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Abstract— Identification of linear time-invariant (LTI) sys-
tems plays an important role in control and reinforcement
learning. Both asymptotic and finite-time offline system iden-
tification are well-studied in the literature. For online system
identification, the idea of stochastic-gradient descent with re-
verse experience replay (SGD-RER) was recently proposed,
where the data sequence is stored in several buffers and the
stochastic-gradient descent (SGD) update performs backward
in each buffer to break the time dependency between data
points. Inspired by this work, we study distributed online
system identification of LTI systems over a multi-agent network.
We consider agents as identical LTI systems, and the network
goal is to jointly estimate the system parameters by leveraging
the communication between agents. We propose DSGD-RER,
a distributed variant of the SGD-RER algorithm, and theoreti-
cally characterize the improvement of the estimation error with
respect to the network size. Our numerical experiments certify
the reduction of estimation error as the network size grows.

I. INTRODUCTION

System identification, the process of estimating the un-
known parameters of a dynamical system from the observed
input-output sequence, is a classical problem in control,
reinforcement learning and time-series analysis. Among this
class of problems, learning the transition matrix of a LTI
system is a prominent well-studied case, and classical results
characterize the asymptotic properties of these estimators
[1]-[4].

Recently, there has been a renewed interest in the problem
of identification of LTI systems, and modern statistical tech-
niques are applied to achieve finite-time sample complexity
guarantees [5]-[9]. However, the aforementioned works fo-
cus on the offline setup, where the estimator has access to the
entire data sequence from the outset. The offline estimator
cannot be directly extended to the streaming/online setup,
where the system parameters need to be estimated on-the-
fly. To this end, the idea of stochastic-gradient descent with
reverse experience replay (SGD-RER) is proposed [10] to
build an online estimator, where the data sequence is stored
in several buffers, and the SGD update performs backward
in each buffer to break the time dependency between data
points. This online method achieves the optimal sample
complexity of the offline setup up to log factors.

In this paper, we study the distributed online identifica-
tion problem for a network of identical LTI systems with
unknown dynamics. Each system is modeled as an agent in
a multi-agent network, which receives its own data sequence
from the underlying system. The goal of this network is
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to jointly estimate the system parameters by leveraging the
communication between agents. We propose DSGD-RER, a
distributed version of the online system identification algo-
rithm in [10], where every agent applies SGD in the reverse
order and communicates its estimate with its neighbors.
We show that this decentralized scheme can improve the
estimation error bound as the network size increases, and
the simulation results demonstrate this theoretical property.

Related Work: Recently, several works have studied the
finite-time properties of LTI system identification. In [5], it
is shown that the dynamics of a fully observable system can
be recovered from multiple trajectories by a least-squares
estimator when the number of trajectories scales linearly with
the system dimension. Furthermore, system identification
using a single trajectory for stable [6] and unstable [7]—
[9] LTI systems has been studied. The works of [8], [11]
establish the theoretical lower bound of the sample com-
plexity for fully observable LTI systems. The case of partially
observable LTI systems is also addressed for stable [12]—[15]
and unstable [16] systems. By applying an /¢;-regularized
estimator, the work of [17] improves the dependency of
the sample complexity on the system dimension to poly-
logarithmic scaling. Contrary to the aforementioned works,
which focus on the finite-time analysis of offfine estimators,
[10] proposes an online estimation algorithm, where the data
sequence is split into several buffers, and in each buffer the
SGD update is applied in the reverse order to remove the
bias due to the time-dependency of data points. As mentioned
before, our work builds on [10] for distributed online system
identification. Finite-time analysis of system identification
has also been studied for non-linear dynamical systems more
recently. In the works of [18], [19], the sample complexity
bounds are derived for dynamical systems described via
generalized linear models, and [20] further improves the
dependence of the complexity bound on the mixing time
constant.

II. PROBLEM FORMULATION

A. Notation
[m] The set of {1,2,...,m} for any integer m
Omax(A) || The largest singular value of A
Omin(A) The smallest singular value of A
M- Euclidean (spectral) norm of a vector (matrix)
E[] The expectation operator
[A];j The entry in ¢-th row j-th column of A
A>B (A — B) is positive semi-definite
14 Identity matrix with dimension d X d
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B. Distributed Online System Identification

We consider a multi-agent network of m identical LTI
systems, where the dynamics of agent % is defined as,

xF = AxF +wF, ke [m]
A € R¥*? is the unknown transition matrix, and w is the
noise sequence generated independently from a distribution
with zero mean and finite covariance . The goal of the
agents is to recover the matrix A collaboratively. Though this
task can be accomplished by an individual agent (e.g., as in
[10]), we will show that the collective system identification
improves the theoretical error bound of estimation.

Assumption 1: The considered system is stable in the
sense that [|A|| < 1.
With Assumption 1, it can be shown that for any initial state
x§, the distribution of x¥ converges to a stationary distri-
bution 7 with the covariance matrix G := Ey.[xx'] =
Yoo A'SA' Note that Assumption 1 is more stringent
compared to the standard stability assumption (i.e., p(A) <
1); however, the analysis is extendable to this case under
some modifications of the time horizon (see [10] for more
details).

Assumption 2: For any x € R%, (x,wf) is C,(x,Ix)
sub-Gaussian, i.e.

2
Ew[exp(y{x, w)] < exp(%-Cu(x, 2x)),

for any y € R.

Sub-Gaussian noise is a standard choice for finite-time
analysis of system identification (see e.g., [8], [9], [21]).
Also, in some existing works, i.i.d. Gaussian noise is applied
to ensure the persistence of excitation ( [11], [12]). In this
paper, we assume that ¥ is positive-definite.

Problem Statement: Departing from the classical offline
ordinary least squares (OLS) estimator, the goal is to de-
velop a fully decentralized algorithm, where each agent
produces estimates of the unknown system A in an online
fashion. Specifically, at each iteration, agent k first updates
its estimate based on the current information, and then it
communicates its estimate with its neighbors. The commu-
nication is modeled via a graph that captures the underlying
network topology. As mentioned earlier, the goal of an online
distributed system identification algorithm, as opposed to the
centralized one, is to leverage the network element to provide
a finer estimation guarantee for each agent’s estimation error.
In this work, we quantify the estimation error of each agent,
such that the error bound encapsulates the dependency on
the network size and topology.

Network Structure: During the estimation process, the
agents communicate locally based on a symmetric doubly
stochastic matrix P, i.e., all elements of P are non-negative
and 321" [P];; = 37" [P];; = 1. Agents i and j commu-
nicate with each other if [P];; > 0; otherwise [P];; = 0.
Thus, N; := {j € [m] : [P];; > 0} is the neighborhood of
agent . The network is assumed to be connected, i.e., for
any two agents ¢,j € [m], there is a (potentially multi-hop)
path from ¢ to j. We also assume P has a positive diagonal.
Then, there exists a geometric mixing bound for P [22],

such that 2" | |[P*];; — 1/m| < \/mf3*, i € [m], where 8
is the second largest singular value of P. Agents exchange
only local system estimates, and they do not share any other
information in the process. The communication is consistent
with the structure of P. We elaborate on this in the algorithm
description.

III. ALGORITHM AND THEORETICAL RESULTS

We now lay out the distributed online linear system
identification algorithm and provide the theoretical bound
for the estimation error.

A. Offline and Online Settings

For the identification of LTI systems, it is well-
known that the (centralized) OLS estimator Aprs =
argmin ZtT;()l |Ax; — %441 ]| is statistically optimal. OLS
is an offline estimator that can also be implemented in an
online fashion (i.e., in the form of recursive least squares)
by keeping track of the data covariance matrix and the
residual based on the current estimate. On the other hand,
gradient-based methods provide efficient mechanisms for
system identification. In particular, SGD uses the gradient
of the current data pair (x;41,x;) to perform the update

At+1 = At — 27(Atxt — Xt+1)X:,

where ~y is the step size. Despite the efficient update, SGD
suffers from the time-dependency over the data sequence,
which leads to biased estimators. To observe this, unrolling
the recursive update rule of SGD, we have

Ay — A= (Ag— AT ZH(T - 29x,x])
t—1
+ 2y Z wSxZHf;;H (I —2vxx;'),
s=0

where in the second term, the dependence of later states
on previous noise realizations prevents the estimator from
being unbiased even if A is initialized with a distribution
where E[A(] = A. To deal with this issue, [10] develops the
method SGD-RER, which applies SGD in the reverse order
of the sequence to break the dependency over time. Suppose
that the estimate is updated along the opposite direction of
the sequence. In particular, if we have T' samples and use
the SGD update in the reverse order, the problematic term
in the above equation takes the following form

t—1

29w kxp_ I (1= 2% x7_y).

k=0
whose expectation is equal to zero since the later noise
realizations are independent of previous states. Evidently,
this approach does not work in an online sense (as the entire
sequence of 7' samples has to be collected first). However,

we can mimic this approach by dividing the data into smaller
buffers and use reverse SGD for each buffer [10].

B. Distributed SGD with Reverse Experience Replay

We extend SGD-RER to the distributed case and call it
the DSGD-RER algorithm. Each agent splits the sequence
of data pairs into several buffers of size B, and within
each buffer all agents perform SGD in the reverse order
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Fig. 1: The illustration of the update scheme within one buffer: each agent splits the received data sequence into buffers and applies SGD
reversely within each buffer. The estimate of each agent is then updated locally through the network communication. The communication

between agents is based on the network structure captured by P.

collectively based on the network topology. Between two
consecutive buffers, u data pairs are discarded in order to
decrease the correlation of data in different buffers. The
proposed method is outlined in Algorithm 1 and depicted
in Fig. 1.

Averaged Iterate over Buffers: To further improve the
convergence rate, we average the iterates. Each agent com-
putes as the estimation output the tail-averaged estimate, i.e.,
the average of the last estimates of all buffers (line 11 of
Algorithm 1).

Coupled Process: Despite the gap between buffers, there is
still dependency across data points in various buffers, which
makes the analysis challenging. To simplify the analysis, we
consider the idea of coupled process [10], where for the
state sequence {x¥ :i =0,...,T} received by agent k, the
corresponding coupled sequence X% is defined as follows.
1) For each buffer ¢, the starting state xlg’t is indepen-
dently generated from m, the stationary distribution of
the state.
2) The coupled process evolves according to the noise
sequence lemt of the actual process, such that

L, S—1(S=B+u).

We will see in the analysis that it is more straightforward
to first compute the estimation error based on the coupled
process and then quantify the excessive error introduced by
replacing the coupled process with the actual one. Note that
based on the dynamics of the coupled process, the excessive
error is related to the gap size u.

Skt Lot kit
X1 =AX; +w, i =0,

C. Theoretical Guarantee

In this section, we present our main theoretical result. By
running Algorithm 1 with specified hyper-parameters, we
show that for the estimation error upper bound (of any agent),
the term corresponding to the leading term in [10] can be
improved by increasing the network size. There exists a (high
ﬂrobability) upper bound R for the norm of state, such that

xf7t ‘ < VR, which is also one of the parameters to be

tuned.

Algorithm 1 DSGD-RER

1: Require: number of agents m, doubly stochastic matrix
P € R™*™_ step size v, buffer size B, gap size u, time
horizon 7', the parameter 7.

2: Initialize: A{, is initialized as a zero matrix for all
agents k € [m]. The number of buffers N = T'/S, where

S=DB+u.
3: fort=0,1,...,N —1do
4:  Each agent k collects its data sequence of buffer ¢,
kt kit k.t k
{xbtoxpt kY, where xPF = = X3, 4> and we
ot kit
also define x7; := X(5_1)—i
5:. fori=0,1,...,B—1do
6: for k=1,2...,m do
kit kit k.t
7. Az+1 k= A _2'7(A§,kx—i _xf(i71))( —z)
8: end for
9: Each agent k communicates with its neighbors

based on P to update its estimate:

Az+1 k= Z [P ]k?A'LJrl,]
JEN;

10  end for
11:  For each agent k, compute the tail- averaged estimate
until the current buffer as A0 ;= ZS 0 A% and
t+1 _
define Ayl = A%,
12: end for

t+1

Theorem 1: Let Assumptions 1-2 hold and consider the
following hyper-parameter setup:
1) d < O(log(T)).
2) YRB < %
3) Cl'VBUmin(G) < %7
constant.
4) R = Q(CLomax(G)log(T)),

B:u:@(“%),

log /T log(T) ) and

log(T)

where c; is a problem-dependent

v= @(\/Tllo T
7 = 0(log(1))

Then, by applying Algorithm 1, with probability at least 1 —
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Fig. 2: The plot shows that the estimation error of DSGD-RER
improves as the network size increases. Also, DSGD-RER outper-
forms it centralized counter part SGD-RER.

= ..
(72 + 7?’) where p and v are some positive constants, the

estimation error of the tail-averaged estimate of agent k €
[m] over all buffers is bounded as follows

|Ab v - A
<2/mB7yRT? + (167> R?*T? + 8yRT) | A"
\/S'Ycuo'max(z)(cﬁd"f'UIOgT)(l + 2a) CHAO _A”
+ +
Nm N
4 HAO - A” Cl'yBUmin(G)
R0 Z BT yp (- HIETminl)
€1Y0min (G)NB 2

([¢1+1)),
(1)

— cad v —
where ¢ := max{<* +log(NT")/cs — 1,ca}, 1= c5(C +

m) and c1, ..., cs are constants.

Remark 1: Comparing (1) and the estimation error upper
bound of the centralized SGD-RER in [10], we can observe
that for the dominant term in [10], the corresponding term in

(1) is \/ 8101 max (2)(codtvlog T)(1420) '\wpich shows that the

Nm
contributed error can be improved by increasing the network

size m.

IV. NUMERICAL EXPERIMENTS

Experiment Setup: We consider a network of LTI systems,
where the transition matrix A € R%*? has the form UAU .
U is a randomly generated orthogonal matrix and A is a
diagonal matrix with two of its diagonal entries equal to 0.9
and the rest equal to 0.3. For the step size, we set 7y, = ﬁ,
where Ry is estimated as the sum of the norms of the first
[2logT'| samples of agent k. We also set the other hyper-

/T —
W,B— 10u,

7 =1 and d = 5. The starting state x = 0, and the noise
follows the standard Gaussian distribution N'(0, I) Vk € [m)].

parameters as follows: 7' = 107, u =

Networks: We examine the dependence of the estimation
error to 1) the network size and 2) the network topology.
For the former, we consider the centralized SGD-RER [10]
and our distributed algorithm for 2-cyclic graph with various
agent numbers m € {5,30,50}. For the latter, we look at
the performance of a 5-agent network with the following

= D-SGD
D-SGDRER(Net A)

——— D-SGDRER(Net B)

—— D-SGDRER(Net C)
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Averaged Estimation Error (Logarithm) over Agents

Fig. 3: The averaged estimation error over time for different network
topologies. The better the network is connected, the lower the
estimation error is. Vanilla D-SGD (even in a fully connected
network) is not competitive due to the correlation of data points.

topologies: a) P = I (Net A), fully disconnected; b) P
captures a 2-cyclic graph, where each agent has a self-
weight of 0.3 and assigns the weight of 0.35 to each of
its two neighbors (Net B); ¢) P = 1117 (Net C), the fully
connected network.

Performance: From Fig. 2, we verify the dependency of
the estimation precision on the network size. For a larger
network size, the error of the tail-averaged estimate is
smaller. Furthermore, all decentralized schemes outperform
centralized SGD-RER [10]. To see the influence of network
topology, notice that the value of [ for different networks
is ordered as Net A > Net B > Net C. We can see in
Fig. 3 that smaller 8 results in a better estimation error.
Furthermore, to see the impact of reverse estimation, we also
plot the estimation error of applying vanilla distributed SGD
in a fully connected network. We can see that the error does
not shrink over time as the estimator is biased, so the reverse
update process in DSGD-RER is critical.

V. CONCLUSION

In this work, we considered the distributed online system
identification problem for a network of identical LTI systems.
We proposed a distributed online estimation algorithm and
characterized the estimation error with respect to the network
size and topology. We indeed observed in numerical experi-
ments that larger network size as well as better connectivity
can improve the estimation performance. For future direc-
tions, this online estimation method can be combined with
decentralized control techniques to build decentralized, real-
time adaptive controllers as explored in [23], [24]. Another
potential direction is to extend the technique for identification
of non-linear dynamical systems.

VI. APPENDIX
For the complete proof of claims, see the longer version
of the paper [25], where all necessary lemmas are included.
A. Notations and Proof Sketch

To analyze the distributed estimation error, we decompose
it into two parts: (I) The estimation error from applying
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the fully-connected network P,,, = 1117 as the com-
munication scheme; (II) The difference between estimates
derived from P and P, . To analyze (D), we apply the idea
of coupled process: we consider Al{"9, agent k estimate
based on the coupled process and Pavg From the estimate
initialization and the update scheme, we know A{{"Y =
ALSU9 = ... = AL which we denote as A*"9, coming
with the recursive ﬁpdate rule:

At avg __

e )Xk tT. (2)

m
— Abovo lz Abevaght k& )
m j—

We use the following notations for the rest of the proof:

. S gkt
S v L
Ht avg . ‘lzL ISEZUQ’ { S ]
i), i>7
where the index —j := (S — 1) — j, and
x’if:—xlzstl) L, 0<i<S -1,
Dty e={ ] < -1}
D', {H ’”’<\f vk, ]<2<B—1}
DSt =nl_ D", s <t, D% :=nl_D",, s <t,

@s,t — Ds,t N Ibs,t.

The estimate A9 consists of a bias term and a variance
term, which have the following expressions (see equations
18-19 in [10]):

A t,avg _ (Atavg t,avg
AB —A= (AB bias A) AB var’
t,avg s,avg
(AB bias _A) AO_ HHO B-1»
t,avg __
AB var —
t B-1 Z k, t rok,t—rT 0
W_ . X ~
k=1 —J t—r,avg t—s,avg
272 Z JH TG H H, 5707
r=0 j=0 s=r—1

B. Proof of the Main Theorem

First, we decompose the estimation error into several terms
as follows:

PO

: avg
< HAO N-1 _AON 1‘

A - AL ®

+ HAvar ,avg + HAbms ,avg AH

(D) For the term HAO N—1 AS”;% 1 ’

From Lemma 10, when the event of D%V~ holds, we have

From Lemma 9 in [10], there exists a constant p > 0 such
that if R = Q(Cpomax(G)logT), P(DON-1) > 1 — 5>
from which we have

P (|[Aby-. - Age | > 2vimsmoRT?) < 1.
) 4)
(IT) For the term HASUX, 1 Agvﬁ 1|*

Based on the expression of the tail- averaged estimate and
Lemma 9, under the event of D%V ~1 we have

<(16v*R*T? + 8yRT) | A" .

N-1
~ 2 1 ~
avg avg t,avg t,avg
HAO,NA - Ao,NaH < N Z HAB —AjR

Based on Lemma 9 in [10], there exists a constant p > 0 such

that if R = Q(Cu0max(G)logT), P(DON-1) > 1 — 2,

Therefore, we conclude that

P ([Asg - Asg|| = aor?Ror? + syrT) AY)) < 22
®)

(I1I) For the term HA(‘;“]’V‘“{-‘?L.

By applying Theorem 8 with the probability upper bound

equal to i where v is some positive constant, we have that

under the event of MON=1 0 DON=1 (the definition of M

can be found in (16)), with probability at least 1 — =,

’ _ \/SWCHJmaX(E)(CGd +vlogT)(1 + 2a)
- Nm ('6)

Based on Lemma 9 in [10], there exists a constant p > 0
such that if R = Q(C,, ode(G) logT), P(DON-1) > 1 —
7% Under the event of DON-1 by setting & in Lemma 7
properly, we have

2 var,avg
e,

1 m
npoON-1 >1—(=— + —
) (T”+TP)

Combining above with (6), we conclude that

\/awcuamax(zxcﬁd +vlogT)(1 + 2a))

P(MO,N 1

Avarcwq
<H 0,N-1 Nm

<( m

T T

)
(7N
(IV) For the term H Ag“;\; ‘11”9 — Al

Based on the expression of the bias term in Section VI-A,
we have that

2 bias,avg _
Az - a) -

N Z AtBalz’zft]zs - )H
N t
Y

[1H:52,
From the result of Lemma 6 with ( :=

(8)
HAO

s=0

maX{ “4d +

| N log(&)/cs — 1,¢2}, we have, for all ¢ > ¢
HAO N-1 AS%AH = N Z 1A%k — A%ang t 1 (441)
=0 HoE% | <2(1=9Bowin(G)* 7, 9
< 2/mB™yRT. 1;[0 s <2 )
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with probability at least (1 — &) under the event of DN =1,
Based on Lemma 6, under the event of D%~ 1 we also have
for all t < ¢,

t
[THE
s=0

Based on (8), (9) and (10), we have, under the event of

< 1 almost surely. (10)

[7]

[8]

[9]

DYN=1 with probability at least (1 — &), [10]
Abiu,s,avg _ AH
H 0,N—1 [11]
[C1-1y ¢t N—1]| ¢
Ao — A (s Ept
SN o IHEs |+ > | TTHE [12]
t=0 s=0 t=[¢] Ils=0
N-1
Ag— A 1 (441
< ” ON H C+ Z 2(1 _ 'YBO'min(G)) 3 (t41) [13]
t=[(]
Ao — Al 9 W= 7Bomin(G) ¢ [14]
<lBo Ayt —spoi@)® ¥ (1- 2220
t=[¢]
LA — Al [15]
N
2(1 — M)m Ao — A o [16]
2 “ 0 H 2(1 o ’YBo'rnin(G)) 2
Cl’yBo'min(G) N
CllAg — Al [17]
+ N
4 HAO — AH Cl’YBUIrlirl(G)
— 1
S o GNT P <+ 1) [18]
LSlA0— Al [19]
N
(11)
By setting ¢ as %, based on (11) and the fact that [20]
P(DYN-1) >1— 2 we have
% bias,av 4)A0 — A 17B0wmin (G Ag—A
P (A - Al > A A o (- 80Dy o MR ZAT) gy
SYE.
T TR
(12) [22]
Applying the results of (4), (5), (7) and (12) on (3), with (23]
probability at least 1 — (32 + ;) we have
N
AO,Nfl - AH (24]
<2v/mB"YRT? + (167> R?*T? + 8yRT) | A" (25]
\/SVC’uamax(Z)(cﬁd +ologT)(1+2a)  C(|Ag— Al
+ +
Nm N
210 2B ep (- 21E7nlE) 16 4 1)
€1Y0min (G)NB 2
(13)
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