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Abstract—In this paper, we study a general setting of status
updating systems in which a set of source nodes provide status
updates about some physical process(es) to a set of monitors. The
freshness of information available at each monitor is quantified
in terms of the Age of Information (Aol), and the vector of
Aol processes at the monitors (or equivalently the age vector)
models the continuous state of the system. While the marginal
distributional properties of each Aol process have been studied
for a variety of settings using the stochastic hybrid system (SHS)
approach, we lack a counterpart of this approach to system-
atically study their joint distributional properties. Developing
such a framework is the main contribution of this paper. In
particular, we model the discrete state of the system as a finite-
state continuous-time Markov chain, and describe the coupled
evolution of the continuous and discrete states of the system
by a piecewise linear SHS with linear reset maps. Using the
notion of tensors, we first derive first-order linear differential
equations for the temporal evolution of both the joint moments
and the joint moment generating function (MGF) for an arbitrary
set of age processes. We then characterize the conditions under
which the derived differential equations are asymptotically stable.
The generality of our framework is demonstrated by recovering
several existing results as special cases. Finally, we apply our
framework to derive the stationary joint MGF in a multi-source
updating system under the non-preemptive in service queueing
discipline.

Index Terms—Age of information, queueing systems, commu-
nication networks, stochastic hybrid systems.

I. INTRODUCTION

The ongoing massive deployment of the Internet of Things
(IoT) will enable many critical real-time status updating sys-
tems that fundamentally rely on the timely delivery of status
updates [1]. The authors of [2] introduced the concept of Aol
which provides a rigorous way of quantifying the freshness
of information at a destination node as a result of receiving
status updates over time from a transmitter node. In particular,
for a single-source queueing-theoretic model in which status
updates are generated randomly at a transmitter with a single
source of information, the Aol at the destination was defined
in [2] as the following random process: x(t) = t —u(t), where
u(t) is the generation time instant of the latest status update
received at the destination by time t.

Following [2], the average value of Aol or peak Aol (a
related metric based on the peak values of Aol over time)
has been extensively analyzed in single-source systems under
several queueing disciplines [3]-[5]. Meanwhile, the charac-
terization of the average Aol in multi-source systems (where
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the transmitter has multiple sources of information) is quite
challenging, and hence the prior work in this direction is
relatively sparse [6]-[9]. Further, a handful of recent works
have aimed to characterize the stationary distribution (or some
distributional properties) of Aol/peak Aol in single-source
[10]-[13] or multi-source [14] systems. Note that the analyses
of the above works studying multi-source system settings
(i.e., there are multiple Aol or age processes in the system)
have been limited to the characterization of the marginal
distributional properties of each source’s Aol process.

The analyses of the above works were mainly based on iden-
tifying the properties of Aol sample functions and applying
geometric arguments, which often involve tedious calculations
of joint moments. Motivated by this, the authors of [15] and
[16] have developed a SHS-based framework for characteriz-
ing the marginal distributional properties of each Aol process
in a network with multiple Aol processes. The results of [15]
and [16] have then been applied to characterize the marginal
distributional properties of Aol under a variety of queueing
disciplines [17]-[22]. However, a systematic approach to the
joint analysis of Aol processes is an open problem. In this pa-
per, we develop an SHS-based general framework to facilitate
the analysis of the joint distributional properties of an arbitrary
set of Aol processes through the characterization of their joint
stationary moments and MGFs. Therefore, this paper is a joint
distributional counterpart of [16].

Contributions. An SHS-based general framework is pre-
sented in this paper to allow the characterization of the
stationary joint moments and joint MGFs of an arbitrary set
of Aol processes in networks. We first derive first-order linear
differential equations for the temporal evolution of both the
joint moments and the joint MGFs. We then characterize the
conditions for asymptotic stability of the differential equations,
which in turn enables the characterization of the stationary
joint moments and joint MGFs. Afterwards, we apply our
framework to derive the stationary joint MGF for a multi-
source updating system under the non-preemptive in service
queueing discipline in closed-form. An interesting insight ob-
tained from our analysis is that the existence of the stationary
joint first moments guarantees the existence of the stationary
joint higher-order moments and MGFs. Our analytical findings
also reveal that for a two-source updating system, there exists
a threshold value of server utilization above which the two
age processes are positively correlated.

Notations. A set X € R™ has a cardinality of [X| = n and
its j-th element is denoted by X(j). A vector x € R*" is
a 1 x n row vector with [x]; or [x]x—;} denoting its j-th



element. A matrix X € R"**"2 has (i, j)-th element [X]; ;
or [X]k—(i,;}» and j-th column [X];. The vectors 0,, and 1,
contain all zeros and ones in R**", the vector Tra(x) or x7 is
the transpose of x, the matrix Tra(X) or X7 is the transpose
of X, and I, is the n X n identity matrix. Whenever subscript
n is dropped, the dimensions of 0, 1, and I will be clear
from the context. The Kronecker delta function d; ; equals
1 if ¢ = 7 and O otherwise. The vector e; denotes the i-
th Cartesian unit vector satisfying [e;]; = d; ;. A tensor is a
multi-dimensional array whose order defines the number of its
dimensions. For instance, a vector is a one-dimensional array
or first-order tensor, and a matrix is a two-dimensional array or
second-order tensor. An I-th order tensor X' € R™*n2xxn1
has K-th element [X]k, where |[K| = I and 1 < K(j) <
n; for all 1 < j < I. The product of the tensor X and a
matrix along its j-th dimension is denoted by x; and known
as the j-mode product. In particular, the j-mode product of
X and a matrix X € R™*™ is represented as: Y = X x;
X, where ) € R™M> - Xnj—1Xmxnj1X: XN Hor a process
x(t), X(t) or X(t), %(t), X(t) or X(t) denote the derivative
dx(t)/dt, dX(t)/dt or dX (t)/dt. For a scalar function f(-)
and a vector x, f(x) = [f(x1) f(z2) -+ f(x,)]. For integers
m < n,m:nisthe set {m,m+1,--- ,n}, and X(m : n) =
{X(m),X(m +1),--- ,X(n)}. The set of all permutations of
a set X is denoted by P(X), and the set of all subsets of a
set X is denoted by 2X. The indicator function 1(-) is 1 if the
condition inside the brackets is satisfied and O otherwise.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Network Model

We consider a general setting of status updating systems
where a set of source nodes provide status updates about
some physical process(es) to a set of monitors. The freshness
of information available at each monitor is quantified in
terms of Aol. The Aol processes (or equivalently the age
processes) in the system are modeled using the row vector
x(t) = [z1(t) -+ x,(t)], which is also referred to as the
continuous state of the system. In particular, x;(t) is the age
process at monitor j, which may refer to a node, a position
in a queue, or a server in a multi-server system. Further, the
discrete state of the system is modeled using a finite-state
continuous-time Markov chain ¢(¢) € Q = {0, , ¢mazx}>
where Q is the discrete state space. This Markov chain governs
the dynamics of the system discrete state, e.g., ¢(t) may
describe the system occupancy with respect to the status
updates generated by each source node. In the graphical
representation of the Markov chain ¢(t), each state ¢ € Q is a
node and each transition [ is a directed edge (g, ¢;) with fixed
transition rate A (q(t)) = A6, (), where the Kronecker
delta function d, 4(+) ensures that transition [ occurs only in
state ¢;. We denote the set of all transitions {l} by L, and
the sets of incoming and outgoing transitions for state § € Q
by L ={le€e L:q =q}and Lg ={l € L: q = q},
respectively.

B. An SHS Formulation and Problem Statement

The coupled evolution of the continuous state x(¢) and the
discrete state ¢(t) is modeled using a piecewise linear SHS
with linear reset maps [16]. In particular, when a transition [
occurs in the Markov chain ¢(t), x is reset to x" according to
a reset map matrix A; as x’ = xA;. Further, in the absence
of a transition in ¢(t), each element in the age vector x(t)

grows at a unit rate with time (which yields piecewise linear
A dx(t)

age processes over time), i.e., x(t) =

the temporal evolution of the age processes in our system
setup, it is sufficient to assume that A; is a binary matrix
with no more than a single 1 in a column. Since column [A;],
determines the value that will be assigned to x; we have two
different cases given the assumed structure of A;. In the first
case, [Aj]; = 0T and so x; = 0, whereas the second case
corresponds to [A,]; = e} where ; is reset to x;. Different
from ordinary continuous-time Markov chains, an inherent
feature of SHS is the possibility of having self-transitions in
the Markov chain ¢(¢) modeling the system discrete state. In
particular, although a self-transition keeps ¢(¢) unchanged, it
causes a change in the continuous state x(t¢). Further, there
may be multiple transitions between any two states in Q such
that their associated reset map matrices are different.

For the above SHS formulation, our prime objective in
this paper is to develop a framework that allows analyzing
the joint distributional properties of an arbitrary set of Aol
processes in the age vector x(¢). Formally, we aim at char-
acterizing the stationary joint moments and joint MGFs for
an arbitrary set K C 1 : n of age processes, which are re-

K| [ml;
spectively of the following forms: tl;m E [ [T:=, zK ) I(t)| and

= 1. To capture

thm E [GXP[ijl [s]jzK( (t )” where the length of vector
—00

morsis |K|, [m]; € {0,1,2,---}, and [s]; € R,Vj € 1: |K|.
When |K| = 1, the problem at hand reduces to the one
studied in [16], where the goal was to characterize the marginal
distributional properties of each age element in x(t).

III. JOINT ANALYSIS OF AGE PROCESSES IN NETWORKS

A. Differential Equations for the Temporal Evolution of the
Joint Moments and Joint MGFs

In order to characterize the temporal evolution of the joint
moments and joint MGFs for a set K of age processes,
K m]; K
E [T, 2l ()] and B [exp| 1K, [s]jwmmﬂp
ful to define the following quantities that express different
forms of correlation between ¢(t) and the processes in x(t):

, it is use-

K]
=E { 1= (t)5q,q(t)} ) M
i=1
K]
vt =E {exp[z [S]W(j)(t)} 5q,q(t)} ) 2)
j=1



for all states ¢ € Q and K C {1,2,---,
that we have

N}. To see this, note

IK]| IK|
2| L1 0)] = 2| LT 00| = 3 o0
qeQ Jj=1 GgeQ
(3)
K| K|
{exp{z 5T ( H Z]E{exp[z IELGN )}
j=1 qgeQ
X 5q,q<t>] = o).
qgeQ
“4)

Thus, according to (3) and (4), characterizing the tem-
poral evolution of U(fﬁ) (t) and vgsl)((t) directly charac-

terizes the temporal evolution of E [HIKl E?j]; (t)} and

{expLZj_l [s]jzk ) (t )H, respectively. Some key notes
about the notations in (1) and (2) are prov1ded next. First,

vé,llz(t) may generally refer to v( K (t)|m=1 or Uc(z «(t)|s=1. To

eliminate this conflict, the convention that vfl |)(, for any set of

(m)

integers {[i]; > 1}je1.k), refers to vy’ at m = i is main-

tained here. Further, we have v( )( )|m 0= v( )( t)]s=0 =
El5;q0] = Pla(t) = ). i 10(0) = Pla(t) = a] (the
probability that ¢(t) is equal to §) regardless of K. For ¢ € Q,
we define v((jo)(t) € RX™ as
Ve Ol = v () =Pla(t) =@, Vk € 1:in. (5)
It will also be useful in our subsequent analysis and expo-
sition to define the following tensors in R™ *™2X" X"kl (n; =
n,Vj € 1 |K|) containing the scalars in (1) and (2):
[V 0] = o (o) and [v<7K|< )] = vi).va € @

In other words, the tensors A IK\( ) and V(S|)K|

scalars {”q M( )IMC1in,M|=|k] and {Uq RA( ) IMC 1, M= |K]»
respectively. For instance, V(m)( t) and V(m)( t) can be re-
spectively expressed as:

(t) contain the

VT () = [0 (8) oy () - ol (1], Ve Q, (6)
(m) (m) (m)
/U((j’{% 1}(t) U?,{%,Q}(t) v((j,{%,n} (t)
m U*fn2,1 (t) U*fn2,2 (t) v*fn2,n (t)
yom gy = |20 @122) @2}
(m)’ (m) (m)
Vatn1y () Vg n.23 (1) Vg, tn.my (1)

)

(t)}geq and

{v((;)((t)}qeg obey a system of first-order ordinary differential
equations.

The following Lemma shows that {v((;,z)

Lemma 1. For state § € Q in the piecewise linear SHS with
linear reset maps under consideration,

K|
=Y ol (0)+

j=1

oy (#)

XlAl"'

> AD v @

X\K\ Al:| K — ’U(({E)(t
leLy

) DAY,

leLy
3)

IK|
Bkt = [Z -2 ”] ok (t
j=1 leLy

Z}\(l |: |K| ><1 ApxoAp--- X K| Al}K‘FCq,K(t)a

leLy
)
such that cz k(t) is defined as
k() =Y A0 3" 1(2,=2)x
leLy Ze2K\@
(s")

[Vqls|r<\zz|( ) X1 AL Ar Xz, Al}x\zl’
(10)

where the set Z, = {j € K : [A)]; = 0T}, the vector
s’ = [[s].t(l) s, (2) - [s].L(‘K\le}, and the set |} contains
the indices of the elements of K\ Z; inside K. When Z; = K,
we also define:

(t) X1 Ay X2 Ap- - X|k\z,| Al}K\Z; = U(*O)( t).
(11)

Proof: The proof is given in [23, Appendix A] (the
extended journal version of this paper), and is omitted here
due to space limitations. [ ]

It is worth noting that (8) and (9) in Lemma 1 can be
expressed in a tensor form as
K|

")
[qu K\zi|

(m) (m—e;)
Vank (8 =D im0+
j=1
l (m) (m) l
D ATV (01 A i A = VR0 D0 A0,
leLy leLy

(12)

K]

(s) 1) (S)

Vark (8) = [Z -2 X ] ol (O
j 1 leLy

Z)‘(l [ IKI £) X1 Ay X2 Ay--
lely

XIK| AZ} +Ca ik (1),

(13)
where Cg|(t) € R™*™2X X"kl (n; = n,Vj € 1:|K]) such
that [C7 k| (t)]k = cqk(t). In order to clearly see that Lemma

1 characterizes the trajectories of v( )( t) and v (= )( t) over
time, it is useful to first state the followmg Corollarles.

Corollary 1. When K = {k}, m = [m4] and s = [s1], the
system of first-order ordinary differential equations in Lemma
1 reduces to:

(1)) (12 -1 @ [yl
Vg € =mavg BV @) + YA A,
IGE/
oD
v () DAY, a4

lely



vé[?c]}),(t) = {81 — Z )\(l)} ([S{l]) + Z )\(Z)[ (51)( t) A+
leLq leck
©)
1z = {k)vy )]

15)

Proof: The expressions in (14) and (15) directly follow
from Lemma 1 along with noting that V_ ‘K‘( ) and V(S \KI( )
are vectors in R'*" when |K| =1, and hence We 'define

Vi) (1) = v (1) and v (4) = v“ﬂ(). n
Corollary 2. When K = {k1,k2}, m = [my mg] and s =

[s1 s2], the system of first-order ordinary differential equations
in Lemma 1 reduces to:

@([ml mz])(t) mlv((l[?klhkl;}ﬂz])( )+ mgv([rm mo— 1])(t)+

q,{k1,k2} q,{k1,k2}
l T miy,m ([m1 m2]) l
Z >\( ) [Al V‘(Il ' 2)(t)Al]k1,k2 - vq’{kll,k;} ( ) Z )\( )’
leLy leLg
(16)
. ([s1 s2]) (t) _ + _ Z )\(l ([s1 s2]) (t)—l—
U‘j7{k17k2} = |17 82 q7{k1,k2}
leL,
Z A 0 ATV(51 52)(t)Al}k1,k2 + C(j,{kl,kz}(t)v (17)
leLy

where cg (i, 1} (1) is given by

oty = 3 w[ (2= {02} [V (A, +
lec,
1(zl - {kl}) [vi) (1) A)] k21(zl = {ki, k2}>v§?) (t)},
(18)

Proof: The expressions in (16) and (17) dlrectly follow
from Lemma 1 along with noting that Vé’m‘)K‘( ) and V_ \KI( )
are matrices in R™*" when |K| = 2, and hence we 'define
Ve ) = Vi D @) and v @) = Vil D o).

|

Remark 1. Note that the system of differential equations in
Corollary 1 is identical to the one derived in [16, Lemma 1]
for the temporal evolution of the marginal moments and MGF
of each age element in x(t). Further, the system of differential
equations in Corollary 2 is identical to the one derived in [24,
Lemma 1] for the temporal evolution of the joint moments and
MGF of any two arbitrary age processes in x(t).

We are now ready to elaborate on the use of Lemma 1 to
obtain the trajectories of VéTK)I (t) and Véj)K‘ (t) for an arbitrary
set K starting from a given 1initial condition at ¢ = 0. We start
this discussion with the case of |K| = 2 for which the trajec-
tories can be characterized using Corollaries 1 and 2. When
|K\ = 2 and for all § € Q, we observe from Corollary 2 that
Vé.;nl mg])(t) _ ngnl’mz)(t) and Vg; .52])(t) _ V((i51782)(t)
can be evaluated using (16) and (17), respectively. In partic-

ular, we note from (16) that in order to compute V(1 1)( t),

Tra(V,(I1 O)( t)) and
1

. Tra(v((j )(t))]

. From (14), we

we need to first compute V((I0 1)( t) =

1,0 1 1
vty = [Tra(viV (1) Tra(v U())
by using (14) in Corollary 1 to evaluate v

note that v(— ) is obtained from v(o)( t), which can be computed

from [16 Lemma 1] as:

(0) Z AOy 0)

lely

Afterwards, V((j2 1)(t) is computed from V«(12 O)( t) =
[Tra(vi? (1)) Tra(vi? () --- Tra(vi?(t))] and V" (1)
such that vff (t) can be evaluated from v(l)( t) using (14).
The process can be repeated to compute V™"’ m2)( t) for the
desired mq, ms > 2 using V((jmrl’mZ)(t) and Vc(lml’mrl)(t)
evaluated in the previous steps. Further, by inspecting the
structure of ¢g (k, k,}(¢) in (18), we note that V((;l"”)(t) can

) —vd (1) Y A vge Q. (19)

leLy

be computed from V( ")( t) and V(O)( t), where vfjs")(t) can

be evaluated from V((IO) (t) using (15). Now, one can clearly

see from Lemma 1 that V([ml " md])( t)

from V([ml mz])( t) = V(ml mz)( t), and V([‘Sl o2 33])( t) can be
computed from V5 [51 o) (t) = Vébl’”)( ) and Véfl])(t) =
(s1)

v " (t). Thus, through the repeated application of Lemma 1,

can be computed

we can evaluate Vérﬁ()‘ and Vés|)|<| for an arbitrary set K with
|K| > 3.

B. Stationary Joint Moments and Joint MGFs

While Lemma 1 holds for any collection of reset map matri-
ces {A;}ier, the set of differential equations in Lemma 1 can
be unstable for some choices of {A;};c.. Thus, it is essential
to investigate the conditions under which the differential equa-
tions in Lemma 1 are stable. While there are several notions
of stability including Lyapunov, Lagrange, and exponential
stability, we are interested here in the asymptotic stability

under which v(m)( t) and v(s) « (t) respectively converge to the

limits U( K) and v( |)< as t — oo. The limiting values can then

be evaluated as the solution of the equations resulting from
setting the derivatives in Lemma 1 to zero. To clearly see why
we are concerned about the asymptotic stability in this paper,
recall that our prime objective is to characterize the stationary

joint moments and joint MGFs: tlim IE[HLKll xET(' ]; (t)} and
—00

th}rrolo E {exp{Z‘jK:II [s] ij(j)(t)H. Under the asymptotic sta-

bility, these quantities can simply be evaluated from (3) and

(4) as
K|

tlimE[H:ﬂm]] } = thm ’u: Z@(né), (20)

IK] ©

thj&E{exp[Z[ iz (t H Z hmv K Z‘ .
j=1 qe qe

2D

We now proceed to characterizing the conditions under

which the differential equations in Lemma 1 are asymptotically

stable. Let us first recall the asymptotic stability theorem for
linear systems. The linear system

v(t) =v(t)P, v(0) = vo (22)
is asymptotically stable if and only if the eigenvalues of P
have strictly negative real parts. Thus, according to (22), it is



always useful to write the differential equations at hand in a
vector form to test the asymptotic stability. For all g € Q, let

(_O) plm |K‘ and Vés‘)Kl respectively denote the limiting values
of v(o)( t), pim ‘K‘( ) and VSS‘)KI(t) when ¢t — oo. Clearly, \7(70)
V( aK| and V K are the fixed points of (19), (8) and (9),

a,/K]
respectlvely, whrch can be obtained after setting the derivatives

to zero. The next theorem characterizes the conditions for
asymptotic stability for the differential equations in Lemma 1,
which in turn enables the characterization of stationary joint
moments and joint MGFs for an arbitrary set K.

Theorem 1. If the Markov chain q(t) is ergodic with station-
ary dlstrlbutlon {V— Y>0: g € Q}, and there exist positive

fixed points {V ||Z|') :q € Qzieq1,2,- K|} of (8), then:
e (i) For all g € Q, v((;ﬁ)( ) converges to v( K) satisfying

K|
iR 2 A0 =3 lmleg e
leLy j=1
Z )\(l) |:VE |2<‘ X1 Al X9 Al X\K| Al K- (23)
leLy

e (ii) There exists so > 0 such that for all s € S =
{s: Z“K‘ [sl; < so} and ¢ € Q, Ul(;&(t) and cgk(t)

respectively converge to v( ) and €g K satisfying

K|
3 A0 =3
leLy Jj=1
Z A® []7;?,)|K| X1 Ap Xog Ap--- X K| Al} K + Cq.K;
lect
(24
where Cgx is given by
Gk = A > 1(2,=2)x
lect Ze2K\o
{VU Kz X1 AL X2 Ar- XKz Al] 0z
(25)
Proof: The proof is given in [23, Appendix B], and is
omitted here due to space limitations. ]

Theorem 1 is a generalization of [16, Theorem 1] which
was focused on the characterization of the marginal stationary
moments and MGFs, i.e., the fixed points of the differential
equations in Corollary 1. In particular, when |K| = 1, Theorem
1 directly reduces to [16, Theorem 1]. A useful insight pro-
vided by Theorem 1 is that the existence of the stationary joint
first moments guarantees the existence of the stationary joint
higher-order moments and MGFs. It is worth emphasizing that
the generality of Theorem 1 lies in the fact that it allows the
investigation of the stationary joint moments and MGFs for
an arbitrary set of age processes under any arbitrary queueing
discipline. This opens the door for the use of Theorem 1
to study the joint analysis of age processes in networks for
different queueing disciplines/status updating system settings
in the literature, which have only been analyzed in terms of
the marginal moments and MGFs until now.

The exact number of linear equations (that need to be solved
to find the joint MGF using Theorem 1) indeed depends on
the queueing discipline under consideration (which determines
the set of transitions £). In fact, to find the joint MGF of
an arbitrary set K of Aol processes using Theorem 1, one
needs to solve a maximum of N = [Q| x YK (IK\n*i)
linear equations. Note that (\ﬁl) represents all the possible
combinations of the age processes that can be included in
the set K. It is also worth noting that the solution of the
N equations not only characterizes the joint MGFs of all
possible combinations of |K| age processes from the age vector
x(t) but also characterizes: 1) the joint MGFs of all possible
combinations of |K| — i age processes where i € [1, |K| — 2],
and 2) the marginal MGFs of all age processes in the system.

IV. ANALYSIS OF THE STATIONARY JOINT MGF IN
MULTI-SOURCE UPDATING SYSTEMS

In this section, we use Theorem 1 to analyze the stationary
joint MGF of the age processes in a multi-source status
updating system, where a transmitter monitors N physical
processes, and sends its measurements to a destination in the
form of status updates. As shown in Fig. 1, the transmitter
consists of N sources and a single server; each source gener-
ates status updates about one physical process, and the server
delivers the status updates generated from the sources to the
destination. Status updates generated by the i-th source are
assumed to follow a Poisson process with rate \;. Further, the
time needed by the server to send a status update is assumed

to be a rate p exponential random variable. Let p = 5 denote

1A Further, we

N A
Z] 1, ¢z AZ(]) Pz =

A *Z; 1, j#i )‘j’
and p_; = ’\/; We derive the jomt MGEF of an arbitrary
set K C {1,2,---, N} of age processes (associated with the
observed N physical processes) at the destination under the
last-come-first-served with no preemption in service (LCFS-
NP) queueing discipline!. Under this queueing discipline, a
new arriving status update at the transmitter (from any of the
sources) enters service upon its arrival if the server is idle
(i.e., there is no status update in service); otherwise, the new
arriving status update is discarded.

Using the notations of the SHS framework, the continuous
state x(t) is given by x(t) = [zo(t) z1(t) ---xn(t)], where
x;(t),7 € 1 : N, represents the value of the source i’s Aol
at the destination node, and x((¢) is the age of the status
update in service. Further, the discrete state space is given
by @ = {0,1,---, N}, where ¢(t) = 0 indicates that the
system is empty and hence the server is idle, and ¢(t) = i,i €
1 : N, indicates that the server is serving a status update
generated from the ¢-th source. Further, the continuous-time
Markov chain modeling the system discrete state ¢(¢) € Q is
depicted in Fig. 2. Table I presents the set of transitions £

the server utilization factor, where A = Z
define /\Z = le=‘1 )\2(]),>\_z =
and p_z = % Thus, we have p; =

'We also analyze source-agnostic and source-aware preemptive in service
queueing disciplines in the extended journal version of this paper [23].
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Fig. 1. An illustration of a multi-source status updating system.

Fig. 2. Markov chain modeling ¢(t) under the LCFS-NP queueing discipline.
TABLE I
TRANSITIONS OF THE LCFS-NP QUEUEING DISCIPLINE IN FIG. 2
(2<i<N).
1 o —q | 2O xA,; A,
0 0 0 0
01 0 0
1 0—=1 | A Oz 2z - zy 001 0
00 0 1
0 1 0 0
00 0 0
2 1—0 w [0z a2 -+ zn] o0t 0
000 .. 1
2i—1 0—i Ai (021 22 - an] [0N+1e;fe;{---e%+l]
2i i— 0 ”w 0zy 22 -+ i1 20 -+ @N] [0:{[“9;1“9;1: "'e:re"f "'ev+|]

and their impact on the values of both ¢(t) and x(t). Before
proceeding into evaluating @éj)(, Vq € Q, satisfying (24), we
first describe the set of transitions as follows:

[ = 2¢ — 1: This transition occurs if there is a new arriving
status update of source ¢ at the transmitter node when the
server is idle. Note that the age of this new arriving status
update is 0 and it does not have any impact on the Aol
processes of the N sources at the destination. Thus, as a
result of this transition, the age process xg in the updated age
vector is reset to 0 (i.e., [xAg;_1]1 = 0) whereas the other
age processes remain the same.

I = 2:¢: This transition occurs when the source ¢’s status
update in service is delivered to the destination. Thus, as a
result of this transition, the source i’s Aol is reset to the age
of the status update received at the destination whereas the
Aol values of the other sources do not change. In addition,
since the system becomes empty after the occurrence of this
transition, the first element of the age vector x(t) becomes
irrelevant. Following the convention of [15], we set the value
corresponding to such irrelevant elements in the updated age
value to 0, and thus we observe that [xAs;]; = 0.

Using Table I, we are now ready to derive {’Dé?&}qeg
satisfying (24), from which the stationary joint MGF of set
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Fig. 3. Correlation coefficient of the two Aol processes x1(t) and x2(t) as
a function of p under the LCFS-NP queueing discipline when N = 2.

K is characterized in the following theorem.
Theorem 2. Under the LCFS-NP queueing discipline and for

s = [sk(1) Sk(2) """ Sk(|K|)) the stationary joint MGF of a
set KC{1,2,---, N} of age processes is given by

IK|
Z 5 —

o ([ (52,)-

A 1
y )y
K )
< = Z‘j:|1 SK(G) 7 PeP(K) c(P)
(26)
]_[Z 1 CP(i:|P|) Such that cz is defined for a set
-,N} as
|1Z| |1Z|

cz= [ A= sz = sz
j=1 j=1

where C(P) =
ZC{1,2,--

N
— U Z )\7
j=1,j¢Z
(27)

Proof: See Appendix A. [ ]

Corollary 3. Under the LCFS-NP queueing discipline, the
marginal stationary MGF of source k’s Aol is given by
N = pr(1+p—3k)

M (5y) = - - = , (28)
() = T T 1050 (0 50 —p
N
wherekel:N,p,kzwandsk—f.

Proof: This result follows from Theorem 2 by setting
K= {k}. |

Corollary 4. For ky,ks € 1: N, the stationary joint MGF of
the two Aol processes xy, (t) and xy, (t) under the LCFS-NP
queueing discipline is given be (29) [at the top of the next

S A
page], where Pl ka} = %

Proof: This result follows from Theorem 2 by setting
K= {k1, ko2}. [ ]

Proposition 1. For ki, ks € 1: N, the correlation coefficient
of x, (t) and xy, (t) under the LCFS-NP queueing discipline
is given by (30) [at the top of the next page].

Proof: The expression in (30) follows from the fact
that the joint MGF in (29) can be used to obtain the sta-



NP _ _ Pk1 Pky [1 + pP— (§k1 + gkz)] 1
M (5, , 8x,) = ~ - - - _ _ (1—35;)( _g.)_ .
(1+4p) [[p = 8k + 582)] [1 = By + 51)] — pf{kl,kz}} [1 — (8, + Skz)] ic {kr ko) PP TS TP
(29)
NP p(pkl =+ ka) |:pk1pk2 (p + 2) = P—{ki1,k2} (1 + p)2:| - 2,0k1pk2 (1 =+ p)2
Cor = (30)

(Pry + k) Tlic iy oy V(4 0)2[0% + 20— + 1] + pip(p + 2)

: . . m me _
tionary (mq,ms)-th moment as: tli)r&]E[:ckll (t)xk;(t)} =
NP
gmitma |:M(§k17§k2 )i|

95,195, 2
k1 k2

Skq :O,gkz =0
Corollary 5. When N = 2, the correlation coefficient of
the two Aol processes x1(t) and x5(t) under the LCFS-NP
queueing discipline is given by
& pip2[p® —2(2p +1)]
= > .
P V(1 4 p)2[0% +2p—i + 1] + pZp(p + 2)
(3D
Proof: This result follows from Proposition 1 by setting
p=p1+p2. n

Remark 2. From Proposition 1, we note that the two age
processes xy, (t) and x,(t) may be positively correlated un-
der the LCFS-NP queueing discipline. Further, when N = 2,
one can deduce from Corollary 5 that there exists a threshold
value pyy ~ 2.2143 of p above which the two age processes
x1(t) and x2(t) are positively correlated under the LCFS-NP
queueing discipline, as shown in Fig. 3. This follows from the
fact that the term [p3 — 2(2p + 1)] in (31) is monotonically
increasing for p > %, and it equals to zero at p ~ 2.2143.

V. CONCLUSION

In this paper, we developed an SHS-based general frame-
work to facilitate the study of joint distributional properties of
an arbitrary set of Aol/age processes in a network through
the characterization of their joint stationary moments and
MGFs. We demonstrated the generality of our framework
by recovering several existing results as its special cases.
An interesting insight obtained from our analysis is that the
existence of the stationary joint first moments guarantees the
existence of the stationary joint higher-order moments and
MGFs. As an application of our framework, we obtained the
stationary joint MGF for a multi-source updating system under
the non-preemptive in service queueing discipline in closed-
form. Our derived expressions demonstrated that for a two-
source status updating system, there exists a threshold value
of server utilization above which the two age processes are
positively correlated.

The generality of our analytical framework stems from the
fact that it allows one to understand the joint distributional
properties for an arbitrary set of Aol processes in a broad range
of system settings under any arbitrary queueing discipline.

This, in turn, opens the door for the use of our framework
in the future to investigate the stationary joint moments
and MGFs of age processes for a variety of queuing disci-
plines/status updating systems that have only been analyzed
in terms of the marginal moments and MGFs until now.

APPENDIX
A. Proof of Theorem 2

Using the set of transitions in Table I and (24) in Theorem
—([s%,])

1, 9, (k) Can be expressed as
(Isk, D) ([sk,]) . ([sk, D)
A =sk) Ty =0 | Tty = D, Ty | 32
q=1,q¢{k:1}
where 17,(6[15*"{10]}) and T)g?;cll]]? are given by
(1= 1) T = M2, (33)
—([sk,]) —([sk,])
(1 = sk2) Dg i = AaTo (1} (34)

where ¢ € 1 : N. Substituting (33) and (34) into (32), we get
_(0)
sk, ]) (&) HAR,Tg
7 = — (35)
Otk ey

where k1 € 1: N and step (a) follows from defining ¢z for a
set ZC {1,2,---,N}in (27) as
|1Z| |1Z| N
cz=|A=D sz | =D sz | =1 D A
Jj=1 Jj=1 Jj=1,j¢Z
Now, using (35), one can evaluate ESES{';;] ;’;2}]). In particular,

from (24), 17(()[?;11 ;’;2}]) can be expressed as

—([sky sks)) —([sky skol) | —([sky sko])
(A = (310 + 582)]Tp (1, ;"22} = [Ukl,]f{lo,:?} —&—vk%'f{lki%?} +

Y ( )i
Sk, Sk-
Z vq,{kll,kzz} :|7
G=1,G¢{k1,k2}
(36)
where
[ (s + sw)Jop e o2l = Aol 37
M kl kg vk‘l,{o,kg} klUO,{kg}’
—([sky sk3]) —([sk1])
[M - (Skn + Skz)]vsz{kljg} = Akzvo){l;gll}a (38)
= i+ s )y o) = A e 69)
where ¢ € 1 : N. Thus, 17(()[5{211 S,c?}}) can be rewritten as
—([sk5]) —([s%4])
(Isey seg)) (@) M (A’ﬂ”o,{kz} B A'@2”o,{kl}>

U
0r{kn k) C{ky ka} ’



S R R R

1
9 MQ/\kl)\kz’D(()O) Z W;
PeP({k1,k2})

where step (a) follows from substituting (37)-(39) into (36)
along with the fact that ¢y, 1} = [A— (sk, +5k,)|[11— (58, +
Sk )] — Z?le)jé{khh} Aj. step (b) follows from substituting
(35) into (40), and step (c) follows from defining C(P) as
follows

(40)

Pl
) =T ercien =
i=1

Pl

- ; 5P(j)> <N -

[P

N
ZSPm) - > /\]}.
i=i J=13#P(i:|P))

(41)

In order to clearly see how vél)( can be obtained

for an arbitrary set K C {1,2,---,N}, where s =

[Sk(1) SK(2) sk(kpls it will be useful to further derive
[Skl Sky Skg ([skq Skq sk3])

Vo (s ks kg USING (40). From (24), v (! 2, W37 can be
e ([Skl Sko Ska])
xpressed as: v Chbaks) =
(s ) _([s ) ([s%, $ks])
</\k1 ) {222 kksg} + Ak2 0 {};cll 1:33} + )‘ks 0 {1;11 ]:22} )
C{ky ko ks} ’
; _ 1
EN VST LI e 42)

PeP({k1,k2,k3})

where step (a) follows from substituting (40) into (42) along

with the fact that
1 < Z 1 1
- R D
ok} \pepiieney CP) perlimiy CP)
1

Y w2

PeP({k1,k2}) PeP({k1,k2,k3})

By inspecting the expressions of U(()[ {’;;]]? , ((J[)S{';;hsk";}]) and
17(()[?;11 Z’“; kzkf]) in (35), (40) and (42), respectively, one can see

that repeated application of (24) gives @(()sl)( for an arbitrary set

KC{1,2,--- ,N} as
K]
_(S) = pX (H Ak 1)>Uo Z C (43)
PeP(K)
Thus, the stationary joint MGF of a set K C {1,2 ,N}

of age processes is given by

A <s>

where step (a) follows from expressing 17((;,)(, g € Q/{0}, as

: —(s)
a function of Up k

NP

M(S) — (S) (a)

Vgk =
GgeQ

NP
using (24). The final expression of M (s)

in (26) is obtained from (43) along with noting that 5(()0) =

/(X + p). This completes the proof. [ |
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