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Abstract— Identification of linear time-invariant (LTI) sys-
tems plays an important role in control and reinforcement
learning. Both asymptotic and finite-time offline system iden-
tification are well-studied in the literature. For online system
identification, the idea of stochastic-gradient descent with re-
verse experience replay (SGD-RER) was recently proposed,
where the data sequence is stored in several buffers and the
stochastic-gradient descent (SGD) update performs backward
in each buffer to break the time dependency between data
points. Inspired by this work, we study distributed online
system identification of LTI systems over a multi-agent network.
We consider agents as identical LTI systems, and the network
goal is to jointly estimate the system parameters by leveraging
the communication between agents. We propose DSGD-RER,
a distributed variant of the SGD-RER algorithm, and theoreti-
cally characterize the improvement of the estimation error with
respect to the network size. Our numerical experiments certify
the reduction of estimation error as the network size grows.

I. INTRODUCTION

System identification, the process of estimating the un-

known parameters of a dynamical system from the observed
input-output sequence, is a classical problem in control,
reinforcement learning and time-series analysis. Among this
class of problems, learning the transition matrix of a LTI
system is a prominent well-studied case, and classical results
characterize the asymptotic properties of these estimators
[1]–[4].

Recently, there has been a renewed interest in the problem
of identification of LTI systems, and modern statistical tech-
niques are applied to achieve finite-time sample complexity
guarantees [5]–[9]. However, the aforementioned works fo-
cus on the offline setup, where the estimator has access to the
entire data sequence from the outset. The offline estimator
cannot be directly extended to the streaming/online setup,
where the system parameters need to be estimated on-the-
fly. To this end, the idea of stochastic-gradient descent with
reverse experience replay (SGD-RER) is proposed [10] to
build an online estimator, where the data sequence is stored
in several buffers, and the SGD update performs backward
in each buffer to break the time dependency between data
points. This online method achieves the optimal sample
complexity of the offline setup up to log factors.

In this paper, we study the distributed online identifica-
tion problem for a network of identical LTI systems with
unknown dynamics. Each system is modeled as an agent in
a multi-agent network, which receives its own data sequence
from the underlying system. The goal of this network is
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to jointly estimate the system parameters by leveraging the
communication between agents. We propose DSGD-RER, a
distributed version of the online system identification algo-
rithm in [10], where every agent applies SGD in the reverse
order and communicates its estimate with its neighbors.
We show that this decentralized scheme can improve the
estimation error bound as the network size increases, and
the simulation results demonstrate this theoretical property.

Related Work: Recently, several works have studied the
finite-time properties of LTI system identification. In [5], it
is shown that the dynamics of a fully observable system can
be recovered from multiple trajectories by a least-squares
estimator when the number of trajectories scales linearly with
the system dimension. Furthermore, system identification
using a single trajectory for stable [6] and unstable [7]–
[9] LTI systems has been studied. The works of [8], [11]
establish the theoretical lower bound of the sample com-
plexity for fully observable LTI systems. The case of partially
observable LTI systems is also addressed for stable [12]–[15]
and unstable [16] systems. By applying an `1-regularized
estimator, the work of [17] improves the dependency of
the sample complexity on the system dimension to poly-
logarithmic scaling. Contrary to the aforementioned works,
which focus on the finite-time analysis of offline estimators,
[10] proposes an online estimation algorithm, where the data
sequence is split into several buffers, and in each buffer the
SGD update is applied in the reverse order to remove the
bias due to the time-dependency of data points. As mentioned
before, our work builds on [10] for distributed online system
identification. Finite-time analysis of system identification
has also been studied for non-linear dynamical systems more
recently. In the works of [18], [19], the sample complexity
bounds are derived for dynamical systems described via
generalized linear models, and [20] further improves the
dependence of the complexity bound on the mixing time
constant.

II. PROBLEM FORMULATION

A. Notation

[m] The set of {1, 2, . . . ,m} for any integer m
σmax(A) The largest singular value of A
σmin(A) The smallest singular value of A

k·k Euclidean (spectral) norm of a vector (matrix)
E[·] The expectation operator
[A]ij The entry in i-th row j-th column of A
A ⌫ B (A�B) is positive semi-definite

Id Identity matrix with dimension d⇥ d
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B. Distributed Online System Identification

We consider a multi-agent network of m identical LTI
systems, where the dynamics of agent k is defined as,

x
k
t+1 = Ax

k
t +w

k
t , k 2 [m].

A 2 Rd⇥d is the unknown transition matrix, and w
k
t is the

noise sequence generated independently from a distribution
with zero mean and finite covariance ⌃. The goal of the
agents is to recover the matrix A collaboratively. Though this
task can be accomplished by an individual agent (e.g., as in
[10]), we will show that the collective system identification
improves the theoretical error bound of estimation.

Assumption 1: The considered system is stable in the
sense that kAk < 1.

With Assumption 1, it can be shown that for any initial state
x
k
0 , the distribution of x

k
t converges to a stationary distri-

bution ⇡ with the covariance matrix G := Ex⇠⇡[xx
>] =

P1
t=0 A

t
⌃A

t. Note that Assumption 1 is more stringent
compared to the standard stability assumption (i.e., ⇢(A) <
1); however, the analysis is extendable to this case under
some modifications of the time horizon (see [10] for more
details).

Assumption 2: For any x 2 Rd, hx,wk
t i is Cµhx,⌃xi

sub-Gaussian, i.e.

Ew[exp(yhx,wi)]  exp(
y2

2
Cµhx,⌃xi),

for any y 2 R.

Sub-Gaussian noise is a standard choice for finite-time
analysis of system identification (see e.g., [8], [9], [21]).
Also, in some existing works, i.i.d. Gaussian noise is applied
to ensure the persistence of excitation ( [11], [12]). In this
paper, we assume that ⌃ is positive-definite.

Problem Statement: Departing from the classical offline
ordinary least squares (OLS) estimator, the goal is to de-
velop a fully decentralized algorithm, where each agent
produces estimates of the unknown system A in an online
fashion. Specifically, at each iteration, agent k first updates
its estimate based on the current information, and then it
communicates its estimate with its neighbors. The commu-
nication is modeled via a graph that captures the underlying
network topology. As mentioned earlier, the goal of an online
distributed system identification algorithm, as opposed to the
centralized one, is to leverage the network element to provide
a finer estimation guarantee for each agent’s estimation error.
In this work, we quantify the estimation error of each agent,
such that the error bound encapsulates the dependency on
the network size and topology.

Network Structure: During the estimation process, the
agents communicate locally based on a symmetric doubly
stochastic matrix P, i.e., all elements of P are non-negative
and

Pm

i=1[P]ji =
Pm

j=1[P]ji = 1. Agents i and j commu-

nicate with each other if [P]ji > 0; otherwise [P]ji = 0.
Thus, Ni := {j 2 [m] : [P]ji > 0} is the neighborhood of
agent i. The network is assumed to be connected, i.e., for
any two agents i, j 2 [m], there is a (potentially multi-hop)
path from i to j. We also assume P has a positive diagonal.
Then, there exists a geometric mixing bound for P [22],

such that
Pm

j=1

�

�[Pk]ji � 1/m
�

�  p
m�k, i 2 [m], where �

is the second largest singular value of P. Agents exchange
only local system estimates, and they do not share any other
information in the process. The communication is consistent
with the structure of P. We elaborate on this in the algorithm
description.

III. ALGORITHM AND THEORETICAL RESULTS

We now lay out the distributed online linear system
identification algorithm and provide the theoretical bound
for the estimation error.

A. Offline and Online Settings

For the identification of LTI systems, it is well-
known that the (centralized) OLS estimator AOLS :=
argmin

A

PT�1
t=0 kAxt � xt+1k2 is statistically optimal. OLS

is an offline estimator that can also be implemented in an
online fashion (i.e., in the form of recursive least squares)
by keeping track of the data covariance matrix and the
residual based on the current estimate. On the other hand,
gradient-based methods provide efficient mechanisms for
system identification. In particular, SGD uses the gradient
of the current data pair (xt+1,xt) to perform the update

At+1 = At � 2�(Atxt � xt+1)x
>
t ,

where � is the step size. Despite the efficient update, SGD
suffers from the time-dependency over the data sequence,
which leads to biased estimators. To observe this, unrolling
the recursive update rule of SGD, we have

At �A = (A0 �A)⇧t�1
s=0(I� 2�xsx

>
s )

+ 2�

t�1
X

s=0

wsx
>
s ⇧

t�1
l=s+1(I� 2�xlx

>
l ),

where in the second term, the dependence of later states
on previous noise realizations prevents the estimator from
being unbiased even if A0 is initialized with a distribution
where E[A0] = A. To deal with this issue, [10] develops the
method SGD-RER, which applies SGD in the reverse order
of the sequence to break the dependency over time. Suppose
that the estimate is updated along the opposite direction of
the sequence. In particular, if we have T samples and use
the SGD update in the reverse order, the problematic term
in the above equation takes the following form

2�

t�1
X

k=0

wT�kx
>
T�k⇧

t�1
l=k+1(I� 2�xT�lx

>
T�l).

whose expectation is equal to zero since the later noise
realizations are independent of previous states. Evidently,
this approach does not work in an online sense (as the entire
sequence of T samples has to be collected first). However,
we can mimic this approach by dividing the data into smaller
buffers and use reverse SGD for each buffer [10].

B. Distributed SGD with Reverse Experience Replay

We extend SGD-RER to the distributed case and call it
the DSGD-RER algorithm. Each agent splits the sequence
of data pairs into several buffers of size B, and within
each buffer all agents perform SGD in the reverse order
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the fully-connected network Pavg = 1
m
11

> as the com-
munication scheme; (II) The difference between estimates
derived from P and Pavg . To analyze (I), we apply the idea

of coupled process: we consider Ã
t,avg
i,k , agent k estimate

based on the coupled process and Pavg . From the estimate

initialization and the update scheme, we know Ã
t,avg
i,1 =

Ã
t,avg
i,2 = · · · = Ã

t,avg
i,m , which we denote as Ã

t,avg
i , coming

with the recursive update rule:

Ã
t,avg
i+1 = Ã

t,avg
i � 2�

m

m
X

k=1

(Ãt,avg
i x̃

k,t
�i�x̃

k,t

�(i�1))x̃
k,t>
�i . (2)

We use the following notations for the rest of the proof:

P̃
t,avg
i := I� 2�

Pm

k=1 x̃
k,t
i x̃

k,t>
i

m
,

H̃
t,avg
i,j :=

(

Qj

s=i P̃
t,avg
�s , i  j

I, i > j

where the index �j := (S � 1)� j, and

x
k,t
�i := x

k,t

(S�1)�i
, 0  i  S � 1,

Dt
�j :=

n�

�

�x
k,t
�i

�

�

� 
p
R : 8k, j  i  B � 1

o

,

D̃t
�j :=

n�

�

�x̃
k,t
�i

�

�

� 
p
R : 8k, j  i  B � 1

o

,

Ds,t := \t
r=sD

r
�0, s  t, D̃s,t := \t

r=sD̃
r
�0, s  t,

D̂s,t := Ds,t \ D̃s,t.

The estimate Ã
avg consists of a bias term and a variance

term, which have the following expressions (see equations
18-19 in [10]):

Ã
t,avg
B �A = (Ãt,avg

B,bias �A) + Ã
t,avg
B,var,

(Ãt,avg
B,bias �A) = (A0 �A)

t
Y

s=0

H̃
s,avg
0,B�1,

Ã
t,avg

B,var =

2γ

t
X

r=0

B�1
X

j=0

�

Pm

k=1
w

k,t�r
�j x̃

k,t�r>
�j

m

�

H̃
t�r,avg

j+1,B�1

0
Y

s=r�1

H̃
t�s,avg

0,B�1
.

B. Proof of the Main Theorem

First, we decompose the estimation error into several terms
as follows:

�

�

�
Â

k
0,N�1 �A

�

�

�


�

�

�Â
k
0,N�1 � Â

avg
0,N�1

�

�

�+
�

�

�Â
avg
0,N�1 �

ˆ̃
A

avg
0,N�1

�

�

�

+
�

�

�

ˆ̃
A

var,avg
0,N�1

�

�

�+
�

�

�

ˆ̃
A

bias,avg
0,N�1 �A

�

�

� .

(3)

(I) For the term
�

�

�Â
k
0,N�1 � Â

avg
0,N�1

�

�

�:

From Lemma 10, when the event of D0,N�1 holds, we have

�

�

�Â
k
0,N�1 � Â

avg
0,N�1

�

�

�  1

N

N�1
X

t=0

�

�A
t
B,k �A

t,avg
B

�

�

 2
p
m�⌧�RT 2.

From Lemma 9 in [10], there exists a constant ⇢ > 0 such
that if R = ⌦(Cµ�max(G) log T ), P(D0,N�1) � 1 � m

Tρ ,
from which we have

P
⇣�

�

�
Â

k
0,N�1 � Â

avg
0,N�1

�

�

�
� 2

p
m�⌧�RT 2

⌘

 m
Tρ .

(4)

(II) For the term
�

�

�Â
avg
0,N�1 �

ˆ̃
A

avg
0,N�1

�

�

�:

Based on the expression of the tail-averaged estimate and

Lemma 9, under the event of D̂0,N�1, we have

�

�

�
Â

avg
0,N�1 �

ˆ̃
A

avg
0,N�1

�

�

�  1

N

N�1
X

t=0

�

�

�A
t,avg
B � Ã

t,avg
B

�

�

�

(16�2R2T 2 + 8�RT ) kAuk .

Based on Lemma 9 in [10], there exists a constant ⇢ > 0 such
that if R = ⌦(Cµ�max(G) log T ), P(D̂0,N�1) � 1 � 2m

Tρ .
Therefore, we conclude that

P
⇣�

�

�Â
avg
0,N�1 �

ˆ̃
A

avg
0,N�1

�

�

� � (16�2R2T 2 + 8�RT ) kAuk
⌘

 2m

T ⇢
.

(5)

(III) For the term
�

�

�

ˆ̃
A

var,avg
0,N�1

�

�

�:

By applying Theorem 8 with the probability upper bound
equal to 1

Tv
where v is some positive constant, we have that

under the event of M̃0,N�1 \ D̃0,N�1 (the definition of M̃
can be found in (16)), with probability at least 1� 1

Tv
,

�

�

�

ˆ̃
A

var,avg
0,N�1

�

�

� 
r

8�Cµ�max(⌃)(c6d+ v log T )(1 + 2↵)

Nm
.

(6)
Based on Lemma 9 in [10], there exists a constant ⇢ > 0
such that if R = ⌦(Cµ�max(G) log T ), P(D̃0,N�1) � 1 �
m
Tρ . Under the event of D̃0,N�1, by setting � in Lemma 7
properly, we have

P(M̃0,N�1 \ D̃0,N�1) � 1� (
1

T v
+

m

T ⇢
).

Combining above with (6), we conclude that

P

 

�

�

�

ˆ̃
A

var,avg
0,N�1

�

�

� �
r

8�Cµ�max(⌃)(c6d+ v log T )(1 + 2↵)

Nm

!

 (
2

T v
+

m

T ⇢
).

(7)

(IV) For the term
�

�

�

ˆ̃
A

bias,avg
0,N�1 �A

�

�

�:

Based on the expression of the bias term in Section VI-A,
we have that

�

�

�

ˆ̃
A

bias,avg
0,N�1 �A

�

�

� =

�

�

�

�

�

1

N

N�1
X

t=0

(Ãt,avg
B,bias �A)

�

�

�

�

�

kA0 �Ak
N

N�1
X

t=0

�

�

�

�

�

t
Y

s=0

H̃
s,avg
0,B�1

�

�

�

�

�

.

(8)

From the result of Lemma 6 with ⇣ := max{ c4d
c3

+

log(N
�
)/c3 � 1, c2}, we have, for all t � ⇣

�

�

�

�

�

t
Y

s=0

H̃
s,avg
0,B�1

�

�

�

�

�

 2
�

1� �B�min(G)
�

c1

2
(t+1)

, (9)

6676

Authorized licensed use limited to: Northeastern University. Downloaded on December 15,2023 at 02:44:13 UTC from IEEE Xplore.  Restrictions apply. 



with probability at least (1� �) under the event of D̃0,N�1.

Based on Lemma 6, under the event of D̃0,N�1 we also have
for all t < ⇣,

�

�

�

�

�

t
Y

s=0

H̃
s,avg
0,B�1

�

�

�

�

�

 1 almost surely. (10)

Based on (8), (9) and (10), we have, under the event of
D̃0,N�1 with probability at least (1� �),

�

�

�

ˆ̃
A

bias,avg
0,N�1 �A

�

�

�

kA0 �Ak
N

0

@

d⇣e�1
X

t=0

�

�

�

�

�

t
Y

s=0

H̃
s,avg
0,B�1

�

�

�

�

�

+

N�1
X

t=d⇣e

�

�

�

�

�

t
Y

s=0

H̃
s,avg
0,B�1

�

�

�

�

�

1

A

kA0 �Ak
N

0

@⇣ +

N�1
X

t=d⇣e

2
�

1� �B�min(G)
�

c1

2
(t+1)

1

A

kA0 �Ak
N

2
�

1� �B�min(G)
�

c1

2

N�1
X

t=d⇣e

�

1� c1�B�min(G)

2

�t

+
⇣ kA0 �Ak

N

2(1� c1�B�min(G)
2 )d⇣e

c1�B�min(G)

kA0 �Ak
N

2
�

1� �B�min(G)
�

c1

2

+
⇣ kA0 �Ak

N

 4 kA0 �Ak
c1��min(G)NB

exp
�

� c1�B�min(G)

2
(d⇣e+ 1)

�

+
⇣ kA0 �Ak

N
(11)

By setting � as 1
Tv

, based on (11) and the fact that

P(D̃0,N�1) � 1� m
Tρ , we have

P

✓

�

�

�

ˆ̃
A

bias,avg
0,N�1 �A

�

�

� � 4 kA0 �Ak
c1��min(G)NB

exp
�

� c1�B�min(G)

2
(d⇣e+ 1)

�

+
⇣ kA0 �Ak

N

◆

 (
1

T v
+

m

T ⇢
).

(12)
Applying the results of (4), (5), (7) and (12) on (3), with
probability at least 1� ( 5m

Tρ + 3
Tv

) we have
�

�

�Â
k
0,N�1 �A

�

�

�

2
p
m�⌧�RT 2 + (16�2R2T 2 + 8�RT ) kAuk

+

r

8�Cµ�max(⌃)(c6d+ v log T )(1 + 2↵)

Nm
+

⇣ kA0 �Ak
N

+
4 kA0 �Ak

c1��min(G)NB
exp

�

� c1�B�min(G)

2
(d⇣e+ 1)

�

.

(13)
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