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Abstract

We consider the prediction of the Hamiltonian

matrix, which finds use in quantum chemistry and

condensed matter physics. Efficiency and equiv-

ariance are two important, but conflicting factors.

In this work, we propose a SE(3)-equivariant net-

work, named QHNet, that achieves efficiency and

equivariance. Our key advance lies at the inno-

vative design of QHNet architecture, which not

only obeys the underlying symmetries, but also en-

ables the reduction of number of tensor products

by 92%. In addition, QHNet prevents the expo-

nential growth of channel dimension when more

atom types are involved. We perform experiments

on MD17 datasets, including four molecular sys-

tems. Experimental results show that our QHNet

can achieve comparable performance to the state

of the art methods at a significantly faster speed.

Besides, our QHNet consumes 50% less mem-

ory due to its streamlined architecture. Our code

is publicly available as part of the AIRS library

(https://github.com/divelab/AIRS).

1. Introduction

Deep learning has achieved significant progress in compu-

tational quantum chemistry in recent years. Existing deep

learning methods have demonstrated their efficiency and

expressiveness in tackling various challenging quantum me-

chanical simulation tasks. For example, deep graph learning

methods can now accurately predict quantum properties of a

molecule, such as molecular energy and the HOMO-LUMO

gap (Schütt et al., 2017; Liu et al., 2022b; Gasteiger et al.,

2020; Klicpera et al., 2020; Wang et al., 2022b; Liu et al.,
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2021; Wang et al., 2022a; Brandstetter et al., 2022; Yan et al.,

2022). Recent deep generative models have also shown to be

capable of generating new materials and molecules by faith-

fully learning the distribution of their structures (Simm &

Hernandez-Lobato, 2020; Mansimov et al., 2019; Xu et al.,

2021b; Shi et al., 2021; Xu et al., 2021a; Ganea et al., 2021;

Luo & Ji, 2022). Recent efforts on modeling interaction of

two and more molecules also shed light on protein-ligand

docking for drug development (Corso et al., 2022; Ganea

et al., 2022; Stärk et al., 2022; Zhang et al., 2022; Lu et al.,

2022; Jiang et al., 2022; Liu et al., 2022a). Inspired by all

these advancements, we aim to predict a more fundamental

target in computational physics, quantum tensors, by devel-

oping a new deep graph learning model framework in this

work.

Quantum tensors, such as Hamiltonian matrix, eigen wave-

functions, and eigen energies, can be used to describe molec-

ular systems and their quantum states. Since quantum ten-

sors contain the most critical information about molecular

systems, many molecular properties can be directly derived

from quantum tensors and wavefunctions. Unfortunately,

obtaining precise quantum tensors is at considerably high

cost. Density functional theory (DFT) (Hohenberg & Kohn,

1964; Kohn & Sham, 1965) and ab initio quantum chem-

istry methods (Szabo & Ostlund, 2012) are routinely used to

calculate electronic wavefunctions, charge density, and total

energy of molecules and solids. However, first-principles

methods are computationally very expensive, limiting their

use in small systems. Therefore, deep learning is believed

to have the potential to accelerate quantum mechanical sim-

ulations if it can accurately and reliably predict quantum

tensors (Schütt et al., 2019; Unke et al., 2021) .

Unlike invariant molecular properties such as energy and

equivariant properties such as atomic forces, quantum ten-

sors possess a higher rotation order to reflect the exact ro-

tation of a molecule. Therefore, developing deep learn-

ing methods to predict quantum tensors is challenging and

requires elaborate designs of model architectures. SE(3)-

equivariant graph neural networks (Satorras et al., 2021;

Schütt et al., 2021; Thomas et al., 2018; Anderson et al.,

2019; Gasteiger et al., 2021) have the promising potential

in predicting quantum tensors since they ensure the equiv-

ariance of permutation, translation, and rotation. Output

quantum tensors are guaranteed to be permuted, translated,
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DFT can approximate the solution iteratively with a time

complexity of O(n3) for each step, resulting in significant

cost for running DFT simulations for large systems. This

is particularly true when multiple iterations have to be con-

ducted to obtain the final quantum tensors in settings in

which a high level of accuracy is required. With the recent

advances and successes of machine learning approaches

for scientific computing, we here propose to develop deep

learning models to predict quantum tensors within a reason-

able level of accuracy, thereby accelerating the optimization

process in the electronic structure calculations with better

accuracy.

2.2. Related Work

In recent years, graph neural networks have yielded promis-

ing results in quantum chemistry by solving problems such

as precise prediction of molecular properties (Gilmer et al.,

2017; Liu et al., 2022b; Fuchs et al., 2020; Batzner et al.,

2022; Schütt et al., 2021; Godwin et al., 2021; Satorras et al.,

2021; Unke & Meuwly, 2019; Gasteiger et al., 2020; Qiao

et al., 2020). A molecule usually has various quantum prop-

erties that describe the molecule from different perspectives.

We divide these properties into three categories based on

their rotation orders. A typical example of the first cate-

gory is molecular energy, including the total energy and

the HOMO-LUMO gap, as molecular energy is invariant to

molecular rotation. The force falls into the second category

because force vectors rotate as a molecule rotates. Thus,

force predictions have to be equivariant to rotations of the

same order. The third category includes a higher rotation

order of the matrix that indicates the exact rotation. The

Hamiltonian matrix is an example in this category and is

more challenging to predict. To predict molecular properties

with different rotation orders, different variants of invariant

and equivariant GNNs have been proposed accordingly.

Invariant GNNs use relative geometric information of

molecules as input and predict invariant molecular prop-

erties. For instance, SchNet (Schütt et al., 2018) considers

pairwise distances when performing message passing, while

DimeNet (Gasteiger et al., 2020) also uses angles in addition

to distance. SphereNet (Liu et al., 2022b) and ComENet

(Wang et al., 2022a) incorporate distances, angles, and tor-

sion angles to build more informative representations.

Equivariant GNNs use equivariant features and specific

model architectures to predict the roto-equivariant molecular

properties. For example, PaiNN (Schütt et al., 2021) main-

tains the equivariant features of rotation order ℓ = 1 in the

model architecture. Tenor field networks, SE3-transformers,

and NequIP (Thomas et al., 2018; Fuchs et al., 2020; Batzner

et al., 2022) use tensor products to incorporate lifted higher-

order of equivariant features while prediction targets could

be either invariant or equivariant with order ℓ = 1.

To predict high-order quantum tensors, SchNorb (Schütt

et al., 2019) follows SchNet (Schütt et al., 2018) to consider

pairwise distances and incorporates direction information by

applying pairwise direction vector on pairwise interaction

features. It then constructs blocks of the Hamiltonian matrix.

SchNorb considers system coordinates through the pairwise

direction vector. However, it does not provide guarantee

on yielding an equivariant matrix. In PhiSNet (Unke et al.,

2021), tensor products (Thomas et al., 2018) are used to

ensure equivariance. In this method, the equivariant atomic

representation network is applied to extract equivariant fea-

tures for each atom. The mixing layers are then applied to

construct equivariant representations for each node pair. The

Hamiltonian matrix is finally constructed with irreducible

representations collected from the mapping from orbital in-

teractions to channel indices. The DeepH (Li et al., 2022)

uses the 3D GNN to predict the invariant Hamiltonian matrix

block. It then applies the Wigner-D matrix to the predicted

invariant matrix, thereby ensuring rotation equivariance.

3. Methodology

In this section, we describe our proposed SE(3) equivariant

graph neural network, QHNet, for quantum tensor predic-

tion tasks.

3.1. Tensor Field Networks

The tensor field network (TFN) (Thomas et al., 2018) is one

of the commonly-used equivariant neural network architec-

tures that achieve 3D rotation, translation, and permutation

equivariance. TFN uses tensor product to combine two irre-

ducible representations u and v of the rotation orders ℓ1 and

ℓ2 with the Clebsch-Gordan (CG) coefficients (Griffiths &

Schroeter, 2018) to produce a new irreducible representation

of order ℓ3 as

(uℓ1 ⊗ vℓ2)ℓ3m3
=

ℓ1
∑

m1=−ℓ1

ℓ2
∑

m2=−ℓ2

C
(ℓ3,m3)
(ℓ1,m1),(ℓ2,m2)

uℓ1m1
vℓ2m2

,

where C denotes the CG matrix, ℓ3 satisfies |ℓ1 − ℓ2| ≤
ℓ3 ≤ ℓ1 + ℓ2, and ℓ1, ℓ2, ℓ3 ∈ N. Note that m denotes the

m-th element in the irreducible representation with −ℓ ≤
m ≤ ℓ and m ∈ N. In the TFN (Thomas et al., 2018), each

layer is composed of filter, convolution, self-interaction and

nonlinear activation modules. First, spherical harmonic

filters Y are applied to the node pair direction r̂ij , then

combined with the pairwise distance rij to obtain the filter

outputs F as

F
(ℓin,ℓf )
cm (rij , r̂ij) = R

(ℓin,ℓf )
c (rij)Y

ℓf
m (r̂ij), (5)

where R is a multiple layer perceptron (MLP) that takes

the embedding of pairwise distance as input, and c is the

channel index. Then the convolution collects information
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from the irreducible representations of other nodes and the

pairwise spherical harmonics through the tensor product as

Ṽ
ℓout
i =

∑

j

(F (ℓin,ℓf )(rij , r̂ij)⊗ V
ℓin
j )ℓout (6)

with |ℓin − ℓf | ≤ ℓout ≤ ℓin + ℓf , and ℓin, ℓout, ℓf ∈ N.

Then the self-interaction is a linear layer that combines

features across the channel dimension to obtain irreducible

representations with the same order ℓ as

V ℓ
icm = f linear(V

ℓ
i )cm =

∑

c

wcc′V
ℓ
ic′m. (7)

In the final nonlinear layer, a nonlinear function is applied

to the invariant irreducible representations of ℓ = 0. Mean-

while, the average norm
∑

c ‖V
ℓ
ic‖ is calculated over the

channel for irreducible representations with ℓ > 1, and V ℓ
i

is normalized with this average norm.

3.2. Norm Gate

The irreducible representations can be represented as the

multiplication of their norm and direction vectors. When

the norm of xi is larger than other nodes, the message from

node i has greater impact on node messaging updating. In-

stead of the layer norm operation in the original TFN layer,

we perform norm gate learning to rescale the norm of ir-

reducible representations before applying message passing

and tensor product. The norm of order ℓ representations for

node i, xℓ
i , is defined as

n
ℓ
i = ‖xℓ

i‖. (8)

We apply an MLP to learn the norm of new irreducible rep-

resentations along with the new irreducible representations

with order 0 as

x̂
0
i ,σ

1
i , . . .σ

ℓmax
i = fMLP(x

0
i ,n

1
i , . . . ,n

ℓmax
i ). (9)

The irreducible representations with order higher than 0 are

rescaled with the factor

x̂
′ℓ
im = σ

ℓ
ix

ℓ
im. (10)

Since x
0 and the norm n

ℓ
i are SE(3) invariant, the scale

σi is also invariant. Therefore, the rescaled irreducible

representations x̂ℓ
i have the same SE(3) equivariance as xℓ

i .

The illustration of norm gate is shown in Figure 2.A.

Usually, a self-interaction layer is applied after the norm

gate to produce the representation x̂
ℓ
i as

x̂
ℓ
i = f linear(x̂

′ℓ
i ). (11)

3.3. Node-Wise Interaction Layer

The filter module in the TFN layer controls influence of

messages from other nodes. It takes pairwise distances as

input and induces most of parameters in the TFN layer. In-

tuitively, when nodes are far from each other, their influence

on each other should be weak.

In our node-wise interaction layers as illustrated in Fig-

ure 2.B, we further consider the similarity of pairwise nodes.

We calculate the inner product of the pairwise irreducible

representations of order ℓ as

I
ℓ
ij = 〈f linear(x

ℓ
i), f linear(x

ℓ
j)〉 . (12)

To increase expressive power, a self-interaction linear layer

is applied before the inner product. The pairwise cosine

similarity of irreducible representations are then fed into a

MLP along with the irreducible representations of order 0
to calculate attentive scores as

aij = f
MLP

(x0
i ,x

0
j , I

1
ij , . . . , I

ℓmax
ij ). (13)

Since x0 and the inner product Iij are invariant, the attentive

scores are also SE(3) invariant.

Even though the filter in the TFN layer assigns a weight

for each (ℓin, ℓf ) according to Eq. (5), the weights are the

same when the order of output features ℓout are different.

To explicitly express the difference, we extend the filter to

assign weights for each path (ℓin, ℓf , ℓout). Furthermore, the

filter assigns an attentive score for each path to consider

pairwise similarities. Formally,

F
(ℓin,ℓf ,ℓout)
cm (rij , r̂ij) =

a
(ℓin,ℓf ,ℓout)
ijc R

(ℓin,ℓf ,ℓout)
c (rij)Y

ℓf
m (r̂ij). (14)

Note that c denotes the channel index and m indexes the

irreducible representations.

In the next step, we calculate the message mij from node j

to node i. The irreducible representations x are first rescaled

with a norm gate and self-interaction layer to obtain x̂. Then

the rescaled representations cooperates with the filter to

produce mij as

m
ℓout
ijc =

∑

ℓf ,ℓin

(F
(ℓin,ℓf ,ℓout)
c (rij , r̂ij)⊗ (x̂

ℓin
jc ))

ℓout . (15)

The output irreducible representations x̃ are then obtained

by aggregating the message mij and the self-connection

and further updated with a self-interaction layer as

x̃
ℓ
i = f linear(x̂

ℓ
i +

∑

j

m
ℓ
ij). (16)

3.4. Building Quantum Tensor

Quantum tensors like Hamiltonian matrix characterize the

pairwise relationship between atoms in molecular systems,

and they can be divided into diagonal and non-diagonal
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Table 2. Overall performance comparison in validation and test sets. Both PhiSNet and our QHNet are trained using a learning rate

scheduler with a linearly decreasing learning rate to ensure the convergence with 1,000 warm-up steps and 200,000 total steps with

double-precision floating-point. The unit for Hamiltonian H and eigen energies ǫ is Hartree, denoted by Eh. Training ‘Time’ is in days.

Training loss is described in Appendix A.1.

Dataset Method Time
Validation Test

H [10−6Eh] ↓ ǫ [10−6Eh] ↓ ψ [10−2] ↑ H [10−6Eh] ↓ ǫ [10−6Eh] ↓ ψ [10−2] ↑

Water
PhiSNet 4.67d 7.87 29.81 99.99 15.67 – 99.94

QHNet 1.27d 10.49 31.62 99.99 10.79 33.76 99.99

Ethanol
PhiSNet 7.45d 19.60 101.10 99.91 20.09 102.04 99.81

QHNet 3.73d 20.45 81.29 99.99 20.91 81.03 99.99

Malondial- PhiSNet 8.75d 21.89 104.76 99.96 21.31 100.60 99.89

dehyde QHNet 3.33d 22.07 86.04 99.89 21.52 82.12 99.92

Uracil
PhiSNet 14.12d 18.89 146.14 99.87 18.65 143.36 99.86

QHNet 3.31d 20.33 113.48 99.88 20.12 113.44 99.89

Table 3. Comparing PhiSNet and QHNet in terms of training time per iteration and GPU memory consumption on the MD17 datasets.

Note that these are in double-precision floating-point.

Dataset Batch Size PhiSNet QHNet Speedup Memory Efficiency

Water 10 2.02s / 3,839M 0.56s / 2,419M 3.61× 1.59×
Ethanol 5 3.22s / 8,673M 0.84s / 3,917M 3.83× 2.21×
Malondialdehyde 5 3.78s / 8,869M 0.88s / 3,925M 4.30× 2.25×
Uracil 3 6.10s / 9,135M 0.94s / 4,049M 6.49× 2.25×

uler reduces the learning rate linearly so that the learning

rate reaches 1e−7 at the last step. Our competing base-

line PhiSNet has five Pairmix layers that incorporate the

representations from neighbor nodes to update node repre-

sentations in the equivariant atomic representation network.

For a fair comparison, QHNet uses five node-wise interac-

tion layers to aggregate the messages from neighbor nodes

to update node irreducible representations.

Note that the batch size differs for different molecules.

Specifically, for QHNet, the batch size is set to 10 for water,

ethanol, and malondialdehyde, while it is set to 5 for uracil.

On the other hand, for PhiSNet, the batch size is as follows:

10 for water, 5 for ethanol and malondialdehyde, and 3 for

uracil.

Model parameters are set in double-precision floating-point

format when we run experiments for both the baseline and

our QHNet. It is because the resolution of single-precision,

1e−6, is at a similar order of magnitude to the predicted error.

Using double-precision can approximate at a higher resolu-

tion, and it provides more consistent and reliable evaluation

with DFT algorithms where double-precision is required to

ensure high accuracy. Note that we omit the task of pre-

dicting overlap matrix, since overlap matrix can be easily

calculated without any errors in 10−3s for a these molecules

shown in Table 6.

Results. We provide the overall performance results in Ta-

ble 2. Three metrics were applied to evaluate the accuracy

of the predicted Hamiltonian matrices, including mean abso-

lute error (MAE) of the Hamiltonian matrix elements Hij .

Besides directly checking the prediction error of Hamilto-

nian matrices, it is also important to evaluate the error of the

predicted orbital energy ǫ and wavefunction ψ, which can

be deduced from the Hamiltonian matrix H through Eqs.

(3) and (4). Therefore, we report the MAE of the predicted

energies and cosine similarity of coefficients for occupied

molecular orbitals.

As reported in Table 2, QHNet can achieve competitive

MAE on H in terms of both validation and test accuracy,

and obtain better results on orbital energies. Specifically,

on the water dataset, QHNet outperforms PhiSNet by a sig-

nificant margin of 4.88× 10−5Eh . Although its obtained

MAEs of predicted Hamiltonian matrices H are similar to

the baseline, QHNet can better predict molecular proper-

ties from the predicted H. For orbital energies, QHNet

consistently outperforms other models on ethanol, malon-

dialdehyde, and uracil datasets. We did not include the test

MAE of ǫ by PhiSNet on the water dataset in Table 2 as it

is ten times worse than that by QHNet (33.76). All these
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Table 4. Performance of QHNet trained on the mixed dataset. Note

that this dataset includes only 500 water examples in the training

set while there are 25,000 examples each for ethanol, malondialde-

hyde and uracil shown in Table 5 in Appendix A.2.

Dataset H [10−6Eh] ↓ ǫ [10−6Eh] ↓ ψ [10−2] ↑

Water 190.03 304.48 99.99

Ethanol 51.68 130.68 99.97

Malondialdehyde 36.79 101.14 99.89

Uracil 34.77 124.86 99.80

Mixed Dataset 83.12 173.86 99.92

experimental results demonstrate the efficacy and better

generalizability of QHNet.

4.2. Time and Memory Efficiency

We further compare the running time and GPU memory

consumption of PhiSNet and QHNet. For each dataset,

we set the same batch size for both models, and show the

comparison in Table 3. The result indicates that the proposed

QHNet is much more efficient than PhiSNet. Specifically,

QHNet runs more than three times faster during training,

requiring less than half of the GPU memory. As explained

in Sec 3.5 and shown in Table 1, the high efficiency of our

QHNet is because the total number and sequential number

of tensor products are reduced to less than 14% of that in

PhiSNet.

4.3. Performance on Mixed Dataset

Experiments in Sec 4.1 and Sec 4.2 focus on training and

testing models on the same molecular system. Thus, the pre-

dicted Hamiltonian matrices have the same shape as training

Hamiltonian matrices. In this subsection, we mix previously

mentioned four datasets together while keeping the orig-

inal split of training, validation, and testing sets. In this

case, the mixed dataset contains four kinds of molecules,

and QHNet is trained to predict the Hamiltonian matrices

for multiple molecules rather than one. As described in

Sec 3.4, we adopt the design of full orbital matrices with a

fixed shape in the expansion module. Hence, QHNet can

be easily extended to this mixed dataset and still achieve

comparable performances, as demonstrated in Table 4. Note

that such a mixed task is complex for PhiSNet with potential

troubles for reasons we explain at the end of Sec 3.4. The

flexible implementation of QHNet facilitates training a uni-

versal quantum tensor prediction network to further advance

deep learning for quantum chemistry and condensed matter

physics.

5. Conclusion

In this work, we presented a SE(3)-equivariant network—

QHNet—to predict the Hamiltonian matrix with high ac-

curacy and efficiency. QHNet is built carefully to maintain

the underlying symmetry while eliminating 86% of tensor

product operations to make it super streamlined compared

to existing methods. We evaluated QHNet using the MD17

datasets to show that it can accelerate the training by more

than three times while using less than 50% of the GPU

memory. Additionally, our experimental results indicate

that QHNet achieves competitive MAE on the Hamiltonian

matrix and can derive more accurate molecular properties.

Furthermore, by outputting full orbital matrices with a fixed

shape and applying post-processing, QHNet is highly versa-

tile and can be extended to datasets mixed with a variety of

molecules. Therefore, we believe QHNet has great poten-

tial to efficiently predict accurate quantum tensors such as

Hamiltonian matrix in a wide range of molecular systems.
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Schütt, K. T., Sauceda, H. E., Kindermans, P.-J.,

Tkatchenko, A., and Müller, K.-R. SchNet – A deep

learning architecture for molecules and materials. The

Journal of Chemical Physics, 148(24):241722, 2018.

Schütt, K. T., Gastegger, M., Tkatchenko, A., Müller, K.-

R., and Maurer, R. J. Unifying machine learning and

quantum chemistry with a deep neural network for molec-

ular wavefunctions. Nature Communications, 10(1):5024,

2019.

Shi, C., Luo, S., Xu, M., and Tang, J. Learning gradient

fields for molecular conformation generation. In Meila,

M. and Zhang, T. (eds.), Proceedings of the 38th Inter-

national Conference on Machine Learning, volume 139

of Proceedings of Machine Learning Research, pp. 9558–

9568. PMLR, 18–24 Jul 2021.

Simm, G. and Hernandez-Lobato, J. M. A generative model

for molecular distance geometry. In III, H. D. and Singh,

A. (eds.), Proceedings of the 37th International Confer-

ence on Machine Learning, volume 119 of Proceedings

of Machine Learning Research, pp. 8949–8958. PMLR,

13–18 Jul 2020.

Stärk, H., Ganea, O., Pattanaik, L., Barzilay, R., and

Jaakkola, T. Equibind: Geometric deep learning for drug

binding structure prediction. In International Conference

on Machine Learning, pp. 20503–20521. PMLR, 2022.

Szabo, A. and Ostlund, N. S. Modern Quantum Chemistry:

Introduction to Advanced Electronic Structure Theory.

Courier Corporation, 2012.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,

Kohlhoff, K., and Riley, P. Tensor field networks:

Rotation- and translation-equivariant neural networks for

3D point clouds. arXiv preprint arXiv:1802.08219, 2018.

Unke, O., Bogojeski, M., Gastegger, M., Geiger, M., Smidt,

T., and Müller, K.-R. SE(3)-equivariant prediction of

molecular wavefunctions and electronic densities. Ad-

vances in Neural Information Processing Systems, 34:

14434–14447, 2021.

Unke, O. T. and Meuwly, M. PhysNet: A Neural Network

for Predicting Energies, Forces, Dipole Moments, and

Partial Charges. Journal of Chemical Theory and Com-

putation, 15(6):3678–3693, 2019.

Wang, L., Liu, Y., Lin, Y., Liu, H., and Ji, S. ComENet:

Towards complete and efficient message passing for 3D

molecular graphs. In The 36th Annual Conference on

Neural Information Processing Systems, 2022a.

Wang, Z., Liu, M., Luo, Y., Xu, Z., Xie, Y., Wang, L., Cai,

L., Qi, Q., Yuan, Z., Yang, T., and Ji, S. Advanced Graph

and Sequence Neural Networks for Molecular Property

Prediction and Drug Discovery . Bioinformatics, 38(9):

2579–2586, 2022b.

Weigend, F. and Ahlrichs, R. Balanced basis sets of split

valence, triple zeta valence and quadruple zeta valence

quality for H to Rn: Design and assessment of accuracy.

Physical Chemistry Chemical Physics, 7(18):3297–3305,

2005.

Xu, M., Luo, S., Bengio, Y., Peng, J., and Tang, J. Learning

Neural Generative Dynamics for Molecular Conforma-

tion Generation. In International Conference on Learning

Representations, 2021a.

Xu, M., Wang, W., Luo, S., Shi, C., Bengio, Y., Gomez-

Bombarelli, R., and Tang, J. An End-to-End Frame-

work for Molecular Conformation Generation via Bilevel

Programming. In Meila, M. and Zhang, T. (eds.), Pro-

ceedings of the 38th International Conference on Ma-

chine Learning, volume 139 of Proceedings of Machine

Learning Research, pp. 11537–11547. PMLR, 18–24 Jul

2021b.

Yan, K., Liu, Y., Lin, Y., and Ji, S. Periodic Graph Trans-

formers for Crystal Material Property Prediction. In The

36th Annual Conference on Neural Information Process-

ing Systems, 2022.

Zhang, Y., Cai, H., Shi, C., Zhong, B., and Tang, J. E3Bind:

An End-to-End Equivariant Network for Protein-Ligand

Docking. arXiv preprint arXiv:2210.06069, 2022.

11



Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian

Table 5. The statistics of MD17 dataset (Schütt et al., 2019).

Dataset # of structures Train Val Test # of atoms # of orbitals # of occupied molecular orbitals

Water 4,900 500 500 3,900 3 24 5

Ethanol 30,000 25,000 500 4,500 9 72 10

Malondialdehyde 26,978 25,000 500 1,478 9 90 19

Uracil 30,000 25,000 500 4,500 12 132 26

Table 6. Time comparison for single example among DFT algorithm, calculating overlap matrix, PhiSNet inference and QHNet inference.

Note that we use batch size 64 to conduct inference for both PhiSNet and QHNet.

dataset DFT[s] overlap [10−4s] PhiSNet [10−2s] QHNet [10−2s]

water 11.38 4.87 1.26 1.09

ethanol 25.11 8.71 8.83 7.11

malondialdehyde 40.63 7.27 9.15 7.92

A. Appendix.

A.1. Training Loss for QHNet

For training, we follow the implementation of PhiSNet (Unke et al., 2021), and use Mean Absolute Error (MAE) and Root

Mean Squared Error (RMSE) as loss function to train the QHNet for predicting the Hamiltonian matrices.

L(H,HGT ) =





√

1

N2

∑

i1,i2

(Hi1,i2 −H
GT
i1,i2

)2 +
1

N2

∑

i1,i2

|Hi1,i2 −H
GT
i1,i2

|



 , (23)

where H is the predicted Hamiltonian matrix, HGT is the ground-truth Hamiltonian matrix, and the size of H and H
GT is

N ×N .

A.2. Statistics of the dataset

We here provide the statistics of the MD17 datasets in Table 5. Note that the mixed dataset follows the same dataset split.

A.3. Accelerating the DFT algorithm.

To study the acceleration by using QHNet, we compare the inference time of QHNet with the time consumption of DFT

algorithm. Here we use PySCF to conduct DFT algorithm with PBE correlation functional and def2-SVP basis set. Moreover,

we select DIIS as the SCF algorithm for the DFT calculation. In Table 6, QHNet exhibited an acceleration of approximately

1000x on water, and approximately 300x on both ethanol and malondialdehyde. Note that we conduct our experiments on

11GB Nvidia GeForce RTX 2080Ti GPU and Intel Xeon Gold 6248 CPU.

Table 7. The ratio of optimization steps when taking pre-

dicted Hamiltonian matrices as the initial status of the

DFT algorithm to accelerate the optimization.

dataset QHNet PhiSNet

water 0.494 0.497

ethanol 0.554 0.562

malondialdehyde 0.562 0.567

Next, we focus onoptimization steps ratio when continuing to opti-

mize the predicted Hamiltonian matrices using the DFT algorithm.

It shows the time ratio to get the converged Hamiltonian matrix with

machine learning model acceleration and reflects the quality of the

predicted Hamiltonian matrices, with higher-quality matrices requir-

ing fewer optimization steps. Note that we use PySCF on 50 random

selected geometries in each molecular dataset to conduct DFT algo-

rithm with PBE correlation functional and def2-SVP basis set, and

select DIIS as the SCF algorithm for the DFT calculation.
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Table 8. Performance of QHNet with various training steps compared to the reported results in PhiSNet. In these experiments, QHNet are

in single-precision floating-point following the setting in original PhiSNet experiments. * denotes the training is converged and EMA is

not used in this experiment.

Dataset Method Training statgies H [10−6Eh] ↓ ǫ [10−6Eh] ↓ ψ [10−2] ↑

Water
QHNet* RLROP 10.36 36.21 99.99

PhiSNet RLROP 17.59 85.53 -

Ethanol

QHNet LSW (10,000, 1,000,000) 12.78 62.97 99.99

QHNet RLROP 13.12 51.80 99.99

PhiSNet RLROP 12.15 62.75 -

Malondialdehyde

QHNet LSW (10,000, 1,000,000) 11.97 55.57 99.94

QHNet RLROP 13.18 51.54 99.95

PhiSNet RLROP 12.32 73.50 -

Uracil
QHNet LSW (10,000, 1,000,000) 9.96 66.75 99.95

PhiSNet RLROP 10.73 84.03 -

Table 9. Ablation study of QHNet.

Dataset full model wo attentive wo NormGate

water 10.79 10.65 10.91

ethanol 20.91 - 39.26

malondialdehyde 21.52 30.89 40.79

A.4. Performance comparison

To compare with PhiSNet, we trained our QHNet using the same settings as PhiSNet, employing the Reduce Learning Rate

On Plateau (RLROP) scheduler. We initialized the scheduler with a learning rate of 5e − 4 and continued training until

it reached 1e−6. In order to limit the training steps, we set the maximum number of steps to 1, 000, 000. The results are

presented in Table 8. QHNet successfully converged on the water dataset. However, for the other three datasets, QHNet

did not converge, and we therefore report the final results. Furthermore, we implemented a linear schedule with warmup,

specifying the warmup steps and total training steps as LSW, and (10,000, 1,000,000) denotes a warmup period of 10,000

steps and a total training duration of 1,000,000 steps. Additionally, the batch size is set to 10 for all the experiments. Note

that the results of PhiSNet comes from its original paper. For the ψ, since it is reported as 1.00 in the original PhiSNet paper,

it can not compare without enough accurate digits. Therefore, we omit the number here.

A.5. Ablation studies on the model architecture

To study the various modules in QHNet, we conduct experiments to compare the QHNet without attentive scores or

NormGate in node-wise interaction layers and report the MAE of the Hamiltonian matrix on the test set in Table 9.
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