Let:

• ⊕(val1,val2) 7→ val1+ val2

• grp(key) 7→ key[0]

• ⊗(valL,valR) 7→ valL× valR

• pred(keyL,keyR) 7→ keyL = keyR[1]

• proj(keyL,keyR) 7→ keyR

5

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

Algorithm 1 ChainRule (vi, vj , ∂Q
∂Rj

, ⟨R1, ...,Rk⟩)

1: Input: Connected RA operations vi, vj (the result of

vi is input into vj), relation ∂Q
∂Rj

, list of all intermediate

results obtained when executing Q: ⟨R1, ...,Rk⟩
2: Output: ∂Q

∂Ri
computed via the chain rule

3: Let K(v) denote the output key set for RA operation v

4: if vj is Σ (grp,⊕, vi) then

5:
∂Q
∂Ri
← RJPΣ(grp,⊕,K(vj),K(vi))(

∂Q
∂Rj

,Ri)

6: else if vj is σ (pred,proj,⊙, vi) then

7:
∂Q
∂Ri
← RJPσ(pred,proj,⊙,

K(vj),K(vi))(
∂Q
∂Rj

,Ri)

8: else if vj is τ (K) then

9:
∂Q
∂Ri
← RJPτ (K)(∂Q

∂Rj
,Ri)

10: else if vj is 1 (pred,proj,⊗, vi, vk) then

11:
∂Q
∂Ri
← RJP1(pred,proj,⊗,

K(vj),K(vi),Rk)(
∂Q
∂Rj

,Ri)

12: else if vj is 1 (pred,proj,⊗, vk, vi) then

13:
∂Q
∂Ri
← RJP1(pred,proj,⊗,

K(vj),Rk,K(vi))(
∂Q
∂Rj

,Ri)

14: else if vj is 1const (pred,proj,⊗, vi,R) then

15:
∂Q
∂Ri
← RJP1(pred,proj,⊗,

K(vj),K(vi),R)(
∂Q
∂Rj

,Ri)

16: end if

17: Return ∂Q
∂Ri

Then the relation-Jacobian product for query Q, denoted

RJPQ : F(Ko,Ki)→ F(Ki) is defined as:

RJPQ ≡ Σ(grp,⊕,1 (pred,proj,⊗, τ(Ko), JQ))

4. RJPs for Relational Operations

Many auto-diff engines work by first executing the under-

lying computation, collecting intermediate results, during

a forward pass. Then those results are used to evaluate

the desired gradient(s) in a backward pass, via a series of

vector-Jacobian products.

Thus, there are two key parts of any classical reverse-mode

auto-diff system: (1) the overall algorithmic framework

that runs the forward and backward passes, and (2) vector-

Jacobian product implementations for each RA operation.

To support auto-diff for RA, we need something analogous

to both of these parts. In this section of the paper, we

describe relation-Jacobian product (RJP) implementations

for each of the higher-order RA functions we have defined.

RJP for Table Scan. Consider query Q ≡ τ(K), for a

key set K. The RJP for this query, denoted as RJPτ (K) :

Algorithm 2 RAAutoDiff (Q, ⟨In1,In2, ...⟩)

1: Input: Query Q computing a one-tuple loss, list of

input relations ⟨In1,In2, ...⟩
2: Output: ∇Q1(In1),∇Q2(In2), ...
3: Topologically sort RA operations in Q into a list of

operations ⟨v1, . . . , vn⟩
4: Let E be the list of edges in Q, where (vi, vj) ∈ E if

the output of vi us used by vj
5: Execute Q(In1,In2, ...)
6: Let Ri denote the intermediate relation produced by Vi

for each i ∈ {1...n} during execution

7: Set ∂Q
∂Rn

to {(keyOut, 1)} where keyOut is the key

in the output tuple from Q

8: for i = n− 1 down to 1 do

9: % Compute ∂Q
∂Ri

10: Let I = ⟨id1, id2, .., idm⟩ be a list of vertex identi-

fiers s.t. idj ∈ I if (vi, vidj
) ∈ V

11: P1 ← ChainRule (vi, vid1
, ∂Q
∂Rid1

, ⟨R1, ...,Rk⟩)

12: Let K be the key set for Ri

13: Q′ ← τ(K)
14: for j = 2 to m do

15: Pj ← ChainRule (vi, vidj
, ∂Q
∂Ri

, ⟨R1, ...,Rk⟩)
16: Q′ ← add(Q′, τ(K))
17: end for

18:
∂Q
∂Ri
← Q′(P1,P2, ...,Pm)

19: end for

20: For the ith input to Q, find the vj that processed Ini as

input. Return the associated ∂Q
∂Rj

as ∇Qi(Ini).

F(K,K)→ F(K), can be computed as:

RJPτ (K) 7→ ((Ro,Ri) 7→ Ro)

This RJP is simple because the table scan returns its input

relation; (JQ (Ri)) (⟨k1, k2⟩) then is one for any k1, k2 ∈ K

where k1 = k2, and zero when k1 ̸= k2; taking the left

product with Ro as defined in Section 3.2 simply returns Ro,

no matter the value of Ri.

RJP for Selection. Consider the query

Q ≡ σ(pred,proj,⊙, τ(Ki)), with type sig-

nature Q : F(Ki) → F(Ko). The RJP for Q,

RJPσ(pred,proj,⊙,Ko,Ki) : F(Ko,Ki) → F(Ki),
is:

1 (pred′,proj′,⊗′, τ(Ko), τ(Ki))

where:

• pred′(keyL,keyR) 7→ keyL = proj(keyR)

• proj′(keyL,keyR) 7→ keyR

• ⊗′(valL,valR) 7→ ∂⊙(valR)
∂valR

× valL

6

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

Here,
∂⊙(valR)
∂valR

is the derivative of ⊙(valR) w.r.t. input

valR. Note that σ will discard some tuples if they cannot

meet the boolean condition specified in pred. Those tuples

tuples cannot contribute to a gradient computation, and the

gradient evaluated at a key value that has been filtered from

the relation will implicitly be zero.

RJP for Aggregation. Consider the query

Q ≡ Σ(grp,⊕, τ(Ki)), with type signature

Q : F(Ki) → F(Ko). The RJP for this query, de-

noted as RJPΣ(grp,⊕,Ko,Ki) : F(Ko,Ki) → F(Ki)
is:

1 (pred,proj,⊗, τ(Ko), τ(Ki))

where: pred(keyL,keyR) 7→ keyL = grp(keyR),
proj(keyL,keyR) 7→ keyR, ⊗(valL,valR) 7→
∂⊕(valR)
∂valR

× valL. Here,
∂⊕(valR)
∂valR

is the derivative func-

tion of ⊕(valR) w.r.t. input valR. If grp is a constant

function, the RJP can be simplified to:

RJPΣ(grp,⊕,Ko,Ki)

7→ ((Ro,Ri) 7→ σ(pred,proj,⊙, τ(Ki))(Ri))

where: pred(key) 7→ true, proj(key) 7→ key,

⊙(val) 7→ ∂⊕(val)
∂val

.

RJP for Join. Consider the query Q that computes

1 (pred,proj,⊗, τ(Kl), τ(Kr))

with type signature Q : F(Kl,Kr) → F(Ko). Since this

query has two inputs, we first consider computing the RJP

for query Ql. That can be obtained by partially evaluating Q

with the constant relation Rr, so that Ql : F(Kl)→ F(Ko).

RJP1(pred,proj,⊗,Ko,Kl,Rr) ≡

Σ(grp,⊕(1 (pred1,proj1,⊗1, τ(Ko),

1const (pred2,proj2,⊗2, τ(Kl),Rr))))

where:

• grp(key) 7→ ⟨key⟩

• ⊕(v1,v2) 7→ v1+ v2

• pred1(keyL,keyR) 7→ keyL = keyR[1]

• proj1(keyL,keyR) 7→ keyR[0]

• ⊗1(valL,valR) 7→ valL× valR

• pred2(keyL,keyR) 7→ pred(keyL,keyR)

• proj2(keyL,keyR)
7→ ⟨keyL,proj(keyL,keyR)⟩

• ⊗2(valL,valR) 7→
∂⊗(valL,valR)

∂valL

If the query Q ≡ 1const (pred,proj,⊗, τ(Kl),Rr)
so that the right-hand relation is a constant, then the

RJP is exactly the same; the RJP for this query is

also RJP1(pred,proj,⊗,Ko,Kl,Rr). If the goal

is to compute the RJP of Qr (that is, where the left-

hand relation is constant) things are symmetric and de-

fined similarly, we denote the RJP in this case using

RJP1(pred,proj,⊗,Ko,Rl,Kr).

There are some further optimization opportunities for

RJP1:

• The first 1const operation can often be optimized out

since most ML workloads fix ⊗ to be × (or MatMul).

For the RJP of Ql and Qr, the result of 1const can be

replaced by Rr and Rl, respectively.

• The final Σ operation can be optimized out based on

different join cardinality relationships (one-to-one, one-

to-many). If 1 is 11−1, the Σ for RJP of Ql and Qr

can be directly removed. If 1 is 11−n or 1n−1: for

the n side, Σ can be optimized in the same way, while

for the 1 side, the Σ must be kept since each tuple’s

partial gradients needed to be aggregated.

• When a join-agg-tree structure (Jankov et al., 2021)

(a join followed by an aggregation) appears in query

graph, differentiating the aggregation operator is un-

necessary.

5. Relational Auto-Differentiation

We are now ready to give the final algorithm for relational

auto-diff. To give the formal algorithm, we first define the

relational add operation, that takes two relations Ql, Qr ∈
F(K) and is defined as add(Ql, Qr) 7→

(

(Rl1 , ..., Rln , Rr1 , ..., Rrm) 7→
{

(key,value)

s.t. for key ∈ K and Q′

l = Ql(Rl1 , ..., Rln) and

Q′

r = Qr(Rr1 , ..., Rrm),

value = Q′

l(key) +Q′

r(key)
})

add takes two queries with the same key set and returns a

new query that adds the values with matching keys across

queries. add is necessary to implement the total derivative.

The final algorithm is given as the subroutine Algorithm

1 and the main procedure Algorithm 2. Algorithm 1 im-

plements the chain rule for each of the various relational

operations using RJPs. Algorithm 2 performs the actual

reverse-mode auto-diff, first running the query and then go-

ing through the various relational operations in the query

in reverse topological order. For each RA operation, the

chain rule is used to compute ∂Q
∂Ri

, via the appropriate RJP.

7

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

Dataset name (|V |, |E|) Num feat Num labels

ogbn-arxiv (0.2M, 1.1M) 128 40
ogbn-products (0.1M, 39M) 100 47
ogbn-papers100M (0.1B, 1.6B) 128 172
friendster (65.6M, 3.6B) 128 100

Table 1. Data used for graph convolutional network training.

Figure 4 (in appendix) shows the difference between vector-

jacobian product and relational-jacobian product for a sin-

gle matrix multiplication operation. Figure 5 (in appendix)

shows Algorithm 2 in the right part.

6. Evaluation

One potential benefit of relational auto-diff is that a rela-

tional system, equipped with this technology, could show

better scalability than other systems. Hence we turn our

attention to the question: Can relational auto-diff be used

to produce computations that are competitive with special-

purpose ML systems meant to support large-scale machine

learning?

Our evaluation focuses on three distributed ML computa-

tions over big data: graph convolutional neural networks

(Kipf & Welling, 2016; Liu et al., 2022; 2021; Zhou et al.,

2020), knowledge graph embedding (Hogan et al., 2020),

and non-negative matrix factorization (Lee & Seung, 2000)

(the latter two are relegated to the Appendix). We imple-

mented RA auto-diff in Python, accepting SQL input.

Experiments are run on AWS, using m5.4xlarge in-

stances with 20 cores, 64GB DDR4 memory, and 1TB

general SSD. We run our experiments using 1 to 16 nodes

connected by 10Gbps Ethernet. We build our relational

computations on top of a relational engine (Zou et al., 2018).

It is worth to mention here all the RA operators, RJP rules,

and related implementation in this paper can easily be in-

corporated into any relational system that supports array

types.

Task Evaluated. We benchmark a two-layer, graph con-

volutional neural network (GCN) for a node classification

task. A graph convolutional layer can be easily written as

a relational computation over two relations Edge (storing

all the edges including self-loops, each having a normalized

weight) and Node (storing all the node embeddings in the

graph). Message passing across nodes is implemented as

a three-way join among nodes, edges, and nodes, followed

by an aggregation. This join extracts the ID from both

source node and destination nodes, and matches them with

the sourceID and destID of the edges. This GCN is

benchmarked using the datasets in Table 1.

Experiments. We compare against two other state-of-the-

art open-source graph systems: DistDGL (Wang et al.,

2020) and AliGraph (Zhu et al., 2019). RA-GCN is our

RA-based implementation. The Adam optimizer is used

with learning rate η = 0.1; the dropout rate γ = 0.5; the

hidden layer dimension D = 256; batch size B = 1024.

DGL is built from the latest version 0.9 from scratch. We

use PyTorch (Paszke et al., 2017) distributed as the backend

for AliGraph. All of the systems are running the same

learning computations over the same input data, using the

same batch size, the same initial data partitioning scheme,

and the same model.

As a scalable, RA-based system, RA-GCN is able to handle

arbitrary-size batches and can even perform full graph train-

ing, while the other systems can only support ªdata-parallelº

graph training, partitioning large graphs into sub-graphs

and sampling neighbors to form mini-batches. We also in-

clude full-graph training on RA-GCN. For each of the four

datasets and four methods tested, per-epoch running times

are shown in Tables 2 and 3. ªOOMº denotes the case that

a system failed due to out-of-memory errors.

Discussion. Our experiments generally showed that exe-

cuting the RA-based auto-diff output consistently results in

a computation that is as fast as the state-of-the-art alterna-

tives. The only exceptions were for the GCN runs over the

smallest data sets (ogbn-arxin and ogbn-products),

where the RA-based solution was somewhat slower than its

competitors. This is perhaps not surprising: one might not

expect the benefit of a scalable, RA-based solution to be ap-

parent over a very small data set, compared to a custom-built

ML solution.

However, there were some clear advantages of the auto-

diffed RA solution. As the auto-diffed RA is running on

what is essentially a high-performance database system, it

avoided all out-of-memory errors. RA-GCN was able to

scale to the largest data set (friendster), even for full

graph training±thus avoiding the potential pitfalls of cutting

important edges during training. In fact, the RA-based

solution was the only solution able to scale to full-graph

training. Further, RA-GCN was able to do this on only one

machineÐautomatically adapting to the limited memory

as required (a hallmark of scalable database engines). The

other solutions failed even to perform mini-batch training

on fewer than eight machines for this data set.

The ability to scale in terms of model and data size is very

important, given the growing evidence that far more often

than not, ªbigger is betterº in modern ML. Getting a ML

system to work as embedding sizes are increased (that is, as

we use ever-higher-dimensional hidden layer activations) is

difficult, as this has a significant effect on memory usage.

This is strong motivation for having a distributed ML system

that scales with little or no human effort.

We also point out that getting these other systems to scaleÐ

even to the extent shown in the experimental results reported

8

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

ogbn-arxiv ogbn-products

Cluster Size 1 2 4 8 16 1 2 4 8 16

DistDGL 1.664s 1.407s 0.731s 0.483s 0.321s 14.827s 9.270s 4.980s 2.889s 1.799s
AliGraph 13.734s 5.488s 3.603s 1.744s 1.564s 87.299s 55.193s 31.128s 17.303s 11.734s
RA-GCN 9.957s 5.125s 2.741s 1.604s 0.957s 31.347s 16.409s 10.713s 6.873s 4.591s

RA-GCN(full) 20.196s 11.739s 7.338s 4.331s 3.196s 54.424s 33.185s 19.028s 13.572s 9.897s

Table 2. Distributed graph convolutional network runtime per epoch on ogbn-arxiv and ogbn-products. RA-GCN (full) is the

experiment results for full graph training while others are mini-batch based training.

ogbn-papers100M friendster

Cluster Size 1 2 4 8 16 1 2 4 8 16

DistDGL OOM OOM 71.842s 56.517s 39.824s OOM OOM OOM 92.741 71.826s
AliGraph OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
RA-GCN 295.184s 154.94s 78.091s 52.937s 36.409s 371.572s 194.212s 125.405s 87.913s 63.354s

RA-GCN(full) 1161.553s 614.121s 327.609s 218.339s 133.581s 1492.142s 781.102s 485.247s 317.087s 279.763s

Table 3. Distributed graph convolutional network runtime per epoch on ogbn-papers100M and friendster.

hereÐcan be an arduous task. AliGraph requires the user

to load whole graph into memory and manually partition

it for distributed training (AliGraph plans to support the

METIS (Karypis & Kumar, 1995) graph partitioning algo-

rithm in the near future). DistDGL can partition relatively

small graphs in both automatic and distributed fashion us-

ing its API dgl.distributed.partition graph.

However, for large graph partitioning, a user needs to run

an external tool - ParMETIS (Par), which involves a lot of

graph format conversions. ParMETIS loads the graph into

the memory of a single node and then sends the edges to

other nodes. Arguably, the relational solution is turnkey:

simply load the graph into relational tables, auto-diff the

SQL, and begin training.

7. Related Work

Auto-differentiation has been integrated into many program-

ming systems, including machine learning systems (Chen

et al., 2015; Abadi, 2016; Paszke et al., 2017; Frostig et al.,

2018; van MerriÈenboer et al., 2018; Tokui et al., 2019),

scientific computing systems (Bischof et al., 2003; Has-

coet & Pascual, 2013; SlusËanschi & Dumitrel, 2016; Revels

et al., 2016; Innes, 2020) and physical simulation systems

(de Avila Belbute-Peres et al., 2018; Hu et al., 2019; Jakob,

2019; Degrave et al., 2019; Heiden et al., 2021). Some of

the closest work to our own involves auto-diff for functional

programming languages. (Shaikhha et al., 2019) shows how

to differentiate a higher-order functional array-processing

language. (Abadi & Plotkin, 2019) proposes a first-order

language with reverse-mode differentiation. (Baydin et al.,

2015) adds auto-differentiation support to .NET ecosys-

tem. (Pearlmutter & Siskind, 2008) incorporates auto-diff

into lambda calculus. (Schule et al., 2021) considers auto-

differentiation of the numerical kernel functions used in

RA/SQL.

Some previous work has unified RA with machine learning

computations (Geerts et al., 2021; Zhang et al., 2021; Xu

et al., 2022; Zhou et al., 2022; Fegaras et al., 2022; Guan

et al., 2023; Rusu et al., 2023). (Koutsoukos et al., 2021; He

et al., 2022; Park et al., 2022; Asada et al., 2022) build foun-

dation for fusing relational operations into tensor runtime.

(KOVACH et al., 2023) defines an intermediate representa-

tion of contraction expression for both tensor and relational

computations.

One of the contributions of this work was the definition of

a functional RA that can be used to form database com-

putations on which the gradient operation can be applied.

Relations in our functional RA are related to K-relations

(Green et al., 2007). K-relations are used to build up po-

tentially complicated computations over some set K, in the

same way that we use RA to build computations over tensors.

However, the RA defined over K-relations is not functional

in the sense that it does not actually build functions over

relations, it directly operates on them. Hence it does not

directly address the need for a functional RA.

8. Conclusions

We have considered the problem of automatic differentiation

in relational algebra. We have demonstrated experimentally

that a relational engine running an auto-diff computation

can execute various ªbig dataº ML tasks as fast as special-

purpose distributed ML systems. We have shown that the

relational approach has the benefit that it naturally scales to

very large problems, even when limited memory is available.

Acknowledgements. We would like thank the anonymous

reviewers for their comments on the submitted version of

the paper. Work presented in this paper has been supported

by an NIH CTSA, award No. UL1TR003167 and by the

NSF under grant Nos. 1918651, 1910803, 2008240, and

2131294.

9

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

References

Parmetis. https://github.com/KarypisLab/

ParMETIS.

Abadi, M. Tensorflow: A system for large-scale machine

learning, 2016. URL https://www.usenix.

org/system/files/conference/osdi16/

osdi16-abadi.pdf.

Abadi, M. and Plotkin, G. D. A simple differentiable

programming language. Proc. ACM Program. Lang.,

4(POPL), dec 2019. doi: 10.1145/3371106. URL

https://doi.org/10.1145/3371106.

Ablin, P., PeyrÂe, G., and Moreau, T. Super-efficiency of

automatic differentiation for functions defined as a mini-

mum. In International Conference on Machine Learning,

pp. 32±41. PMLR, 2020.

Agarwal, A., Alomar, A., and Shah, D. tspdb: Time se-

ries predict db. In Escalante, H. J. and Hofmann, K.

(eds.), Proceedings of the NeurIPS 2020 Competition

and Demonstration Track, volume 133 of Proceedings

of Machine Learning Research, pp. 27±56. PMLR, 06±

12 Dec 2021. URL https://proceedings.mlr.

press/v133/agarwal21a.html.

Ament, S. E. and Gomes, C. P. Scalable first-order bayesian

optimization via structured automatic differentiation. In

International Conference on Machine Learning, pp. 500±

516. PMLR, 2022.

Arya, G., Schauer, M., SchÈafer, F., and Rackauckas, C.

Automatic differentiation of programs with discrete ran-

domness. arXiv preprint arXiv:2210.08572, 2022.

Asada, Y., Fu, V., Gandhi, A., Gemawat, A., Zhang, L., He,

D., Gupta, V., Nosakhare, E., Banda, D., Sen, R., and

Interlandi, M. Share the tensor tea: How databases can

leverage the machine learning ecosystem. Proc. VLDB

Endow., 15(12):3598±3601, aug 2022. ISSN 2150-8097.

doi: 10.14778/3554821.3554853. URL https://doi.

org/10.14778/3554821.3554853.

Barham, P., Chowdhery, A., Dean, J., Ghemawat, S., Hand,

S., Hurt, D., Isard, M., Lim, H., Pang, R., Roy, S., et al.

Pathways: Asynchronous distributed dataflow for ml. Pro-

ceedings of Machine Learning and Systems, 4:430±449,

2022.

Baydin, A. G., Pearlmutter, B. A., and Siskind, J. M. Diff-

sharp: Automatic differentiation library. arXiv preprint

arXiv:1511.07727, 2015.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,

J. M. Automatic differentiation in machine learning: a

survey, 2018.

BigQuery. 2020. URL https://cloud.google.

com/bigquery-ml/docs.

Bischof, C., Lang, B., and Vehreschild, A. Automatic differ-

entiation for matlab programs. In PAMM: Proceedings

in Applied Mathematics and Mechanics, volume 2, pp.

50±53. Wiley Online Library, 2003.

Bolte, J. and Pauwels, E. A mathematical model for au-

tomatic differentiation in machine learning. Advances

in Neural Information Processing Systems, 33:10809±

10819, 2020.

Bolte, J., Pauwels, E., and Vaiter, S. Automatic differenti-

ation of nonsmooth iterative algorithms. arXiv preprint

arXiv:2206.00457, 2022.

Bordes, A., Usunier, N., Garcia-DurÂan, A., Weston, J., and

Yakhnenko, O. Translating embeddings for modeling

multi-relational data. NIPS’13, pp. 2787±2795, Red

Hook, NY, USA, 2013.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,

C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,

Wanderman-Milne, S., and Zhang, Q. JAX: composable

transformations of Python+NumPy programs, 2018. URL

http://github.com/google/jax.

Chah, N. Freebase-triples: A methodology for pro-

cessing the freebase data dumps. arXiv preprint

arXiv:1712.08707, 2017.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,

T., Xu, B., Zhang, C., and Zhang, Z. Mxnet: A flexible

and efficient machine learning library for heterogeneous

distributed systems. arXiv preprint arXiv:1512.01274,

2015.

Codd, E. F. A relational model of data for large shared

data banks. Commun. ACM, 13(6):377±387, jun 1970.

ISSN 0001-0782. doi: 10.1145/362384.362685. URL

https://doi.org/10.1145/362384.362685.

de Avila Belbute-Peres, F., Smith, K., Allen, K., Tenenbaum,

J., and Kolter, J. Z. End-to-end differentiable physics for

learning and control. Advances in neural information

processing systems, 31, 2018.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,

Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K.,

et al. Large scale distributed deep networks. Advances in

neural information processing systems, 25, 2012.

Degrave, J., Hermans, M., Dambre, J., et al. A differentiable

physics engine for deep learning in robotics. Frontiers in

neurorobotics, pp. 6, 2019.

10

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

Fegaras, L., Khan, T. A., Noor, M. H., and Sultana, T. Scal-

able tensors for big data analytics. In 2022 IEEE Interna-

tional Conference on Big Data (Big Data), pp. 107±114.

IEEE, 2022.

Feng, X., Kumar, A., Recht, B., and RÂe, C. Towards

a unified architecture for in-rdbms analytics. In Pro-

ceedings of the 2012 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’12, pp.

325±336, New York, NY, USA, 2012. Association for

Computing Machinery. ISBN 9781450312479. doi: 10.

1145/2213836.2213874. URL https://doi.org/

10.1145/2213836.2213874.

Frostig, R., Johnson, M., and Leary, C. Compiling ma-

chine learning programs via high-level tracing. 2018.

URL https://mlsys.org/Conferences/doc/

2018/146.pdf.

Geerts, F., Muñoz, T., Riveros, C., Van den Bussche, J.,

and Vrgoč, D. Matrix query languages. ACM SIGMOD

Record, 50(3):6±19, 2021.

Green, T. J., Karvounarakis, G., and Tannen, V. Prove-

nance semirings. In Proceedings of the twenty-sixth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, pp. 31±40, 2007.

Guan, H., Dwarampudi, M. R., Gunda, V., Min, H., Yu, L.,

and Zou, J. A comparison of decision forest inference

platforms from a database perspective. arXiv preprint

arXiv:2302.04430, 2023.

Hascoet, L. and Pascual, V. The tapenade automatic differ-

entiation tool: principles, model, and specification. ACM

Transactions on Mathematical Software (TOMS), 39(3):

1±43, 2013.

He, D., Nakandala, S. C., Banda, D., Sen, R., Saur, K.,

Park, K., Curino, C., Camacho-RodrÂıguez, J., Karana-

sos, K., and Interlandi, M. Query processing on ten-

sor computation runtimes. Proc. VLDB Endow., 15

(11):2811±2825, jul 2022. ISSN 2150-8097. doi: 10.

14778/3551793.3551833. URL https://doi.org/

10.14778/3551793.3551833.

Heiden, E., Millard, D., Coumans, E., Sheng, Y., and

Sukhatme, G. S. Neuralsim: Augmenting differentiable

simulators with neural networks. In 2021 IEEE Interna-

tional Conference on Robotics and Automation (ICRA),

pp. 9474±9481. IEEE, 2021.

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C.,

de Melo, G., GutiÂerrez, C., Gayo, J. E. L., Kirrane,

S., Neumaier, S., Polleres, A., Navigli, R., Ngomo,

A. N., Rashid, S. M., Rula, A., Schmelzeisen, L., Se-

queda, J. F., Staab, S., and Zimmermann, A. Knowl-

edge graphs. CoRR, abs/2003.02320, 2020. URL

https://arxiv.org/abs/2003.02320.

Hu, Y., Anderson, L., Li, T.-M., Sun, Q., Carr, N., Ragan-

Kelley, J., and Durand, F. Difftaichi: Differentiable

programming for physical simulation. arXiv preprint

arXiv:1910.00935, 2019.

Innes, M. Sense & sensitivities: The path to general-purpose

algorithmic differentiation. Proceedings of Machine

Learning and Systems, 2:58±69, 2020.

Jakob, W. Enoki: structured vectorization and differentia-

tion on modern processor architectures. Retrieved Octo-

ber, 29:2019, 2019.

Jankov, D., Yuan, B., Luo, S., and Jermaine, C. Distributed

numerical and machine learning computations via two-

phase execution of aggregated join trees. Proc. VLDB

Endow., 14(7):1228±1240, mar 2021. ISSN 2150-8097.

doi: 10.14778/3450980.3450991. URL https://doi.

org/10.14778/3450980.3450991.

Jayaram, R., Samadian, A., Woodruff, D., and Ye,

P. In-database regression in input sparsity time.

In Meila, M. and Zhang, T. (eds.), Proceedings of

the 38th International Conference on Machine Learn-

ing, volume 139 of Proceedings of Machine Learn-

ing Research, pp. 4797±4806. PMLR, 18±24 Jul

2021. URL https://proceedings.mlr.press/

v139/jayaram21a.html.

Jia, Z., Zaharia, M., and Aiken, A. Beyond data and model

parallelism for deep neural networks. In Talwalkar,

A., Smith, V., and Zaharia, M. (eds.), Proceedings

of Machine Learning and Systems, volume 1, pp.

1±13, 2019. URL https://proceedings.

mlsys.org/paper/2019/file/

c74d97b01eae257e44aa9d5bade97baf-Paper.

pdf.

Karypis, G. and Kumar, V. Metis ± unstructured graph

partitioning and sparse matrix ordering system, version

2.0. Technical report, 1995.

Kipf, T. N. and Welling, M. Semi-supervised classi-

fication with graph convolutional networks. CoRR,

abs/1609.02907, 2016. URL http://arxiv.org/

abs/1609.02907.

Koutsoukos, D., Nakandala, S., Karanasos, K., Saur, K.,

Alonso, G., and Interlandi, M. Tensors: An abstraction

for general data processing. Proc. VLDB Endow., 14

(10):1797±1804, jun 2021. ISSN 2150-8097. doi: 10.

14778/3467861.3467869. URL https://doi.org/

10.14778/3467861.3467869.

11

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

KOVACH, S., KOLICHALA, P., GU, T., and KJOLSTAD,

F. Indexed streams: A formal intermediate representation

for fused contraction programs. 2023.

Krieken, E., Tomczak, J., and Ten Teije, A. Storchastic: A

framework for general stochastic automatic differentia-

tion. Advances in Neural Information Processing Systems,

34:7574±7587, 2021.

Lee, D. and Seung, H. S. Algorithms for non-negative

matrix factorization. In Leen, T., Dietterich, T.,

and Tresp, V. (eds.), Advances in Neural Infor-

mation Processing Systems, volume 13. MIT

Press, 2000. URL https://proceedings.

neurips.cc/paper/2000/file/

f9d1152547c0bde01830b7e8bd60024c-Paper.

pdf.

Lee, W., Yu, H., Rival, X., and Yang, H. On correctness of

automatic differentiation for non-differentiable functions.

Advances in Neural Information Processing Systems, 33:

6719±6730, 2020.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,

Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling

giant models with conditional computation and automatic

sharding. arXiv preprint arXiv:2006.16668, 2020.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J.,

Ahmed, A., Josifovski, V., Long, J., Shekita, E. J.,

and Su, B.-Y. Scaling distributed machine learn-

ing with the parameter server. In 11th USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI 14), pp. 583±598, Broomfield, CO,

October 2014. USENIX Association. ISBN 978-1-

931971-16-4. URL https://www.usenix.org/

conference/osdi14/technical-sessions/

presentation/li_mu.

Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. Learning

entity and relation embeddings for knowledge graph com-

pletion. AAAI’15, pp. 2181±2187. AAAI Press, 2015.

Liu, Z., Zhou, K., Yang, F., Li, L., Chen, R., and Hu, X. Ex-

act: Scalable graph neural networks training via extreme

activation compression. In International Conference on

Learning Representations, 2021.

Liu, Z., Chen, S., Zhou, K., Zha, D., Huang, X., and Hu,

X. Rsc: Accelerating graph neural networks training via

randomized sparse computations, 2022.

Luo, S., Gao, Z. J., Gubanov, M., Perez, L. L., and Jermaine,

C. Scalable linear algebra on a relational database system.

IEEE Transactions on Knowledge and Data Engineering,

31(7):1224±1238, 2018.

Maclaurin, D., Duvenaud, D., and Adams, R. P. Autograd:

Effortless gradients in numpy. In ICML 2015 AutoML

Workshop, volume 238, pp. 5, 2015.

MLDB. 2017. URL https://mldb.ai/.

Moseley, B., Pruhs, K., Samadian, A., and Wang, Y. Rela-

tional algorithms for k-means clustering. In International

Colloquium on Automata, Languages and Programming,

2020.

Oktay, D., McGreivy, N., Aduol, J., Beatson, A., and Adams,

R. P. Randomized automatic differentiation, 2021.

Park, K., Saur, K., Banda, D., Sen, R., Interlandi, M., and

Karanasos, K. End-to-end optimization of machine learn-

ing prediction queries. In Proceedings of the 2022 Inter-

national Conference on Management of Data, pp. 587±

601, 2022.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., De-

Vito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A.

Automatic differentiation in pytorch, 2017. URL https:

//openreview.net/forum?id=BJJsrmfCZ.

Pearlmutter, B. A. and Siskind, J. M. Reverse-mode ad in

a functional framework: Lambda the ultimate backprop-

agator. ACM Transactions on Programming Languages

and Systems (TOPLAS), 30(2):1±36, 2008.

PostgreSQL, 2021. URL https://postgresml.

org/.

Redshift, 2021. URL https://aws.amazon.com/

redshift/features/redshift-ml/.

Revels, J., Lubin, M., and Papamarkou, T. Forward-

mode automatic differentiation in julia. CoRR,

abs/1607.07892, 2016. URL http://arxiv.org/

abs/1607.07892.

Rocklin, M. Dask: Parallel computation with blocked algo-

rithms and task scheduling. 2015.

Rusu, F. et al. Multidimensional array data management.

Foundations and Trends® in Databases, 12(2-3):69±220,

2023.

Sahni, C., Kate, K., Shinnar, A., Lam, H. T., and Hirzel,

M. Rasl: Relational algebra in scikit-learn pipelines. In

Workshop on Databases and AI, 2021.

Schule, M., Lang, H., Springer, M., Kemper, A., Neumann,

T., and Gunnemann, S. In-database machine learning

with sql on gpus. In 33rd International Conference on

Scientific and Statistical Database Management, SSDBM

2021, pp. 25±36, New York, NY, USA, 2021. Associa-

tion for Computing Machinery. ISBN 9781450384131.

doi: 10.1145/3468791.3468840. URL https://doi.

org/10.1145/3468791.3468840.

12

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

Seeger, M., Hetzel, A., Dai, Z., Meissner, E., and Lawrence,

N. D. Auto-differentiating linear algebra. arXiv preprint

arXiv:1710.08717, 2017.

Shaikhha, A., Fitzgibbon, A., Vytiniotis, D., and Pey-

ton Jones, S. Efficient differentiable programming in

a functional array-processing language. Proc. ACM Pro-

gram. Lang., 3(ICFP), jul 2019. doi: 10.1145/3341701.

URL https://doi.org/10.1145/3341701.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A.,

Koanantakool, P., Hawkins, P., Lee, H., Hong, M., Young,

C., et al. Mesh-tensorflow: Deep learning for super-

computers. Advances in neural information processing

systems, 31, 2018.

Sheldon, D., Winner, K., and Sujono, D. Learning in integer

latent variable models with nested automatic differentia-

tion. In International Conference on Machine Learning,

pp. 4615±4623. PMLR, 2018.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,

J., and Catanzaro, B. Megatron-lm: Training multi-

billion parameter language models using model paral-

lelism. arXiv preprint arXiv:1909.08053, 2019.

SlusËanschi, E. I. and Dumitrel, V. Adijac±automatic differ-

entiation of java classfiles. ACM Transactions on Mathe-

matical Software (TOMS), 43(2):1±33, 2016.

Syed, U. and Vassilvitskii, S. Sqml: Large-scale in-

database machine learning with pure sql. In Proceed-

ings of the 2017 Symposium on Cloud Computing, SoCC

’17, pp. 659, New York, NY, USA, 2017. Associa-

tion for Computing Machinery. ISBN 9781450350280.

doi: 10.1145/3127479.3132746. URL https://doi.

org/10.1145/3127479.3132746.

Tokui, S., Okuta, R., Akiba, T., Niitani, Y., Ogawa, T., Saito,

S., Suzuki, S., Uenishi, K., Vogel, B., and Yamazaki Vin-

cent, H. Chainer: A deep learning framework for accel-

erating the research cycle. In Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pp. 2002±2011. ACM, 2019.

Van MerriÈenboer, B., Breuleux, O., Bergeron, A., and Lam-

blin, P. Automatic differentiation in ml: Where we are

and where we should be going. Advances in neural infor-

mation processing systems, 31, 2018.

van MerriÈenboer, B., Moldovan, D., and Wiltschko, A. B.

Tangent: Automatic differentiation using source-code

transformation for dynamically typed array programming,

2018.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X.,

Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis,

G., Li, J., and Zhang, Z. Deep graph library: A graph-

centric, highly-performant package for graph neural net-

works, 2020.

Woznica, A., Kalousis, A., and Hilario, M. Kernels over

relational algebra structures. In PAKDD, volume 3518,

pp. 588±598. Springer, 2005.

Xu, L., Qiu, S., Yuan, B., Jiang, J., Renggli, C., Gan,

S., Kara, K., Li, G., Liu, J., Wu, W., Ye, J., and

Zhang, C. In-database machine learning with corgip-

ile: Stochastic gradient descent without full data shuf-

fle. In Proceedings of the 2022 International Con-

ference on Management of Data, SIGMOD ’22, pp.

1286±1300, New York, NY, USA, 2022. Association for

Computing Machinery. ISBN 9781450392495. doi: 10.

1145/3514221.3526150. URL https://doi.org/

10.1145/3514221.3526150.

Xu, Y., Lee, H., Chen, D., Hechtman, B., Huang, Y., Joshi,

R., Krikun, M., Lepikhin, D., Ly, A., Maggioni, M., et al.

Gspmd: general and scalable parallelization for ml com-

putation graphs. arXiv preprint arXiv:2105.04663, 2021.

Yoon, H., Nang, J. H., and Maeng, S. A distributed back-

propagation algorithm of neural networks on distributed-

memory multiprocessors. In 3rd Symposium on the Fron-

tiers of Massively Parallel Computation-Frontiers’ 90, pp.

358±363, 1990.

Yuan, B., Jankov, D., Zou, J., Tang, Y., Bourgeois, D.,

and Jermaine, C. Tensor relational algebra for machine

learning system design. arXiv preprint arXiv:2009.00524,

2020.

Zhang, Y., Mcquillan, F., Jayaram, N., Kak, N., Khanna,

E., Kislal, O., Valdano, D., and Kumar, A. Distributed

deep learning on data systems: a comparative analysis of

approaches. Proceedings of the VLDB Endowment, 14

(10), 2021.

Zheng, D., Song, X., Ma, C., Tan, Z., Ye, Z., Dong, J.,

Xiong, H., Zhang, Z., and Karypis, G. Dgl-ke: Training

knowledge graph embeddings at scale. In Proceedings

of the 43rd International ACM SIGIR Conference on Re-

search and Development in Information Retrieval, SIGIR

’20, pp. 739±748, New York, NY, USA, 2020. Associa-

tion for Computing Machinery.

Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z.,

Huang, Y., Wang, Y., Xu, Y., Zhuo, D., Xing,

E. P., Gonzalez, J. E., and Stoica, I. Alpa: Au-

tomating inter- and Intra-Operator parallelism for dis-

tributed deep learning. In 16th USENIX Sympo-

sium on Operating Systems Design and Implementa-

tion (OSDI 22), pp. 559±578, Carlsbad, CA, July

2022. USENIX Association. ISBN 978-1-939133-28-1.

13

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

URL https://www.usenix.org/conference/

osdi22/presentation/zheng-lianmin.

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., and Hu, X.

Towards deeper graph neural networks with differentiable

group normalization. Advances in neural information

processing systems, 33:4917±4928, 2020.

Zhou, L., Chen, J., Das, A., Min, H., Yu, L., Zhao,

M., and Zou, J. Serving deep learning models with

deduplication from relational databases. arXiv preprint

arXiv:2201.10442, 2022.

Zhu, R., Zhao, K., Yang, H., Lin, W., Zhou, C., Ai,

B., Li, Y., and Zhou, J. Aligraph: A comprehen-

sive graph neural network platform. Proc. VLDB En-

dow., 12(12):2094±2105, aug 2019. ISSN 2150-8097.

doi: 10.14778/3352063.3352127. URL https://doi.

org/10.14778/3352063.3352127.

Zou, J., Barnett, R. M., Lorido-Botran, T., Luo, S., Mon-

roy, C., Sikdar, S., Teymourian, K., Yuan, B., and

Jermaine, C. Plinycompute: A platform for high-

performance, distributed, data-intensive tool develop-

ment. In Proceedings of the 2018 International Con-

ference on Management of Data, SIGMOD ’18, pp.

1189±1204, New York, NY, USA, 2018. Association for

Computing Machinery. ISBN 9781450347037. doi: 10.

1145/3183713.3196933. URL https://doi.org/

10.1145/3183713.3196933.

14

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

A. Extensions To Arrays

In this paper, we have assumed that the value in each relation is a single real number. Effectively, this assumes that the

data is stored sparsely. For example, if we wish to store a matrix A relationally, the sparse relational representation is:

1 A(row INT, col INT, value DOUBLE)

Any missing value is assumed to be zero. However, as mentioned previously, this can have performance degradation if a

relation is used to store a vector, matrix, or higher-dimensional tensor that is not sparse. There is a small, fixed-size cost

associated with pushing each tuple through the system so a large dense computation may be problematic. In this case, it may

make more sense to store the data densely as ªchunksº:

1 A(row INT, col INT, value MATRIX[][])

A dense matrix stored in this fashion, along with well-implemented, high-performance CPU or GPU kernels to operate over

them, can result in excellent performance.

Fortunately, the ideas in this paper are easily extended to such ªtensor-relationalº computations, simply by extending

the kernel functions so that they operate over tensors rather than scalars. This only requires being able to differentiate

the kernel functions, which can be done by a conventional auto-diff framework such as JAX (Bradbury et al., 2018). By

storing tensors in relations, RA auto-diff provides an automatic and efficient method to automatically generate distributed

backpropagation algorithms. We provide a simple python tool can be used for RA auto-differentiation: https://github.

com/anonymous-repo-33/relation-algebra-autodiff

B. Experiment: Non-Negative Matrix Factorization

Task evaluated. We first benchmark a large-scale non-negative matrix factorization (NNMF). We are given the relation

Node with schema (ID INT, vec VECTOR[LEN]), storing node identifiers and embeddings of the nodes in the graph,

and Edge, which is a relation storing all the edges in a graph. The total number of nodes is N . The dimensionality of the

node embedding is D. We run experiments with the following four cases: (1) N = 40k, D = 40k; (2) N = 50k, D = 40k;

(3) N = 60k, D = 10k; (4) N = 10k, D = 60k.

Experiments. We benchmark the RA implementation (RA-NNMF) against Dask (Rocklin, 2015), a popular parallel

computation framework, and a careful ªby-handº implementation on top of MPI. All three implementations are using

stochastic gradient descent (SGD) with learning rate η = 0.1. Node embeddings are randomly initialized.

Results. We record per-epoch running time of three implementations in different cluster sizes: 2, 4, 8, and 16. The results

are shown in Figure 2. Dask heavily relies on the large memory capacity of the clusters and runs out of memory (OOM)

during backward propagation for the case N = 60k, D = 10k.

C. Experiment: Knowledge Graph Embedding

Task Evaluated. Finally, we implement two common knowledge graph embedding (KGE) algorithms: TransE-L2 (Bordes

et al., 2013) and TransR (Lin et al., 2015).

15

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

2 4 8 16
of Nodes

0

20

40

60

80

Pe
r

E
po

ch
 R

un
ni

ng
 T

im
e

(s
)

N = 10k, D = 60k
Dask
MPI
RA-NNMF (ours)

2 4 8 16
of Nodes

0

200

400

600

800

Pe
r

E
po

ch
 R

un
ni

ng
 T

im
e

(s
)

N = 40k, D = 40k
Dask
MPI
RA-NNMF (ours)

2 4 8 16
of Nodes

0

200

400

600

800

1000

Pe
r

E
po

ch
 R

un
ni

ng
 T

im
e

(s
)

O
O

M

O
O

M

O
O

M

N = 50k, D = 40k
Dask
MPI
RA-NNMF (ours)

2 4 8 16
of Nodes

0

200

400

600

Pe
r

E
po

ch
 R

un
ni

ng
 T

im
e

(s
)

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

O
O

M

N = 60k, D = 10k
Dask
MPI
RA-NNMF (ours)

Figure 2. NNMF per-epoch running times.

50 100 200
Embedding Size

0

50

100

150

200

Pe
r

E
po

ch
 R

un
ni

ng
 T

im
e

(s
)

31
.4

1G

47
.6

2G

O
O

M

O
O

M

O
O

M

O
O

M

4 nodes
TransE RA-KGE (ours)
TransE DGL-KE
TransR RA-KGE (ours)
TransR DGL-KE

50 100 200
Embedding Size

0

20

40

60

80

100

Pe
r

E
po

ch
 R

un
ni

ng
 T

im
e

(s
)

22
.8

G

35
.7

4G

O
O

M25
.8

G

37
G

O
O

M

8 nodes
TransE RA-KGE (ours)
TransE DGL-KE
TransR RA-KGE (ours)
TransR DGL-KE

50 100 200
Embedding Size

0

20

40

60

Pe
r

E
po

ch
 R

un
ni

ng
 T

im
e

(s
)

12
.2

G

15
.3

6G

18
.1

3G

12
.1

4G 16
G

28
.5

G

16 nodes
TransE RA-KGE (ours)
TransE DGL-KE
TransR RA-KGE (ours)
TransR DGL-KE

Figure 3. 100-iteration time for knowledge-graph-embedding training on Freebase; batch size is 1K.

Experiments. We train our KGE model on the Freebase data set. Freebase (Chah, 2017) contains 1.9 billion

triples in RDF format; it is a knowledge graph with 86M nodes, 339M edges, and 14,824 relations. We refer to our

PlinyCompute-based RA implementation (auto-generated via our relational auto-diff) as RA-KGE. We compare against

the distributed knowledge graph embedding training framework DGL-KE (Zheng et al., 2020). We split the dataset into a

training set (90%), a validation set (5%), and a testing set (5%). For each positive sample, 200 corrupted negative samples

are used. We pick the entity embedding size D = 50, 100, 200; For TransE, we choose the same embedding size for both

relations and entities. For TransR, we choose the double entity embedding size for relations. The optimizer is SGD with

learning rate η = 0.5. We consider three different cluster sizes: 4, 8, and 16 nodes. For DGL-KE, the dataset is manually

partitioned into 4, 8, and 16 parts using METIS.

Results. We observe and compare the time to perform 100 forward and back-prop iterations for each of the various

experimental settings. The results are shown in Figure 3. For DGL-KE the number after the per-iteration running time is the

maximum per-node memory usage. OOM is reported if the system failed due to lack of memory.

16

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

D. Example for RJPs

Matrix Multiplication:

Vector-Jacobian Product: Optimized Relation-Jacobian Product:

Distributed Matrix Multiplication:

SELECT X.row AS Z.row, W.col AS Z.col
 SUM (matrix_multiply (X.mat, W.mat))
FROM X, W
WHERE X.col = W.row
GROUP BY X.row, W.col

SELECT X.row AS W_gradient.row,
 Z_gradient.col AS W_gradient.col

 SUM (matrix_multiply (X.mat, Z_gradient.mat))
FROM X, Z_gradient
WHERE X.col = Z_gradient.row
GROUP BY X.row, Z_gradient.col

Linear Algebra: Relational Algebra:

Z = MatMul (X, W)

W_gradient
= MatMul (X_transpose, Z_gradient)

Forward Pass:

Backward Pass:

Figure 4. Correspondence between the same computation in linear algebra (left) and relational algebra/SQL (right) in forward pass for

computing Z and backward pass for computing gradients of W. The input matrices X and W are stored into relations by decomposing

matrices into chunks or blocks and operated over using high-performance kernels (such as matrix multiply). The RA-based computation

generated via auto-diff executed on a high-performance database engine provides an easy way to run a distributed backpropagation

algorithm (Yoon et al., 1990).

17

Auto-Differentiation of Relational Computations for Very Large Scale Machine Learning

Figure 5. The left part is the logistic regression. The right part is the generated query by RJPs for differentiating parameters in logistic

regression. The top 1const is a 11−1 while the bottom 1const is a 11−n. We apply all RJP optimizations for Σ and 1 mentioned in

Section 4.

18

