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Abstract—In this paper, we study the performance of a cyber-
physical system with agents moving according to random tra-
jectories to sense an environmental variable with known spatio-
temporal profile. We introduce two sensing methods to model the
discrete time instants of measurements. We derive closed form
expressions for the coverage probability defined as the probability
that the environmental variable can be estimated at a random
location within a certain tolerable error. We also derive joint
coverage probability, which is the probability that a given location
is covered jointly over multiple time instants. Our analysis also
offers insights into the design of optimal trajectories of agents.

I. INTRODUCTION

Modern cyber physical systems (CPSs) consists of a large
number of wirelessly connected sensing agents actively coordi-
nating and monitoring states of some environmental processes
of interest [1]. A precise and timely knowledge of environmen-
tal processes is crucial for avoiding various natural hazards,
e.g. forest-fires, air pollution, soil and water contamination.
Since these sensing agents usually have a finite sensing region,
it requires multiple sensing agents to provide a certain guar-
antee of coverage over a region of interest [2]. It is useful to
note that most environmental variables including temperature,
and humidity do not exhibit drastic variations over space or
time [3], [4]. Hence one can expect significant redundancy in
the sensed data if it is collected too frequently in time or too
closely in space [5].

Past works have studied the spatial and/or temporal variation
of various environmental variables. For example, the works
[3] and [4] have studied this for soil and forest tempera-
tures. Assuming that this variation profile is available for the
environment variable, it is possible to estimate its value at
various locations and times using the data measured over space
and time. For example, [6] has shown an improvement in
the coverage by utilizing spatial profile information. In [7],
authors studied the coverage performance of a dynamic event
that evolves with time (e.g. a forest fire expanding with time).
These works were extended in [1] to include both spatial and
temporal profile to improve coverage of a given region with the
help of moving sensing agents. Assuming general trajectories
of agents, in [1], we developed an analytical framework to
derive a generic expression for the fraction of area that is
covered assuming a certain error in estimation can be tolerated.
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Since trajectories were generic, the expression could not be
simplified in [1]. As a result, the impact of various trajectories
on the sensing performance has not been investigated in the
past which is one of the goals of this paper.

In this work, we consider a CPS with mobile sensing agents
deployed to sense an environmental variable with known
spatio-temporal profile. We propose to model the agents’
trajectories via a Poisson cluster process (PCP) with points
denoting observation locations over time. Using the notion that
an arbitrary location is treated covered if the environmental
variable can be estimated at this location within a certain
tolerable error, we obtain a closed form expression for the
coverage probability. We also derive the probability that a
location is covered jointly over a set of multiple time instants.
Our analysis also provides insights on the design of optimal
trajectories.

II. SYSTEM MODEL

In this work, we consider a CPS with mobile sensing
agents to sense an environmental variable © represented as
a spatio-temporal process O(¢,x) which denotes its value at
a location x at time t [1]. Let ©(¢,x) denote its deviation
from the mean value at a location x at time t, i.e. O(t,x) =
O(t,x) — E[O(t,x)]. We assume that the variation of O is
bounded which means that it can vary by a finite value over
a finite distance and time. In particular, for any two locations
%1 and X2 and time instants ¢; and t5, we have the following
bound

|O(t1,x1) — O(t2,x2)| < f ([t — tal, lx1 — x2]]),

where f(-,-) is termed the variation profile or the tolerance
function of ©. For example, it can take the following form [1]

F(ltr —ta], ||x1 —x2]) = A (ewl|x1*X2”+v|t1*t2| _ 1) (D)

Here, v and w are the temporal and spatial variation rates of ©,
respectively, and A is the scaling coefficient. The parameters v
and w determine how rapidly © changes with time and space,
respectively.

We consider that the locations of the agents are distributed
as a homogenous Poisson point process (PPP) ¢, = {X,}
with intensity \,. To improve sensing coverage, the agents
move to nearby locations and take measurement at those loca-
tions. The set of these locations along with their corresponding
measurement time stamps 7' form the trajectory of the agent.
We model these locations for each agents (i.e. its trajectory)
via an independent finite PPP with the visit time serving as
its marks. Let us denote the set of sensing locations for an



agent at X (relative to X) by BX. Let Y;; denote the jth
observation location of ith agent relative to its initial location
X;. The corresponding measurement time is 7;;. For clarity,
we call X; as the center or the deployment location. On the
other hand, Y;;’s where the measurement occurs are termed
observation locations. Hence,

B* = {Y,;}. )
Further, the set of their absolute locations are given as
X = {X; + Y, VX €d,}. 3)

The region physically covered by this CPS over time is given
as

v= |J X;+BX, (4)
X;e?,

which is a clustered point process. In particular it is a PCP,
which is a type of Neyman Scott process. In PCP, the daughter
points are distributed as a PPP with average m number of
points and each point having PDF fy(:) to be at a location
y with y € E. Here E denotes the region in which the
agent can move. For mathematical tractability we consider two
special cases of PCP, namely Matérn cluster process (MCP)
and Thomas cluster process (TCP). These two are introduced
next.

MCP is a doubly Poisson cluster process whose daughter
points are uniformly distributed in a ball of radius rq centered
at its parent point. The density of daughter point process is
given by Ay. The PDF of the relative location of a daughter
point from its parent point is given as,

1

[ iyl <ra
fr () 0 otherwise. ©)
TCP is a doubly Poisson cluster process where the daughter
points are distributed around its parent point according to a
symmetric Gaussian distribution with variance 2. The number
of points in each cluster is distributed as a Poisson random
variable with mean m (for MCP, m = )\dmﬁ). The PDF of
the relative location of daughter point from its parent point is
given as,
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We consider two two sensing methods: slotted and unslotted
as described below.

1 _ 2

A. Slotted Sensing

In this sensing method, we divide the total time into slots
each with a duration of T, termed as a sensing window.
For each slot, a sensing agent moves to each of its sensing
locations Y,;; within this time window at a random time 7;;
and takes a measurement. This process is repeated over sensing
windows, e.g., (0, Ts), (Ts, 2Ts), and so on.

At a given time t for the i-th sensor agent located at x,
its sensing locations Wy can be divided into two components.
The first is the group of locations where measurement has
been done in the current slot. The second is the remaining
locations for which we have to use measurements taken from

Fig. 1. Tllustration of the slotted sensing model. Consider that an agent visits
3 different locations, namely a, b, and ¢ at random times in a sensing window.
We consider the slot [2Ts, 3T%], for this U = 1 for the location b and U = 0
for the locations a and c.

the previous slot. We denote the first set of locations by the
point process (PP) W;; and the second set of locations by
the PP W;,. See Fig. 1 for an illustration. From independent
thinning theorem, the two PPs are independent PPP.

To each observation location, we assign independent marks
(U) and (T). Here, the variable U is an indicator if the
measurement has already occurred in the current slot. 7T
denotes the difference between the current time and the time
at which measurement was made for the specified observation
location. Let us denote ¢’ = ¢t mod Ty, as the time elapsed
since the start of the current sensing window, where ¢ is the
current time instant. Here, U = 0 indicates measurement from
the current slot and U = 1 indicates measurement from the
previous slot. Hence,

U=0=T~Unif[0,#], U=1= T~ Unif[t',T, +].

In words, for each sensor agent, T is uniformly distributed
in [0,¢'] for sensing locations in ¥;; and in [, Ts + t'] for
sensing locations in W;5. At the current time instant ¢, the
observation locations of the i-th sensing agent can be written
as a marked PP

Uy, ={(y, T,U):y € ¥, U € {0,1},T}.
Note that ¥;; and ¥, are PPPs with densities )\d(x)Tls and
)\d(x)%, respectively.
B. Unslotted Sensing

We now consider unslotted sensing, where the agents do not
repeat the sensing locations over slots. Each sensing location
is a new point independent of its previous locations. For each
sensor agent with center location X;, its observation instants
can be modeled using a PPP @ in E; x R, where E; denotes
the region in which the agent can move. For example, E; is
B(X;,74) for MCP and R? for TCP. Note that observation
location and the time together constitute a sensing instant.
Hence, each point z;; = (y;j, 7i;) of ® gives an observation
location y;; and time 7;;. Here, y;; denotes the j-th sensing
location of x; and 7;; denotes the time at which observation
was taken at y;;. Hence,

B*t = {(yij,7ij) : yij € Ei,7ij € R}.

Let us consider a time interval T = (¢1, t3). The number of
observation instants is given as

N(tQ — tl) = A(E X T) = A(E)A((tl,tg))7

where A denote the intensity measures in both dimensions- E
and time. Let y denote the sensing frequency such that

A((thtg) = [L(tg - tl) Vth tQ.



Further, let A(E) = ¢ denote the number of sensing instants
in 1/ time duration. Now, the number of observation instants
is given as

N(f,g — tl) = C/J(tg — tl).

Hence, for a fixed time interval of finite length ¢, the set of
sensing locations of an agent can be seen as a finite PPP
in E with cut as the total number of points, y;;’s as the
locations in E; and 7;;’s as marks denoting their sensing
time. Further, union of all sensing locations also constitutes
a MCP/TCP under this model. Let us define Kk = i, which
can be intuitively viewed as the average time between two
successive measurements by a sensor agent.

From [1, Theorem 1], we know that for a sensing agent
with center location x and an arbitrary trajectory B(t), the
event that uncertainty in © at a location (taken at the origin)
and a given time instant is within 7 tolerance is equivalent
to the event that the uncertainty offered by any of its past
measurements is less than 7. Given variation profile f, the
uncertainty due to an observation at time ¢ — ¢’ by the sensor
agent with center at x is given as:

u(t) = f (¢, x+ B —t)]).

Then, the location is covered with 7-tolerance by an agent
centered at x if [1]

= mi N < n.
My (t) = minu, (t) <7 @)
Further, from [1, Theorem-3], if the initial locations of

the agents form a PPP and they are moving in a 2D region
according to their trajectories B;(t), the probability that the
value of © is known within 7 tolerance at an arbitrary location
P at time ¢ is given as,

u(t,n) =1 exp (Ap [.a- 2<n,t,x>>dx) L ®

where, 3X(n, t,x) = E[1 (Mx(t) > n)] . The inner expectation
is with respect to random trajectory B.

III. COVERAGE ANALYSIS

We define n-coverage probability as the time-averaged prob-
ability that at some random point of interest (which we take as
origin without loss of generality) the environmental variable
O is known within an error tolerance of 7. The following
theorems give the n-coverage for slotted and unslotted sensing.

Theorem 1. If the agents are moving according to PPP-based
discrete trajectories under slotted sensing, the n-coverage is

given as (8) with (see Appendix A for the proof):
t’ A
Y(n,t,x) = exp ( / (WfY(Y)) dY)
€R2
( (n,x, y)fY( )> dy>’

m—

—t'
xexp( /
ye

where,
1 n ’_
In 1—&-2 —w|x+y|)and t'=t mod Ts.

©))

A(n,x,y)=

It is intuitive that an increase in m will improve the 7-
coverage. However, due to physical limitations, sensing at a
location and movement between two locations take a non-zero
time. The sensing window duration can be written as,

T, = wrg? /v + mk. (10)

Here, v is the area swapping speed of the sensor agent. For a
fixed sensing window length, increasing the number of sensing
locations would cause measurements to occur more closely in
time which will maintain the freshness of data. At the same
time, there would be a commensurate decrease in the sensing
radius rq as dictated by the above constraint equation. This
would cause data to be observed from points closer to the
center location of the agent, which might result in the loss of
some spatial information. Because of these opposing factors,
we expect to see a trade-off resulting in the existence of an
optimum operating point.

Theorem 2. [f the agents are moving according to PPP based
discrete trajectories under unslotted sensing, the n-coverage
is given as (8) with (see Appendix B for proof):

3(n,t,x) = exp (—Fal A(n,XJ)fy(y)dy) - (D

yER?
Note that this metric is independent of the current time.

Theorem 3 (Joint coverage). Under unslotted sensing, the

probability that a point of interest P taken at origin is

covered within n-tolerance threshold at all times t € T =
{t1,t2,...,t,} is given as (see Appendix C for proof):

Tn—l—l—z Z

T;€T;

(T3), 12)

where T; is the set of all i-tuples of T. For example, if T =
{ti,ta, ta}, To = {{t1, t2}, {t1, 13}, {t2, ta}}.

g(T;) =exp < )\p/ ((1 —e ! fmz(2(77,x,1>',Ti)fY(y)dy))dx>7
R2

where,
2(7’]7 X’ y7 7"7/) = 1+

Z(—l)k Z max(0, A(n,x,y) + min(Ry) — max(Ry)),
k RyeTF

where TF is the set of all k-tuples of Ti;.
{t2, 13,5}, T = {{t2, 13}, {ta, 15}, {ts, 5} }.

IV. NUMERICAL RESULTS

i.e. lf Ti =

In this section we verify our analytical results and present
design insights.

Validation: Fig. 2 shows the mean probability that a point
(without loss of generality, taken at origin) is covered within
7 tolerance threshold for slotted sensing with T = 1.5 s for
MCP and TCP based trajectories. It presents both analytical
and simulation results. By increasing the tolerance threshold,
we observe an improvement in coverage. Fig. 3 shows the 7-
coverage probability for unslotted sensing. Similar to the slot-
ted case, we observe better coverage by relaxing the tolerance
threshold. Fig. 4 shows the probability that a random point
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Fig. 2. Current time coverage simulation result for MCP and TCP trajectories
in slotted sensmg setup. Parameters TS =1.5s, A\p =0.05/ m?2, m = 5,
A=6x10"% v=3s"1 w=3m™ !, rq =3m, m = 5.
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Fig. 3. Current time coverage simulation result for MCP and TCP trajectories
in unslotted sensing setup. Parameters: A\p, = 0.1/m2, A =6 x 1074,
v=3s"1, w=3m"1, rq =3m,0c=1,k=0.5s.

of interest (taken as origin) is covered at multiple specified
time instants in an unslotted sensing system with TCP and
MCP based trajectories. The close agreement of simulation
and theoretical results also verifies the analysis.

Impact of number of sensing locations m: Fig. 5 shows
the variation of n-coverage with respect to m (denoting the
number of observation locations) in each slot by varying
m while keeping the slot duration T constant according to
(10). We can see that coverage first increases with m as an
increase in the number of observations reduces the chance of
observations going stale in time. An increase in m beyond a
certain point degrades coverage by reducing the area agents
can span i.e, trajectory radius rq. Therefore, the observation
starts becoming stale over distance. This result shows that
there is an optimum value of m and hence, trajectory radius
of agents.

CONCLUSIONS

In this paper, we considered a CPS with agents moving
according to random trajectories. We demonstrated that by
using the spatio-temporal profile of the environmental variable,
one can avoid redundancies in sensor deployment. We also
obtained coverage expressions to quantify the probability with
which the data can be ensured to be available under a certain
error tolerance level at specified time instant(s). Their are
numerous possible extensions of this work. Finding joint
coverage under the slotted sensing model is an interesting
challenge. One can also extend the idea of joint coverage
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Fig. 4. Joint coverage simulation result for MCP and TCP trajectories in
unslotted sensing setup. Parameters: A\p = 0.02/m2, A=6x10"% v
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Fig. 5. Tradeoff between number of sensing locations and sensing radius
for a slotted MCP system. Parameters Sensing window Ts = 1.5s, A\p =
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to all time coverage which could ensure the uninterrupted
functioning of the CPS.

APPENDIX A

Using (7) the event My(t) > 1n is equivalent to
min; u(T) > n, where j traverse over all observation points
of the agent. Note that this forms the daughter PP of the
sensing agent. Here, T} is the time difference between the
current time and the time at which observation was taken at
the j-th daughter point.

F(Ty, Ixi +y51) >n, V.

Recall that ¥; denote the daughter point process for the i-th
cluster center. The inner expectation (8) can be solved as

5| T1 Erln

yew;

E[1{Mx(t) > n}] = F(Tx+yl) > )]

Recall that ¥;; and ¥,5 denote the set of locations at which
measurements have been taken in the current sensing window
and the set of locations which have not been visited in the
current sensing window, respectively. The mean number of
points in each PP is given as

' Tyt

—, My =M X ———.

T, T,

As mentioned previously, ¢ denotes the current time, ¢’ denotes

the time relative to the sensing window start, and 7 denotes
the length of the sensing window, ¢t = k x Ts +t': ¢’ € [0, T}]

mp =m X



E[1{Mx(t) >n}] =E | [ Er[L(f(T,Ix+yl) > n))]

yevy;

xE| [] Er[L(F(TIIx+yl) >mn)

yeVsa;

Now the following are equivalent,

[T x+yl)>n=AMnxy) <T.

Ify € Uy; = T ~ Unif[0,t'] then E[1 (A(n,x,y)) <T] =

1 — 202%Y) Similarly, if y € Uy; = T ~ Unif[t/, Ty + ¢/]

then E[1 (A(n,x,y)) <T]=1- A("axTivbY)—t/
= E[1{Mx(t) > n}] =

| ] (I_A(%;QY)) E <1_A(n,xiy)—t’)

YEY;
Using the probability generating functional (PGFL) of PCPs,
E(n,t,x) = E[1{Mx(t) > n}]

!
— exp (_m AN / (M 5 fy(y)) dy) y
To " Jyere t
T, —t

o / (A(%X,Y)
T, eR? T,

APPENDIX B

Assume sensing starts at time —7, with 7, — co. Here we
need to consider all past sensing locations of the agent at x
over time [—T,,t). Recall that for a time interval of length
(t + T,) the set of sensing locations of the agent is a finite
PPP W; with total number of points m = cu(t +T,) = Lo
Hence,

I1

yEY2;

x fY(y)) dy) .

exp (—m X

E[1{Mx(t) > n}] =E | [] Er [0 (£(T,Ix + ) > n))]
—FK H

yev;
(1 a
yev;

A, x, Y)>
T, +t
= S(0,1,%) = E[L{Mx(t) > )
= exp (—m /yER2 (% X fy(y)) dy)
e (< [ Axy) < el ay).

APPENDIX C

The event E that the origin is covered at all time instants
in T is given as,

£=

tm €T

U 11|t — tml) <]

x;; €W

[T TT (20fGeisstis = tm) >l

P(E) = (T, n) = ]E[

L(tij > tm) + L(ts; < tm)) }:| .

Note that, here we are considering only measurements taken
before the time of interest t,,. Here t;; denotes how long
back (from current time ¢ = 0) measurement occurred at the
position X;;.

M(Tvn) =E H (1

tm €T

— I Ul >t + A, %, 39)] + L[t < tm])

x5 €W
=E| ] [1- J] (0= 1ltm <ty <tm+Amxy)])
tm €T x;; €W

Leth(tm) = [[ (1= 1[tm < tij < tm + A(n,%,)])

xi; €Y

>

{t1,t2}€T2

w(Tn)=E [1— > h(t)+ h(t)h(ts) — ...+
{t1}€Ty

(—1)"h(t1)h(ts) . . h(t,«)}

=E[1+ > (-D)" S g(Tu) | =1+ > (-1" 3 Elg(Tw)],
k

Ty €Ty, k T4 ETy

where, g(Ty) = h(T1)h(Tz) ... h(T}) and Ty is represented
as Ty = [11,T5,...,T]. Solving further we get

E[g(Tk)} = E|: H ((1 -1 [Tl <ty <Th +A(T],Xij)])...

xi; €Y

(1= 1[Tx < tij < T + A0, %:5)]) )]

_E[ II ([t " > ]l[maX(Rk)<tij

RkeTZ

< min(Ry) + A(n, Xz‘j)])

—Eg H

x5 €W

_exp<_xp/Rz (1—exp<—f~el/R2 [Z(—l)r >

s Ry, GTZ

o) o).
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