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Abstract—Several key optimization problems in wireless net-
works can be formulated as subset selection problems with the
objective of selecting a subset of items from the ground set
to optimize an objective function. Recently, a determinantal
point process-based learning (DPPL) algorithm, which captures
the correlation among items and learns the quality-similarity
trade-off between them, has emerged as an appealing solution
for efficiently solving such problems. A critical component of
the DPPL framework is the similarity matrix, which models
correlation across items and needs to be positive semidefinite
(PSD). Popular methods for constructing the similarity matrix,
such as cosine similarity and the covariance function, enforce
both decomposability and symmetry in the matrix structure.
However, these conditions might not always hold in practical
scenarios. We overcome this limitation by developing a new
way of constructing similarity matrices using the Gershgorin
Circle Theorem. This is inspired by the application of DPPL to
drone cellular networks with directional antennas in which the
requirements of symmetry and decomposability are violated, thus
necessitating a new method of defining similarity. We rigorously
demonstrate the efficacy of the proposed solution by solving link
scheduling problems in drone cellular networks.

I. INTRODUCTION

Subset selection problems encompass a large range of
resource management problems in wireless networks, such
as power control, link scheduling, network utility maximiza-
tion, and beamformer design. The objective is to identify
the optimal subset from a ground set based on a specific
objective function. The common strategy is to design heuristic
algorithms to find a local optimum with acceptable complexity
using a variety of approaches from optimization, such as
geometric programming (GP), integer linear or non-linear
programming [1]–[4]. However, most of these methodologies
are NP-complete, which renders their implementation increas-
ingly challenging as the network size grows. To address the
scalability issue, we turn our attention to the determinantal
point process (DPP) from stochastic geometry (SG) which
has already found applications in some machine learning
problems, such as recommender systems and document sum-
marization [5], [6]. The main idea is to view the optimal subset
as a realization of a DPP such that items with high quality and
low similarity (with each other) are selected. This reduces the
subset selection to sampling from a DPP whose parameters
need to be trained for a given subset selection problem.

In the wireless community, the DPP has been applied to
model and analyze cellular networks [7], [8]. Departing from
this direction, we recently proposed to use finite DPPs [9]
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and the associated learning framework to solve link scheduling
problems efficiently in ad hoc networks [10]. A key feature
of the DPPL is its ability to capture diversity among items
through the similarity model. However, a significant chal-
lenge in applying this framework to new settings is that the
similarity matrices must be PSD. Common methods used to
construct this matrix, such as cosine similarity or covariance
function [11], guarantee PSD property at the expense of
inducing additional decomposability and symmetry constraints
on the matrix, which might not always be satisfied in practice.
For instance, in drone networks where base stations (BSs)
are equipped with directional antennas, these constraints are
clearly violated when considering the similarity among drone-
BS links. Inspired by this challenge, we provide a new
method to construct a valid similarity model based on the
Gershgorin Circle Theorem, which allows the DPPL to handle
the specific challenges of directional antennas and capture
more complicated correlation structures.

In order to provide a concrete context for our discussion,
we will focus our analysis on the link scheduling problem,
which is a fundamental and challenging issue in wireless
networks. In the literature, this classical problem has been
handled through a variety of heuristic algorithms. For instance,
integer programming has been used to develop efficient al-
gorithms for handling scheduling problems characterized by
the non-convex non-linear objective functions [1], [2]. GP
has also been used for a variety of scheduling problems,
such as MaxWeighted link scheduling in multihop wireless
networks, link activations in multiple-input multiple-output
(MIMO) networks, and power/rate allocation [4], [12]–[14].
However, most of these heuristic approaches are NP-complete.
Therefore, alternate approaches have long been desirable. As
we will discuss shortly, DPPs provide one such approach by
treating the optimal solution as a realization of a point process.

In the field of ML, DPPs play a crucial role in a range of
problems, such as classification [15], document summariza-
tion [6], and recommondation [5]. In such scenarios, DPPs
effectively capture the implicit balance between the quality
and similarity among items. The authors of [9], [16] have
proposed a DPPs-based machine learning framework, which
highlights the ability of parameterized DPPs to learn quality
and similarity models. This work primarily focuses on DPPs
characterized by L-ensemble. This formalism requires the
matrix L to be PSD, as the probability assigned by the
DPPs is proportional to the determinant of the submatrix
of L [17]. Common approaches for generating L, such as
in [11], incorporate decomposability and symmetry within the
similarity model, which may not always hold in practice.

As mentioned above, DPPs have also recently found ap-
plications in the optimization of wireless networks [7], [8].
The authors of [18] proposed a novel class of data-driven
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SG models using DPPs, trained to mimic the properties of
some hard-core point processes used for wireless network
modeling in a finite window. Our work in [10] was the first
to introduce the DPPL framework as a solution for general
subset selection problems. It demonstrated the scalability of
DPPL to find the optimal subsets when applied to large-scale
networks. Building on this, the authors of [19] applied this idea
to the problem of single-group multicast beamforming. The
DPPL was particularly applied to select the bottleneck subset
from the multicast group by selecting channels with lower
channel gains that are also as orthogonal as possible to each
other. While these works provide promising initial steps in the
development of the DPPL framework, unnecessary conditions
placed on the construction of the similarity matrix (such as
symmetry and decomposability) limit the applicability of this
approach, which is the main inspiration behind this paper.

Contributions. The main contribution of this paper is to
develop a new approach for constructing a similarity model
for the DPPL framework by using the Gershgorin Circle
Theorem. While the DPPL framework has exhibited its notable
efficiency in solving general subset selection problems, current
approaches for constructing the similarity matrix introduce
unnecessary constraints, which makes it challenging to apply
the DPPL framework to new settings. Our proposed generative
method effectively overcomes these limitations. We demon-
strate the effectiveness of the DPPL framework and the new
asymmetric similarity model in solving the link scheduling
problems within drone networks where the BS is equipped
with directional antennas. Simulation results demonstrate that
our approach obtains near-optimal performance by enabling
DPPL to capture more complicated correlation structures.

II. DETERMINANTAL POINT PROCESS

A. Definition of DPPs

To introduce the DPPL framework, we first define DPPs
based on finite point processes using the L-ensemble formal-
ism [17]. For discrete sets, DPPs are the probability measures
over all subsets of a finite ground set Y = {1, . . . , N}. For
any set Y ⊆ Y , a DPP defined using a PSD matrix L has the
following distribution:

PL(Y ) ≡ PL(Y = Y ) =
det(LY )

det(L+ I)
, (1)

where LY = [Lij ]i,j∈Y . If the matrix L is symmetric, it can be
represented as a Gram matrix in the form L = DTD, where
D denotes a corresponding matrix. For further decomposition,
the columns of D can be written as the product of a scalar g
and a normalized feature vector ϕ. Consequently, the elements
of matrix L can be decomposed as Lij = giϕ

⊤
i ϕjgj , where

∥ϕ∥2 = 1. For Y = {i, j}, the probability P(Y = {i, j})
is proportional to g2i g

2
j

(
1− ϕ⊤

i ϕjϕ
⊤
j ϕi

)
. This value increases

with g (which represents the quality of items) and decreases
with ϕ⊤

i ϕj (which represents the similarity between items).
For general PSD matrix L, the similarity between items i and
j can be quantified as

Sij =
Lij√
LiiLjj

, ∀i, j ∈ Y, (2)

where the corresponding similarity matrix is denoted by SY =
[Sij ]i,j∈Y . The elements of matrix L can be represented as
Lij = giSijgj . The probability assigned by DPP to the subset
Y is proportional to det(LY ) =

(∏
i∈Y g2i

)
· det(SY ), which

decreases with the similarity and increases with the quality of
items in Y . In other words, DPP will favor the selection of
subsets in which each element has a high quality (say high sig-
nal strength) and low similarity (say low mutual interference).
A visual representation of this tradeoff is provided in Fig. 1.

(a) Increasing Quality (b) Increasing Similarity (c) Increasing Quality

Fig. 1. In DPP, the probability of occurrence of a set Y depends on the
volume of the parallelopiped with sides gi and angles proportional to Si,j .
Changes in the parallelopiped as we (a) increase the quality of one item, (b)
decrease the similarity of times, and (c) increase the quality of one item.

B. Conditional DPPs

We now focus on DPP-based modeling where we assume
that the output Y is distributed as a conditional DPP given
input X . We denote Y(X) as the collection of all possible
subsets for given X . The conditional DPP assigns probability
to every possible subset Y ⊆ Y(X) based on the matrix L
that is parameterized in terms of a generic θ as

Pθ(Y = Y | X) =
det(LY (X;θ))

det(L(X;θ) + I)
. (3)

Now, assume that we have a sequence of data samples{(
X(t), Y (t)

)}T

t=1
, which are drawn independently from a

distribution over pairs (X,Y ) ∈ X × 2Y(X), where X is the
input space. The objective now is to learn an appropriate θ
depending on the input data. The estimation/learning problem
can be formulated as

θ̂ = argmax
θ
L(θ;X), (4)

where L(θ;X) is the log-likelihood function defined as

L(θ;X) = log
T∏

t=1

Pθ

(
Y (t) | X(t)

)
(5)

=
T∑

t=1

{
log det

(
LY (t)

(
X(t);θ

))
− log det

(
L
(
X(t);θ

)
+ I

)}
. (6)

If the gradient of the objection function L(θ;X) exists and
is computable, standard algorithms such as gradient ascent or
L-BFGS [20] can be leveraged to find θ̂.

C. Inference using DPPs

We use the following methods for estimating Ŷ given X .
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1) Sampling from DPP: The first approach involves draw-
ing a random sample from the DPP, i.e., Y ∼ Pθ∗,σ∗ (·|X)
and set Ŷ = Y. This approach begins by drawing a random
sample from a specific type of DPP, known as the elementary
DPP. A DPP on Y is called elementary if every eigenvalue of
its marginal kernel K lies in {0, 1}. Therefore, an elementary
DPP can be represented as PV where V = {v1, . . . ,vk} is
the set of k orthonormal vectors such that KV =

∑
v∈V vv⊤.

Thus, if Y ∼ PV , then |Y| = |V | almost surely. With this,
we know that PV (Y ) = PV (Y ⊆ Y) = det

(
KV

Y

)
. Next, we

aim to draw a k = |V | sample Y . Without loss of generality,
assume Y = {1, 2, 3, . . . , k}. Let B =

[
v⊤
1 , . . . ,v

⊤
k

]⊤
.

Then, KV = BB⊤ and det
(
KV

Y

)
= (Vol({bi}i∈Y ))

2,
where Vol({bi}i∈Y ) is the volume of the parallelepiped
spanned by the column vectors bi of B. Now, det

(
KV

Y

)
=

(Vol({bi}i∈Y ))
2
= ∥b1∥2 ×

∥∥∥b(1)
2

∥∥∥2 × · · · × ∥∥∥b(1,...,k−1)
k

∥∥∥2
where b

(1)
i = Proj⊥b1

bi denotes the projection of {bi} onto
the subspace orthogonal to b1. Thus, the jth step (j > 1)
of the sampling scheme assuming y1 = 1, . . . , yyj−1

=
j − 1 is to select yj = j with probability proportional

to
∥∥∥b(1,...,j−1)

j

∥∥∥2 and project
{
b
(1,...,j−1)
j

}
to the subspace

orthogonal to b
(1,...,j−1)
j . Therefore, it can be guaranteed that

PV (Y ) = det
(
KV

Y

)
. Given an eigen decomposition of L, the

DPP sampling algorithm discussed thus far is summarized in
Alg. 1.

Algorithm 1 Sampling form a DPP
1: procedure SAMPLEDPP(L)
2: Eigen decomposition of L: L =

∑N
n=1 λnvnv

⊤
n

3: J = ∅
4: for n = 1,. . . ,N do
5: J ← J ∪ {n} with probability λn

1+λn

6: V ← {Vn}n∈J

7: Y ← ∅
8: B = [b1, . . . ,bn]← V ⊤

9: for 1 to |V | do
10: select i from Y with probability ∝ ||bi||2
11: Y ← Y ∪ {i}
12: bj ← Proj⊥bi

bj

return Y

2) MAP inference: Another approach is to obtain
the maximum a posteriori (MAP) set, i.e., Ŷ =
argmaxY⊆Y(X) Pθ∗,σ∗(Y |X). However, finding Ŷ is an NP-
hard problem because of the exponential order search space
Y ⊆ Y(X). That said, [21] offers a possible near-optimal
MAP inference scheme for DPPs that will be used in the
numerical simulations of this paper.

III. LINK SCHEDULING

To illustrate the capability of the DPPL framework, we
apply it to a cellular network in which drones serve as
users (UEs). The BS sites are centrally located in a 19-cell
hexagonal grid with inter-site distance (ISD) = 500 meters.
Each hexagonal cell has three sectors and each sector is
served by a different BS. The BSs of three sectors of one

Active links

Drone

BS

Fig. 2. An illustration of the co-scheduled drones (subset E∗).

cell are co-located at the center. The azimuth direction of
the beams of each sector is offset by 120◦. The drones are
dropped uniformly and independently at random. Each drone
is equipped with an omnidirectional antenna and has a height
from the ground uniformly distributed between 1.5 meters to
300 meters. The BS antenna is downtilted at 100◦ and the
height of the BS is 25 meters. After dropping the drones, we
perform radio-distance-based association, where each drone
camps to the sector with minimum pathloss. However, if we
schecule one drone per sector on the same time-frequency
resources, it may create significant self interference because of
line of sight propagation conditions. Therefore, our objective
is to implement a DPP-based inter-cell scheduler that selects
a subset of simultaneously active BS-drone links at a given
resource. We denote the set of BSs as Φb and the set of drones
that can be co-scheduled as Φu. Note that |Φb| = |Φu|. The
cellular network connectivity scenario explained above can be
described as the directed bipartite graph G := {Φb,Φu, E},
where E := {(t, r)} is the set of BS-drone pairs based on cell
association, t ∈ Φb and r ∈ Φu. In this case, our objective is
to find the optimal subset of co-active links to maximize the
sum-rate of the network:

maximize
∑
ei∈E

log2(1 + γi), (7a)

subject to γi =
Piζii∑j ̸=i

ej∈E Pjζji +N
, (7b)

Pi ∈ {pl, ph}, (7c)

where Pi is the downlink transmit power, N is the noise
power, and ζji denotes the channel gain between BS j and
drones i. Our goal is to find the optimal subset of simultane-
ously active links denoted as E∗ ⊆ E . In Fig. 2, we illustrate
a realization of the active links E∗ in the cellular-connected
drone network with 4 three-sector cells.

A. Similarity and Quality Model

In the DPPL framework, the similarity model plays a
critical role in modeling correlation among items with the
required condition of being PSD. In this specific case of
link scheduling, the similarity model is designed to capture
the mutual interference between links. The application of di-
rectional antennas causes non-symmetric interference patterns
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Fig. 3. An Illustration of the Gershgorin discs D(aii, Ri(A)) centered at aii
with radius Ri(A), i = 1, 2, ..., n. The green circles are Gershgorin discs that
describe the domain for the eigenvalues of matrix A. Specifically, eigenvalues
of matrix A will lie within at least one of the Gershgorin discs.

among links, leading to an asymmetric similarity matrix. As a
result, popular methods of constructing the similarity matrix,
such as cosine similarity and the covariance function, are
not applicable to this case. This inspired us to develop the
following method for constructing more general similarity
matrices.

1) Similarity Model: In this work, we use an interference-
based parametric similarity model that will try to mini-
mize mutual interference between simultaneously active links.
Defining Iij = Piζij as the interference caused by BS i to
drone j, we define the similarity model as:

S(X;σ) = σS(X) , (8)

where σ ∈ R+ is a scalar and S(X) is a fixed matrix
constructed by Iij which is defined as follows:

Sij(X) =

{
max({Ri(S) | i ∈ Φb}) , i = j

Iij , i ̸= j
, (9)

where i ∈ Φb is the index of BS, j ∈ Φu is the index of drone,
and Ri(S) =

∑
j ̸=i |Sij |. The inclusion of directional antennas

implies that Iij does not necessarily equal Iji, indicating
asymmetry in S. This asymmetry requires rigorous proof that
the matrix L constructed with the above similarity S continues
to fulfill the PSD condition. Given quality g ∈ R+ and
Lij = giSijgj , it follows that similarity matrix S being PSD
is the necessary and sufficient condition for L to be PSD.
To prove that S is PSD, we first explore the relationship
between the elements and the eigenvalues of matrices through
the Gershgorin Circle Theorem.

Theorem 1. Let A = [aij ] ∈Mn, where Mn is the set of n-
by-n matrices. Let Ri(A) =

∑
j ̸=i |aij |, i = 1, 2, ..., n, denote

the absolute row sums of A. The i-th Gershgorin disc is:

D(aii, Ri(A)) = {λ ∈ C : |λ− aii| ≤ Ri(A)} . (10)

All eigenvalues of matrix A are in the union of Gershgorin
discs, represented as

G(A) =
n⋃

i=1

{λ ∈ C : |λ− aii| ≤ Ri(A)} . (11)

Proof: Please see [22, Theorem 6.1.1] for the proof.
The Gershgorin Circle Theorem states that every eigenvalue

of matrix A lies within at least one of the Gershgorin discs
D(aii, Ri(A)), as illustrated in Fig. 3.
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𝒲𝒲)

Generate optimal schedule 
ℰ∗ = SUMRATEMax(𝒢𝒢,𝒦𝒦𝒩𝒩

𝒲𝒲)

Generate training set
𝒯𝒯 = { 𝑋𝑋1,𝑌𝑌1 , … , (𝑋𝑋𝐾𝐾,𝑌𝑌𝐾𝐾)}

Train the DPPL framework to 
obtain 𝜽𝜽, σ and 𝐿𝐿(𝑋𝑋)

Sample DPP 𝐿𝐿(𝑋𝑋)

ℰ∗

ℰ̂∗

Fig. 4. The block diagram of the DPPL for the link scheduling problem.

For real matrices, Gershgorin discs will reduce to intervals
Ti = [aii − Ri, aii + Ri]. A real matrix (such as S) is PSD
if and only if all of its eigenvalues are non-negative. This
can be guaranteed by ensuring that all intervals Ti lie on the
positive side of the axis, which can be represented by aii ≥ 0
and |aii| ≥ Ri(A) for all i ∈ Φb. We state these conditions
formally in the next Proposition.

Proposition 1. Let A = [aij ] ∈Mn is a positive semidefinite
matrix if:

1) |aii| ≥ Ri(A), i = 1, 2, ..., n,
2) aii ≥ 0.

Now, one can easily construct a PSD matrix using con-
straints from Proposition 1. Note that under this construction,
S neither needs to be symmetric nor decomposable. It is
noteworthy that even though our similarity matrix was based
on interference in this work, Proposition 1 is more general and
can be applied to new settings in which the similarity matrix
might depend on other aspects or features of the problem.

2) Quality Model: Coming to the quality, links having
a high signal-to-interference-plus-noise ratio (SINR) should
naturally be preferred, thus we parameterize the quality model
based on SINR as follows:

gi(X; θ) = θ · SINRi, (12)

where SINRi is the SINR of link i.

B. Training DPPL framework

Now, we implement the proposed DPPL framework to
solve the optimal subset selection problem. A sequence of
networks and the corresponding optimal subsets obtained by
GP serve as the training data sets. Using GP, we obtain
approximate solution to (7) by treating transmit power values
as continuous variables and then discretizing the resulting
optimal values using threashold pth. In the training phase, set
Xk =

(
KW

Nt,Nr
, E , E∗

)
k

represents the kth realization of the
network and its optimal subset. The ground set of the DPP
is represented as Y(X) = E . Denote the subset estimated by
DPPL in the testing phase as Ê∗. The block diagram of the
DPPL framework is presented in Fig. 4.
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Fig. 5. The numerical simulation results of a cellular network with 19 cells and 57 BS-drone links: (a) comparison of DPP and independent thinning with
the optimal sum-rate generated by the GP algorithm, and (b) comparison of the running time of GP and DPP under the same environments.

C. Results and Discussion

Now, we demonstrate the performance of DPPL through
numerical simulations. We set ph = 46 dBm, pl = 0 dBm,
active threshold pth = 15 dBm and use K = 200 independent
realizations of the network as the training set T . We plot the
empirical cumulative distribution functions (CDFs) of the sum-
rate obtained from GP, DPPL, and independent thinning in Fig.
5(a). We clearly see that the sum-rate achieved by DPPL is
close to the optimal sum-rate.

Further, in order to compare the computational efficiency
of DPPL and GP, we select 30 realizations of the network
arbitrarily and obtain the optimal schedules using both ap-
proaches. The results are presented in Fig. 5(b). It is evident
that solving the scheduling problem with GP is roughly 105

slower than solving the same problem using DPPL. This is not
surprising since GP solves the optimization problem, whereas
DPPL simply obtains the optimal solution through sampling.

IV. CONCLUSION

Common methods used to construct similarity models limit
the applicability of DPPL in scenarios that involve complex
asymmetric correlations among items. To address this issue,
we developed a new approach based on the Gershgorin Circle
Theorem and created an interference-based similarity model
for solving three-dimensional link scheduling problems in
drone networks. We validated the effectiveness of the new
approach through numerical simulations. The results show that
this method overcomes limitations of the existing approaches
that unnecessarily impose symmetry and decomposability on
the similarity matrix, thereby extending the capability of DPPL
to capture more general correlation structures.

REFERENCES

[1] M. W. Cooper, “A survey of methods for pure nonlinear integer
programming,” Management Science, vol. 27, no. 3, pp. 353–361.

[2] S. Burer and A. N. Letchford, “Non-convex mixed-integer nonlinear pro-
gramming: A survey,” Surveys in Operations Research and Management
Science, vol. 17, no. 2, pp. 97–106, 2012.

[3] M. Chiang, “Geometric programming for communication systems,”
Foundations and Trends in Commun. and Info. Theory, vol. 2, no. 1–2,
2005.

[4] M. Chiang, C. W. Tan, D. P. Palomar, D. O’Neill, and D. Julian, “Power
control by geometric programming,” IEEE Trans. on Wireless Commun.,
vol. 6, no. 7, pp. 2640–2651, Jul. 2007.

[5] M. Wilhelm, A. Ramanathan, A. Bonomo, S. Jain, E. H. Chi, and
J. Gillenwater, “Practical diversified recommendations on YouTube with
determinantal point processes,” in Proc., ACM Intl. Conf. on Info. and
Knowledge Management, Oct. 2018, pp. 2165–2173.

[6] S. Cho, L. Lebanoff, H. Foroosh, and F. Liu, “Improving the similarity
measure of determinantal point processes for extractive multi-document
summarization,” arXiv preprint arXiv:1906.00072, 2019.

[7] Y. Li, F. Baccelli, H. S. Dhillon, and J. G. Andrews, “Statistical modeling
and probabilistic analysis of cellular networks with determinantal point
processes,” IEEE Trans. on commun., vol. 63, no. 9, pp. 3405–3422,
Sep. 2015.

[8] N. Miyoshi and T. Shirai, “A cellular network model with Ginibre
configured base stations,” Advances in Applied Probability, vol. 46,
no. 3, pp. 832–845, Feb. 2014.

[9] A. Kulesza and B. Taskar, “Determinantal point processes for machine
learning,” Foundations and Trends in Machine Learning, vol. 5, no. 2–3,
pp. 123–286, Dec. 2012.

[10] C. Saha and H. S. Dhillon, “Machine learning meets stochastic geom-
etry: Determinantal subset selection for wireless networks,” in Proc.,
IEEE Globecom, Dec. 2019.

[11] F. Lavancier, J. Møller, and E. Rubak, “Determinantal point process
models and statistical inference,” Journal of the Royal Statistical Society,
Sep. 2015.

[12] P. C. Weeraddana, M. Codreanu, M. Latva-aho, A. Ephremides, and
C. Fischione, “Weighted Sum-Rate Maximization in Wireless Networks:
A Review,” Foundations and Trends in Networking, vol. 6, no. 1–2, Oct.
2012.

[13] T. ElBatt and A. Ephremides, “Joint scheduling and power control for
wireless ad hoc networks,” IEEE Trans. on Wireless Commun., vol. 3,
no. 1, pp. 74–85, Jan. 2004.

[14] J. Tang, G. Xue, C. Chandler, and W. Zhang, “Link scheduling with
power control for throughput enhancement in multihop wireless net-
works,” IEEE Trans. on Veh. Technology, vol. 55, no. 3, pp. 733–742,
May 2006.

[15] P. Xie, R. Salakhutdinov, L. Mou, and E. P. Xing, “Deep determinantal
point process for large-scale multi-label classification,” in Proc., IEEE
Intl. Conf. on Computer Vision (ICCV), Oct. 2017, pp. 473–482.

[16] J. A. Kulesza, Learning with determinantal point processes. University
of Pennsylvania, 2012.

[17] A. Borodin and E. M. Rains, “Eynard–Mehta theorem, Schur process,
and their Pfaffian analogs,” Journal of Statistical Physics, vol. 121, no. 3,
pp. 291–317, Nov. 2005.

[18] B. Blaszczyszyn and H. P. Keeler, “Determinantal thinning of point
processes with network learning applications,” in Proc., IEEE Wireless
Commun. and Networking Conf. (WCNC). IEEE, Oct. 2019.

[19] L. Liu, Y. Wang, C. Hua, and J. Jian, “A learning approach for efficient
multicast beamforming based on determinantal point process,” IEEE
Trans. on Wireless Commun., vol. 21, no. 9, pp. 7427–7442, Sep. 2022.

[20] J. Nocedal, “Updating quasi-newton matrices with limited storage,”
Mathematics of Computation, vol. 35, no. 151, pp. 773–782, 1980.

[21] J. Gillenwater, A. Kulesza, and B. Taskar, “Near-optimal map inference
for determinantal point processes,” Advances in Neural Information
Processing Systems, vol. 25, Dec. 2012.

[22] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 2012.


