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Abstract—This paper employs stochastic geometry tools to
rigorously analyze the performance of vision-based geolocation
systems. Despite significant algorithmic advances in vision-based
positioning, its mathematical underpinnings have not been ex-
plored in depth, which is the main objective of this paper. Due
to limitations in sensor resolution, the level of detail in prior
information, and computational resources, we may not be able to
differentiate between landmarks that are similar in appearance,
such as trees, lampposts, and bus stops. While one cannot
accurately determine the absolute target position using a single
non-unique landmark, it is possible to obtain an approximate
position fix if the target can see multiple landmarks whose
geometric placement on the map is unique. Modeling the locations
of these indistinguishable landmarks as a Poisson point process
(PPP), we develop a fundamentally new approach to analyze
localizability in this setting. We define localizability as the ability
of the target to determine the correct set of indistinguishable
landmarks around it from the visual information. Our analysis
reveals that the localizability probability approaches one when the
landmark intensity tends to infinity, which means that error-free
localization is achievable in this limiting regime.

Index Terms—Vision-based localization, localizability, stochas-
tic geometry, Poisson point process.

I. INTRODUCTION

Vision-based positioning systems utilize visual information
obtained from a variety of vision sensors, such as cam-
eras, Lidar, and radar, to estimate the unknown position and
orientation of the target. However, when performing global
positioning using vision data, we may not achieve the same
level of accuracy as the widely used wireless-based approaches
because of two intertwined reasons. First, the resolution of the
vision sensors might be limited, which might make similar
geo-tagged landmarks (such as trees or lampposts) appearing
in the vision data indistinguishable from each other. Second, a
prohibitively large amount of prior information and computa-
tional resources are needed to store and process unique iden-
tifiers corresponding to every landmark appearing on the map.
As a result, landmarks may not necessarily be unique, which
is the setting of interest in this paper. In other words, similar
landmarks might appear at multiple places on the map, which
makes it challenging to determine the exact global location of
the target. That said if a target can see multiple landmarks, the
exact geometric setting or pattern of these visible landmarks
observed by the target might not appear frequently on the
map, which can be used to aid global positioning. In many
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practical applications, such as navigation, it is reasonable to
assume that the target can obtain range measurements to the
visible landmarks (e.g., from the depth analysis of the images),
which we term as the range vector. Using tools from stochastic
geometry, we comprehensively analyze localizability using this
range vector. It should be noted that this perspective of vision-
based positioning, probabilistic problem formulation, and the
corresponding stochastic geometry analysis are all reported
for the first time in this paper.

A. Related Works

Given its interdisciplinary nature, there are three lines of
work that are relevant to this paper: vision-based positioning,
localizability analysis, and stochastic geometry.

Traditionally, vision-based positioning is treated as a re-
trieval task, which estimates the unknown location of a query
image using locations of the most similar geo-tagged images
in the database [1]. The vision information in the database
is preprocessed and represented as several invariant features
using the Scale-Invariant Feature Transform [2], which ex-
tracts local invariant features, such as bag-of-words [3], [4],
VLAD [5], and graphs [6], [7]. The computation to retrieve
the location for the query image is reduced by representing
vision information in the whole image as a compressed vector.
In recent years, a variety of convolutional neural networks
(CNNs) have been proposed to track the temporal sequence of
location and orientation observations of the camera, such as
PoseNet [8], MapNet [9], CamNet [10], to name a few. Their
performance is evaluated on relatively small-scale datasets,
such as 7-Scenes and Oxford RobotCar datasets. Another
related line of work is cross-view matching, which performs
large-scale localization by matching ground images to geo-
tagged satellite images. Several variants of CNNs are proposed
to estimate the orientation and location [11]–[13].

Despite the advances in the algorithmic treatment of this
problem, localizability has not yet been explored rigorously
in vision-based positioning. Not surprisingly, in wireless-based
positioning, localizability has been studied from different per-
spectives, such as using graph theory in [14], the Cramér Rao
Lower Bound (CRLB) in [15], [16], and stochastic geometry
in [17]–[23]. Since our work is based on stochastic geometry,
we now discuss the prior art focusing on its applications
to localization. In wireless-based positioning, stochastic ge-
ometry provides the framework to analyze key localization
metrics, including localizability, by modeling the location of
anchors and blockages as point processes, e.g., see [17]–
[23]. These analyses are useful in identifying key factors



influencing localization, evaluating the impact of these factors
on the network performance, and suggesting guidelines for
optimizing localization algorithms.

Another less obvious direction of research that is relevant
to this work is the information-theoretic analyses of point
process models. For instance, [24] studies capacity and error
exponents of stationary point processes by considering points
in the process as codewords and random displacement of
points as additive noise. This work shows that error-free
communication is achievable when the rate does not exceed
the Poltyrev capacity. Even though one can draw parallels
between our work and this specific direction of research
(e.g., our range measurements are analogous to codewords),
the line of questioning (inspired by vision-based localization)
and mathematical development are fundamentally different.
Nevertheless, this general connection makes this approach
relevant to the communication theory community as well.

B. Contributions and Outcomes

The main contribution of this paper is to propose a fun-
damentally new perspective to vision-based localization based
on stochastic geometry, mathematically formulate the problem
of localizability within this framework, and perform rigorous
mathematical analysis of this metric (which quantifies our
ability to obtain a global position fix based on only the
vision data). Specifically, in our system model, we consider
indistinguishable landmarks (such as lampposts that all appear
similar in the vision data) and model their locations as a PPP.
To enhance the realism of the model, we include a visibility
model and incorporate additive noise into the range measure-
ments. We represent the point pattern of visible landmarks
using range vectors and define the target as localizable if the
measured ranges are unique. This means that range vectors
observed from other locations on the map need to be at least
a certain distance away from the range vector observed at
the target location. We extensively analyze this setup by de-
riving conditional localizability probability, which quantifies
the probability of correctly determining the set of landmarks
that correspond to the range vector observed at the target.
To characterize localizability across the whole map, we study
localizability probability by taking the expectations of condi-
tional localizability probability over the joint distribution of the
range vector. Some interesting observations and connections
can be made from the result. For instance, as the landmark
intensity tends to infinity, the localizability probability tends to
one. This observation is analogous to having codewords with
infinite lengths in communication systems. The implication
is that error-free localization is achievable in this limiting
scenario.

II. SYSTEM MODEL

This section constructs the statistical model for the land-
marks, formulates the system model, and presents the problem
statement.

Given that the landmarks are indistinguishable from one
another, we model them as points on the map. The maps
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Fig. 1. An illustration of the system model. Black points are landmarks.
Landmarks in the blue ball b(x0, dv) are visible to the target located at
x0 = 0. Green lines denote the ranges. The target measures ranges in the
clockwise order starting from the true north (y-axis).

of various locations are considered realizations of the point
process Φ = {xi}, where xi denotes the locations of the
landmarks. We define a landmark as visible to the target
if the distance between them, denoted as d, is less than a
certain threshold dv . Specifically, landmarks within the ball
Bx0 = b(x0, dv) are considered visible to the target, where
dv represents the maximum visibility distance and x0 is the
unknown target location on the map. As mentioned before,
we assume Φ is a PPP, which allows us to leverage the
mathematical properties of PPP in our analysis. It is worth
noting that the landmark locations have been shown to follow
a PPP in some vision-based localization settings [25].

The point representation of landmarks adopted in this paper
is similar to the graphical representation of landmarks dis-
cussed in prior works, such as [7]. In addition to providing
a complementary probabilistic approach to this problem, our
work also offers an alternate definition for the weights of edges
in these graphs through the ranges to landmarks measured by
vision sensors.

A. Measurements

We assume that all the visible landmarks in Bx0
are

detected by the target using visual information. The target
then measures the ranges to all detected landmarks. Details
of the specific methods for measuring the ranges are not
required to derive the localizability in our work. Without loss
of generality, we assume that the target measures the ranges
to the visible landmarks in a clockwise order, starting from a
fixed orientation such as the true north. As illustrated in Fig. 1,
there are k = 4 visible landmarks within visible distance dv .
Ranges to these landmarks are obtained and recorded as a
range vector in the aforementioned order, represented as

d0 = [d0,1, d0,2, . . . , d0,k] , (1)

where k is the realization of random variable N = N(Bx0
) =

#{Φ ∩Bx0
}, which gives the number of visible landmarks.

Similar to the distances between codewords in communica-
tion systems, we define the distance between two range vectors



obtained at two different locations as

dp(d1,d2) =

{
∥d1 − d2∥∞ , dim(d1) = dim(d2)

∞, dim(d1) ̸= dim(d2)
, (2)

where ∥·∥∞ is the infinity norm of a vector.

B. Problem Formulation

From each candidate location x on the map, we can refer to
the map and its corresponding visible landmark pattern φ∩Bx,
which provides the true range vector d if the target were to be
placed at x. Here φ is the realization of the point process Φ and
serves as the map. We assume that the actual measurements
obtained by the target are noisy, which we denote as r, and
model the measurement error n = r − d as additive noise,
bounded as ∥n∥∞ < ϵ/2. To determine the target location, we
compare the measured range vector r with true range vectors
corresponding to different locations on the map. If di and dj

are two true range vectors for locations xi and xj , we will
say that the actual (observed) measurements at these locations
are indistinguishable if

dp(di,dj) ≤ ϵ. (3)

One can also think of these range vectors as codewords in
communications, where one can achieve error-free communi-
cation if the noise is bounded by half of the minimum distance
between the codewords. In the same way, to achieve error-free
localization in the above setup, any true range vectors d of
other locations on the map should be at least ϵ distance away
from the true range vector d0 of the target location x0.

Definition 1 (Localizability Probability). We define localiz-
ability in this work as the ability to identify the correct
set of landmarks that are associated with the range vector
observed at the target. In this work, we mathematically
characterize “localizability probability”, denoted by PLoc,
that is the probability that the range vector observed at an
arbitrary location in the network is distinguishable from the
range vector observed at the target (as per (3)). Whenever
convenient, we will present results for the “non-localizability
probability”, denoted by PN−Loc = 1− PLoc.

Remark 1. Intuitively, the range vectors obtained around
the target location x0 will result in indistinguishable range
vectors as per (3). This is exactly what we want since we
are just interested in identifying the correct set of landmarks
that correspond to the true range vector. Interestingly, this
does not pose any technical issues in our analysis since
we sample the candidate target locations from an infinite
plane. Therefore, even if candidate locations around the true
location (countably infinite because of the continuous space)
will yield similar range vectors, the area of such region will be
bounded. Therefore, the probability that we will ever sample
a candidate location from around the target location x0 is
zero. Consequently, we do not need to put any additional
constraints on our analysis to capture the above intuition
about localizability.

In this paper, we first introduce the concept of conditional
localizability probability, denoted by PC,Loc, which represents
the probability of correctly identifying the set of landmarks
associated with the range vector d0. Mathematically, we define
PC,Loc as

PC,Loc = P[dp(D,d0) > ϵ | d0, k] (4)
= E{1(dp(D,d0) > ϵ) | d0, k} , (5)

where D is the range vector corresponding to an arbitrary
location x, and k is the number of visible landmarks at ground
truth location x0. Note that there is no need to explicitly
exclude x0 from the candidate locations since the probability
of x0 being selected as a candidate location is zero. The
expectation in (4) is computed over all potential locations
on the map. Since the landmark locations are modeled as
a PPP, due to the ergodic property, the spatial average of
range vectors across all candidate locations is equivalent to the
ensemble average obtained by considering the candidate target
location at the origin. In other words, to derive the conditional
localizability probability, we can fix the location x at the origin
and compute the expectation over different realizations of Φ.

While the above result is conditional on a specific range
vector d0, the localizability on the whole map is also of
interest, which we obtain by averaging over all possible range
vectors d0, i.e., taking the expectation over d0 and N(B0).
Now, we define localizability probability on the whole map as

PLoc = P[dp(D,d0)>ϵ] = E{P[dp(D,d0)>ϵ|d0, k]}. (6)

III. LOCALIZABILITY PROBABILITY ANALYSIS

In this section, we first study key mathematical constructs
that are involved in the analysis. The following lemmas
provide statistical results necessary for the analysis of lo-
calizability probability. First, we derive the distribution of
ranges conditioned on the number of visible landmarks in the
following lemma.

Lemma 1. The distribution of the distance D from an arbi-
trary point to the origin, conditioned on the number of points
N(Bx0

) = k, (k > 0), is

fD(d) =
2d

d2v
δ(0 ≤ d ≤ dv) . (7)

Proof: The result is a direct consequence that locations
of points in a PPP are uniformly distributed when conditioned
on the number of points.

Remark 2. Because PPP is a stationary point process, fD(d)
is invariant to the target location x0.

Using Lemma 1, we provide the probability that the range
measurement Di is within distance ϵ to d0,i in the next lemma.

Lemma 2. Conditioned on the number of points, the prob-
ability that the distance between the range measurement Di

and d0,i is smaller than ϵ is given below.



When 0 ≤ ϵ < dv

2 ,

P[|Di − d0,i| ≤ ϵ | N0 = k]

=



(d0,i + ϵ)
2

d2v
, 0 ≤ d0,i < ϵ,

4ϵd0,i
d2v

, ϵ ≤ d0,i < dv − ϵ,

1− (d0,i − ϵ)
2

d2v
, dv − ϵ ≤ d0,i ≤ dv,

(8)

where N0 = N(B0) = #{Φ ∩ b(0, dv)} is the number of
landmarks that are visible from the origin.

When dv

2 ≤ ϵ < dv ,

P[|Di − d0,i| ≤ ϵ | N0 = k]

=



(d0,i + ϵ)
2

d2v
, 0 ≤ d0,i < dv − ϵ,

1, dv − ϵ ≤ d0,i < ϵ,

1− (d0,i − ϵ)
2

d2v
, ϵ ≤ d0,i ≤ dv,

(9)

When dv < ϵ,

P[|Di − d0,i| ≤ ϵ | N0 = k] = 1. (10)

Proof: By definition and Lemma 1, we have

P[|Di − d0,i| ≤ ϵ | N0 = k]

=

∫ d0,i+ϵ

d0,i−ϵ

fD(d) dd

=

∫ min{d0,i+ϵ,dv}

max{d0,i−ϵ,0}

2d

d2v
dd,

(11)

where the last equation follows from the fact that fD(d) only
has non-zero values when d ∈ [0, dv]. The result in Lemma 2
is derived by considering different values of ϵ and d0,i.

Further, we derive conditional localizability probability,
PC,Loc, which is the probability that the distance between D
and a given d0 is greater than ϵ. The result is presented in the
following lemma.

Lemma 3. Given a range vector d0 ∈ Rk, the conditional
localizability probability is

PC,Loc=1−P[dp(D,d0) ≤ ϵ | d0, k]

=1−mk

k!
e−m

{
k∏

i=1

P[|Di − d0,i| ≤ ϵ | N=k]

}
.

(12)

Proof: To calculate PC,Loc, we can consider the prob-
ability of the complementary event, i.e., making an error in
determining the correct set of landmarks that correspond to
the observed range vector, is

P[dp(D,d0) ≤ ϵ | d0, k]

(a)
= P[dp(D,d0) ≤ ϵ, dim(D) = k | d0] (13)
(b)
= P[dp(D,d0) ≤ ϵ,N(Bx) = k | d0] (14)

(c)
= P

[
max
i∈{N}

{|Di − d0,i|} ≤ ϵ | N = k,d0

]
×P[N = k | d0]

(15)

(d)
= P[|D1 − d0,1| ≤ ϵ, . . . , |Dk − d0,k| ≤ ϵ | N = k]

×P[N = k | d0]
(16)

(e)
=

{
k∏

i=1

P[|Di − d0,i| ≤ ϵ | N = k]

}
· P[N = k] , (17)

where in (a) we leverage the fact that the event E2 =
{dim(D) = k} contains E1 = {dp(D,d0) ≤ ϵ} where the
condition d0 includes the dimension information of the range
vector; in (b) the dimension of the range vector is equal to
the number of visible landmarks; in (c) N = N(Bx) is the
number of visible landmarks within the visibility distance dv .
Additionally, we employ the definition of the infinity norm
to characterize the maximum distance between the elements
of D and d0; in (d) we utilize the i-th element of the range
vector d0 to impose a constraint on Di; and in (e) we use
the motion-invariance property of the PPP, which means that
range measurements from all orientations are independent and
identical to each other.

The second term in (17) is the probability that k points of
Φ lie in N(Bx), which is

P[N = k] =
mk

k!
e−m, (18)

where m = Λ(Bx) =
∫
Bx

λ dx = λπd2v , and λ is the intensity
of landmarks. This completes the proof.

Lemma 3 provides the expression of conditional local-
izability probability, which characterizes the probability of
correctly identifying the set of landmarks associated with d0.
To evaluate the localizability probability of the target across
the entire map, we now derive the joint probability density
function of range vector D0 observed from the origin and the
number of visible landmarks N(B0). The result is presented
in the following lemma.

Lemma 4. The joint probability density function of D0 and
N0 is

fD0,N0(d0, k) =
mk

k!
e−m

k∏
i=1

{
2d0,i
d2v

δ(0 ≤ d0,i ≤ dv)

}
.

(19)

Proof: Because of the motion-invariance property of PPP,
the distribution of the number of points in Bx is invariant with
respect to the location x. As a result, the distribution of N0

is identical to N , given in (18). By definition, the mixed joint
probability is

fD0,N0
(d0, k) = fD0|N0

(d0|k)P[N0 = k] . (20)

Because PPP is motion-invariant, the distributions of range
measurements at all orientations are independent and identical.
Hence, we can write

fD0|N0
(d0|k) =

k∏
i=1

{fD(d0,i)} (21)



=
k∏

i=1

{
2d0,i
d2v

δ(0 ≤ d0,i ≤ dv)

}
. (22)

This completes the proof.
Using the previous lemmas and the definition in (1), we now

present the main result of this paper in the following theorem.

Theorem 1. The localizability probability PLoc of the target
on the map with landmark intensity λ is

PLoc = P[dp(D,d0) > ϵ]

=

{
1−e−2mI0

(
2m ·

√
8d3

vϵ−6d2
vϵ

2+ϵ4

3d4
v

)
, 0≤ϵ < dv,

1−e−2mI0(2m), ϵ≥dv,
(23)

where m = λπd2v is defined in (18).

Proof: Using the definition in (1) and Lemma 4, we can
write the expectation as

P[dp(D,d0) > ϵ]

=
∞∑
k=0

{∫ dv

0

P[dp(D,d0) > ϵ | d0, k]

fD0|N0
(d0|k)P[N0 = k] dd0

}
.

(24)

When 0 ≤ ϵ < dv , using equation (8), (9) in Lemma 2 and
Lemma 3, the result is

PLoc=1−
∞∑
k=0

{(
8d3vϵ− 6d2vϵ

2 + ϵ4

3d4v

)k

· m2k

(k!)2
e−2m

}
(25)

= 1− e−2m · I0

(
2m ·

√
8d3vϵ− 6d2vϵ

2 + ϵ4

3d4v

)
, (26)

where I0(·) is the modified Bessel function of the first kind.
It should be noted that although equations (8) and (9) may
appear different, the resulting integrals yield identical results.

When dv ≤ ϵ, using equation (8), the result is

PLoc = 1−
∞∑
k=0

{(
mk

k!
e−m

)2
}

= 1− e−2mI0(2m) . (27)

This completes the proof.

Remark 3. When the noise level is significantly high and
ϵ ≥ dv , PLoc cannot be improved by obtaining range mea-
surements. This can be inferred from equation (27), showing
that the probability of N = N0 = k dominates. The range
measurements are too noisy to help localize the target.

Theorem 1 provides the analytical expression of localizabil-
ity probability representing the probability of identifying the
correct set of landmarks. A natural question arises regarding
the performance of localizability probability as the landmark
intensity λ approaches infinity. This question is addressed in
the following proposition.

Proposition 1. As the landmark intensity λ tends to infinity,
the localizability probability PLoc approaches one regardless

of the value of ϵ. Equivalently, PN−Loc = 1−PLoc approaches
zero as λ tends to infinity.

Proof: The asymptotic expansions of the modified Bessel
functions of the first kind can be derived using the results
provided in [26]. As z → ∞ with fixed v, we have

Iv(z) =
ez

(2πz)
1
2

∞∑
k=0

(−1)k
(
ak(v)

zk

)
, (28)

where ak(v) ={
1, k = 0,
(4v2−12)(4v2−32)...(4v2−(2k−1)2)

k!8k , k ̸= 0,
(29)

Let v = 0 and use (28), we can calculate (23) when λ → ∞

lim
λ→∞

PN−Loc = lim
λ→∞

1− PLoc (30)

= lim
λ→∞

1− P[dp(D,d0) > ϵ]

= lim
m→∞

e−2m · e2αm

(4παm)
1
2

(
1 +O

(
2αm− 1

2

))
(31)

= lim
m→∞

e−2(1−α)m (4παm)
− 1

2

(
1 +O

(
m− 1

2

))
= 0, (32)

where m = λπd2v and

α =

{√
8d3

vϵ−6d2
vϵ

2+ϵ4

3d4
v

, 0 ≤ ϵ < dv,

1, ϵ ≥ dv,
(33)

which is bounded by 0 ≤ α ≤ 1. This completes the proof.

IV. NUMERICAL RESULTS

In this section, we verify our analytical results by comparing
the theoretical non-localizability probability PN−Loc, which is
the complement of PLoc, derived in Theorem 1, with the result
obtained from Monte-Carlo simulations. We consider a range
of landmark intensities m = λπd2v ∈ [2, 10]. The maximum
visibility distance dv is set to 50 meters, and we consider
values of ϵ from the set {1, 5, 10, 20, 40, 60} meters. In Fig. 2,
we present the plot of the theoretical PN−Loc, alongside the
results obtained from Monte Carlo simulations. We chose
PN−Loc over PLoc to focus on the “errors” for an easier
visualization of the result. The perfect match between the
curves confirms the accuracy of our analysis. As depicted
in Fig. 2, it is evident that PN−Loc increases with increasing
values of ϵ. Remarkably, when the noise level is significantly
high, such that ϵ ≥ dv , the model essentially reduces to
matching the number of visible landmarks, as discussed in
Remark 3. Additionally, we observe that PN−Loc decreases as
the landmark intensity λ increases. Proposition 1 establishes
that PN−Loc approaches zero as λ tends to infinity, indicating
the feasibility of error-free localization.

V. CONCLUSION

In this paper, we have presented a new and tractable statisti-
cal model using stochastic geometry to rigorously analyze the
concept of localizability in vision-based positioning. Modeling
the locations of the landmarks as a PPP, we assumed that the



Fig. 2. The plot of non-localizability probability PN−Loc = 1− PLoc with
visibility distance dv = 50m.

unknown location of the target is encoded in terms of the
range vector observed at that location. One of the key findings
is that the localizability probability, as defined in this paper,
approaches one as the landmark intensity approaches infinity.
Our work provides valuable insights into understanding the
limitations and challenges associated with vision-based local-
ization in the presence of indistinguishable landmarks.

Building upon this research, there are two promising lines
of work for future extensions. Firstly, an information-theoretic
analysis can be conducted to explore the fundamental limits
of localization accuracy in vision-based systems, considering
factors such as sensor resolution, environmental conditions,
and landmark type. This would provide a deeper understanding
of localization using indistinguishable landmarks and guide
the design of optimal localization strategies. The potential
connections to codewords in the communication system are
also valuable to explore, possibly along the lines of the work
in [24] on capacity and error exponents of point processes.
In terms of practical applications, there is significant interest
in designing specific algorithms for vision-based positioning
that can operate effectively with limited visual information
and computational resources. We have initiated this study
in a recent work [27], where we used pairwise constraints
to identify the correct landmark combination. While range
vector representations of point patterns can achieve error-free
localization, they may not necessarily be optimal. Therefore, it
would be valuable to explore optimal schemes for representing
point patterns, ensuring the retention of maximum location
information. Overall, this paper makes the very first attempt
to connect stochastic geometry, localization, and computer
vision, which could be potentially a new direction of research.
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