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Abstract—We study a general setting of gossip networks in
which a source node forwards its measurements (in the form of
status updates) about some observed physical process to a set
of monitoring nodes according to independent Poisson processes.
Further, each monitoring node sends status updates about its
information status (about the process observed by the source)
to the other monitoring nodes according to independent Poisson
processes. We quantify the freshness of information available at
each monitoring node in terms of Age of Information (AoI). While
this setting has been analyzed in a handful of prior works, the
focus has been on characterizing the average (i.e., marginal first
moment) of each age process. In contrast, our analysis is focused
on understanding the distributional properties of the AoI pro-
cesses through the characterization of their stationary marginal
and joint moment generating functions (MGFs). In particular, for
the serially and parallelly-connected gossip network topologies,
we derive closed-form expressions for marginal/joint higher-order
statistics of age processes, such as the variance of each age process
and the correlation coefficients between all possible pairwise
combinations of age processes. Our analytical results demonstrate
the importance of incorporating the higher-order moments of age
processes in the implementation/optimization of age-aware gossip
networks rather than just relying on their average values.

I. INTRODUCTION

Timely delivery of status updates is crucial for enabling
the operation of many emerging Internet of Things (IoT)-
based real-time status updating systems [1]. The concept
of AoI was introduced in [2] to quantify the freshness of
information available at some node about a physical process,
as a result of status update receptions over time. In particular,
for a single-source of information queueing-theoretic model
in which status updates about a single physical process are
generated randomly at a transmitter node and are then sent
to a destination node through a single server, the AoI at the
destination was defined in [2] as the following random process:
x(t) = t − u(t), where u(t) is the generation time instant of
the latest status update received at the destination by time t.
The authors of [3], [4] developed a stochastic hybrid system
(SHS)-based framework to analyze the marginal distributional
properties of each AoI process (in a network with multiple
AoI processes) through the characterization of its stationary
marginal moments and MGF. Further, by using the notion of
tensors, the authors of [5] and [6] generalized the analysis of
[3] and [4], and developed an SHS-based general framework
that facilitates the analysis of the joint distributional properties
of an arbitrary set of AoI processes in a network through the
characterization of their stationary joint moments and MGFs.
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Note that the framework of [4] has been applied to characterize
the marginal distributional properties of AoI under a variety
of system settings/queueing disciplines [7]–[10] (see [11] for
a comprehensive book and [12] for a recent survey).

The frameworks of [3]–[6] are not applicable to the age
analysis in classes of status updating systems that cannot
be modeled by an SHS with linear reset maps. A popular
class of such systems is the gossip-based status updating
systems where each node in the network randomly shares
its information status over time with the other nodes [13],
[14]. As a result, there have been a handful of recent efforts
developing new SHS-based methods that are suitable for the
age analysis in such gossip networks [15]–[20]. However,
these analyses have been limited to the characterization of
the stationary marginal first moment (average value) of each
age process in the network. In this paper, our analysis is
focused on the characterization of marginal/joint higher-order
statistics of age processes, such as the variance of each age
process and the correlation coefficients between all possible
pairwise combinations of age processes. In particular, we
apply our SHS-based methods developed in [21] (the extended
journal version of this paper) to derive closed-form expres-
sions for marginal/joint higher-order statistics of age processes
in serially-connected and parallel-connected gossip network
topologies. We further characterize the structural properties of
these higher-order statistics in terms of their convexity and
monotonicity with respect to the status updating rates, and
provide asymptotic results showing their behaviors when each
of the status updating rates becomes small/large. A key insight
drawn from our analysis is that it is crucial to incorporate the
higher-order moments of age processes in the implementation
of age-aware gossip networks rather than just relying on their
average values.

II. SYSTEM MODEL

A source node (referred to as node 0) provides its mea-
surements about some observed physical process to a set of
nodes N = {1, 2, · · · , N} in the form of status updates. In
particular, all the nodes in N are tracking the age of the
process observed by the source, and the status updates sent by
node 0 to node j ∈ N are assumed to follow an independent
Poisson process with rate λ0j . Besides, node i ∈ N sends
updates about its status of information (about the process
observed by the source) to each node j ∈ N \{i} according to
an independent Poisson process with rate λij . When λij > 0,
we say that nodes i and j are connected to each other. The
freshness of status of information available at each node is
quantified in terms of AoI. Let xi(t) denote the AoI process



Fig. 1. (a) A serially-connected network setting, (b) a parallelly-connected
network setting.

(or equivalently the age process) at node i ∈ N . Assuming that
node 0 always maintains a fresh status of information about
the observed physical process, the age/AoI at node j ∈ N is
reset to zero whenever it receives a status update from node 0.
Further, when node j ∈ N receives a status update from node
i ∈ N \{j} at time t, its age xj(t) is reset to the age of node i
only if xi(t) is smaller than xj(t). To summarize, when node
j ∈ N receives a status update from node i ∈ {0} ∪ N , the
age at node k ∈ N is updated as

x′
k(t) =


0, if i = 0 and k = j,

min [xj(t), xi(t)] , if i ∈ N and k = j,

xk(t), otherwise.

(1)

For an arbitrary set S ⊆ N , define xS(t) = min
i∈S

xi(t) as the
age/AoI process associated with S (or simply the age/AoI of
S). The stationary marginal MGF and stationary m-th moment
of the AoI process xS(t) are denoted by v̄

(n)
S and v̄

(m)
S ,

respectively. Note that v̄
(1)
S may generally refer to v̄

(n)
S |n=1

or v̄
(m)
S |m=1. To eliminate this conflict, the convention that

v̄
(i)
S , for an integer i, refers to v̄

(m)
S at m = i is maintained

here.

III. MGF ANALYSIS OF AGE IN GOSSIP NETWORKS

In the extended journal version of this paper [21], we
develop SHS-based methods that allow the characterization of
the stationary marginal and joint MGFs of the age processes
in the general setting of gossip networks described in Section
II. In this paper, we apply the methods developed in [21] to
understand the distributional properties of age processes in the
two canonical gossip network topologies depicted in Fig. 1,
i.e., the serially and parallelly-connected network topologies.
In particular, we first derive closed form expressions for the
stationary marginal and joint MGFs of the AoI processes
in each network topology. We then use the derived MGFs
expressions to obtain marginal/joint higher-order statistics of
age processes.

A. Serially-Connected Networks

Theorem 1. For the serially-connected network in Fig. 1a,
the stationary marginal MGFs of the AoI processes at nodes
1 and 2 are respectively given by

v̄
(n)
{1} =

λ0

λ0 − n
, (2)

v̄
(n)
{2} =

λ0λ

(λ0 − n)(λ− n)
. (3)

Additionally, the stationary joint MGF of the two AoI
processes at nodes 1 and 2 is given by

v̄
(n1,n2)
{2},{1} =

λ0λ

λ0 + λ− (n1 + n2)

( λ0

(λ0 − n1)(λ− n1)
+

1

λ0 − (n1 + n2)

)
. (4)

Proof: These results are obtained by applying [21, Theo-
rem 1] and [21, Theorem 2] to the serially-connected network
in Fig. 1a. The detailed proof is omitted due to space limita-
tions, and can be found in [21, Appendix C].

Proposition 1. For the serially-connected network in Fig. 1a,
the first moment, second moment, and variance of the AoI
process at each node are given by

v̄
(1)
{1} = λ−1

0 , v̄
(2)
{1} = 2λ−2

0 , var [x1 (t)] = λ−2
0 , (5)

v̄
(1)
{2} =

1

λ0
+

1

λ
, v̄

(2)
{2} = 2

(
1

λ2
0

+
1

λ0λ
+

1

λ2

)
,

var [x2 (t)] =
1

λ2
0

+
1

λ2
. (6)

Further, the correlation coefficient between the AoI pro-
cesses at nodes 1 and 2 can be expressed as

cor [x1(t), x2(t)] =
λ2

(λ0 + λ)
√
λ2
0 + λ2

. (7)

Proof: These results are obtained using the derivatives of
the MGF expressions derived in Theorem 1.

Remark 1. Note that the expressions of the stationary
marginal MGFs in Theorem 1 and the stationary marginal
moments in Proposition 1 match their corresponding expres-
sions for preemptive line networks analyzed in [4].

Remark 2. Note that the stationary moments and variance of
the age process at node 1 in (5) are univariate functions of
λ0. This happens since node 1 is directly connected to node 0.
This argument will also apply to the expressions derived for
the age processes at nodes 1 and 2 in the parallelly-connected
network in Fig. 1b.

Remark 3. Note that the stationary moments and variance of
the age process at node 2 in (6) are invariant to exchanging λ
and λ0. These quantities are also jointly convex functions in
(λ0, λ), where the minimum value (zero) of each function is
achieved at λ0 = λ = ∞. Further, for a given λ or λ0, each
quantity in (6) is a monotonically non-increasing function with
respect to λ0 or λ. This can also be observed from Fig. 2.

Remark 4. For a given λ, cor[x1(t), x2(t)] in
(7) monotonically decreases as a function of λ0

form lim
λ0→0

cor[x1(t), x2(t)] = 1 until it approaches

lim
λ0→∞

cor[x1(t), x2(t)] = 0. On the other hand, for a

given λ0, cor[x1(t), x2(t)] monotonically increases as



a function of λ form lim
λ→0

cor[x1(t), x2(t)] = 0 until it

approaches lim
λ→∞

cor[x1(t), x2(t)] = 1. This can also be
observed from Fig. 3.

B. Parallelly-connected Networks

Theorem 2. For the parallelly-connected network in Fig. 1b,
the stationary marginal MGFs of the AoI processes at nodes
1, 2 and 3 are given by (8) and (9) [at the top of the next
page]. Additionally, the stationary joint MGF of the two AoI
processes at nodes 1 and 3 is given by (10) [at the top of the
next page].

Proof: These results are obtained by applying [21, The-
orem 1] and [21, Theorem 2] to the parallelly-connected
network in Fig. 1b. The detailed proof is omitted due to space
limitations, and can be found in [21, Appendix E].

Proposition 2. For the parallelly-connected network in Fig.
1b, the first moment, second moment, and variance of the AoI
process at each node are given by

v̄
(1)
{1} = v̄

(1)
{2} = λ−1

s , v̄
(2)
{1} = v̄

(2)
{2} = 2λ−2

s ,

var [x1 (t)] = var [x2 (t)] = λ−2
s , (11)

v̄
(1)
{3} =

β

2λs (λs + λ1) (λs + λ2) (λ1 + λ2)
, (12)

v̄
(2)
{3} =

∑6
i=0 γiλ

i
s

2λ2
s (λ1 + λ2)

2
(λs + λ1)

2
(λs + λ2)

2 , (13)

var [x3(t)] =

∑6
i=0 ηiλ

i
s

4λ2
s (λ1 + λ2)

2
(λs + λ1)

2
(λs + λ2)

2 , (14)

where

β = 2λs (λs + λ1) (λs + λ2) + λ1 (2λs + λ2) (λs + λ1)+

λ2 (2λs + λ1) (λs + λ2) ,

γ6 = 4, γ5 = 12 (λ1 + λ2) , γ4 = 4
[
4 (λ1 + λ2)

2
+ λ1λ2

]
,

γ3 = 12 (λ1 + λ2)
3
, γ2 = (λ1 + λ2)

2
[
4 (λ1 + λ2)

2
+ λ1λ2

]
,

γ1 = 3λ1λ2 (λ1 + λ2)
3
, γ0 = λ2

1λ
2
2 (λ1 + λ2)

2
, η6 = 4,

η5 = 8 (λ1 + λ2) , η4 = 8
[
(λ1 + λ2)

2
+ λ1λ2

]
,

η3 = 4 (λ1 + λ2)
(
2λ2

1 + 3λ1λ2 + 2λ2
2

)
,

η2 = 2 (λ1 + λ2)
2 (

2λ2
1 + λ1λ2 + 2λ2

2

)
,

η1 = 2λ1λ2 (λ1 + λ2)
3
, η0 = λ2

1λ
2
2 (λ1 + λ2)

2
.

Further, the correlation coefficient between the AoI
processes at nodes 1 and 3 can be expressed as:
cor [x1(t), x3(t)] =

λ1 (λ1 + λ2)

2 (λs + λ1 + λ2) (2λs + λ1) (λs + λ2)
√∑6

i=0 δiλ
i
s

×

[
8λ4

s + λ3
s (12λ1 + 7λ2) + 2λ2

s (λ1 + 2λ2) (2λ1 + λ2)+

λsλ2

(
3λ2

1 + 5λ1λ2 + λ2
2

)
+ λ1λ

2
2 (λ1 + λ2)

]
, (15)

where

δ6 = 4, δ5 = 8 (λ1 + λ2) , δ4 = 8
[
(λ1 + λ2)

2
+ λ1λ2

]
,

δ3 = 4 (λ1 + λ2)
(
2λ2

1 + 3λ1λ2 + 2λ2
2

)
,

δ2 = 2 (λ1 + λ2)
2 (

2λ2
1 + λ1λ2 + 2λ2

2

)
,

δ1 = 2λ1λ2 (λ1 + λ2)
3
, δ0 = λ2

1λ
2
2 (λ1 + λ2)

2
.

Remark 5. When λ1 or λ2 is zero, the parallelly-connected
network reduces to the serially-connected network with a
single path from node 0 to node 3. Thus, in that case,
the stationary moments and variance of the age process at
node 3 reduce to the corresponding expressions associated
with the age process at node 2 in the serially-connected
network such that λ0 and λ are replaced by λs and λ1

or λ2. On the other hand, when λ1 and λ2 approach ∞,
we have: lim

λ1→∞,λ2→∞
v̄
(1)
{3} = 1

2λs
, lim
λ1→∞,λ2→∞

v̄
(2)
{3} = 1

2λ2
s

,

and lim
λ1→∞,λ2→∞

var[x3(t)] =
1

4λ2
s

. Note that the stationary

moments and variance of x3(t) reduce to the ones associated
with x{1,2}(t).

Remark 6. Note that the stationary moments and variance
of the age process at node 3 in (12)-(14) are invariant to
exchanging λ1 and λ2. Further, for a given (λs, λ2), (λs, λ1)
or (λ1, λ2), each quantity in (12)-(14) is a monotonically non-
increasing function with respect to λ1, λ2 or λs. This can also
be observed from Fig. 2.

Remark 7. For the same status updating rate out of node
0 (i.e., λ0 = 2λs) and λ = λ1 = λ2, one can compare
the achievable age performance at node 3 in the parallelly-
connected network with the achievable age performance at
node 2 in the serially-connected network using Propositions 1
and 2 as follows

v̄
(1)
{2} − v̄

(1)
{3} =

λ0

2λ (λ0 + 2λ)
, (16)

v̄
(2)
{2} − v̄

(2)
{3} =

3λ2
0 + 4

(
λ2 + 2λ0λ

)
2λ2 (λ0 + 2λ)

2 , (17)

var[x2(t)]− var[x3(t)] =
3λ0 (λ0 + 4λ)

4λ2 (λ0 + 2λ)
2 . (18)

By inspecting (16)-(18), one can see that these are positive
quantities for any choice of values of (λ0, λ). This certainly
indicates that node 3 in the parallelly-connected network
achieves a better age performance than the one achievable by
node 2 in the serially-connected network. The improvement in
the age performance at node 3 results from the existence of
two status updating paths from node 0 to node 3, as opposed
to only a single path from node 0 to node 2 in the serially-
connected network. Further, each quantity in (16)-(18) is a
monotonically decreasing function of λ for a given λ0 such
that its value approaches zero as λ → ∞. This can also be
observed from Fig. 2.



v̄
(n)
{1} = v̄

(n)
{2} =

λs

λs − n
, (8)

v̄
(n)
{3} =

λs(2λs − n)
[
λ1 (λs + λ1 − n) + λ2 (λs + λ2 − n)

]
+ 2λsλ1λ2 (2λs + λ1 + λ2 − 2n)

(2λs − n) (λ1 + λ2 − n) (λs + λ1 − n) (λs + λ2 − n)
. (9)

v̄
(n1,n2)
{3},{1} =

∑4
i=1 αi(n1, n2)

[λs + λ1 + λ2 − (n1 + n2)] [2λs + λ1 − (n1 + n2)] [2λs − (n1 + n2)] [λs + λ2 − (n1 + n2)]

× 1

(λs − n2) (λ1 + λ2 − n1) (2λs − n1) (λs + λ2 − n1) (λs + λ1 − n1)
, (10)

where

α1(n1, n2) =λ2
s (λs − n2) [λs + λ2 − (n1 + n2)] [2λs + λ1 − (n1 + n2)] [2λs − (n1 + n2)]

×
[
(2λ2 − n1)

[
λ1 (λs + λ1 − n1) + λ2 (λs + λ2 − n1)

]
+ 2λ1λ2 (2λs + λ1 + λ2 − 2n1)

]
,

α2(n1, n2) = λ2
sλ2 (λ1 + λ2 − n1) (2λs − n1) (λs + λ1 − n1) (λs + λ2 − n1) [2λs + λ1 − (n1 + n2)]

× [λs + λ1 + λ2 − (n1 + n2)] ,

α3(n1, n2) = λ2
sλ2 (λ1 + λ2 − n1) (λs + λ2 − n1) (2λs + 2λ1 − n1) (λs − n2) [λs + λ2 − (n1 + n2)] [2λs − (n1 + n2)] ,

α4(n1, n2) =λsλ1 (λs − n2) (λ1 + λ2 − n1) (2λs − n1) (λs + λ2 − n1) (λs + λ1 − n1)

×
[[
2λs + λ1 − (n1 + n2)

][
2λs + λ2 − (n1 + n2)

]
+ λ2

[
λs + λ2 − (n1 + n2)

]]
.

Remark 8. Due to symmetry in the configuration of the
parallelly-connected network, note that the correlation co-
efficient between x2(t) and x3(t) (i.e., cor[x2(t), x3(t)])
can be obtained by replacing λ1 and λ2 with λ2 and
λ1, respectively, in (15). Further, for a given (λ1, λ2),
cor[x1(t), x3(t)] monotonically decreases as a function of
λs from lim

λs→0
cor[x1(t), x3(t)] = 1

2 until it approaches

lim
λs→∞

cor[x1(t), x3(t)] = 0. On the other hand, for a given

(λs, λ2), cor[x1(t), x3(t)] monotonically increases as a func-
tion of λ1 from lim

λ1→0
cor[x1(t), x3(t)] = 0 until it approaches

lim
λ1→∞

cor[x1(t), x3(t)] =
4λ2

s+3λsλ2+λ2
2

2(λs+λ2)
√

4λ2
s+2λsλ2+λ2

2

. Finally,

for a given (λs, λ1), one can deduce the following asymp-
totic results: lim

λ2→0
cor[x1(t), x3(t)] =

λ2
1

(λs+λ1)
√

λ2
s+λ2

1

and

lim
λ2→∞

cor[x1(t), x3(t)] = λ1(λs+λ1)

2(2λs+λ1)
√

4λ2
s+2λsλ1+λ2

1

. Clearly,

when λ2 = 0, there will be only a single status updating
path from node 0 to node 3 (through node 1), and hence we
observe that cor[x1(t), x3(t)] reduces to the same expression
of cor[x1(t), x2(t)] in (7) for the serially-connected network
after replacing λ0 and λ with λs and λ1, respectively. Some
of the above insights can also be visualized from Fig. 3.

Remark 9. From Propositions 1 and 2, one can see that the
standard deviation of x1(t) (i.e.,

√
var[x1(t)]) is equal to its

average value v̄
(1)
{1}. Additionally, the standard deviations of

the age processes at the other nodes are relatively large with
respect to their average values (which is also demonstrated
numerically in Figs. 4 and 5). This key insight promotes
the importance of incorporating the higher-order moments
of age processes in the implementation/optimization of age-
aware gossip networks rather than just relying on the average
values of the age processes (as has been done in the existing
literature so far). This insight also demonstrates the need of
the development of Theorems 1 and 2 in [21], which allow the
characterization of the marginal/joint MGFs of different age
processes in the network that can then be used to evaluate the
marginal/joint higher-order moments.

IV. CONCLUSION

In this paper, we derived the stationary marginal and joint
MGFs in serially and parallelly-connected gossip network
topologies. Using the derived MGF expressions, we obtained
closed-form expressions for the following quantities: i) the
stationary marginal first and second moments of each age
process, ii) the variance of each age process, and iii) the corre-
lation coefficients between all possible pairwise combinations
of the age processes. We further characterized the structural
properties of these quantities in terms of their convexity and
monotonicity with respect to the status updating rates, and
provided asymptotic results showing their behaviors when
each of the status updating rates becomes small/large. Our
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analytical findings highlight the importance of incorporating
the higher-order moments of age processes in the implemen-
tation/optimization of age-aware gossip networks rather than
just relying on their average values (as has been done in the
existing literature so far).
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