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ABSTRACT

User-generated product reviews are essential for online platforms

like Amazon and Yelp. However, the presence of fake reviews mis-

leads customers. GNN is the state-of-the-art method that detects

suspicious reviewers by exploiting the topologies of the graph con-

necting reviewers, reviews, and products. Nevertheless, the discrep-

ancy in the detection accuracy over different groups of reviewers

degrades reviewer engagement and customer trust in the review

websites. Unlike the previous belief that the difference between the

groups causes unfairness, we study the subgroup structures within

the groups that can also cause discrepancies in treating different

groups. This paper addresses the challenges of defining, approximat-

ing, and utilizing a new subgroup structure for fair spam detection.

We first identify subgroup structures in the review graph that lead

to discrepant accuracy in the groups. The complex dependencies

over the review graph create difficulties in teasing out subgroups

hidden within larger groups. We design a model that can be trained

to jointly infer the hidden subgroup memberships and exploits the

membership for calibrating the detection accuracy across groups.

Comprehensive comparisons against baselines on three large Yelp

review datasets demonstrate that the subgroup membership can be

identified and exploited for group fairness.
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1 INTRODUCTION

Existing fake reviews undermine trust in online commerce websites

hosting the reviews. Among all detection methods, graph-based ap-

proaches have shown great promise. However, prior methods [9, 10]

often prioritize the accuracy or robustness of fraud detectors while

overlooking detection fairness. Although some existing works have
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examined fairness issues in graph-based classifiers concerning sen-

sitive attributes (SAs) like gender, age, and race [1, 7, 16, 18, 19],

the anonymity of the spammers hinders the study of fairness prob-

lems regarding these traditional SAs. Graph-based spam detectors

also suffer from another fairness problem where reviewers are un-

fairly detected based on their historical post count (degree of the

reviewer nodes). Established reviewers and spammers receive le-

nient scrutiny as their few spam posts remain hidden behind among

abundant normal content. New reviewers with minimal posts face

a higher risk of false detection and stringent regulation. This dis-

crimination harms user trust and diminishes engagement in online

commerce. Formally, this fairness issue stems from variant graph

topologies [4]. Growing efforts have been made to address fairness

concerning topological bias [1, 7, 16, 21], yet few works specifically

focus on fairness in the context of graph-based spam detection.

Figure 1 illustrates a review graph comprising user, review, and

product nodes. Edges represent the instances where a user post

reviews on certain products. Users who post fewer reviews than

a specific threshold are labeled as łprotectedž users, denoted by

the SA 𝐴 = 1, while other users are considered łfavored" (𝐴 = 0).

When comparing the computational graphs of spams 𝑅1 and 𝑅2, the

presence of numerous non-spams dilutes the suspiciousness of 𝑅2
during the bottom-up message passing through GNN’s aggregation

operation in Eq. (1). Existing users with many reviews can reduce

suspiciousness and evade detection, which is unfair to new users.

Maintaining fairness based solely on node degree groups is im-

precise because detection fairness also depends on users’ ability to

hide spam among their normal reviews. Heterogeneous behaviors

among favored users, characterized by varying proportions of spam

to non-spam reviews, can result in different treatments by the de-

tector. In contrast, protected users, who post a few reviews from the

same class, exhibit homogeneous behavior and are treated equally

by the detector. Therefore, an additional SA 𝐴′ is required to accu-

rately describe the heterogeneous behavior of favored users and

indicate if their reviews are from the same class. In Figure 1,𝑈1 (the

łmixedž user, denoted by 𝐴′ = 1) posts both spams and non-spams,

while 𝑈2 (the łpurež user, denoted by 𝐴′ = 0), posts only spams.

𝑈1 deceives the detector by aggregating messages from non-spams

resulting in lower suspiciousness, whereas𝑈2 does not receive such

messages. However, to improve accuracy on the favored group, the

GNN unfairly targets spam reviews from pure users like𝑈2 because

they are easier to detect. By enabling the detection of spams from

mixed users, the GNN can improve its performance in detecting

such spams without negatively impacting the detection accuracy

of spams from pure users. Hence, distinguishing mixed users from

pure users is crucial. Solving this task involves three challenges:
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unfairly assigns a low suspiciousness to spam 𝑅2 posted by mixed user𝑈1 due to aggregation of messages from non-spams posted by𝑈1.
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Figure 2: Adding 𝐴′ improves the accuracy of the detector on

spams from the favored group (𝐴 = 0).

Define the subgroup structure. Previous research primarily fo-

cused on well-defined SAs. Some studies, such as [14, 24] divided

datasets into groups based on observable SAs and their combi-

nations. Others [2, 6] tackled problems involving unobserved or

noisy SAs. These methods were designed for I.I.D vector data with

well-defined SAs. In contrast, our approach focuses on enhancing

fairness by discovering a novel structural-based SA 𝐴′ and its ap-

proximation. Furthermore, previous works [11, 13] treated SAs as

characteristics of the data, not determined by ground truth labels,

whereas we aim to identify an undefined SA 𝐴′ specific to graph-

based spam detection and related to the ground truth of reviews.

Infer unknown subgroup membership. We hypothesize that

inferring 𝐴′ helps resolve unfairness among groups by capturing

users’ heterogeneous behavior. This subgroup indicator 𝐴′ distin-

guishes between users in the favored group who genuinely benefit

from their non-spam reviews. By incorporating the inferred indica-

tor 𝐴′, the GNN can achieve a more equitable detection of spams

posted by users in the favored group, promoting group fairness

(see Figure 2). However, inferring 𝐴′ is challenging as it relies on

unobservable ground truth labels, which are especially difficult to

obtain for test data and even for training data due to labeling lim-

itations and the accurate identification of spams being expensive

and time-consuming [22, 23].

Promote group fairness through subgroup information. Pre-

vious works on fairness consider multiple SAs and formulate opti-

mization problems with fairness constraints for each combination

of groups [14, 24]. These SAs must be precise and discrete to catego-

rize the data and ensure fair treatment of discriminated groups. Yet,

these premises do not apply to our inferred subgroup membership

indicator 𝐴′, which is probabilistic rather than deterministic. Also,

constraints based on thresholding noisy SAs can negatively impact

optimization algorithms. Given the sensitivity of fairness optimiza-

tion to group separation, we avoid using uncertain thresholds to

convert the probabilistic membership into a specific group.

Our main contribution is the discovery of a new structural-based

and label-related SA𝐴′ in fair spam detection on graphs. We define

𝐴′ and develop a GNN to infer its probability distribution for test

users with unlabelled reviews in ğ3.1. To address the issue of limited

training examples, we propose two fairness-aware data augmenta-

tion methods to synthesize nodes and edges in ğ3.2. Additionally,

we design a joint training method in ğ3.3, where the detector uti-

lizes the inferred 𝐴′. Experimental results show the presence of

unfairness within the favored group, which can be mitigated by

leveraging 𝐴′. Our method enhances group fairness by accurately

inferring the distribution of 𝐴′ during model training, regardless

of the threshold used to split the group based on 𝐴.

2 PRELIMINARIES

2.1 Spam detection based on GNN
Our spam detection is based on a review graph G = (V, E), where
V = {𝑣1, . . . , 𝑣𝑁 } and E ⊆ V × V denotes the set of nodes and
undirected edges, respectively. Each node 𝑣𝑖 ∈ V has a feature
vector x𝑖 with node index 𝑖 . G contains three types of nodes: user,
review, and product. Each node is from only one of the three types.

LetV𝑈 ,V𝑅 , andV𝑃 denote the sets of user, review, and product
nodes, respectively. 𝑣𝑖 has a set of neighboring nodes denoted by
N(𝑖) = {𝑣 𝑗 ∈ V|𝑒𝑖, 𝑗 ∈ E}. The work focuses on detecting spam
users and reviews, and the task is essentially a node classification
problem. GNN [15] is the state-of-the-art method for node classifi-

cation. The GNN detector 𝑓𝑾 (·) learns representation h
(𝑙 )
𝑖 for node

𝑣𝑖 at layer 𝑙 , where 𝑙 = 1, . . . 𝐿:

h
(𝑙 )
𝑖 = UPDATE

(

AGGREGATE
({

h
(𝑙−1)
𝑖

}⋃ {

h
(𝑙−1)
𝑗 | 𝑗 ∈ N(𝑖 )

})

,𝑾 (𝑙 )
)

, (1)

where AGGREGATE takes the mean over h
(𝑙 )
𝑖 and messages passed

from its neighboring nodes. UPDATE applies an affine mapping

with parameters 𝑾 (𝑙 ) followed by a non-linearity (ReLU in 𝑙 =

1, . . . , 𝐿 − 1 and Sigmoid in 𝑙 = 𝐿). The input vector x𝑖 = h
(0)
𝑖 is

the representation at layer 0. 𝑦𝑖 = h
(𝐿)
𝑖 ∈ R denotes the prediction

probability of 𝑣𝑖 being spam. The cross-entropy loss is minimized

for the training node setVTr:

L(𝑾 ; G) =
1

|VTr |

∑︁

𝑣𝑖 ∈V
Tr

(−𝑦𝑖 · log 𝑦̂𝑖 − (1 − 𝑦𝑖 ) · log(1 − 𝑦̂𝑖 ) ) , (2)
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where 𝑦𝑖 ∈ {0, 1} is the class for 𝑣𝑖 .𝑾 represents a collection of

parameters in all the layers 𝐿. Notations can be found in Appendix B.

2.2 Fairness regularizer

Group. Users V𝑈 are categorized into the protected group V𝑈
1 ,

consisting of users with degrees lower than the 𝑝-th percentile, and

the favored groupV𝑈
0 for the remaining users (see Figure 1 left).

The subscript denotes the value of 𝐴. ReviewsV𝑅 are assigned to

eitherV𝑅
1 orV𝑅

0 based on the group of their associated users.
Fairness regularizer. NDCG is a suitable metric for evaluating
the accuracy of the detector due to the highly skewed class dis-
tribution. A higher NDCG indicates a more accurate detector. It

can also separately measureV𝑅
0 andV𝑅

1 , allowing the evaluation
of group fairness through the NDCG gap (denoted by ΔNDCG). To

reduce ΔNDCG while promoting the NDCG ofV𝑅
0 without compro-

mising that ofV𝑅
1 , the detector incorporates a fairness regularizer

Rfair which takes negative NDCG ofV𝑅
0 . We adopt a differentiable

surrogate NDCG [4] for Rfair

Rfair (𝑾 ; G) = −
1

𝑍0

∑︁

𝑖,𝑗 :𝑦𝑖<𝑦𝑗

𝑣𝑖 ,𝑣𝑗 ∈V
𝑅
0
∩VTr

log
(

1 + exp
(

h
(𝐿)
𝑗 − h

(𝐿)
𝑖

))

, (3)

LGNN (𝑾 ; G) = L(𝑾 ; G) + 𝜆 · Rfair (𝑾 ; G), (4)

where 𝑍0 is the total number of pairs of spams and non-spams in

the trainingV𝑅
0 . LGNN is the objective function for training 𝑓𝑾 (·)

by adding Rfair to L(𝑾 ;G) in Eq. (2). 𝜆 > 0 is the importance

of the fairness regularizer. Note that the fairness regularizer Rfair
regularizes all the models referred to in this paper below.

3 METHODOLOGY

3.1 Subgroup definition and selection

Subgroups. The suspiciousness of spam posted by user 𝑣𝑖 decreases

as the GNN aggregates non-spams posted by 𝑣𝑖 . A new SA 𝐴′𝑖 is

defined to identify if user 𝑣𝑖 benefits from its non-spam reviews:

𝐴′𝑖 =

{

1 if 0 <

∑

𝑗∈N(𝑖 ) 𝑦 𝑗 < |N (𝑖) |

0 otherwise
(5)

where 𝑣𝑖 ∈ V
𝑈
0 . N(𝑖) are reviews posted by 𝑣𝑖 . Users with 𝐴′ = 1

have spam and non-spam reviews, while users with 𝐴′ = 0 only

have reviews belonging to either spams or non-spams. The hetero-

geneity in behavior leads to the split ofV𝑈
0 into subgroupsV𝑈

0,0

and V𝑈
0,1, where subscript denotes the value of 𝐴 and 𝐴′ respec-

tively. Since users inV𝑈
1 primarily post reviews in just one class,

𝐴′ is unnecessary when 𝐴 = 1.
Infer unobservable subgroup membership.We aim to utilize
the new 𝐴′ to improve the fairness and calibration of the detector
across subgroups. Since most review labels are unknown, we em-
ploy a GNN 𝑔𝜽 (·) to infer 𝐴′ for users whose reviews are not fully
labeled. In principle, many predictive models can map 𝑣𝑖 to𝐴

′
𝑖 . Still,

GNN is chosen for its ability to capture the heterogeneous char-
acteristics of users by modeling the distribution of neighborhood

data. Let𝐴′𝑖 (𝐴
′
𝑖 , resp.) represent the prediction (ground truth, resp.)

of 𝐴′ for user 𝑣𝑖 . The loss of predicting 𝐴
′
𝑖 using 𝑔𝜽 becomes:

L(𝜽 ; G) =
1

𝑍1

∑︁

𝑣𝑖 ∈V
Tr∩V𝑈

(−𝐴′𝑖 · log 𝐴̂
′
𝑖 − (1 − 𝐴

′
𝑖 ) · log(1 − 𝐴̂

′
𝑖 ) ), (6)

where 𝑍1 is the total number of training user nodes.

3.2 Fair Data augmentation

3.2.1 Augmentation for user subgroupV𝑈
0,1. To address the under-

fitting of 𝑔𝜽 caused by limited training mixed users in our dataset

(see Table 3 in Appendix D.1), we synthesize nodes to augment

mixed users and their reviews while preserving the original node

distribution inV𝑈
0,1. By replicating the mixed training users along

with their reviews for 𝑘 times, and slightly perturbing the copies

through pruning review connections, we ensure diverse but simi-

lar representations of the synthetic mixed users compared to the

original users. Specifically, oversampling adds multiple copies of

the minority without altering the node distribution, while pruning

edges connected to non-spam reviews and retaining edges con-

nected to scarce spams helps balance the class of reviews from

mixed users (see Figure 3 left).

3.2.2 Augmentation for minority review groupV𝑅
0 . It is challenging

to train the detector 𝑓𝑾 with a limited number of favored reviews

(see%V𝑅
0 in Table 3).We augment theminority groupV𝑅

0 following
a graph mixup method [25] that the mixup for GNN inputs, node
embeddings at each layer, and labels for the synthetic data become:

x̃𝑖 𝑗 = 𝛼x𝑖 + (1 − 𝛼 )x𝑗 , h̃
(𝑙 )
𝑖 𝑗 = 𝛼 h̃

(𝑙 )
𝑖 + (1 − 𝛼 )h̃

(𝑙 )
𝑗 , 𝑦̃𝑖 𝑗 = 𝛼𝑦𝑖 + (1 − 𝛼 )𝑦 𝑗 ,

where 𝛼 ∈ [0, 1] and x̃𝑖 𝑗 is the mixture of node attributes x𝑖 and x𝑗

at the input layer. h̃
(𝑙 )
𝑖 𝑗 is the mixture at the 𝑙-th layer synthesized

from the two hidden representations h̃
(𝑙 )
𝑖 and h̃

(𝑙 )
𝑗 (h̃

(0)
𝑖 𝑗 = x̃𝑖 𝑗 ). 𝑦𝑖 𝑗

is the label for x̃𝑖 𝑗 .
Our method selectively chooses nodes for mixup to address the

class imbalance between majority and minority groups or sub-
groups in our review graph. We sample the first node from spam

reviews in the favored groupV𝑅
0 to ensure that the synthetic re-

views resemble the original favored spams and effectively tackle
the class imbalance issue in this group. The sampling of the second

nodes involves three sets: our method (𝑆Tr1 ) and two variants sets

(𝑆Te0 and 𝑆Te1 ) as shown in Figure 3 (right). 𝑆Tr1 comprises spams from

the protected training group, while 𝑆Te0 and 𝑆Te1 consist of test re-
views from the favored group and the protected group, respectively.
The sets for sampling the first and second nodes are:

Sample first node from: 𝑆Tr0 =

{

𝑣𝑖 | 𝑣𝑖 ∈ V
𝑅
0 ∩ V

Tr, 𝑦𝑖 = 1
}

. (7)

Sample second node from one of: 𝑆Tr1 =

{

𝑣𝑗 | 𝑣𝑗 ∈ V
𝑅
1 ∩ V

Tr, 𝑦 𝑗 = 1
}

,

𝑆Te0 =

{

𝑣𝑗 | 𝑣𝑗 ∈ V
𝑅
0 ∩ V

Te
}

, 𝑆Te1 =

{

𝑣𝑗 | 𝑣𝑗 ∈ V
𝑅
1 ∩ V

Te
}

. (8)

Since the labels of reviews sampled from 𝑆Te0 and 𝑆Te1 are unknown,

the synthetic review has the same label as the first node, i.e.,𝑦𝑖 𝑗 = 1.

3.3 Joint model

3.3.1 Utilizing subgroupmembership. Incorporating subgroupmem-

bership into the objective function typically involves adding a fair-

ness regularizer that operates on the subgroups defined by the

inferred membership. However, existing fairness regularizers as-

sume deterministic group membership rather than the probabilistic

estimation provided by 𝑔𝜽 . We consider the inferred 𝐴′ as a sup-

plementary attribute that informs the detector about subgroup

membership and the uncertainty associated with its estimation. As
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Figure 3: Toy example of our proposed fair augmentation methods.

a result, the user’s feature vector is expanded to include 𝐴′, result-

ing in x′ = [x, 𝐴′] ∈ R𝑑+1, where 𝐴′ represents the probability of

the user having 𝐴′ = 1 as predicted by 𝑔𝜽 .

3.3.2 Optimization for the joint model. We propose a joint opti-
mization approach for two GNNs 𝑔𝜽 and 𝑓𝑾 , allowing them to

co-adopt to each other. The inferred 𝐴′ is treated as a function

of 𝜽 , denoted as 𝐴′ (𝜽 ), rather than a constant. Consequently, the

expanded user feature x′ (𝜽 ) = [x, 𝐴′ (𝜽 )] incorporates 𝜽 as param-
eters. The loss for optimizing the detector 𝑓𝑾 in Eq. (4) becomes
LGNN (𝑾 , 𝜽 ;G). By connecting the computational graph between
𝑾 and 𝜽 , 𝜽 receives gradients from 𝑓𝑾 to improve the accuracy of
inferring 𝐴′. Simultaneously, the updated 𝜽 is used to enhance the
performance of 𝑓𝑾 . During training,𝑾 and 𝜽 are updated jointly:

𝑾 ←𝑾 − 𝛽1∇𝑾 LGNN (𝑾 , 𝜽 ; G) (9)

𝜽 ← 𝜽 − 𝛽2∇𝜽 L(𝜽 ; G)
︸            ︷︷            ︸

Gradient from 𝑔𝜽

− 𝛽2∇𝜽 LGNN (𝑾 , 𝜽 ; G)
︸                       ︷︷                       ︸

Gradient from 𝑓W

(10)

where 𝛽1 (𝛽2) is the learning rate for updating𝑾 (𝜽 ). Please refer

to Algorithm 1 in Appendix C for a complete description.

4 EXPERIMENTS

Our research aims to address the following research questions:

RQ1: Are there fairness issues between the favored and protected

groups and between the mixed and pure groups when using a

GNN spam detector? Can the inferred 𝐴′ improve group fairness?

RQ2: How can we infer the subgroup membership 𝐴′ when there

is a shortage of training examples? RQ3: Can the joint training

method effectively enhance both the AUC of predicted𝐴′ and group

fairness simultaneously? RQ4: Does the accuracy of predicting 𝐴′

contribute to the improvement in group fairness?

4.1 Experimental Settings

4.1.1 Datasets. We used three Yelp review datasets (referred to

as łChiž, łNYCž, and łZipž, see Table 3). For each dataset, user

nodes are divided into the favored group (top 𝑝% high-degree users,

𝐴 = 0) and the protected group (the remaining users, 𝐴 = 1) by

the percentile 𝑝 in Section 2.2. More statistical information about

datasets can be found in Appendix D.1.

4.1.2 Evaluation Metrics. NDCG was used to assess the accuracy

of the detector. A higher NDCG indicates that the detector assigns

higher suspiciousness values to spams than non-spams. We intro-

duced a metric called łAverage False Ranking Ratiož (AFRR) to

evaluate the ranking of spams within the group of 𝐴 = 0. AFRR

measures the average relative ranking between spams from mixed

and pure users. A lower AFRR means fewer non-spams ranked

higher than spams. AUC was utilized to evaluate the performance

of the second GNN 𝑔𝜽 in predicting 𝐴′. A higher AUC indicates

better predictive performance.

Refer to Appendix D.1 for more details, including the formal

definition of AFRR and the characteristics of each metric.

4.1.3 Methods compared. Joint+GNN-STr
1

denotes our method:

Joint refers to the joint training for two GNNs (𝑓𝑾 and 𝑔𝜽 in

Section 3.3), GNN-STr
1

refers to a GNN with our mixup method

in Eq. (8). ła+bž represents a combination between method łaž for

obtaining the value of 𝐴′ and method łbž, a spam detector.

Baselines for obtaining the value of 𝐴′ (selections for łaž):

w/o does not involve 𝐴′. Random randomly assigns 1/0 to 𝐴′. GT

assigns the ground truth of 𝐴′ for users, which is the ideal case, as

𝐴′ is unknown. Pre-trained is a variant of Joint that pre-trains 𝑔𝜽
to infer 𝐴′ and fixes the inferred 𝐴′ when training 𝑓𝑾 .

Baselines for the spam detectors (selections for łbž):

FairGNN [7] is an adversarial method that aims to achieve fair

predictions for all groups defined by the known 𝐴. EDITS [8]

modifies the node attribute and the graph structure to debias the

graph. FairGNN and EDITS consider 𝐴 as a known SA and exclude

any information about 𝐴′ defined by our work. GNN is the vanilla

GNN. GNN-STe
0

is a GNN with the mixup Case 2 in Eq. (8). GNN-

S
Te
1

is a GNN with the mixup Case 3 in Eq. (8).

4.2 Results

Due to page limitations, we only include the results for answering

RQ1, with a focus on the percentile 𝑝 = 20. Additional results for

answering RQs 2-4 and using percentiles 𝑝 = {15, 10} can be found

in Appendix D.2.

Group Fairness. To answerRQ1, we take the gap in NDCGs values

between groups of 𝐴 = 0 and 𝐴 = 1 as the fairness metric, denoted

by ΔNDCG. Table 1 presents the NDCG values for the outputs of
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Table 1: NDCG values for spam detectors on three Yelp datasets are shown with a 20-percentile cutoff for defining groups of

𝐴 based on user degree. The table displays the mean and standard deviation of NDCG scores for all reviews (NDCG(V𝑅) ↑),

for the group with 𝐴 = 1 (NDCG(V𝑅
1 ) ↑), and the NDCG difference between the two groups (ΔNDCG ↓) across all ten splits. ł↑ž

means the larger, the better; ł↓ž means the opposite. Our method is denoted by ł*ž. A smaller ΔNDCG indicates a fairer model.

Detector Metrics(%) Chi NYC Zip

FairGNN [7]
NDCG(V𝑅 ) ↑ 86.2±0.1 85.9±0.0 89.6±0.5

NDCG(V𝑅
1 ) ↑ 86.2±0.1 86.0±0.0 89.6±0.4

ΔNDCG ↓ 53.7±2.1 20.7±1.1 36.4±4.6

EDITS [8]
NDCG(V𝑅 ) ↑ 84.3±0.3 84.9±0.1 89.2±0.0

NDCG(V𝑅
1 ) ↑ 84.3±0.3 85.1±0.1 89.3±0.0

ΔNDCG ↓ 50.9±2.3 32.7±1.5 39.4±10.6

Detector Metrics(%)
GNN(𝑔𝜽 ) GNN(𝑔𝜽 ) GNN(𝑔𝜽 )

w/o Pre-trained Joint* w/o Pre-trained Joint* w/o Pre-trained Joint*

GNN
NDCG(V𝑅 ) ↑ 84.5±0.9 83.2±1.5 83.3±2.2 85.2±0.8 85.1±0.8 85.2±0.5 88.4±1.4 87.6±1.5 88.6±1.0

NDCG(V𝑅
1 ) ↑ 84.7±0.9 83.5±1.3 83.6±2.1 85.1± 0.8 85.3±0.8 85.2±0.5 88.4±1.4 87.6±1.5 88.6±1.0

ΔNDCG ↓ 51.2±2.1 51.0±3.0 50.7±3.5 21.9±7.0 21.8±7.8 21.3±8.9 36.3±10.4 34.3±10.8 34.8±11.1

GNN-STr
1
*

NDCG(V𝑅 ) ↑ 85.6±0.7 85.8±0.5 85.6±0.8 85.8±0.1 85.9±0.0 85.9±0.0 89.7±0.2 89.7±0.1 89.6±0.1

NDCG(V𝑅
1 ) ↑ 85.6±0.7 85.8±0.5 85.7±0.8 85.9±0.0 86.0±0.0 86.0±0.0 89.7±0.2 89.7±0.1 89.6±0.1

ΔNDCG ↓ 51.6±0.9 50.3±1.0 50.1±1.0 19.1±5.5 19.0±5.2 17.9±6.1 38.7±7.2 36.0±9.0 34.3±11.5

GNN-STe
0

NDCG(V𝑅 ) ↑ 85.1±0.7 85.3±1.4 85.2±1.4 85.3±0.6 85.4±0.5 85.4±0.4 89.4±0.6 89.6±0.1 89.0±0.06

NDCG(V𝑅
1 ) ↑ 85.2±0.8 83.4±1.3 83.5±1.3 85.2±0.6 85.5±0.4 85.5±0.4 89.4±0.06 89.0±0.01 89.1±0.06

ΔNDCG ↓ 51.2±1.5 50.9±2.4 50.9±2.3 21.9±6.9 21.9±6.3 20.9±9.4 38.9±7.6 36.9±9.5 34.9±11.0

GNN-STe
1

NDCG(V𝑅 ) ↑ 84.7±1.3 83.7±0.9 83.1±0.9 85.7±0.1 85.8±0.1 85.8±0.2 89.6±0.3 89.6±0.1 89.5±0.3

NDCG(V𝑅
1 ) ↑ 84.8±1.3 83.9±0.9 83.4±0.9 85.8±0.1 85.8±0.1 85.8±0.1 89.6±0.3 89.6±0.1 89.5±0.3

ΔNDCG ↓ 51.3±0.6 50.8±0.6 50.2±1.0 21.0±5.4 19.8±5.4 19.3±6.8 38.7±7.2 36.2±9.5 34.6±11.4

various spam detectors using 20th percentile of user node degrees

as the cutoff for groups of 𝐴. The table includes detectors grouped

into two sections. The upper section consists of FairGNN and

EDITS, which do not consider 𝐴′ defined in our work. The lower

section includes four detectors that consider𝐴′ within each dataset

column representing three methods for obtaining the value of 𝐴′.

FairGNN, EDITS, and w/o+GNN detectors exhibit significant

ΔNDCG values, indicating the presence of a widespread fairness is-

sue in the spam-detection task on the graph by applying GNN-based

fair models. Notably, FairGNN and EDITS have larger ΔNDCG val-

ues, implying that their improvements in NDCGs favor the favored

group more than the protected group, exacerbating fairness con-

cerns. In contrast, for detectors in the lower section, the proposed

Joint method consistently demonstrates the smallest ΔNDCG in

most cases.

It is worth noting that in Joint, 𝑔𝜽 receives an additional gra-

dient from 𝑓𝑾 , as indicated by Eq. (10). However, for detectors

without our fair data augmentation (i.e., Joint+GNN), this addi-

tional gradient may cause 𝑔𝜽 to infer 𝐴′ and negatively impact the

performance of 𝑓𝑾 . Among the methods for obtaining the value

of 𝐴′, the detector with our augmentation GNN-STr1 consistently

shows the smallest ΔNDCG in almost all cases. This suggests that

maintaining the original distribution while performing the mixup

method is more challenging in datasets with fewer mixed users,

such as Chi and Zip.

5 CONCLUSION

This work addresses fairness in a graph-based spam detection task,

specifically focusing on the unfairness between the protected and

favored groups defined by the known SA node degree. To capture

the heterogeneous behaviors of the favored users, 𝐴′ is introduced,

dividing favored users into mixed and pure categories. The value of

𝐴′ for test users is inferred using a second GNN 𝑔𝜽 and integrated

as a supplementary feature feed into the detector 𝑓𝑾 . Our pro-

posed Jointmethod simultaneously improves detector fairness and

enhances the quality of inferred 𝐴′. The experimental results on

three Yelp datasets, incorporating fair data augmentation, validate

the effectiveness of the Joint method. Our approach successfully

promotes group fairness by enabling the detector to enhance the

suspiciousness of spam from both pure and mixed users.
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A RELATED WORK

A.1 Fairness on graphs.

Fairness on graphs has been explored from various perspectives.

Researchers have aimed to achieve fairness in node embeddings,

representations, and classification results regarding discrete and

well-defined sensitive attributes [5, 19]. Adversarial frameworks

have been introduced to mitigate unfairness biases related to sensi-

tive attribute [1, 3, 7], where fairness regularizers are incorporated

to ensure insensitivity of the model towards those attributes. Meth-

ods like FairGNN [7] employ adversarial debiasing by leveraging

an additional GNN to estimate missing sensitive information. Other

approaches modify graph topology or edge weights to obtain fair

node embeddings or predictions. FairAdj [16] adjusts edge connec-

tions and learns a fair adjacency matrix by adding contains for

graph structure. FairEdit [17] proposes model-agnostic algorithms

which perform edge addition and deletion using the gradient of fair-

ness loss. FairDrop [21] addresses bias by excluding biased edges

to counteract homophily. However, these methods typically rely

on known or well-defined sensitive attributes. Some studies have

also investigated fairness problems involving multiple sensitive

attributes, which may lead to fairness violations when enforcing

fairness simultaneously across all attributes. Approaches like those

in [14, 24] have designed classifiers with multiple fairness con-

straints generated from combinations of sensitive attributes.

A.2 Augmentation on the graph.

Graph augmentation has gained significant attention in recent

years [27]. Studies such as [12, 25] have focused on augmenting

graphs at the node level, generating synthetic data through tech-

niques like node mixup or node removal. Additionally, graph aug-

mentation has been performed at the edge level, including modi-

fications such as adding orr removing edges, either deterministi-

cally [28] or stochastically [20]. Moreover, some methods augment

graph data at the node feature level by randomly masking node

features [26].

B NOTATION

Table 2 provides a summary of the key notations used throughout

this paper.

C ALGORITHM

D ADDITIONAL RESULTS

D.1 Experimental Details

D.1.1 Dataset and Setups. The Yelp datasets (łChiž, łNYCž, and

łZip’) are commonly used in previous spam detection tasks [4, 9],

containing three types of node: products, reviews, and users (see

Table 3). To study fairness spam detection regarding the degree of

user nodes, we set a cutoff degree of user nodes (𝑝-th percentile in

Section 2.2). We conduct experiments with 𝑝 ∈ {20, 15, 10} treated

as a hyper-parameter distinguishing favored (top 𝑝% high-degree

users, 𝐴 = 0) from protected groups (the remaining users, 𝐴 = 1).

Reviews have the same value of 𝐴 as their associated users. The

favored users are further split into pure (𝐴′ = 0) and mixed (𝐴′ =

Table 2: Notations and definitions.

Notations Definitions

Graph notations

G Review graph

V, E Nodes and Edges of graph G

x𝑖 , 𝑦𝑖 Feature and label of node 𝑣𝑖

N(𝑖 ) Set of direct neighbors of 𝑣𝑖

|V | Cardinality of a set V

VTr,VTe Training nodes and test nodes

V𝑈 ,V𝑅,V𝑃 User, review, and product nodes

Group notations

𝐴,𝐴′ Binary sensitive attributes (0/1)

V𝑅
𝑎 ,V𝑈

𝑎 Review and user nodes from group of 𝐴 = 𝑎

V𝑅
𝑎,𝑎′

,V𝑈
𝑎,𝑎′

Review and user nodes from group of 𝐴 = 𝑎 and

𝐴′ = 𝑎′

Model notations

𝑓𝑾 ( ·), 𝑔𝜽 ( ·) GNNs with parameters𝑾 and 𝜽

𝑦̂𝑖 , 𝐴̂
′
𝑖 Output of 𝑓𝑾 ( ·), 𝑔𝜽 ( ·) for 𝑣𝑖

h
(𝑙 )
𝑖

Representation of 𝑣𝑖 on layer 𝑙

x̃𝑖 𝑗 Synthetic node by mixing-up 𝑣𝑖 and 𝑣𝑗

𝑦̃𝑖 𝑗 Label for the synthetic node x̃𝑖 𝑗

Algorithm 1 Joint training for 𝑔𝜽 and 𝑓𝑾 .

Input: graph G; node features 𝑿 ; sensitive attribute 𝐴; training epochs

𝑇 ; hyper-parameter 𝜆, learning rates 𝛽1 and 𝛽2, and replication times 𝑘 .

Output: optimal 𝜽 and𝑾 of 𝑔𝜽 and 𝑓𝑾 , respectively.

Initialize parameters 𝜽 and𝑾 .

Replicate users and reviews for 𝑘 times as in Section 3.2.1. ⊲

Augmentation for V𝑈
0,1.

for 𝑡 = 1, . . . ,𝑇 do

Prune non-spam edges as in Section 3.2.1. ⊲ Add data variations

Infer Pr(𝐴′ = 1) for users using 𝑔𝜽 .

Concatenate 𝐴̂′ to user feature vectors as in Section 3.3.

Mixup between two reviews sampled from 𝑆Tr0 as in Eq. (7) and one

of
{

𝑆Tr1 , 𝑆Te0 , 𝑆Te1
}

as in Eq. (8). ⊲ Augmentation for V𝑅
0 .

Update𝑾 and 𝜽 following Eq. (9) and (10).

end for

1) users following Eq. (5). Users are divided into training (30%),

validation (10%), and test (60%) sets with their associated reviews.

D.1.2 Evaluation Metrics. For evaluating the group fairness, we

begin by calculating the NDCG score on group of V𝑅
1 and V𝑅

0 ,

denoted as NDCG(V𝑅
1 ) and NDCG(V𝑅

0 ), respectively. Then, the

group fairness can be measured by the NDCG gap

ΔNDCG = NDCG(V𝑅
1 ) − NDCG(V

𝑅
0 ). (11)

Note that the GNN detector always achieves better performance on

V𝑅
1 , i.e., ΔNDCG > 0 holds all the time. A smaller ΔNDCG indicates

fairer detection results for two groups involved.
łAverage FalseRankingRatiož is designed to effectively evaluate

the intricate ranking performance inside the group of 𝐴 = 0. AFRR
computes the average of relative ranking between spams from
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Table 3: Statistics of the datasets. We list the numbers of

products, reviews, and users with the proportion of fa-

vored users/reviews (%V𝑈
0 /%V𝑅

0 ) and mixed users/reviews

(%V𝑈
0,1/%V

𝑅
0,1) under 20-th, 15-th, and 10-th percentile (PC) of

cutoff degree of the user groups. The last column gives the

ratio of spam in the group of 𝐴 = 0 to 𝐴 = 1.

Name
Data Statistics 𝑃 (𝑌=1|𝐴=0)

𝑃 (𝑌=1|𝐴=1)
|V𝑃 | |V𝑅 | |V𝑈 |

Chi 201

67, 395 38, 063

PC %V𝑅
0 %V𝑅

0,1 %V𝑈
0 %V𝑈

0,1

20th 13.581% 0.116% 1.781% 0.011% 0.0438
15th 18.687% 0.129% 3.003% 0.026% 0.0125
10th 27.003% 0.224% 5.735% 0.058% 0.0282

NYC 923

358, 911 160, 220

PC %V𝑅
0 %V𝑅

0,1 %V𝑈
0 %V𝑈

0,1

20th 12.665% 0.193% 0.760% 0.009% 0.0479
15th 16.264% 0.258% 1.171% 0.018% 0.0289
10th 23.096% 0.360% 2.260% 0.034% 0.0420

Zip 5, 044

608, 598 260, 277

PC %V𝑅
0 %V𝑅

0,1 %V𝑈
0 %V𝑈

0,1

20th 6.859% 0.050% 0.272% 0.002% 0.0426
15th 15.658% 0.145% 1.020% 0.009% 0.0139
10th 22.342% 0.278% 1.968% 0.018% 0.0241

mixed and pure users

AFRR𝐴′ =
1

𝑍

∑︁

𝑦𝑗 =1

𝑣𝑗 ∈V
𝑅
0,𝐴′

∑|V𝑅
0 |

𝑖=1 ✶
[

𝑦̂𝑖 > 𝑦̂ 𝑗 , 𝑦𝑖 = 0
]

∑|V𝑅
0
|

𝑖=1 ✶[𝑦𝑖 = 0]

, 𝐴′ ∈ {0, 1} (12)

where 𝐴′ ∈ {0, 1} denotes the subgroup membership. 𝑍 is the

number of spams from a subgroup.V𝑅
0,𝐴′

denotes the reviews from

a subgroup users. The ratio in the above equation calculates the

proportion of non-spams ranked higher than spams over all the

non-spams from the group of𝐴 = 0. The lower the AFRR, the fewer

non-spams ranked higher than spams. Compared to NDCG, AFRR

considers the non-spams across different subgroups and ignores

the relative ranking of spams from the other subgroup.

Since there is a second GNN 𝑔𝜽 , AUC is employed to evaluate

the performance of 𝑔𝜽 in predicting 𝐴′. The larger the AUC value,

the more accurate 𝐴′ given by 𝑔𝜽 .

D.1.3 Hyperparameter setting. We set 𝑇 = 300, 𝜆 = 5, 𝛽1 = 𝛽2 =

0.001, weight decay = 0.0001 for both 𝑓𝑾 and 𝑔𝜽 in Algorithm 1,

mixup weight 𝛼 = 0.8. There are 10 training-validation-test splits

of the three datasets, and all the results are based on the aggregated

performance of all splits.

D.2 Results

D.2.1 Group Fairness. Like the big table given in the main pa-

per, we present the NDCG scores when setting the percentile

𝑝 = {15, 10} in Table 4 and 5. Still, FairGNN and EDITS give

relatively large ΔNDCG in two tables, demonstrating the presence

of the fairness issue. Also, our method achieves the smallest ΔNDCG

among all the methods in most cases.

D.2.2 Explanation of improved group fairness. Rather than sim-

ply obtaining a fair spam detector towards favored and protected

groups, we also want to verify the effectiveness of introducing

𝐴′ in mitigating this intra-group fairness issue. Figure 6 presents

the test AFRRs of pure and mixed subgroups across four methods

{w/o+GNN, Joint+GNN-STr1 , Joint+GNN-STe0 , Joint+ GNN-STe1 }.

It demonstrates the impact of adding 𝐴′ on spams from subgroups

and resulting improvements in NDCG for the protected group.

w/o+GNN reveals that spams from mixed users have larger AFRRs

compared to the pure users across all datasets, indicating the basic

GNN tends to rank spams from pure users higher than those from

mixed users within the favored group. By introducing 𝐴′ and em-

ploying the fair augmentation methods, the AFRR is reduced for

mixed users and occasionally for pure users. Our method (right-

most) improves the NDCG for the protected group primarily by

elevating the ranking of spams from mixed users and sometimes

from pure users.

D.2.3 Evaluation of the Joint method on improving the quality of𝐴′.

To answer RQ2 and RQ3, we investigate the relationship between

group fairness and the quality of inferred 𝐴′. In Table 1, 4, and 5,

we observe that Joint method generally exhibits smaller ΔNDCG

compared to Pre-trained. To gain a deeper understanding of the

advantages of Joint, we examine the AUC gap of 𝐴′ (𝑥-axis), as es-

timated by 𝑔𝜽 , plotted against the corresponding ΔNDCG difference

(𝑦-axis) in Figure 4. Most models in the area I indicate that Joint

simultaneously promotes the accuracy of 𝑔𝜽 and the fairness of 𝑓𝑾 .

Since Joint updates 𝜽 using the additional gradient coming from

𝑓𝑾 (see Eq. (10)), our fair mixup strategies effectively mitigate the

overfitting for 𝑔𝜽 with more gradients from the synthetic data.

D.2.4 Impact of the accurate 𝐴′ on group fairness. Given the cor-

relation between the quality of 𝐴′ and group fairness, we further

investigate this relationship to answer RQ4 by manipulating the

level of noise in 𝐴′. To assess this correlation, we introduce meth-

ods that either increase (i.e., Random method) or decrease (i.e.,

GT method) the noise in 𝐴′. Figure 7 presents the correspond-

ing ΔNDCG for detectors employing different approaches to assign

values to 𝐴′, where the 𝑥-axis represents the reduction in noise,

progressing from left to right. Notably, as the detector obtains a

more accurate inference of the values of 𝐴′, the ΔNDCG decreases.

D.2.5 Sensitivity studies for the replication times 𝑘 and if pruning

non-spam edges. Figure 5 illustrates the test AUCs of 𝑔𝜽 for dif-

ferent replications values 𝑘 = {50, 100} and the effect of pruning

non-spams edges (as discussed in Section 3.2.1). Pruning generally

yields better AUCs compared to no pruning, except for the case

of 𝑘 = 100 on the Zip dataset. Furthermore, the AUCs for the Chi

and Zip datasets tend to decrease as the value of 𝑘 increases. The

sensitivity can be attributed to the limited presence of mixed users

in Chi and Zip, making it more challenging to effectively mimic the

original node distribution with synthesized data, thereby leading

to overfitting of 𝑔𝜽 . Hence, the choice of 𝑘 is highly related to the

dataset distribution. By evaluating the validation set, we determine

that the optimal replication values are 𝑘 = 100 for NYC and 𝑘 = 50

for Chi and Zip.
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Table 4: NDCG values for the outputs of detectors on Yelp datasets with a user degree cutoff at the 15-percentile for defining

the group of 𝐴. The table displays the mean and standard deviation of NDCG scores for all reviews (NDCG(V𝑅) ↑), for the

group with 𝐴 = 1 (NDCG(V𝑅
1 ) ↑), and the NDCG difference between the two groups (ΔNDCG ↓) across all ten splits. ł↑ž means

the larger, the better; ł↓ž means the opposite. Our method is denoted by ł*ž. A smaller ΔNDCG indicates a fairer model.

Detector Metrics(%) Chi NYC Zip

FairGNN [7]
NDCG(V𝑅 ) ↑ 86.2±0.2 85.9±0.1 89.9±0.0

NDCG(V𝑅
1 ) ↑ 86.3±0.2 86.0±0.1 90.0±0.0

ΔNDCG ↓ 45.8±1.7 20.0±2.4 31.0±2.7

EDITS [8]
NDCG(V𝑅 ) ↑ 84.3±0.2 85.0±0.1 89.2±0.0

NDCG(V𝑅
1 ) ↑ 84.4±0.2 85.1±0.1 89.3±0.0

ΔNDCG ↓ 43.8±2.6 32.4±1.5 34.4±3.5

Detector Metrics(%)
GNN(𝑔𝜽 ) GNN(𝑔𝜽 ) GNN(𝑔𝜽 )

w/o Pre-trained Joint* w/o Pre-trained Joint* w/o Pre-trained Joint*

GNN
NDCG(V𝑅 ) ↑ 84.3±1.3 84.3±0.9 84.4±0.9 85.7±0.2 84.5±0.4 84.6±0.5 89.5±0.2 88.9±0.6 88.9±0.6

NDCG(V𝑅
1 ) ↑ 84.6±1.1 84.7±0.7 84.8±0.7 85.8± 0.2 84.6±0.4 84.6±0.5 89.5±0.2 88.9±0.6 88.9±0.7

ΔNDCG ↓ 41.8±2.4 40.9±3.7 40.9±4.0 16.3±3.9 15.8±2.7 15.2±6.1 26.1±3.4 26.6±2.5 25.9±2.7

GNN-STr
1
*

NDCG(V𝑅 ) ↑ 86.0±0.4 85.9±0.3 85.9±0.2 85.9±0.1 85.9±0.1 85.9±0.1 89.7±0.1 89.9±0.0 87.9±2.1

NDCG(V𝑅
1 ) ↑ 86.0±0.4 86.0±0.3 86.0±0.2 85.9±0.1 85.9±0.1 85.9±0.1 89.8±0.1 89.9±0.0 87.9±2.1

ΔNDCG ↓ 43.2±2.0 41.9±5.8 40.5±5.1 16.5±3.8 15.6±2.9 15.6±3.6 26.4±3.3 27.0±3.2 22.7±4.2

GNN-STe
0

NDCG(V𝑅 ) ↑ 84.4±1.5 84.3±1.1 84.4±0.9 85.8±0.2 84.7±0.4 84.7±0.4 89.4±0.2 89.1±0.6 89.1±0.6

NDCG(V𝑅
1 ) ↑ 84.7±1.1 84.6±0.9 84.8±0. 85.9±0.2 84.7±0.5 84.7±0.5 89.5±0.2 89.1±0.6 89.2±0.6

ΔNDCG ↓ 43.4±2.4 41.7±4.6 41.1±4.2 16.6±4.1 15.7±3.0 15.6±3.6 26.2±4.0 27.2±3.2 25.3±2.7

GNN-STe
1

NDCG(V𝑅 ) ↑ 85.9±0.5 85.8±0.3 85.9±0.3 85.8±0.1 85.4±0.3 85.5±0.3 89.8±0.1 89.9±0.1 89.9±0.1

NDCG(V𝑅
1 ) ↑ 85.9±0.5 85.9±0.3 85.9±0.3 85.9±0.2 85.5±0.3 85.5±0.3 89.8±0.1 89.9±0.1 89.9±0.1

ΔNDCG ↓ 42.6±2.8 40.7±3.7 40.7±3.7 16.0±3.9 15.5±3.0 15.6±3.3 26.1±3.5 27.1±2.4 24.9±2.7

Table 5: NDCG values for the outputs of detectors on Yelp datasets with a user degree cutoff at the 10-percentile for defining

the group of 𝐴. The table displays the mean and standard deviation of NDCG scores for all reviews (NDCG(V𝑅) ↑), for the

group with 𝐴 = 1 (NDCG(V𝑅
1 ) ↑), and the NDCG difference between the two groups (ΔNDCG ↓) across all ten splits. ł↑ž means

the larger, the better; ł↓ž means the opposite. Our method is denoted by ł*ž. A smaller ΔNDCG indicates a fairer model.

Detector Metrics(%) Chi NYC Zip

FairGNN [7]
NDCG(V𝑅 ) ↑ 86.2±0.2 85.9±0.1 89.9±0.0

NDCG(V𝑅
1 ) ↑ 86.4±0.2 86.0±0.1 90.0±0.0

ΔNDCG ↓ 33.8±5.4 22.4±1.9 24.8±1.6

EDITS [8]
NDCG(V𝑅 ) ↑ 84.3±0.2 85.0±0.1 89.2±0.0

NDCG(V𝑅
1 ) ↑ 84.5±0.2 85.2±0.1 89.4±0.0

ΔNDCG ↓ 37.1±2.0 30.0±1.2 28.9±1.3

Detector Metrics(%)
GNN(𝑔𝜽 ) GNN(𝑔𝜽 ) GNN(𝑔𝜽 )

w/o Pre-trained Joint* w/o Pre-trained Joint* w/o Pre-trained Joint*

GNN
NDCG(V𝑅 ) ↑ 85.4±0.5 84.7±1.3 84.9±1.4 84.8±0.4 84.5±0.3 84.6±0.4 89.7±0.3 89.6±0.6 88.9±0.6

NDCG(V𝑅
1 ) ↑ 85.7±0.4 85.3±0.8 85.4±0.9 84.8± 0.4 84.6±0.3 84.7±0.4 89.8±0.3 89.6±0.6 89.8±0.4

ΔNDCG ↓ 34.7±1.5 33.9±2.5 34.7±1.5 19.7±1.6 19.1±1.6 18.7±2.0 25.0±1.8 23.7±1.7 23.6±1.7

GNN-STr
1
*

NDCG(V𝑅 ) ↑ 85.9±0.4 86.1±0.2 86.1±0.2 85.9±0.1 85.9±0.1 85.9±0.1 89.7±0.1 89.9±0.0 89.9±0.0

NDCG(V𝑅
1 ) ↑ 85.9±0.4 86.2±0.2 86.2±0.2 86.0±0.1 86.0±0.1 86.0±0.1 89.8±0.1 90.0±0.0 90.0±0.0

ΔNDCG ↓ 34.1±4.6 33.7±3.0 33.2±2.6 19.1±1.9 16.8±1.5 16.6±1.9 25.1±1.6 23.4±1.6 23.3±1.4

GNN-STe
0

NDCG(V𝑅 ) ↑ 85.8±0.5 86.1±0.3 86.1±0.2 85.9±0.1 85.4±0.3 85.4±0.3 89.8±0.1 90.0±0.1 89.9±0.1

NDCG(V𝑅
1 ) ↑ 85.9±0.5 86.2±0.3 86.2±0.2 86.0±0.1 85.5±0.3 85.5±0.3 89.9±0.1 90.0±0.1 90.0±0.1

ΔNDCG ↓ 33.6±4.4 34.1±3.3 33.8±3.0 19.7±2.0 18.6±1.5 18.6±1.9 25.1±1.6 23.7±1.6 23.6±1.4

GNN-STe
1

NDCG(V𝑅 ) ↑ 85.6±0.5 85.0±1.2 85.0±1.2 85.9±0.1 84.7±0.3 84.7±0.3 89.6±0.1 89.7±0.5 89.5±1.2

NDCG(V𝑅
1 ) ↑ 85.7±0.6 85.4±0.8 85.5±0.7 86.0±0.1 84.8±0.4 84.8±0.4 89.7±0.1 89.8±0.5 89.2±0.7

ΔNDCG ↓ 34.0±4.6 34.3±3.0 34.2±2.8 19.6±1.9 18.7±1.7 18.7±2.1 25.1±1.6 23.8±1.7 24.2±2.8
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Figure 4: The relationship between the accuracy of predicting 𝐴′ and group fairness. The 𝑥-axis represents the gap in AUC

between 𝑔𝜽 ’s predictions of 𝐴
′ for the Joint and Pre-trained, i.e., AUCJoint − AUCPretrained. Joint infers a more accurate 𝐴′

compared to Pretrained if this AUC gap is lager than 0. The 𝑦-axis represents the gap in ΔNDCG for spam detector 𝑓𝑾 between

Pre-trained and Joint, i.e., ΔPretrained
NDCG

− Δ
Joint
NDCG

. Joint is relatively more fair compared to Pretrained if this ΔNDCG gap is larger

than 0. It is evident that the Joint method effectively improves both the AUC of predicted 𝐴′ and group fairness simultaneously.

Figure 5: The sensitivity analysis for the replication time 𝑘 and pruning non-spam edges is presented in this figure. It illustrates

the test AUCs ↑ of 𝑔𝜽 on graphs with different values of 𝑘 , as well as with or without pruning edges. Pruning generally yields

better AUCs compared to no pruning.
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(a) 20-th Percentile of User Node Degree

(b) 15-th Percentile of User Node Degree

(c) 10-th Percentile of User Node Degree

Figure 6: The box plot displays the AFRR values, as defined in Eq. (12), for both test mixed and pure users across all splits of

the three datasets under four settings (the proposed method is highlighted in bold). Each box represents a set of AFRRs for

all the splits, and the solid lines indicate the mean AFRR for each box. By introducing 𝐴′ and employing the joint training

of 𝑓𝑾 and 𝑔𝜽 (referred to as the theJoint method), the AFRR for mixed users decreases as their spam reviews receive higher

suspiciousness compared to non-spam reviews.
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(a) 20-th Percentile of User Node Degree

(b) 15-th Percentile of User Node Degree

(c) 10-th Percentile of User Node Degree

Figure 7: This figure presents the test ΔNDCG ↓ for four detectors: GNN, GNN-S
Tr
1 (shown as a dashed line, representing our

method), GNN-STe0 , and GNN-STe1 . These detectors utilize 𝐴′ obtained from five different methods. The amount of noise in 𝐴′

gradually decreases from left to right, corresponding to the methods: w/o (without 𝐴′), Random (randomly assigning 𝐴′ = 1/0),

Pre-trained (output of a pre-trained 𝑔𝜽 ), Joint (output of jointly trained 𝑔𝜽 ), and GT (ground truth of 𝐴′). When the inferred 𝐴′

is accurate, it leads to a decrease in ΔNDCG. Our method shows the smallest ΔNDCG in addition to the NDCG given by the ideal

GT method.
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