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ABSTRACT

User-generated product reviews are essential for online platforms
like Amazon and Yelp. However, the presence of fake reviews mis-
leads customers. GNN is the state-of-the-art method that detects
suspicious reviewers by exploiting the topologies of the graph con-
necting reviewers, reviews, and products. Nevertheless, the discrep-
ancy in the detection accuracy over different groups of reviewers
degrades reviewer engagement and customer trust in the review
websites. Unlike the previous belief that the difference between the
groups causes unfairness, we study the subgroup structures within
the groups that can also cause discrepancies in treating different
groups. This paper addresses the challenges of defining, approximat-
ing, and utilizing a new subgroup structure for fair spam detection.
We first identify subgroup structures in the review graph that lead
to discrepant accuracy in the groups. The complex dependencies
over the review graph create difficulties in teasing out subgroups
hidden within larger groups. We design a model that can be trained
to jointly infer the hidden subgroup memberships and exploits the
membership for calibrating the detection accuracy across groups.
Comprehensive comparisons against baselines on three large Yelp
review datasets demonstrate that the subgroup membership can be
identified and exploited for group fairness.
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1 INTRODUCTION

Existing fake reviews undermine trust in online commerce websites
hosting the reviews. Among all detection methods, graph-based ap-
proaches have shown great promise. However, prior methods [9, 10]
often prioritize the accuracy or robustness of fraud detectors while
overlooking detection fairness. Although some existing works have
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examined fairness issues in graph-based classifiers concerning sen-
sitive attributes (SAs) like gender, age, and race [1, 7, 16, 18, 19],
the anonymity of the spammers hinders the study of fairness prob-
lems regarding these traditional SAs. Graph-based spam detectors
also suffer from another fairness problem where reviewers are un-
fairly detected based on their historical post count (degree of the
reviewer nodes). Established reviewers and spammers receive le-
nient scrutiny as their few spam posts remain hidden behind among
abundant normal content. New reviewers with minimal posts face
a higher risk of false detection and stringent regulation. This dis-
crimination harms user trust and diminishes engagement in online
commerce. Formally, this fairness issue stems from variant graph
topologies [4]. Growing efforts have been made to address fairness
concerning topological bias [1, 7, 16, 21], yet few works specifically
focus on fairness in the context of graph-based spam detection.
Figure 1 illustrates a review graph comprising user, review, and
product nodes. Edges represent the instances where a user post
reviews on certain products. Users who post fewer reviews than
a specific threshold are labeled as “protected” users, denoted by
the SA A = 1, while other users are considered “favored" (A = 0).
When comparing the computational graphs of spams R; and Ry, the
presence of numerous non-spams dilutes the suspiciousness of Ry
during the bottom-up message passing through GNN’s aggregation
operation in Eq. (1). Existing users with many reviews can reduce
suspiciousness and evade detection, which is unfair to new users.
Maintaining fairness based solely on node degree groups is im-
precise because detection fairness also depends on users’ ability to
hide spam among their normal reviews. Heterogeneous behaviors
among favored users, characterized by varying proportions of spam
to non-spam reviews, can result in different treatments by the de-
tector. In contrast, protected users, who post a few reviews from the
same class, exhibit homogeneous behavior and are treated equally
by the detector. Therefore, an additional SA A’ is required to accu-
rately describe the heterogeneous behavior of favored users and
indicate if their reviews are from the same class. In Figure 1, Up (the
“mixed” user, denoted by A” = 1) posts both spams and non-spams,
while U; (the “pure” user, denoted by A’ = 0), posts only spams.
U deceives the detector by aggregating messages from non-spams
resulting in lower suspiciousness, whereas U, does not receive such
messages. However, to improve accuracy on the favored group, the
GNN unfairly targets spam reviews from pure users like Uz because
they are easier to detect. By enabling the detection of spams from
mixed users, the GNN can improve its performance in detecting
such spams without negatively impacting the detection accuracy
of spams from pure users. Hence, distinguishing mixed users from
pure users is crucial. Solving this task involves three challenges:
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Figure 1: Problem setting and challenges. Left: a toy example of the review graph G and group membership. GNN infers review suspiciousness
by passing and aggregating messages from neighbors. Right: computational graphs of GNN on spam reviews from different (sub-) groups. GNN
unfairly assigns a low suspiciousness to spam R, posted by mixed user U; due to aggregation of messages from non-spams posted by Uj.
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Figure 2: Adding A’ improves the accuracy of the detector on
spams from the favored group (A = 0).

Define the subgroup structure. Previous research primarily fo-
cused on well-defined SAs. Some studies, such as [14, 24] divided
datasets into groups based on observable SAs and their combi-
nations. Others [2, 6] tackled problems involving unobserved or
noisy SAs. These methods were designed for LLD vector data with
well-defined SAs. In contrast, our approach focuses on enhancing
fairness by discovering a novel structural-based SA A’ and its ap-
proximation. Furthermore, previous works [11, 13] treated SAs as
characteristics of the data, not determined by ground truth labels,
whereas we aim to identify an undefined SA A’ specific to graph-
based spam detection and related to the ground truth of reviews.
Infer unknown subgroup membership. We hypothesize that
inferring A’ helps resolve unfairness among groups by capturing
users’ heterogeneous behavior. This subgroup indicator A’ distin-
guishes between users in the favored group who genuinely benefit
from their non-spam reviews. By incorporating the inferred indica-
tor A’, the GNN can achieve a more equitable detection of spams
posted by users in the favored group, promoting group fairness
(see Figure 2). However, inferring A’ is challenging as it relies on
unobservable ground truth labels, which are especially difficult to
obtain for test data and even for training data due to labeling lim-
itations and the accurate identification of spams being expensive
and time-consuming [22, 23].

Promote group fairness through subgroup information. Pre-
vious works on fairness consider multiple SAs and formulate opti-
mization problems with fairness constraints for each combination
of groups [14, 24]. These SAs must be precise and discrete to catego-
rize the data and ensure fair treatment of discriminated groups. Yet,
these premises do not apply to our inferred subgroup membership
indicator A’, which is probabilistic rather than deterministic. Also,
constraints based on thresholding noisy SAs can negatively impact

optimization algorithms. Given the sensitivity of fairness optimiza-
tion to group separation, we avoid using uncertain thresholds to
convert the probabilistic membership into a specific group.

Our main contribution is the discovery of a new structural-based
and label-related SA A’ in fair spam detection on graphs. We define
A’ and develop a GNN to infer its probability distribution for test
users with unlabelled reviews in §3.1. To address the issue of limited
training examples, we propose two fairness-aware data augmenta-
tion methods to synthesize nodes and edges in §3.2. Additionally,
we design a joint training method in §3.3, where the detector uti-
lizes the inferred A’. Experimental results show the presence of
unfairness within the favored group, which can be mitigated by
leveraging A’. Our method enhances group fairness by accurately
inferring the distribution of A” during model training, regardless
of the threshold used to split the group based on A.

2 PRELIMINARIES
2.1 Spam detection based on GNN

Our spam detection is based on a review graph G = (V, &), where
V = {vy,...,on} and & C V X V denotes the set of nodes and
undirected edges, respectively. Each node v; € V has a feature
vector x; with node index i. G contains three types of nodes: user,
review, and product. Each node is from only one of the three types.

Let (VU, % R, and VP denote the sets of user, review, and product
nodes, respectively. v; has a set of neighboring nodes denoted by
N(i) = {vj € V]e;j € E}. The work focuses on detecting spam
users and reviews, and the task is essentially a node classification
problem. GNN [15] is the state-of-the-art method for node classifi-
cation. The GNN detector fyy (-) learns representation hgl) for node
v; at layer [, where [ = 1,...L:

" = uPDATE (AGGREGATE({hEl’”} U {h}”” lje N(i)}),W(”>, 60

where AGGREGATE takes the mean over hgl) and messages passed
from its neighboring nodes. UPDATE applies an affine mapping
with parameters wO followed by a non-linearity (ReLU in | =
= h;o) is
the representation at layer 0. §; = hEL) € R denotes the prediction
probability of v; being spam. The cross-entropy loss is minimized
for the training node set VT*:

1

[V

1,...,L — 1 and Sigmoid in [ = L). The input vector x;

L(W;G) = D, (—yiloggi— (1= yo) -log(1-41)), (2)

v;eVTr
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where y; € {0,1} is the class for v;. W represents a collection of
parameters in all the layers L. Notations can be found in Appendix B.

2.2 Fairness regularizer

Group. Users VU are categorized into the protected group VY,
consisting of users with degrees lower than the p-th percentile, and
the favored group (VOU for the remaining users (see Figure 1 left).
The subscript denotes the value of A. Reviews VX are assigned to
either "VIR or (VOR based on the group of their associated users.
Fairness regularizer. NDCG is a suitable metric for evaluating
the accuracy of the detector due to the highly skewed class dis-
tribution. A higher NDCG indicates a more accurate detector. It
can also separately measure (V§ and (VlR, allowing the evaluation
of group fairness through the NDCG gap (denoted by Anpcg)- To
reduce Anpcg while promoting the NDCG of (VOR without compro-
mising that of VR, the detector incorporates a fairness regularizer
Reair Which takes negative NDCG of "V(fz. We adopt a differentiable
surrogate NDCG [4] for Reair

Resic (W3 G) = L Z log (1 +exp (h;L) - hEL))) )]

Zo LJyi<yj
vi,vjE’V(Fl"ﬂ/Tr
Lonn (W3 G) = LW G) + A - Reair (W3 G), 4

where Zj is the total number of pairs of spams and non-spams in
the training (Vf. LN is the objective function for training fy(+)
by adding Rgir to L(W;G) in Eq. (2). A > 0 is the importance
of the fairness regularizer. Note that the fairness regularizer Re,j,
regularizes all the models referred to in this paper below.

3 METHODOLOGY

3.1 Subgroup definition and selection

Subgroups. The suspiciousness of spam posted by user v; decreases

as the GNN aggregates non-spams posted by v;. A new SA A] is

defined to identify if user v; benefits from its non-spam reviews:
A{:{ 1 if0<Yien)yi < INGI

1

5
0 otherwise ®)
where v; € (VOU. N (i) are reviews posted by v;. Users with A’ = 1
have spam and non-spam reviews, while users with A’ = 0 only
have reviews belonging to either spams or non-spams. The hetero-
geneity in behavior leads to the split of (VOU into subgroups (VoUo

U
and (V(),l’

tively. Since users in (VIU primarily post reviews in just one class,
A’ is unnecessary when A = 1.

Infer unobservable subgroup membership. We aim to utilize
the new A’ to improve the fairness and calibration of the detector
across subgroups. Since most review labels are unknown, we em-
ploy a GNN gg(-) to infer A’ for users whose reviews are not fully
labeled. In principle, many predictive models can map v; to A;. Still,
GNN is chosen for its ability to capture the heterogeneous char-
acteristics of users by modeling the distribution of neighborhood

where subscript denotes the value of A and A’ respec-

data. Let A; (A], resp.) represent the prediction (ground truth, resp.)
of A for user v;. The loss of predicting A} using gg becomes:

LO:6)=5 > (-A7-logdi— (1-A) log(1 - &), ()

0;eVIrnyU

EAI-KDD’ 23, August 7, 2023, Long Beach, CA, USA

where Z; is the total number of training user nodes.

3.2 Fair Data augmentation

3.2.1 Augmentation for user subgroup (Volﬂ. To address the under-
fitting of gg caused by limited training mixed users in our dataset
(see Table 3 in Appendix D.1), we synthesize nodes to augment
mixed users and their reviews while preserving the original node
distribution in ‘VOUI. By replicating the mixed training users along
with their reviews for k times, and slightly perturbing the copies
through pruning review connections, we ensure diverse but simi-
lar representations of the synthetic mixed users compared to the
original users. Specifically, oversampling adds multiple copies of
the minority without altering the node distribution, while pruning
edges connected to non-spam reviews and retaining edges con-
nected to scarce spams helps balance the class of reviews from
mixed users (see Figure 3 left).

3.2.2  Augmentation for minority review group (VOR . Itis challenging
to train the detector fyy with a limited number of favored reviews
(see %(VOR in Table 3). We augment the minority group (VOR following

a graph mixup method [25] that the mixup for GNN inputs, node
embeddings at each layer, and labels for the synthetic data become:

X;j = ax; + (1 - a)x;j, ﬁi]l) = aﬁ;” +(1— a)flﬁl), ij =ay; + (1 - a)yj,
where « € [0, 1] and X;; is the mixture of node attributes x; and x;

at the input layer. 1~11(Jl) is the mixture at the I-th layer synthesized

from the two hidden representations flgl) and l?lj.l) (flg.)) = Xij). Uij
is the label for X;;.

Our method selectively chooses nodes for mixup to address the
class imbalance between majority and minority groups or sub-
groups in our review graph. We sample the first node from spam
reviews in the favored group (VOR to ensure that the synthetic re-
views resemble the original favored spams and effectively tackle
the class imbalance issue in this group. The sampling of the second
nodes involves three sets: our method (SlTr) and two variants sets
(Sge and S;re) as shown in Figure 3 (right). S;rr comprises spams from
the protected training group, while Sge and SITe consist of test re-
views from the favored group and the protected group, respectively.
The sets for sampling the first and second nodes are:

Sample first node from: Sgr = {vi | v; € (VOR Ny, Y = 1} . 7)
Sample second node from one of: S;rr = {uj | vj € (VIR nyT, y; = 1},

Sg‘e — {Uj | vj € (VOR ﬂ(VTe}, S’lre = {Uj | vj € (VlR N (VTe} . ®)

Since the labels of reviews sampled from SOTe and S;re are unknown,
the synthetic review has the same label as the first node, i.e., §j;; = 1.

3.3 Joint model

3.3.1 Utilizing subgroup membership. Incorporating subgroup mem-
bership into the objective function typically involves adding a fair-
ness regularizer that operates on the subgroups defined by the
inferred membership. However, existing fairness regularizers as-
sume deterministic group membership rather than the probabilistic
estimation provided by gg. We consider the inferred A’ as a sup-
plementary attribute that informs the detector about subgroup
membership and the uncertainty associated with its estimation. As
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Figure 3: Toy example of our proposed fair augmentation methods.

a result, the user’s feature vector is expanded to include A’, result-
ing in X’ = [x, A’] € R¥!, where A’ represents the probability of
the user having A" = 1 as predicted by gg.

3.3.2 Optimization for the joint model. We propose a joint opti-
mization approach for two GNNs gy and fy, allowing them to
co-adopt to each other. The inferred A’ is treated as a function
of 0, denoted as A’ (), rather than a constant. Consequently, the
expanded user feature x’(6) = [x, A’(0)] incorporates 0 as param-
eters. The loss for optimizing the detector fyy in Eq. (4) becomes
LonN (W, 6; G). By connecting the computational graph between
W and 0, 0 receives gradients from fy to improve the accuracy of
inferring A’. Simultaneously, the updated 0 is used to enhance the
performance of fyy. During training, W and 0 are updated jointly:

W« W - p1Vw Lonn (W, 6; G) ()]
0 — 60— pVgL(6;G)— P2V Lonn(W, 0; G) (10)

Gradient from gg Gradient from fyy

where f; (f2) is the learning rate for updating W (6). Please refer
to Algorithm 1 in Appendix C for a complete description.

4 EXPERIMENTS

Our research aims to address the following research questions:
RQ1: Are there fairness issues between the favored and protected
groups and between the mixed and pure groups when using a
GNN spam detector? Can the inferred A’ improve group fairness?
RQ2: How can we infer the subgroup membership A’ when there
is a shortage of training examples? RQ3: Can the joint training
method effectively enhance both the AUC of predicted A” and group
fairness simultaneously? RQ4: Does the accuracy of predicting A’
contribute to the improvement in group fairness?

4.1 Experimental Settings

4.1.1 Datasets. We used three Yelp review datasets (referred to
as “Chi”, “NYC”, and “Zip”, see Table 3). For each dataset, user
nodes are divided into the favored group (top p% high-degree users,
A = 0) and the protected group (the remaining users, A = 1) by
the percentile p in Section 2.2. More statistical information about
datasets can be found in Appendix D.1.

4.1.2  Evaluation Metrics. NDCG was used to assess the accuracy
of the detector. A higher NDCG indicates that the detector assigns
higher suspiciousness values to spams than non-spams. We intro-
duced a metric called “Average False Ranking Ratio” (AFRR) to
evaluate the ranking of spams within the group of A = 0. AFRR
measures the average relative ranking between spams from mixed
and pure users. A lower AFRR means fewer non-spams ranked
higher than spams. AUC was utilized to evaluate the performance
of the second GNN gy in predicting A’. A higher AUC indicates
better predictive performance.

Refer to Appendix D.1 for more details, including the formal
definition of AFRR and the characteristics of each metric.

4.1.3  Methods compared. Joint+GNN-S¥r denotes our method:
Joint refers to the joint training for two GNNs (fyy and gg in
Section 3.3), GNN-S;rr refers to a GNN with our mixup method
in Eq. (8). “a+b” represents a combination between method “a” for
obtaining the value of A’ and method “b”, a spam detector.

Baselines for obtaining the value of A’ (selections for “a”):
w/o does not involve A’. Random randomly assigns 1/0 to A”. GT
assigns the ground truth of A’ for users, which is the ideal case, as
A’ is unknown. Pre-trained is a variant of Joint that pre-trains gg
to infer A’ and fixes the inferred A’ when training fyy .

Baselines for the spam detectors (selections for “b”):
FairGNN (7] is an adversarial method that aims to achieve fair
predictions for all groups defined by the known A. EDITS [8]
modifies the node attribute and the graph structure to debias the
graph. FairGNN and EDITS consider A as a known SA and exclude
any information about A’ defined by our work. GNN is the vanilla
GNN. GNN-SEe is a GNN with the mixup Case 2 in Eq. (8). GNN-

S?e is a GNN with the mixup Case 3 in Eq. (8).

4.2 Results

Due to page limitations, we only include the results for answering
RQ1, with a focus on the percentile p = 20. Additional results for
answering RQs 2-4 and using percentiles p = {15, 10} can be found
in Appendix D.2.

Group Fairness. To answer RQ1, we take the gap in NDCGs values
between groups of A = 0 and A = 1 as the fairness metric, denoted
by ANpcg- Table 1 presents the NDCG values for the outputs of



Are Your Reviewers Being Treated Equally? Discovering Subgroup Structures to Improve Fairness in Spam Detection

EAI-KDD’ 23, August 7, 2023, Long Beach, CA, USA

Table 1: NDCG values for spam detectors on three Yelp datasets are shown with a 20-percentile cutoff for defining groups of
Abased on user degree. The table displays the mean and standard deviation of NDCG scores for all reviews (NDCG(VE) 1),
for the group with A =1 (NDCG((VlR) 1), and the NDCG difference between the two groups (Anpcg |) across all ten splits. “7”
means the larger, the better; “|” means the opposite. Our method is denoted by “*”. A smaller ANpcg indicates a fairer model.

Detector Metrics(%) Chi NYC Zip
NDCG(VE) T 86.2+0.1 85.9+0.0 89.6=05
FairGNN [7] | NDCG(VR) 1 86.2:0.1 86.0£0.0 89.6+0.4
Anpce | 53.7+2.1 20.7+1.1 36.4+4.6
NDCG(VE) T 84.3+03 84.9+0.1 89.2+0.0
EDITS [8] | NDCG(VER) 1 84.3+03 85.1201 89.3+0.0
Anpce | 50.9+2.3 32.7+15 39.4+10.6
. GNN GNN GNN
Detector Metrics(%) w/o Pre-triiqlfta)d Joint*® w/o Pre-tri?gzd Joint* w/o Pre-trziiqxlete)d Joint*
NDCG(VE) T | 84.5x00 83.2+15 83.3+22 | 85.2x08 85.1x08 85.2+05 | 88.4+14 87.6+15 88.6+1.0
GNN NDCG((V]R) T | 84.7x09 83.5+13 83.6+21 | 85.1x08 85.3+0.8 85.2+05 | 88.4+14 87.6+15 88.6+1.0
AnpcG | 51.2+21 51.0+3.0 50.7+35 21.9+7.0 21.8+7.8 21.3+89 | 36.3x104 34.3+108 34.8+11.1
NDCG(VE) T [ 85.6x07 85.8+0.5 85.6+08 | 85.8x01 85.9+0.0 85.9+00 | 89.7x0.2 89.7+0.1 89.6+0.1
GNN-S}"* NDCG(’VlR) T | 85.6x07 85.8+0.5 85.7+08 | 85.9+00 86.0+0.0 86.0+00 | 89.7x02 89.7+0.1 89.6+0.1
Anpce | 51.6+0.9 50.3+1.0 50.1+1.0 19.1+55 19.0+5.2 17.9+6.1 38.7+7.2 36.0+9.0 34.3+115
NDCG(VE) T | 85.1z07 85.3+1.4 85.2+14 | 85.3x06 85.4+05 85.4+0.4 89.4+0.6 89.6+0.1 89.0+0.06
GNN-S;,re NDCG((VIR) T | 85.2+08 83.4+13 83.5+13 | 85.2+06 85.5+0.4 85.5+04 | 89.4+0.06 89.0+0.01 89.1+0.06
Anpce | 51.2+15 50.9+24 50.9+23 21.9x6.9 21.9x63 20.9+9.4 38.9+7.6 36.9+9.5 34.9+11.0
NDCG(VE) T | 84.7+13 83.7+0.9 83.1x09 | 85.7x0.1 85.8+0.1 85.8+0.2 89.6+0.3 89.6+0.1 89.5+0.3
GNN-S;re NDCG((VlR) T | 84.8+13 83.9+0.9 83.4+09 | 85.8+0.1 85.8+0.1 85.8+0.1 89.6+03 89.6+0.1 89.5+03
Anpce | 51.3+0.6 50.8+0.6 50.2+1.0 21.0+5.4 19.8+5.4 19.3+68 38.7+7.2 36.2+9.5 34.6+11.4

various spam detectors using 20th percentile of user node degrees
as the cutoff for groups of A. The table includes detectors grouped
into two sections. The upper section consists of FairGNN and
EDITS, which do not consider A’ defined in our work. The lower
section includes four detectors that consider A’ within each dataset
column representing three methods for obtaining the value of A’.

FairGNN, EDITS, and w/0+GNN detectors exhibit significant
ANDcg values, indicating the presence of a widespread fairness is-
sue in the spam-detection task on the graph by applying GNN-based
fair models. Notably, FairGNN and EDITS have larger ANpcg val-
ues, implying that their improvements in NDCGs favor the favored
group more than the protected group, exacerbating fairness con-
cerns. In contrast, for detectors in the lower section, the proposed
Joint method consistently demonstrates the smallest ANpcg in
most cases.

It is worth noting that in Joint, gg receives an additional gra-
dient from fy, as indicated by Eq. (10). However, for detectors
without our fair data augmentation (i.e., Joint+GNN), this addi-
tional gradient may cause gg to infer A’ and negatively impact the
performance of fyr. Among the methods for obtaining the value
of A’, the detector with our augmentation GNN-S-lrr consistently
shows the smallest ANpcg in almost all cases. This suggests that
maintaining the original distribution while performing the mixup
method is more challenging in datasets with fewer mixed users,
such as Chi and Zip.

5 CONCLUSION

This work addresses fairness in a graph-based spam detection task,
specifically focusing on the unfairness between the protected and
favored groups defined by the known SA node degree. To capture

the heterogeneous behaviors of the favored users, A’ is introduced,
dividing favored users into mixed and pure categories. The value of
A’ for test users is inferred using a second GNN gg and integrated
as a supplementary feature feed into the detector fy,. Our pro-
posed Joint method simultaneously improves detector fairness and
enhances the quality of inferred A’. The experimental results on
three Yelp datasets, incorporating fair data augmentation, validate
the effectiveness of the Joint method. Our approach successfully
promotes group fairness by enabling the detector to enhance the
suspiciousness of spam from both pure and mixed users.
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A RELATED WORK
A.1 Fairness on graphs.

Fairness on graphs has been explored from various perspectives.
Researchers have aimed to achieve fairness in node embeddings,
representations, and classification results regarding discrete and
well-defined sensitive attributes [5, 19]. Adversarial frameworks
have been introduced to mitigate unfairness biases related to sensi-
tive attribute [1, 3, 7], where fairness regularizers are incorporated
to ensure insensitivity of the model towards those attributes. Meth-
ods like FairGNN [7] employ adversarial debiasing by leveraging
an additional GNN to estimate missing sensitive information. Other
approaches modify graph topology or edge weights to obtain fair
node embeddings or predictions. FairAdj [16] adjusts edge connec-
tions and learns a fair adjacency matrix by adding contains for
graph structure. FairEdit [17] proposes model-agnostic algorithms
which perform edge addition and deletion using the gradient of fair-
ness loss. FairDrop [21] addresses bias by excluding biased edges
to counteract homophily. However, these methods typically rely
on known or well-defined sensitive attributes. Some studies have
also investigated fairness problems involving multiple sensitive
attributes, which may lead to fairness violations when enforcing
fairness simultaneously across all attributes. Approaches like those
in [14, 24] have designed classifiers with multiple fairness con-
straints generated from combinations of sensitive attributes.

A.2 Augmentation on the graph.

Graph augmentation has gained significant attention in recent
years [27]. Studies such as [12, 25] have focused on augmenting
graphs at the node level, generating synthetic data through tech-
niques like node mixup or node removal. Additionally, graph aug-
mentation has been performed at the edge level, including modi-
fications such as adding orr removing edges, either deterministi-
cally [28] or stochastically [20]. Moreover, some methods augment
graph data at the node feature level by randomly masking node
features [26].

B NOTATION

Table 2 provides a summary of the key notations used throughout
this paper.

C ALGORITHM
D ADDITIONAL RESULTS

D.1 Experimental Details

D.1.1 Dataset and Setups. The Yelp datasets (“Chi”, “NYC”, and
“Zip’) are commonly used in previous spam detection tasks [4, 9],
containing three types of node: products, reviews, and users (see
Table 3). To study fairness spam detection regarding the degree of
user nodes, we set a cutoff degree of user nodes (p-th percentile in
Section 2.2). We conduct experiments with p € {20, 15, 10} treated
as a hyper-parameter distinguishing favored (top p% high-degree
users, A = 0) from protected groups (the remaining users, A = 1).
Reviews have the same value of A as their associated users. The
favored users are further split into pure (A’ = 0) and mixed (A’ =

EAI-KDD’ 23, August 7, 2023, Long Beach, CA, USA

Table 2: Notations and definitions.

Notations Definitions

Graph notations

G Review graph

V, & Nodes and Edges of graph G
Xi, Yi Feature and label of node v;
N(i) Set of direct neighbors of v;
|V| Cardinality of a set V

YT, e Training nodes and test nodes

YUY, VYR YP  User, review, and product nodes

Group notations

AA Binary sensitive attributes (0/1)
VR YU Review and user nodes from group of A = a
R U Review and user nodes from group of A = a and
(Va a’’ (Va a’ ’ ’
, , A ' =a

Model notations

fw().g0(-) GNNs with parameters W and 6

o, A, Output of fiv (-),go (-) for v

hl(.l) Representation of v; on layer [

Xij Synthetic node by mixing-up v; and v;
Uij Label for the synthetic node X;;

Algorithm 1 Joint training for gg and fw.

Input: graph G; node features X; sensitive attribute A; training epochs
T; hyper-parameter A, learning rates ff; and f2, and replication times k.
Output: optimal € and W of gg and fw, respectively.
Initialize parameters 6 and W.
Replicate users and reviews for k times as in Section 3.2.1. >
Augmentation for ’VoUl.
fort=1,...,T do |
Prune non-spam edges as in Section 3.2.1.
Infer Pr(A’ = 1) for users using gg.
Concatenate A’ to user feature vectors as in Section 3.3.
Mixup between two reviews sampled from Sg‘ as in Eq. (7) and one
of {SlTr, Sge, S;re} as in Eq. (8). > Augmentation for “VOR.
Update W and 6 following Eq. (9) and (10).
end for

> Add data variations

1) users following Eq. (5). Users are divided into training (30%),
validation (10%), and test (60%) sets with their associated reviews.

D.1.2  Evaluation Metrics. For evaluating the group fairness, we
begin by calculating the NDCG score on group of (VlR and (VOR,
denoted as NDCG(‘VIR) and NDCG((VOR), respectively. Then, the

group fairness can be measured by the NDCG gap
AxDCG = NDCG(VE) = NDCG(VE). (11)

Note that the GNN detector always achieves better performance on
’VIR, i.e., ANpcg > 0 holds all the time. A smaller ANpcg indicates
fairer detection results for two groups involved.

“Average False Ranking Ratio” is designed to effectively evaluate
the intricate ranking performance inside the group of A = 0. AFRR

computes the average of relative ranking between spams from
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Table 3: Statistics of the datasets. We list the numbers of
products, reviews, and users with the proportion of fa-
vored users/reviews (%"VOU/ %(VOR) and mixed users/reviews
(%"VOUI/ %"Vfl) under 20-th, 15-th, and 10-th percentile (PC) of
cutoff degl"ee of the user groups. The last column gives the
ratio of spam in the groupof A=0to A= 1.

N Data Statistics P(Y=1|A=0)
ame = R U P(Y=1]A=1)
V7] V7 [Mad
67,395 38,063
R R U U
Chi 201 PC %"VO %(VO1 %(VO %(VO 1
20th 13.581% 0.116% 1.781% 0.011% 0.0438
15th 18.687% 0.129% 3.003% 0.026% 0.0125
10th 27.003% 0.224% 5.735% 0.058% 0.0282
358,911 160, 220
R R U U
NYC 923 PC %’VO %(V01 %(VO %(VO 1
20th 12.665% 0.193% 0.760% 0.009% 0.0479
15th 16.264% 0.258% 1.171% 0.018% 0.0289
10th 23.096% 0.360% 2.260% 0.034% 0.0420
608, 598 260,277
R R U U
Zip 5,044 PC %ﬂ/o %’VO 1 %(Vo %WO 1
20th 6.859% 0.050% 0.272% 0.002% 0.0426
15th 15.658% 0.145% 1.020% 0.009% 0.0139
10th 22.342% 0.278% 1.968% 0.018% 0.0241

mixed and pure users

VRl ra .
1 Yt L[di > gy, yi = 0]
AFRRy = — >o== o , Aefo1} (12
yj=t Zi:? ]l[yl =0]
UjE(V(fA,

where A’ € {0, 1} denotes the subgroup membership. Z is the
number of spams from a subgroup. (V(f '+ denotes the reviews from
a subgroup users. The ratio in the above equation calculates the
proportion of non-spams ranked higher than spams over all the
non-spams from the group of A = 0. The lower the AFRR, the fewer
non-spams ranked higher than spams. Compared to NDCG, AFRR
considers the non-spams across different subgroups and ignores
the relative ranking of spams from the other subgroup.
Since there is a second GNN gg, AUC is employed to evaluate
the performance of gg in predicting A’. The larger the AUC value,

the more accurate A’ given by gg.

D.1.3 Hyperparameter setting. We set T =300, A =5, 1 = 2 =
0.001, weight decay = 0.0001 for both fy and gg in Algorithm 1,
mixup weight & = 0.8. There are 10 training-validation-test splits
of the three datasets, and all the results are based on the aggregated
performance of all splits.

D.2 Results

D.2.1 Group Fairness. Like the big table given in the main pa-
per, we present the NDCG scores when setting the percentile
p = {15,10} in Table 4 and 5. Still, FairGNN and EDITS give
relatively large ANpcG in two tables, demonstrating the presence
of the fairness issue. Also, our method achieves the smallest ANpcg
among all the methods in most cases.

D.2.2  Explanation of improved group fairness. Rather than sim-
ply obtaining a fair spam detector towards favored and protected
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groups, we also want to verify the effectiveness of introducing
A’ in mitigating this intra-group fairness issue. Figure 6 presents
the test AFRRs of pure and mixed subgroups across four methods
{w/0+GNN, Joint+GNN-SI*, Joint+GNN-ST¢, Joint+ GNN-8T¢}.
It demonstrates the impact of adding A’ on spams from subgroups
and resulting improvements in NDCG for the protected group.
w/0+GNN reveals that spams from mixed users have larger AFRRs
compared to the pure users across all datasets, indicating the basic
GNN tends to rank spams from pure users higher than those from
mixed users within the favored group. By introducing A” and em-
ploying the fair augmentation methods, the AFRR is reduced for
mixed users and occasionally for pure users. Our method (right-
most) improves the NDCG for the protected group primarily by
elevating the ranking of spams from mixed users and sometimes
from pure users.

D.2.3  Evaluation of the Joint method on improving the quality of A’.
To answer RQ2 and RQ3, we investigate the relationship between
group fairness and the quality of inferred A’. In Table 1, 4, and 5,
we observe that Joint method generally exhibits smaller ANpcg
compared to Pre-trained. To gain a deeper understanding of the
advantages of Joint, we examine the AUC gap of A’ (x-axis), as es-
timated by gg, plotted against the corresponding ANpcg difference
(y-axis) in Figure 4. Most models in the area I indicate that Joint
simultaneously promotes the accuracy of gg and the fairness of fyy.
Since Joint updates 6 using the additional gradient coming from
fw (see Eq. (10)), our fair mixup strategies effectively mitigate the
overfitting for gg with more gradients from the synthetic data.

D.2.4 Impact of the accurate A’ on group fairness. Given the cor-
relation between the quality of A” and group fairness, we further
investigate this relationship to answer RQ4 by manipulating the
level of noise in A’. To assess this correlation, we introduce meth-
ods that either increase (i.e., Random method) or decrease (i.e.,
GT method) the noise in A’. Figure 7 presents the correspond-
ing ANpcG for detectors employing different approaches to assign
values to A’, where the x-axis represents the reduction in noise,
progressing from left to right. Notably, as the detector obtains a
more accurate inference of the values of A’, the ANpcg decreases.

D.2.5 Sensitivity studies for the replication times k and if pruning
non-spam edges. Figure 5 illustrates the test AUCs of gg for dif-
ferent replications values k = {50, 100} and the effect of pruning
non-spams edges (as discussed in Section 3.2.1). Pruning generally
yields better AUCs compared to no pruning, except for the case
of k = 100 on the Zip dataset. Furthermore, the AUCs for the Chi
and Zip datasets tend to decrease as the value of k increases. The
sensitivity can be attributed to the limited presence of mixed users
in Chi and Zip, making it more challenging to effectively mimic the
original node distribution with synthesized data, thereby leading
to overfitting of gg. Hence, the choice of k is highly related to the
dataset distribution. By evaluating the validation set, we determine
that the optimal replication values are k = 100 for NYC and k = 50
for Chi and Zip.
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Table 4: NDCG values for the outputs of detectors on Yelp datasets with a user degree cutoff at the 15-percentile for defining
the group of A. The table displays the mean and standard deviation of NDCG scores for all reviews (NDCG(VR) 1), for the
group with A =1 (NDCG((VIR) 1), and the NDCG difference between the two groups (ANpcg |) across all ten splits. “7” means
the larger, the better; “|” means the opposite. Our method is denoted by “*”. A smaller ANpcg indicates a fairer model.

Detector Metrics(%) Chi NYC Zip
NDCG(VE) T 86.2+0.2 85.9+0.1 89.9:£00
FairGNN [7] | NDCG(VR) 1 86.3x02 86.0+0.1 90.0:0.0
ANDCG | 45.8+17 20.0+2.4 31.0+2.7
NDCG(VE) T 84.3+0.2 85.0+0.1 89.220.0
EDITS [38] NDCG(VR) 1 84.4+02 85.1+0.1 89.3+0.0
Anpce | 43.8+26 32.4+15 34.4+35
. GNN GNN GNN
Detector Metrics(%) w/o Pre-tr;igrfe)d Joint* w/o Pre-trigi]l(.l)zd Joint* w/o Pre-trzfiqlfe)d Joint*
NDCG(VE) T | 84.3+13 84.3+0.9 84.4+09 | 85.7x02 84.5+04 84.6+05 | 89.5+0.2 88.9+0.6 88.9+0.6
GNN NDCG(’VIR) T | 84.6+11 84.7+07 84.8+07 | 85.8+02 84.6+04 84.6+05 | 89.5+0.2 88.9+0.6 88.9+0.7
ANDCG | 41.8+2.4 40.9+3.7 40.9+4.0 16.3+3.9 15.8+2.7 15.2+6.1 26.1+3.4 26.6+2.5 25.9+27
NDCG(VE) T | 86.0+04 85.9+03 85.9x02 | 85.9x0.1 85.9x0.1 85.9x01 | 89.7x0. 89.9+0.0 87.9+2.1
GNN—S;I‘” NDCG((VIR) T | 86.0+04 86.0+0.3 86.0+0.2 | 85.9+01 85.9:0.1 85.9+0.1 | 89.8+0.1 89.9+0.0 87.9+21
ANDCG | 43.2+20 41.9+58 40.5+5.1 16.5+3.8 15.6+29 15.6+36 | 26.4+33 27.0+3.2 22.7+42
NDCG(VE) T | 84.4x15 84.3x11 84.4x09 | 85.80.2 84.7x04 84.7+04 | 89.4x0.2 89.1=x06 89.1=x06
GNN-Sg-e NDCG(‘VIR) T | 84.7+11 84.6+0.9 84.8x+0. 85.9+0.2 84.7+05 84.7+05 | 89.5+0.2 89.1+0.6 89.2+0.6
Anpce | 43.4+24 41.7+4.6 41.1+42 16.6+4.1 15.7+3.0 15.6+36 | 26.2+4.0 27.2+32 25.3+27
NDCG(VE) T | 85.9z05 85.8+03 85.9+03 | 85.8+0.1 85.4+03 85.5+03 | 89.8+0.1 89.9+0.1 89.9+0.1
GNN-S;re NDCG((VIR) T | 85.9x05 85.9+03 85.9+03 | 85.9x0.2 85.5+03 85.5+03 | 89.8+0.1 89.9+0.1 89.9+0.1
AnpcG | 42.6+2.8 40.7+3.7 40.7+3.7 16.0x3.9 15.5+3.0 15.6+33 26.1435 27.1+24 24.9+27

Table 5: NDCG values for the outputs of detectors on Yelp datasets with a user degree cutoff at the 10-percentile for defining
the group of A. The table displays the mean and standard deviation of NDCG scores for all reviews (NDCG(VR) 1), for the
group with A =1 (NDCG(‘VIR) 1), and the NDCG difference between the two groups (ANpcg |) across all ten splits. “” means
the larger, the better; “|” means the opposite. Our method is denoted by “*”. A smaller ANpc indicates a fairer model.

Detector Metrics(%) Chi NYC Zip
NDCG(VE) T 86.2+0.2 85.9+0.1 89.9+0.0
FairGNN [7] NDCG((VIR) T 86.4+0.2 86.0+0.1 90.0+0.0
Anpce | 33.8+45.4 22.4+19 24.8+16
NDCG(VE) T 84.3+0.2 85.0+0.1 89.220.0
EDITS [8] | NDCG(VF) 1 84.5:0.2 85.2+0.1 89.4:0.0
Anpce | 37.1+20 30.0+1.2 28.9+13
. GNN GNN GNN
Detector Metrics(%) w/o Pre—tr:(a?::gd Joint* w/o Pre—tre(xig::e)d Joint” w/o Pre—triigri)e)d Joint”
NDCG(VE) T | 85.4+05 84.7+13 84.9+14 | 84.8+04 84.5x03 84.6x04 | 89.7x03 89.6=x0.6 88.9:x0.6
GNN NDCG((VIR) T | 85.7+04 85.3+08 85.4+09 | 84.8+04 84.6+03 84.7+04 | 89.8+03 89.6+0.6 89.8+0.4
Anpce | 34.7+15 33.9+25 34.7+15 19.7+16 19.1+16 18.7+20 | 25.0+18 23.7+17 23.6+17
NDCG(VE) T | 85.9+04 86.1+0.2 86.1+02 | 85.9+0. 85.9+0.1 85.9+01 | 89.7x0.1 89.9+0.0 89.9+0.0
GNN—S;rr* NDCG((VIR) T | 85.9+04 86.2:0.2 86.2+02 | 86.0+0.1 86.0+0.1 86.0+0.1 | 89.8+0.1 90.0+0.0 90.0:£0.0
Anpce | 34.1+46 33.7+3.0 33.2+26 19.1+1.9 16.8+15 16.6+19 | 25.1+16 23.4+16 23.3+14
NDCG(VE) T | 85.8+05 86.1x03 86.1x02 | 85.9x0. 85.4x03 85.4+03 | 89.8x0.1 90.0=+0.1 89.9+0.1
GNN-SEe NDCG(’VIR) T | 85.9+05 86.2+03 86.2x02 | 86.0+0.1 85.5+03 85.5+03 | 89.9+0.1 90.0=+0.1 90.0+0.1
ANDCG | 33.6+44 34.1+33 33.8+30 19.7+20 18.6+15 18.6+19 | 25.1+16 23.7+16 23.6x14
NDCG(VR) T | 85.6+05 85.0+1.2 85.0+12 | 85.9+0.1 84.7+03 84.7+03 | 89.6x0.1 89.7+05 89.5+1.2
GNN-S;re NDCG(’VlR) T | 85.7+06 85.4x08 85.5x07 | 86.0+0.1 84.8+04 84.8+04 | 89.7x0.1 89.8+05 89.2+0.7
ANDCG | 34.0+46 34.3+3.0 34.2+238 19.6+1.9 18.7+17 18.7+21 25.1+16 23.8+17 24.2+238
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Figure 4: The relationship between the accuracy of predicting A’ and group fairness. The x-axis represents the gap in AUC
between gg’s predictions of A’ for the Joint and Pre-trained, i.e., AUCI®Int _ AyCPretrained yoint jnfers a more accurate A’
compared to Pretrained if this AUC gap is lager than 0. The y-axis represents the gap in Axpcg for spam detector fy between
Pre-trained and Joint, i.e., Aglggéi“ed - Aﬁ’li)nctc. Joint is relatively more fair compared to Pretrained if this ANpcg gap is larger
than 0. It is evident that the Joint method effectively improves both the AUC of predicted A’ and group fairness simultaneously.
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Figure 5: The sensitivity analysis for the replication time k and pruning non-spam edges is presented in this figure. It illustrates
the test AUCs T of gg on graphs with different values of k, as well as with or without pruning edges. Pruning generally yields
better AUCs compared to no pruning.
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Figure 6: The box plot displays the AFRR values, as defined in Eq. (12), for both test mixed and pure users across all splits of
the three datasets under four settings (the proposed method is highlighted in bold). Each box represents a set of AFRRs for
all the splits, and the solid lines indicate the mean AFRR for each box. By introducing A’ and employing the joint training
of fiy and gg (referred to as the theJoint method), the AFRR for mixed users decreases as their spam reviews receive higher
suspiciousness compared to non-spam reviews.
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Figure 7: This figure presents the test ANpcg | for four detectors: GNN, GNN -S;rr (shown as a dashed line, representing our
method), GNN-Sge, and GNN-SlTe. These detectors utilize A’ obtained from five different methods. The amount of noise in A’
gradually decreases from left to right, corresponding to the methods: w/o (without A’), Random (randomly assigning A’ = 1/0),
Pre-trained (output of a pre-trained gg), Joint (output of jointly trained gg), and GT (ground truth of A’). When the inferred A’
is accurate, it leads to a decrease in Axpcg. Our method shows the smallest ANpcg in addition to the NDCG given by the ideal

GT method.
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