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Abstract

We consider the well-studied problem of learning a linear combination of & ReLLU activations
with respect to a Gaussian distribution on inputs in d dimensions. We give the first polynomial-
time algorithm that succeeds whenever k is a constant. All prior polynomial-time learners
require additional assumptions on the network, such as positive combining coefficients or the
matrix of hidden weight vectors being well-conditioned.

Our approach is based on analyzing random contractions of higher-order moment tensors.
We use a multi-scale analysis to argue that sufficiently close neurons can be collapsed together,
sidestepping the conditioning issues present in prior work. This allows us to design an iterative
procedure to discover individual neurons.
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1 Introduction

We study the problem of PAC learning one-hidden-layer ReLLU networks from labeled examples.
In particular, we consider ReLLU networks with k neurons:

k
Fra(@) =" Ni - relu((ui, z))
=1

where relu(a) = max(0,a) is the ReLU activation, and uy,...,u; € ST, Given examples of the
form (z,y) € R? x R where z is drawn from a distribution Dy and y = f(z) for some f € F, our
goal is to learn a function f : R? — R with small test error, that is, E[(f(z) — y)?] < e.

This problem has inspired a large body of research in the machine learning community and
acts as a benchmark for the design and analysis of novel learners. The goal is to design provably
efficient (sample complexity and running time being polynomial in the problem parameters d, k, 1/¢)
algorithms to PAC learn this class of functions under minimal assumptions. The most common
assumption is that Dy is the standard Gaussian distribution. Even under this assumption, no
known algorithm achieves runtime and sample complexity poly(d, 1/¢) even for constant k.

This paper presents the first algorithm for PAC learning one-hidden-layer ReLLU networks under
Gaussian inputs that succeeds whenever k is constant:

Theorem 1.1. Let D be the distribution over pairs (x,y) € R? x R where z ~ N(0,1d) and
y = faul(x) for some X = (A1,..., ;) and u = (u1,...,u). There is an algorithm that, given
sample access to D, has runtime and sample complexity (d/e)"*®) -log(1/8) for h(k) = kO k) and
outputs a function f such that E[(f(:n) —y)?] < & with probability 1 — 6.

As we explain in Remark 4.4, it is straightforward to verify that our algorithm also holds in the
presence of unbiased i.i.d. noise on the labels y, so we omit these details for simplicity.



1.1 Technical overview

Tensors without a separation condition. The starting point for our approach is the standard
fact that we can obtain estimates of moment tensors which encode high-order information about the
unknown weight vectors u;, namely tensors of the form 7, £ Zle )\iul@é. Indeed, given Gaussian
examples (z, f u(z)), we can estimate the expectation of y-Sy(x), where the ¢-th order tensor-valued
function Sy is the ¢-th Hermite tensor,' and recover approximate tensors T} such that 1T, g—ng F<0
in time roughly £9)q2¢ /52,

At this juncture, many existing works in this literature (see Related Work) try to apply tensor
decomposition on Ty to recover the u;’s. Unfortunately, tensor decomposition is insufficient for us
as it requires the weight vectors to be “non-degenerate” in some sense. This holds, for instance, if
we assume u;’s are well-separated, meaning we have a non-negligible lower bound on ||u; — uj|2 for
all 4, j € [k] [MSS16]. Unfortunately, directly applying tensor decomposition will fail in the absence
of such separation assumptions.

Clumping. To motivate our workaround, consider the simplest possible obstruction to the above
approach: there exists a pair of indices ¢ # j such that ||u; — u;||2 is very small. The condition
number of the weight vectors gets worse as this distance decreases, but intuitively if w;,u; are
sufficiently close, we should be able to clump them together, that is, approximate them by a single
neuron without incurring too much error in our approximation. While this seems promising, there
is a critical hurdle here. In particular, suppose we group the k neurons into m clumps so that any
two neurons in the same clump are distance at most v from each other, and any two neurons in
different clumps are distance at least v from each other.? For every i € [m], let u, denote some
representative vector from the clump, so that |ju, — u;|| > ~ for all i # j as desired. We might
hope to apply tensor decomposition to the tensor T, = Z;”Zl Aj (u;-)w to recover the representative
vectors and thus learn the original network f) ,. Unfortunately, there is a critical issue. We only
have approximate access to 7}, but given the separation guarantee of v on u) vectors, we would
need an approximation to T; with error ¢’ < §; however, clumping vectors with distance § will
introduce error > § in our tensor estimation. This quantitative trade-off will always be against us.

To get over the above, we have to introduce several new ideas. The core idea is to use a
multi-scale analysis to pick which vectors to clump together strategically.

From tensors to random contractions. We will learn these clumps separately in multiple
stages, rather than in “one shot” using tensor decomposition. To that end, instead of working with
tensors Ty, we will work with matrices

k

Még = Z)‘i<ui7g>€_2uiu;l—7
=1

where g ~ N(0,1) is a random Gaussian vector. Given estimates for 7y, we can form these by
taking suitable tensor contractions. In place of tensor decomposition on Ty, we will use PCA on
M gg for various . One challenge is that because we make no assumptions on Ay, ..., A\x, e.g. we
do not assume they are nonnegative as in some prior works [DKKZ20, DK20, GLM18], many of
these M eg could be identically zero for all ¢ € R?, in which case PCA on such matrices provides no

!See Appendix A.1 for relevant background on Hermite polynomials.

2The careful reader will note that actually we can only ensure that neurons within the same clump are kvy-close
and neurons within different clumps are y-far, e.g. if the neurons lie on a line, but the extra factor of k£ isn’t important
to the present discussion.



information. In fact, [DKKZ20] gave a construction for which this is the case for all £ < O(k) (see
also [GGJT20]). An important component of our analysis will be to argue that if we consider all
£ up to a sufficiently large constant multiple of &, there actually is enough information across the
different matrices M @g to learn f) y.

First attempt: a single-stage algorithm. Let v; = (u;, g). It is not hard to see that, up to
some poly(k, d) factors, |v; — vj| o< ||u; — uj||2 with high probability, i.e. the amount of separation
among the w;’s is inhereted by their projections v;.

We can then do a case analysis. If max;cpy v; —mingep v; < €’ (for a suitable € = ¢/poly(d, k)),
then we can find an approximation to f) , using just one neuron. On the other hand, suppose two
of the v;’s are &’ far-away. For i € [k] and scale v > 0,

[K] : v = vil = 7}
(k] Jvj —vil <T(9)},

where T'(y) = (v/d)°™*) is a suitable parameter. For v < &/, $?"(v) will be nonempty, and S ()
will consist only of v; which are very close to v;.

An easy case for us would be when every index 7 is gapped in the sense that v;’s for j # ¢ are
either very close to v; or very far from v;, with nothing in between. Quantitatively, suppose there
were a choice of 7 < ¢’ such that [k] = SH°¢(v) U Sfr(y) for all i € [k]. Then we could form
clumps of neurons so that within any clump, any two neurons are k7'(vy)-close, and any neurons
in different clumps are y-far. k7'(y) is far smaller than v, so that a certain PCA-based algorithm
that works in the well-separated case can also be used to solve this gapped case. Furthermore, one
can show that there always exists v which is at least some value v depending solely on the problem
parameters (e.g. d,k,e rather than the weight vectors themselveg) for which we are in the gapped
case. The issue is that the largest v for which one can show this is of order d‘ke(k), and this turns
out to be tight — imagine uyq, ..., ug lie on a line, and their pairwise separations scale roughly as
e\ T(e"), T(T(e")),---. Nevertheless, this strategy already gives a polynomial-time algorithm in the
case of k = O(1), with runtime d°" . We give additional details for this approach in Section 3.

Better k& dependence: a multi-stage algorithm. The bulk of this work is centered around
refining the above guarantee with a multi-stage algorithm and multi-scale analysis to get a better
dependence on k. The general idea is that it is not necessary to have a single scale under which
every index ¢ is simultaneously gapped. If we just want to learn a particular neuron i, we show that
it suffices for there to be a scale v under which i is gapped, even if no other indices are gapped at
that scale (see Section 4.4). The proof of this relies on a certain estimate for power sum symmetric
polynomials that may be of independent interest (Lemma 4.15). The key point is that if we just
want v under which at least one single neuron is gapped, it suffices to go down to scale of order
d-*"*" rather than d—*°", before such a v exists (Lemma 4.6)

Our final algorithm then proceeds in stages. In each stage, either all of the remaining v;’s are
¢’-close to each other, in which case we can approximate the network by a single neuron. Otherwise,
we identify a set of indices i, each of which has a corresponding scale v under which it is gapped,
and argue that the set of top k principal components across all M Z? with ¢ < O(k) spans a subspace
containing i. By enumerating over this subspace, we can learn the gapped neurons and make
progress. We then recurse on the residual network given by subtracting the contribution from the
neurons we have learned.

There is one last subtlety: given an approximation to the residual network at any given step
of this algorithm, if the approximation error is &, then it turns out this error gets blown up,



Algorithm 1: MULTISCALELEARN( f)

1 Sample random unit vector g € S

2 AN 0,1 0

gfort=1,...,kdo

4 for /=1,2,4,...,2k+2do

5 L Compute estimates 7} of E[(y — ijﬁ(x)) - S¢(x)] from samples

6 Evaluate ]/\Zg — fg(g, Ce gyt
7 Form a candidate estimate & for the residual f — f5 5 as a neural network of the form
phrelu({u, -)) + p~relu({—u,-)) (see proof of Lemma 4.5)

8 Compute the top-k singular subspaces of ]\//72, ey ]\/4\2k+2 and let V' be the joint

O(k?)-dimensional span of these subspaces.
_0(log? k)

9 Form nets over V and over [—-R, R] of granularity roughly poly(d, 1/, R) and
guess an integer m € {1,...,k} and elements u},...,u}, and \},...,u,, from each of
these nets.

10 (Nondeterministically) either add p*, 4~ and u, —u to X and u, or add A\},..., A, and
W), ... u, to A and 1, or break out of the loop.
11 Estimate || f — fX,ﬁ”Q from samples. If this is small, terminate and return ijﬁ.

12 return Fail

roughly speaking, to &Y/ O("=") in the next step of the algorithm. As a result, in order for the
approximation error to still be small after T iterations, we must estimate the matrices M, @g to error
scaling exponentially in k7'°8*  Naively one can only ensure that a single new neuron is learned
in each stage of the algorithm, meaning T could potentially be as large as k, in which case we
obtain no improvement over the single-stage algorithm above. Instead, via a careful combinatorial
argument (Section 5), we show that it is possible to learn enough neurons in each stage of the
algorithm that we terminate in 7" < O(logk) stages (Lemma 4.13), thus yielding the improved

° 2
runtime of d*** * claimed in Theorem 1.1.
The above procedure is summarized in the pseudocode for our algorithm (see Algorithm 1). We

O, 2 . . .
present it as a nondeterministic algorithm, but there are only (d/ €)k0(1 e possible choices in each

0, 2 . .
iteration of the loop, for a total of (d/ 5)ko(1 " computation paths. To form our final estimator,
we simply try each of these paths, and as our rigorous guarantees imply that one of these paths
yields a valid estimator, we output the f5 5 which achieves the best empirical loss.

1.2 Related work

Algorithms for PAC learning neural networks. The design and analysis of algorithms for
PAC learning various classes of simple neural networks has been very active in the last several years
and has led to many innovative algorithms. These works make assumptions on the distribution of
the inputs, the noise in the label, and the structure of the neural network to sidestep a large body
of computational hardness results [SSSS17, MR18, Shal8, VW19, DV20, GGJ*20, DKKZ20].
Examples of algorithmic techniques involved include tensor decomposition [JSA15, SJA16,
BJW19, GLM18, GKLW18, GMOV18, DKKZ20], kernel methods [ZLJ16, GKKT17, Dan17, GK19],
trajectory analyses of gradient-based methods [ZSJT17, LY17, VW19, ZYWG19, Soll7, ZPS17,



DGK ™20, LMZ20, GKM18, AZLL19)], filtered PCA [CKM?22], and explicit covers for algebraic
varieties [DK20].

Despite this flurry of work, the complexity of learning one-hidden-layer ReLLU networks with
respect to Gaussians remains open. As mentioned above, the only results that achieve runtime and
sample complexity polynomial in d, k and 1/e require additional assumptions on the structure of the
network, in particular (i) the matrix constructed from the weight parameters in the network is well-
conditioned and/or (ii) the output layer weights are all positive. Under assumption (i), parameter
recovery becomes possible, which is sufficient but unnecessary for PAC learning. The only known
results that do not require a condition number bound (and hence do not recover parameters) are by
[DKKZ20] and [CKM22]. The former requires assumption (ii), while the latter pays an exponential
dependence on 1/e even for constant k. Our result removes assumptions (i) and (ii) and gets a
polynomial dependence in the error parameter for constant k.

Statistical query algorithms. Recent results by [GGJT20] and [DKKZ20] rule out a d°*) time
algorithm for PAC learning one-hidden-layer ReL.U networks for a large class of algorithms (includ-
ing gradient descent on square loss) known as correlational statistical query (CSQ) algorithms. A
CSQ algorithm is allowed to access the data only via noisy correlational queries of the form E[y f(z)]
for any query f chosen by the learner. Our algorithm fits into this paradigm of CSQ algorithms
and hence suffers from a d*?(*) runtime. Before our result, no known CSQ algorithm achieved d"(*)
for any function r, which is independent of d without additional assumptions on the structure of
the network. We note that the recent result by [CKM22] that achieves a polynomial dependence
on d for general networks is not a CSQ algorithm.

2 Technical Preliminaries

Notation. Given f € L*(R% wy), where wy is the standard Gaussian measure on R?, let || f]|2
denote its Ly norm, that is, || f[|3 = Ezpo1a)[f ()]

2.1 ReLU networks and moment tensors

It will be convenient to express one-hidden-layer ReLU networks in the following form, as the sum
of a linear function with a linear combination of absolute values:

Lemma 2.1. Given a one-hidden-layer ReLU network f(z) = Zle wi - relu({u;, x)), there exist
w e R and M, ..., \ € R such that

k
f(z) = (w,2) + Y A+ [{ui, )]
i=1

for all x € RL. Furthermore, ||w| < 3, |\il.
Proof. Note that relu(z) = |z|/2 + z/2 for any z € R, so we can write
“ i “
fla) = ;2 (i, )] + <i1 L)

We can thus take w £ ZZ % cu; and \; 2 wi/2. The last part of the lemma is immediate. O



In light of Lemma 2.1, given w € R? and (Ay,u1),..., (Ap,ugp) € R x S41 et

k

Foru(@) & (w, )+ N [ug, )]

=1

When the \;, u;, and k are clear from context, we denote {\;, ui}icjx) by (A, u). Given S C [k], we
denote {\;, ui}ies by (As,ug). We call k the width of the network fy, . Our bounds will depend
on the L; norm of A\. Thus, henceforth suppose ||A||1 < R for some parameter R > 1. Note that
by the last part of Lemma 2.1, we have

lwll < 1AL < R

Given (Ap,u1),..., (Mg, up) € R x §¥71 g e S and ¢ € N, define

To({ i, uitic) = Z At and M7 ({ i uibiep) £ Z)\i<uiag>5_2 Cugu]

noting that M gg can be obtained by contracting the moment tensor T, along the direction g for all
of the first £ — 2 modes. When g is clear from context, we denote M by M,.
Given (\,u), (N, u) € (R x S¥=1)*_ define the parameter distance

param((A, w), (X', w)) 2 minmac{ [N = Ny | + i — w1}
where the minimization is over all possible permutations of k£ elements.

2.2 Anti-concentration

A main component of our algorithm is to contract estimates for the moment tensors 7T, along a
random unit direction g to get the matrices M, f defined in the previous section. The most important
feature of this operation is that it roughly preserves distances in the sense that if two weight vectors
uj, uj are close/far, their projections (u;, g) and (u;, g) are as well. Formally, we have the following
elementary bounds, which follow by standard anti-concentration (see Appendix A.3).

Lemma 2.2. With probability at least 4/5 over random g € S¥=Y, for all i, and o € {£1},

v/logk

c 1. |(u; + ouj, g)| <

/

c
Vd k7 lui+ou] T Vd
for some absolute constants c,c’ > 0.

Lemma 2.3. With probability at least 9/10 over random g € S™', we have that |{u;, g)| > ¢/(k/d)
for all i, for some absolute constant ¢ > 0.

Henceforth, we will condition on the event that g satisfies Lemmas 2.2 and 2.3. We will denote

v = (u;, g) (1)

and, because of the absolute values in the definition of fy \u, We may assume without loss of
generality that
0<vy < <.



3 First Attempt: Learning in Time dk”

Let us recall the technique used by [DKKZ20] to PAC learn one-hidden-layer ReLLU networks with
non-negative combining weights A\. The approach is to approximately recover the subspace U
spanned by u using the matrix of degree-2 Chow parameters (or the second moment matrix), that
is, Ely - Sa(x)] = Zle Auzu, . From here, one can see that the span of this second moment matrix
can exactly recover the subspace U spanned by u. Using the non-negativity of A, [DKKZ20] argue
that the span of the eigenvectors corresponding to the top-k eigenvalues of an approximate second
moment matrix (computed using samples) contains k-vectors @ such that || fyu — fxall2 is small.
In fact, they show a stronger property: for all i € [k], \;||u; — ;]|? is small. Following this, a brute
force strategy on this subspace recovers an approximately-good hypothesis.

For general, possibly negative, combining weights A, if we can design a matrix M = Zle BY |uzulT
which we can estimate using samples, then we can use the technique from [DKKZ20] to guarantee
recovery of a k-dimensional subspace such that for all i € [k], |A\s|||u; — v;||? is small, which will
guarantee small loss. Our first idea is to take M to be a suitable linear combination of the mo-
ment tensor contractions M = Zle Ni(ug, 9)02 - wju] . That is, we would like to find coefficients
{@s}sejr) such that

k k

9 T
E agMsy ~ E | Ai|uiu; .
s=1 =1

As long as the entries of « are not too large in magnitude, we can use a net-argument to brute-force
over the choices of o and run [DKKZ20] for each choice of a. Showing that there exists such «; for
s € [k] reduces to showing that for all i € [k]

k
Z asviz(s_l) = sgn(\;).

s=1

This is equivalent to showing the existence of a univariate polynomial p of degree k—1 with bounded
norm that matches the sign pattern of A on inputs {v,...,v?}.

If we had that v} — v]2| was lower bounded for all ¢ # j, then using the following condition
number bound for the k x k Vandermonde matrix generated by v?,. .. ,v,% would give us the desired
« with bounded norm dependent on the gap:

Lemma 3.1 (E.g., Fact 5.10 from [CLLZ22]). Given an m x m Vandermonde matriz V generated
by nodes a1, ..., an, for which |a;—a;| > A for alli # j, and given ¢ € R™, there exists a for which
Va = c such that ||| < m(1/A)2™2|c.

Unfortunately, as we make no assumptions on the hidden weight vectors, it is not necessarily the
case that v%, cee v,% are well-separated. Nevertheless, we could try clumping together very close v?’s
into a single representative node (and adding their corresponding combining coefficients) so that
each clump is well-separated while the approximation error from clumping does not blow up. In
order to formally define clumping at scale ~y, consider a graph on the indices with an edge between
indices i, j if |v? — UJQ\ < 7. Then a clumping is specified by a set of disjoint connected subgraphs
in this graph. The main challenge is that if we clump things together at scale «y, then when we use
the above result to construct {a,}, our coefficients are of magnitude O(1/4*). This would lead to
an O(1/~4*) blow up in the error for the indices within each clump when we approximate them by
the representative node for that clump.

If we can find a scale 7y such that the elements in any clump are ~ v*-close while the clumps are
~v-separated from each other, then this blow up does not hurt us. It turns out that we can always



b

find a scale v = " for some ¢ € [0,k — 1] that satisfies this v versus v* “gap.” To prove this,
suppose we are at a scale e¥° and this property is not satisfied. Then there must be two clumps
that are separated by < £*°, therefore, when we go up a scale e*"" then these two clumps would
be combined together. This implies that whenever our condition is not satisfied, going up a scale
reduces the number of clumps by 1. However, there can be at most k clumps at the smallest scale.
Thus at some scale, we must either have our desired gap or we can clump everything together. If
we can clump everything together, this implies that the original network is well-approximated by
at most two neurons, and we can learn these neurons directly.

This attempt would give us a runtime of (d/ 6)ko(k). This argument can be formalized, however
we only present the high-level intuition since our main result improves over this significantly. At
a high level, the improvement is as follows. So far, we have given an approach that tries to learn
the network in “one shot” by looking for a single scale at which there is a gap for all clumps
simultaneously. Instead, in our improved algorithm, we learn the network over multiple steps. In
each step, we identify disjoint clumps at several different scales such that each clump has a gap
for its corresponding scale, and use PCA to learn the neurons within these clumps. It turns out
that instead of going down to scales as small as Ekk, now it suffices to go down to scale ghioe®
(Lemma 4.6). We then prove that we can find enough such clumps at each step that after O(log k)

steps, we can approximate the entire network, thus yielding an improved runtime of (d/ e)klog "

. . . . O(log? k)
4 Recursively Learning in Time d*
As the algorithmic guarantee in Theorem 1.1 only beats brute force for k& < poly(d), throughout

we will assume this to simplify some estimates.
For some S C [k], suppose we have access to (\;, U;)ies for which

1o = Fo s — Funsensel < €. (2)

In other words, fyxu — fo,X,ﬁ’ i.e. the difference between the ground truth and what we have
learned so far, is close to (w, x) plus the subnetwork of f indexed by S¢. We will refer to this latter
network as
fres = fw,)\sc,usc .
For notational convenience, we assume without loss of generality that S = {kyes + 1,...,k},
where ks 2 k — |S|. Define the parameters

O(log k) A\ kOUeek)
e £ ¢/poly(d,k,R) A= poly(dR/e)- &/ ¥ = (m) : (3)
The parameter £ will be sufficiently small that A < 1.
One important case in which we will show it is possible to learn a neuron i € [kres] is when there is
a significant gap among the distances from other v; to v;, i.e. every v; is either very far from v; or
very close to v;. Formally, given i € [kyes] and v > 0, define

S;ar('y) £ {] S [kres] : ‘Uj - Ui| = 7}
Siclose(,y) A2 {] c [kjres] : ‘Uj - Ui| < T(’Y)}y
where 10
LA

& o (/0P @)

T(v)
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Figure 1: Tllustration of S¢'°¢(y) and S™"(v). The figure shows that v is a gapped scale for i = 4,
but note that because points 5 and 6 are distance strictly less than + apart and strictly greater
than T'(y) apart, v is not a gapped scale for i = 5, 6.

Definition 4.1. Given i € [kres|] and 0 < v < 1, we say that v is a gapped scale for i if [kres] =
Selose(y) Ly Sfar () and v > 5. Further, we say that i is detectable at scale 7 if | D jeseose(y) Ail > A

In this section we will show that one of two things can happen which will allow us to learn part
of or all of fres.

L. If max;epp, . vi — mingep, g vi < € (this includes the case where kres = 0), then we can find an
approximation to fres as a linear combination of two ReLUs and terminate.

2. There exists at least one pair (i,7) € [kres] X [7,1) such that ~ is a gapped scale for i. In this
case, let J be any set of such pairs (i,7) such that the sets SE°¢(y) are all disjoint (we will
specify the precise J that we work with later). We will show that:

(a) For those (i,7v) € J for which i is detectable at scale v, we can use the different M, to
construct a net containing a vector close to u; for some j € SEo%(~).

(b) For all other (i,7v) € J, the subnetwork fr., of fres given by the corresponding neurons in
fres 18 well-approximated by the zero function.

Suppose we know which (i,7) € J fall into Case 2a versus Case 2b (recall that our algorithm is
nondeterministic, so along some computation path we will have correctly guessed these). Then
after brute-forcing over weights A to assign to the neurons learned in Case 2a, we can update
the set of pairs (\;, U;);es to a set of pairs (\;, U;);es: for some S’ 2 S such that

wa,)\,u - f()’X’ﬁ - fw,)\slc,us/c H S 5*
for some new error £*. We can then recurse, until the set S’ is all of [k] and we have learned an
approximation to the entire original network fy, x u-

A priori, one might need up to k recursive steps to learn f,, \u, but across this many steps the
initial error £ would be blown up by a factor which is doubly exponential in k. We will instead
argue that starting with S = (), there is sequence of choices of 7 across only O(log k) recursive steps
such that we end up terminating with a sufficiently good approximation to the original network
fwu- This will require a delicate combinatorial argument (Section 5) which is crucial to obtaining
our d4uasiPoly(k) runtime and sample complexity.

4.1 Moment tensor estimations

Here we show how to estimate Tj(A,..), Ujk,.) using the parameters (/)\\, u) as well as Gaussian
samples {(Za;¥Ya)}aen] labeled by the original function f, xu. We use the following standard
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guarantee for approximately recovering moment tensors from samples, whose proof is deferred to
Appendix B.1.

Lemma 4.2 (Moment estimation). Let ¢ € {1,2,4,6,...}. Let

o 1/2 se=t
¢ W if £ even

Gwen samples {(z, fyau(®i)}iz1,. .~ for z; ~ N(0,Id) and N > Eo(e)d%RQ/EQ, the tensor T =
1
2cy N

1T = Ty(\a)||p < € if £ is even, and otherwise satisfies |T — wl|s < & if £ = 1.

Zle Jwru(@i) - Se(x;), where Sy is the £-th normalized probabilist’s Hermite tensor, satisfies

The following lemma, whose proof is deferred to Appendix B.2, shows that we can approximate
the Hermite coefficients of fres by empirically estimating the Hermite coefficients of fiy xu — f 5 4

Lemma 4.3. Let N
¢ £ poly(d) - (R+[|All) - €.

Given the parameters (X, u) and Gaussian samples (x1,y1),...,(xn,yn) labeled by the original
function fy xu, we have for all  =2,...,2k + 2 that

N
1
¥ 2 e = fy34(7a)) 7a —w| < €
a=1
1 N
2N > W~ fy5.6(2a)) Se(@a) = Te(Ape Uik | <¢
a=1

provided N > d°®) (R + []\[1})/¢".

Remark 4.4. Note that if instead of getting samples of the form (x, fyxu(x)), we had samples
of the form (x, fyaxu(z) + () where ¢ is independent mean-zero noise, then the estimators for
Ty(A\,u) and w defined above are still unbiased estimators for these quantities. Our algorithm uses
its samples solely to form these estimators, so provided ¢ has bounded second moment so that the
variance of these estimators is not too large, our algorithm will still work in the presence of such
label noise.

4.2 Case 1: two-neuron approximation

Lemma 4.5. Suppose maX;c[j,,] Vi — Milg[p,) Vi < e'. Then there is an efficient algorithm that

takes the parameters (X, 1) as well as poly(d)(R? + HXH%)/{Q samples from the original function
Jwau and outputs weights p*, u= and a vector u such that the network

h & ptrelu((u,-)) + p relu({—u,-))

Satisﬁes wa,)\,u - foj,ﬁ - h” S pOIY(da R) (5/ + 6/)

Sketch, see Appendiz B.3. The condition on vy, ..., vk, and the fact that projection along g roughly
preserves distances among u1, .. ., Uk, implies that all of the weight vectors in fes are close in Eu-
clidean distance. As a result, fes is well-approximated by a ReLLU network which only depends on
the projection of the input to a single direction, i.e. a width-2 network whose weight vectors are u
and —u for some vector w. This can be done by considering suitable linear combinations of the first
Hermite coefficients of fres, namely w, together with a contraction of the second moment matrix,
which is simply Zie[kres] Aiviu;, both of which can be estimated from samples by Lemma 4.3. [

11



4.3 Existence of a gapped scale

As a warmup, here we show that if we are not in Case 1, there exists i € [kyes] for which there is a
gapped scale ~.

Lemma 4.6. Suppose max;e|g,,.] vi —Mil¢[k,,] Vi > g’. Then there exists at least one index i € [kyes)
for which there is a gapped scale ~y.

Proof. In this proof, assume without loss of generality that v; < --- < vy, and define §; £ v; —v;_1
for 1 < i < kyes. By averaging, there exists some i for which d;, > €’/kres. Suppose without loss of
generality that ig > kres/2.

If 0; < T(&'/kres)/kres for all ig < j < kyes, then €’/kyes is a gapped scale for 49. Otherwise, there
exists ig < i1 < kyes for which 6;; > T(¢'/kes)/kres- Suppose without loss of generality that iy is
closer to kes than 7.

Again, if 0; < T(T(¢'/kres)/kres)/kres for all i1 < j < kyes, then T'(e’ /kyes)/kres is a gapped scale
for ig. Otherwise, we can continue this binary search procedure at most O(log k) times.

Finally, we verify that v is smaller than the result of iterating z + T'(2/kyes)/kres for O(logk)
times starting from &', which will prove that there exists a gapped scale v for some i € [kyes).

To verify this, note that T'(z/kres)/kres > T(2/k)/k > (AY/R?)(2/d)®®). So iterating this

k©(og k)
O(log k) times starting from z = &’ gives a quantity which is at least (%) ~ . O

4.4 Case 2a: detectable neurons

Here we show that for any (7,) for which + is a gapped scale for i and furthermore i is detectable,
we can use a certain PCA-based procedure to produce a net over vectors, at least one of which is
close to u;.

The main ingredient in the proof is the following consequence of an estimate for power sums
(Lemma 4.15) that we prove in Section 4.7.

Lemma 4.7. Consider i € [kyes] and v which is a gapped scale for i and such that i is detectable
at v. Then for any projector II € R¥™¢ and r £ Tlu;, we have that

P My A i) 7 > Ca |73 — Co

for
C1 = A(v/d)°® Oy < Rpoly(d) T()/2.

for some even integer 2 < £ < 2k + 2 and absolute constants c¢,C' > 0.

Proof. Take k and &k’ in Lemma 4.15 to be kres and |SH°%¢(7)| respectively. Permute [kres] so that
i is now the first element, S°(v) consists of the first &’ elements, and S™"(y) consists of the
remaining. For every i € [kes], let ¢ = \i{u;, )%, and let v; be as defined in (1). Note that

Kres Kres
P Mo No)s Uik ) 7 = Y Ailuiy 9) 2 g, 1) =D givf = (v q) . (5)
i=1 =1

As we are conditioning throughout on the event of Lemma 2.3, we have that |v;] > « for all
i for o £ ¢/(kv/d). We can take R in Lemma 4.15 to be the assumed bound R on ||\||1, as
lgllco < IMlooc < R. And by the hypothesis of the lemma, |v; — v;| < 8 for all j € SHo¢(~) for
B & T(y) and |v; —vj| >~ for all j € S2(v).

12



By Lemma 4.15 and (5), we conclude that

T 62’}/2 kres
TTMZ()\[kres]’u[kres}) r Z ries <m) - Ceres (‘Sflose(,)/)’ - 1) T(’Y)
T 1y \F 9
> _
= 2k <4k3d> CRET()

for 7 £ | 2_jesdose() ¢j]- It remains to relate 7 to |7||*. Recalling that r = ITu;, we have
(i, r)? = (g, ) = || Ty | * = r]*. (6)
In addition, for every j € S$°%(v), we have

g — Aj(ui, )% < [N g, r)? = (g, r)?|
< 2|\~ i = u;
< 2| ]| UEHE&}HU g uj||
S I kVd - min v — o - v
oce{£1}
< T(Y)Y2\\| kVd, (7)

where the first and third steps are by Lemma A.6, and the second step is by the fact that we are
conditioning on the event of Lemma 2.2. Combining (6) and (7), we conclude that

= Y @At =T PREVA,

jeS;_:Iose (’7)

from which we get the following more quantitative version of the claimed bound.

A C2’)/2 k \/& 62’}’2 k
7T My (Mg W) 7 > %(m) |lrllz = CRE*T(v) — 7(4k3d) T(7)*R. O

To see why such a lower bound on the quadratic form is useful, we show next that it can be used
to obtain a net over vectors containing one which is close to some wu;:

Lemma 4.8. Let T C [k], and let ]\/4\@ be approximations to My(Ar,ur) satisfying
|[Me(Ar,ur) — Myl| < n

foralll € {2,...,2k,2k+2}. LetV be the span of all the top-k singular values of]\/ig, M\4, ceey Mzk-s—z'

Now let uf; = projy (u;) fori € T, and r; = u; — u}.

If for some i € T and some £ € {2,...,2k + 2},
ri My(Ar,ar)r; > Cy (ri,u;)* — Cs,

then if we define S to be an v-net over unit vectors in V. for v < (n/Cy)"? 4+ (Cy/Cy)Y/*, then S
contains a vector which is 2v-close to u;.

Proof. We will denote My(Ar,ur) by M, for the rest of the lemma. First let us upper bound
r;—Mgri. We have

ri Meri = v Mry + 1] (Mg = Me)ri < Nepa (M)[|ril|* + | Mg — Melopll7 1> < 2071
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Here the first inequality follows from observing that r; is orthogonal to V' which contains the top-
k singular subspace of My. The last inequality follows from the following two facts: (i) Weyl’s
inequality, [|A(M) — )\(]\/4\5) |1 <n (where A(A) are the eigenvalues of A sorted in decreasing order),
and (ii) A\g+1(Mp) = 0 since rank(My) = k.

Since (ri,u;) = (ri, ri +ul) = ||r;||*, we have

2nllril|* = v Mer; > Cy|ri||* — Co.

/m2
This gives us that ||r;| <1/ % < ,/é—i’ + 4 g—f Since w} is the projection of u to V, this

implies that V' contains a point close to u; in ¢ distance.
Let S be an v-net over unit vectors in V for v =< (7/C1)Y? + (Cy/C1)"/%. Then by triangle
inequality, we know that there exists a point z € N such that ||z — ;|| < ||z — || + ||| < 2v. O

We now apply Lemma 4.8 using the bound in Lemma 4.7.

Lemma 4.9. Under the hypotheses of Lemma 4.7, there is an algorithm that takes the parameters
(A, 0) as well as poly(d) (R? + |[A||2) /&7 samples from the original function fu xu and outputs a
list S of unit vectors, containing vectors which are v-close to u; for every i € [kyes| for which there
exists a gapped scale, where

v (€/C)V2 4 (Cy/Cr)VH S AL (8)

Proof. Take any such i € [kres] with corresponding gapped scale v. In Lemma 4.8, we will take

T 2 [kees|, My given by the empirical estimators from Lemma 4.3, n £ ¢, and C;,Cy as in

Lemma 4.7. Note that by our choice of T'(y) in (4), C2/C} is bounded by an arbitrarily small
constant multiple of A for all 4 > 0, and by our choice of T, (¢//C1)/? < A. Then we conclude
that for v as in (8), we can recover all i for which there exists a gapped scale to error of order v.
The sample complexity follows from the guarantee of Lemma 4.3. O

4.5 Case 2b: ignoring undetectable neurons

Here we show that if there are undetectable neurons, then we can approximate them by zero:

Lemma 4.10. Let Tyndet C [kres] X [7,1) be a set of pairs (i,) such that v is a gapped scale for i

and furthermore i is undetectable at scale ~. Additionally, suppose that the sets {Sflose(’Y)}(i,v)eFundet
are all disjoint.

Then for Srem £ fres]\ Uicerie SE°(2),

Hfres - fw,)\srem,ugrem || 5 T(’Y)kg\/g + kA

and thus that
1 fwrn = Fo5a = Fwrsumusenll S TORVA+ A+ € S A.

Proof. Let (i,7) € T'yndet- By the fact that we are conditioning on the event of Lemma 2.2,
lus — ;|| S T()k*Vd

We can thus apply Lemma A.2 to the networks ;¢ geiose() Aj|(tj, -)| and (3¢ gaose(yy Aj)[(ui, -)| to
get

|3 Ml = (3 N -l | S BVART () - 1552%(3)

jesse=e() JEST()
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Additionally, because |3~ c geiose(,) Aj| < A,

H( Z )‘j) : |<Uz’,'>|H <A.

j ESl;Iose (’Y)

The first part of the lemma follows upon noting that - |Slose(y)| < k and that, by

7;a')/)erundet
definition of fyes and disjointness of Sf'“e(v) for (i,7) € Tundet,

Jres — fw,)\srem,usrem = Z Z >‘j|<ujv >| :

(%,7) €T undet jES;‘Iose ("/)

The second part then follows by (2). O

4.6 Combining the cases

We now put together the analysis from the preceding sections. We would like to show that starting
from an approximating network f5 5 which satisfies (2), after one step of either Case 1 or 2, we
end up with an e-close estimate of the original function f) 4, or otherwise we make progress by
approximately learning some new neurons, corresponding to the set of pairs (i,v) given by J, from
the residual network.

First, following Lemma 4.10, let I'ypget € J denote the set of pairs (i,7y) for which ¢ is unde-
tectable at scale 7, and recall the definition of Srem = [kres]\ U(i el e S5 (7). By Lemma 4.10,
we can effectively ignore the neurons in U yyer,, detSf'“e('y). Among the neurons in Siem, We can
use the analysis for Case 2a to recover those in J\Iyndet, i-€. those which have gapped scales at
which they are detectable. For these, we can then brute-force over possible weights, resulting in an

approximation to the subnetwork given by the neurons in J\I'yndet-

Lemma 4.11. Let J C S¢ denote any subset of pairs (i,7) for which S§°(v) are all disjoint and
v is a gapped scale for i. Let I'ynger € J denote the set of (i,7y) in J such that i is undetectable at
scale 7.

Suppose for every (i,7) € J\Lundet, we have a vector w; satisfying ||u; — w;|| < v. Then if we
define Sy to be an v-scale discretization of [-R,R] and take S* £ [kres]\ Ui p)es Sclose (), then

there exist {Xi}(m)GJ\Fundet taking values in Sy such that

fw,)\,u - fO’/);ﬁ + Z 3\J’L |<a’/l7 >| - fw,)\s*,us* SJ A + k2RU
(%,7) €T\ undet

for v defined in (8).

Proof. Take any (i,77) € J\I'undet. Let N € Sy, be the closest point to Zjesglose(,y) Aj in Sy. Then
by Lemma A.2, '

| 0 MNiw- X N

(i77)€~7\rundet j€S§'°5e(7) (i:V)GJ\Fundet
D DI PHICTOTED SEP CI| y 8
(47) €T\ undet jesstos(y)
The lemma then follows by Lemma 4.10, (2), and triangle inequality. O
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Lemma 4.12. At the end of one step of our recursive procedure, either we terminate with a function
f:R* - R such that

[ fuwru = fll <e

or we obtain a subset S’ 2 S and (\,0) = (\;, U;)ies for which

2
wa7/\,u - fO,X,ﬁ - f’w,)\(sl)c7u(sl)c ” S k RA :

Proof. At the start of the recursion step, suppose we are in Case 1, then by Lemma 4.5, using
poly(d)(R?+||A||?)/£? samples, we can find a function h that is a linear combination of two ReLUs
such that

||fw,)\,u - f()’xﬁ - h” S pOIY(d7 R) ’ (8/ + 5/) S €.

In this case, in one of the computation paths of our nondeterministic algorithm, it terminates with
an e-accurate estimator.

Suppose we are not in Case 1, so that by Lemma 4.6 we are in Case 2 and can find some
nonempty set J C S¢ of (i,) for which S°¢(v) are all disjoint and v is a gapped scale for i. As
in Lemma 4.11, let T'ypget € J denote the set of (i,v) € J such that i is undetectable at scale 7.
Then combining Lemma 4.9 and 4.11, using poly(d)(R? + HXH%) /&% samples for some v defined in
(8) we can (non-deterministically) find {Xi}(i,v)GJ\Fundet such that if we add (X;, Ui) (i,7) €T \Taner. A0

(0, ) (i,7) €T ypaer tO (X, 1) to produce (X, 1), and define S’ given by S’ £ S U Uyes{i}, then

||fw1>\7u - fO,X,ﬁ - fwyA(Sl)c',u(s/)c || S A + kQR/U S./ k2RA * D

In Section 5, we show that there is a computation path in our nondeterministic algorithm such
that the second outcome in Lemma 4.12 happens for at most O(log k) recursive steps before either
S = [k] or we arrive at the first outcome. Formally:

Lemma 4.13. Given any (A, u) € (RxS1)*, there exists a sequence of sets Jh, ..., Ty € [k]x[y,1)
such that the following holds. For every s € [q|, let I denote the set of i € [k] for which there exists
v such that (i,7v) € Js. Then

1. I,...,1I; are disjoint.

2. Foralli,j e [kK\(LU---UIy), |v;i—v;| <& (if [k] =1 U---UlI,, this holds vacuously).
3. For each s € [q], all of the subsets S§'°%¢(vy) for (i,7) € Js are disjoint.

4. For each s € [q] and each (i,7) € Js, v is a gapped scale for i.

We conclude with the main guarantee of this section: some computation path of Algorithm 1
produces an e-accurate estimate for the original function f) 4.

0O, 2 . . . .7 .
Lemma 4.14. Given poly(d, 1/a€,7§’,)ko<1 &0 samples and runtime, with high probability over the
samples and the randomness of the choice of g, there is some computation path in Algorithm 1 in
which the algorithm terminates having found a function f : RY — R such that || fru — f|| < €.

Proof. Under the second outcome in Lemma 4.12, the Ly error increases from ¢ in (2) to O(k*RA).
Lemma 4.13 ensures that there is some computation path which terminates after this happens

O(log k) times. Recall that we chose A = poly(dR/e) - fl/@(klogk), so if this increase is repeated
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O(log k) times starting from an initial error of &, we end up with an estimator that has error at
2

most poly(dR/e) - fl/e(klog’ M. In particular, by taking the initial £ to be

o 2

& = (e/Ra)°*™ 1, (9)

the final error is bounded by ¢ as desired. Recall that for a given recursive step, if the initial error in

~ o 2
(2) is &, then the sample complexity is poly(d)(R?+ ||A||3)/£? = poly(d, 1/e, R)O(kl #°%) as desired.
The number of computation paths is also of this order, as the size of the net Sy x S used in a single

o 2

recursive step is at most O(1/v)F*+F = AF+F = poly(d, 1/5,R)ko(1 =0 O
4.7 Power sum estimate

In this section we prove a technical claim which is essential to correctness of the PCA-based
procedure described in Case 2a from Section 4.4.

Lemma 4.15. Let 1 < k' < k, and let ¢ € R¥ be a vector such that \Zf;l gil > 7 and ||q]lc0 < R.
If v € [-1,1]F satisfies

1. |’U1‘ZO¢
2. vy —v| < B foralll <i<FK,
3. |vi—vj| > foralll <i<k <j<k.

for some parameters 0 < «, 8,7 < 1, then there exists an even integer 0 < £ < 2k for which

T ra?y2\k
W)l 2 52 (S) — CRR(K —1)8

for some absolute constant C' > 0.

To interpret this lemma, it is helpful to first consider the special case where k' = 1. In this
case, there is a single entry, vi, of non-negligible magnitude which is separated from all other
entries by a margin of «v. The claim is that for any vector ¢ that with a non-negligible first entry,
there is some entrywise power of v which has non-negligible correlation with ¢q. Importantly, this
holds even if the other entries of v are not well-separated. As such one can interpret this result
as some kind of robust local inverse for the Vandermonde matrix: even if the k& x k Vandermonde
matrix generated by the nodes v%, e ,v,% is ill-conditioned, it is well-conditioned in directions that
place sufficient mass on coordinates corresponding to nodes which are separated from the other
entries. We also remark that the v* scaling is qualitatively tight by the following example: consider
v92 = (1,1 —7,...,1—(k—1)y) and ¢ = ((kal), —(kIl), (kgl), oy (—1)R (IZ:D) Then one can
check that (v, ¢) =0 for all £ =0,...,2k — 2, and for £ = k, this equals k!~v*.

For general k', note that the bound in the lemma is non-vacuous provided § scales with +*,
and this “gap” between v and +* is the central motivation behind our definition of T'(y) and the
different scales considered in the analysis of Case 2a in Section 4.4.

Proof of Lemma 4.15. We first reduce to the case where k' = 1. Conside/r modifying v, ¢ follows.
Remove from v entries 2,...,k". Also set the first entry of ¢ to be Zle ¢; and remove from ¢
entries 2,...,k". As ||[v]lo <1 and ||q||c < R, this changes every (v®¢, ¢) by at most

k' 4
D ai(vf — o)) =) aqi(v] —vf) S RUK —1)8 < RE(K —1)8.
=1 =2
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It therefore suffices to prove the lemma for ¥’ = 1, so henceforth we specialize to this case.
Suppose to the contrary that for all £ =0,2,4,...,2k — 2, [(v®,¢)| < ¢ for

e ()

Next, note that
k
(W, q) =D qivf = o] ZQz vf fo}) /2,
i=1

so if we define v} £ v?/v}, then we have that \(U’QZ/Q,q)] < ¢/v{ < ¢a~%. Furthermore, for all
j > 1, we have |[v; — 1] > 72 /v? > ~%. Additionally, [v]| < 1/a? for all i € [k].
Define ¢; = v/2 — 1 so that ¢, = 0 and

leil >~
for ¢ > 1. Then for all £ =0,2,4,...,2k — 2,
k koo 42 /2 £/2 0/2 k
106/2 — . N2 1) = , s — 5
N R SICEES D 30 31 S EED Sl Gl DS}
=2 =2 s=1 s=1 =2
As [(v/®42 —1,¢)| < 2¢a~%* and
€/2—1

‘gqisfm‘ < |2 — g (ﬁ/ )‘Z i€,

by induction we find that for all 1 < s < k,

k
’Z Qié‘f
i=2

~2k 4 ok Z ’qu

< (2k/a®)"

We also have that

> | —Ca > 7 —CaH > 1/2. (10)

k
’Z qi
i=2

We now use Lemma 4.16 to draw a contradiction. Taking ¢ = k — 1 and z = (eq, ..
lemma, we find that

.,€k) in the

T
[N}
Ea

Z% R N G D s VNI SRS R N

where here ps denotes the elementary symmetric polynomial of degree s on k — 1 variables. We can
rearrange to get

—pr—1(e, ... ek Z Z% N SRS Zqz

1=2

w0
I
o
=
Il
[\

??‘
l\?

@
Il
-

As |gi| € 72, 1], pr_1—s(e2,... ) < 2F for all s, and |pr_1(e2,...,ex)| > 7¥?*. So by triangle

inequality,
4k \*k
< k( ) (< 1/2,
=P 22 ¢=1/

k
>

which contradicts (10). O
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The above proof used the following basic fact:

Lemma 4.16. Given z = (z1,...,2xK), let vy denote the vector (zf,...,zf(). Let py denote the

elementary symmetric polynomial of degree £ on K wvariables. Then

K-1

VK = Z (—1)K_S+1pKfs(Z) * Vs
s=0

4.8 Validation

Now we have a set of candidate estimators, one of which is guaranteed to be close to the ground
truth network in square loss. We will use a validation set of fresh samples to estimate the loss of each
of these estimators and pick the best predictor. In order to guarantee that this predictor will have
low test loss, we will prove a concentration property of ReLU networks (as in [CKM22]). Notice
that for any estimator function f) y, its difference with the ground truth network f*, fy 4 — f* has
width 2k and is a 2kR-Lipschitz function.

Lemma 4.17. For an arbitrarily given 6 > 0, and t < 4R?*k. Let F : R? — R be a 2R-Lipschitz
one-hidden-layer ReL U network with width 2k. Then, for N i.i.d samples x1,x2, ..., xy ~ N (0,1y),
where N = O ((1n + 4R%k)*1og(1/6)/t?). Here p := By nr0,1,)[F(2)]. Denote the empirical esti-
mate of the squared loss G2 := % Zf\; F(x;)%, then with probability 1 — 4,

[Eenory [F(@)?] =77 <t.

We defer the proof of this to Appendix B.4.
Since at each step we branch out by a factor of poly(d, R,1/¢)

O(log? k
kOUos ), and we run for k steps,

we have poly(d, R, 1/ s)ko(logQ & predictors to test from. Using the above lemma with ¢ = ¢, followed
by a union bound, with a validation set of size ~ j;O0log? F)poly(R,1/e)log(d/s) with probability
1 — 0, we will find a good predictor up to an additive error of €. This completes the proof of
Theorem 1.1.

5 Terminating in O(logk) steps

In this section we prove Lemma 4.13, which ensures that there is a successful computation path in
our algorithm of length O(log k). We restate the lemma here for convenience,

Lemma 4.13. Given any (A, u) € (RxS1)*, there exists a sequence of sets Jh, ..., Ty € [k]x[y,1)
such that the following holds. For every s € [q|, let I denote the set of i € [k] for which there exists
v such that (i,7y) € Js. Then

1. I,...,1I; are disjoint.

2. Foralli,j e k\([L1U---Uly), lvi—v;| <& (if [k] =1L U---UlI,, this holds vacuously).
3. For each s € [q], all of the subsets SE°%¢(v) for (i,7) € Js are disjoint.

4. For each s € [q] and each (i,7) € Js, v is a gapped scale for i.

Before proving this lemma in Section 5.3, we first identify a particular game in Section 5.1 and
upper bound the smallest number of steps needed to win this game. We then show in Section 5.3 how
this bound implies an upper bound on the shortest successful computation path in our algorithm.
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5.1 Clumping game

This section can be read independently of the rest of this work, and the notational choices here are
specific to this section.

Consider the following game. Let & € N and let 7,¢ > 0. We start with a vector w € R’;O for
which w; = wy, = 0. At every step, we say that a ¢-legal move in the (noiseless) clumping game is
a move consisting of the following steps:

1. Select a sequence of indices 1 = i1 < j1 < iy < jo < -+ < 4y < Jm = k such that for
every a € [m], we have that w;,, w;, < 7 and furthermore at least one of the following two
conditions holds:

o wy <7 forall iy, </l < jg.
e w; > max(w;,,w;j,) + ¢ for all i, < £ < jg.

In this case, we say that the interval [i4, jq] is good for w. Note that if j, = i, + 1 and
w;,, wj, < T, then it is vacuously true that [is, j,| is good for w.

2. Suppose that the union of the intervals [i1, ji],. .., [im, jm], regarded as subsets of R, is equal
to the union of intervals [i], ji],...,[i}, j;] for n < m such that j; <} for all a. Then for
every a, replace the entries i3, +1,...,j; of w with the single entry min;:<y<;x wy.

3. Update k to be the length of the resulting vector

Steps 1 to 3 altogether count as a single move. The game ends when no more ¢-legal moves
are possible, e.g. when k = 1. We remark that the distinction between {[i4, jo]} versus {[i¥, j*]} in
Step 2 will only be relevant in one place in the proof (see the footnote in the proof of Lemma 5.5).
Otherwise, the moves we make will be such that j, < iq+1 for all a, so that there is no difference
between {[iq, jo|} and {[i}, jX]}.

It is not hard to see that for ¢ = Q(1) and 7 2 Q(logk), there always exists a ¢-legal move
that decreases k as long as &k > 1, so this game will always terminate in at most £ — 1 moves,
and furthermore, by design, the final vector will consist of a single zero entry. The proof of this is
essentially identical to the proof of Lemma 4.6.

We will show the following stronger guarantee:

Lemma 5.1. For sufficiently large absolute constants ¢, C > 0, the following holds. For T = c logk,
starting at an arbitrary w € R’;O for which wy = wi = 0, there is a sequence of at most C logk
moves, each of them 1-legal, after which the game will end, with the final vector consisting of a
single zero entry.

We first introduce some terminology:

Definition 5.2. Givenr € N and iy, ji,...,%m,Jm € [r], we say that intervals I1 = [i1, j1],. .., I;m =
[im, jm] form a separated partition B of [r] of size m if

l=n1<in<i<pnp<<im<jm=k

and furthermore jg+1 > iq + 1 for all 1 < a < m. For separated partitions, we will refer to the
intervals {[ja + 1,7a4+1 — 1] }1<a<m as the gaps of B.

Example 5.3. The intervals [1,2],[4,7],[10,12] form a separated partition of [12], but the intervals
[1,2],[3,7],[10,12] do not. For the former, the gaps of the partition are given by the intervals [3, 3]
and [8,9].
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The following trivial observation will be essential to the proof of Lemma 5.1 below:
Lemma 5.4. Any separated partition of a set [r] has size at most [r/2].
Finally, we note that the following can be achieved with two moves.

Lemma 5.5. Suppose there is a sequence of indices 1 = i1 < j1 < -+ < iy, < jm = k such that for
every a € [m], we have that w;,,w;, < 7 and furthermore there is some 7" < T such that for every
iqg <L < jo, we either have wy < 7" or wy > 7" + 1. We say that the intervals [iq, jo] are moderate
for w.

Let w* be the wvector obtained by replacing all of the entries in w indexed by [ig,ja| with

min;, <¢<;j, we, for every a. Then w* can be obtained from w in two moves.
Proof. For every a, let [T](La), sga)], e [rﬁ,ff()l, s,(fnfl)l] denote the separated partition of [i4, j,| into inter-
vals such that entries of w corresponding to indices within an interval strictly exceed 7/ + 1, and
such that entries of w corresponding to indices within a gap of this partition are at most 7/. Then
define i&“) = r,ﬁ“) —1 and jéa) = SE“) 41 so that [iga),j((;a)] is good for w.

We can make one move using all of the intervals [iﬁ“), jé“)].S Note that the resulting vector in
the next step of the game, call it w’, can equivalently be defined by taking w and, within every
interval [iq, jo] of coordinates, removing all entries of w which exceed 7’ 4+ 1 as well as some other
entries that are not the minimum entry of w within that interval.

Every interval [ig, j4] of coordinates from w corresponds in a natural way to an interval [i], j/]
of coordinates from w’. Note that within any such interval, the entries of w’ are at most 7/ by
design, so [i}, j/] is good for w’. We can then make one move using all of the intervals [i}, j/] to
obtain the vector w* defined in the lemma. O

Lemma 5.6. If at any point in the game there is exactly one zero entry in the vector, then the
game 1S over.

Proof. By design, the leftmost and rightmost entries of any vector produced over the course of the
game must be zero. So if there is a single zero entry, this means the vector is one-dimensional, and
thus the game has ended. O

Proof of Lemma 5.1. Starting with s = 0, we inductively define the following objects. Let k(0 £ &,
w©® 2 . and u® £ w. We will maintain the invariant that «(®) is a subsequence of w(®) such that
all entries outside of u(®) are > 7 — s + 1.

Let B, be a separated partition of [k(s)], and denote its size by k671, Suppose that Bs consists

of intervals Ifs), N Ili‘2+1> such that:

e Every entry of u(®) indexed by an entry from one of these intervals is < 7 — s

e Every entry of u(®) indexed by an entry from a gap of P is > 7 — s.

Let 1 < agsﬂ) < e < a](:(:rll)) < k) denote the indices in 11(5)7--'7-7/&2“) over which u(®) is
minimized within those intervals (breaking ties arbitrarily). Then define u(5t1) ¢ ]RIE(SH) to be the
entries of u(*) indexed by agsﬂ), N a]gs(:fl)).

3This is the only part of the proof in this section where the intervals defining the move are not disjoint as subsets
of R, so that there is a distinction between [i, j] and [¢*, j*] in Step 2.
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Finally, we describe how to define w**1). First note that each interval T és) corresponds to some
subset {bg1,...,bpm,} of the entries of w®). Consider the intervals [be,1,be.m,] for every ¢, regarded
as subsets of the coordinates of w(®).

We claim that these intervals are all moderate for w®) in the sense of Lemma 5.5. By the
inductive hypothesis, all entries of w®) outside of u(®) are > 7 — s 4+ 1. So within any interval
[be,1,be.m,] of coordinates of w(s), the indices which are not by for some c are > 7 — s + 1, whereas

the indices which are by . for some c are, by assumption on I és), at most 7 — s. Therefore, the
intervals [by 1, bgm,] are moderate for w(®) as claimed.
We can thus make two moves in the game to replace the entries in each interval [bg 1, bepm,] of

coordinates in w(® by the single entry ’LL§S+1). Define w(**1) to be this new vector. Note that the
entries of wTY outside of u(5TY were either entries of u(*) from among the gaps of B, or entries
of w(®) outside of u(*). In the former case, by assumption on B, such entries are > 7 — s, and in
the latter case, by the inductive hypothesis, such entries are > 7 — s+ 1. We have thus maintained
the invariant that w571 is a subsequence of w1 such that all entries of w1 outside of w1
are >7—(s+1)+ 1.

Note that by Lemma 5.4, k® < k(*=1) /2. So after making at most O(log k) moves as defined
above, we end up with a vector w(® which has exactly one entry which is at most 7 — ¢. If
7 > Q(log k), then because there will always be a zero entry within any vector obtained over the
course of the game, this means that there is exactly one zero entry in w®. By Lemma 5.6, this
means the game has ended. O

5.2 Noisy clumping game

As we will see in Section 5.3, the steps in our learning algorithm will only approzimately correspond
to moves in the clumping game. More precisely, the former exactly correspond to the following
“noisy” version of the clumping game.

Definition 5.7. Given w € ]Rgo, the vector w' € Rgo is a A-perturbation of w if for every ¢ € [k],
the following holds:

o wy < wy
o If additionally wy > 1, then wy > wy — A.

Given k € N, 7,¢ > 0, and starting vector w € Réo for which wy; = wr = 0, we say that a
¢-legal move in the noisy clumping game is a move consisting of the following four steps. The first
three steps are identical to those of the noiseless clumping game. Then in the fourth step,

4. Replace w with an arbitrary (possibly adversarially chosen) 1/100k-perturbation of w.

Lemma 5.9 ensures that a 1-legal strategy for the noiseless clumping game can be converted
into a 0.99-legal strategy for the noisy clumping game:

Lemma 5.8. Let w € R’;O be any vector for which wy = wy = 0. If there is a sequence of N 1-legal
moves in the noiseless clumping game starting from w after which the game ends with the final
vector consisting of a single zero entry, then there is a sequence of N (1 — A)-legal moves starting
from w in the noisy clumping game after which the game ends with the final vector consisting of a
single zero entry.

This follows immediately by inducting on k and repeatedly applying the following:
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Lemma 5.9. Let w € R@O be any vector for which w1 = wy, = 0, and let w' be any A-perturbation
of w. Any 1-legal move in the noiseless clumping game starting from w is also a (1 — A)-legal move
in the noisy clumping game starting from w'.

Let u,u’ be the vectors resulting from the former and latter respectively. Then u' is a (A +
1/100k)-perturbation of u.

Proof. Suppose the 1-legal move in the noiseless clumping game is specified by intervals {[ia; ja] }ag[m)-
Certainly for any a € [m], if w;,,w;, <7, then w; , w;a < 7. Likewise, if wy; < 7 for all ¢, < £ <
Ja, then wj, < 7 for all i, < £ < j,. Otherwise, if w, > max(w;,,w;,)+1 for all i, < ¢ < j,, then by
the definition of A-perturbation, wy € [wy—A, wyl, so wy > max(w;,, wj,)+1-A > max(w; ,wj, )+1
for all i, < £ < jo. We conclude that {[ia,ja]}acpm) is a (1 — A)-legal move. The last part of the
lemma follows from the fact that a 1/100k-perturbation of a A-perturbation is a (A + 1/100k)-

perturbation. 0

5.3 Relating the noisy clumping game to Lemma 4.13

We show that any sequence of Ji, ..., J, satisfying the four conditions of Lemma 4.13 corresponds
to a sequence of 0.99-legal moves in the noisy clumping game, and vice versa, after which we can
conclude the proof of Lemma 4.13 by invoking Lemma 5.1 and Lemma 5.8.

First, we need the following definition:

Definition 5.10. Let ¢ be the constant in the exponent of v/d in the definition of T(v) in (4).
Given vy € [0,1), define the level of v, denoted L(v), by

a 09 (ck —1)1In(e'/7)
)= fen (14 FIn(RZ/A) + (ck — 1) In(1 /y))

where A is defined in (3) and & therein is given by (9). This is clearly monotonically increasing as
v decreases.
The function L is chosen so that

L(T(y)) = 0.9+ L(7).
In particular, the level of T (¢') is precisely 0.9n, where T denotes n-fold composition of T.
Observation 5.11. For any 0 <y < -+ <, if L(vs) > 1, then
L(vs) = O(1/(kInd)) < L(y1 + -+~ +75) < L(7s) -
The latter bound also holds if L(~s) < 1.

Proof. That L(y1 + -+ +vs) < L(7s) follows immediately from the fact that L is a monotonically
decreasing function. For the other bound, for convenience, denote 3 £ ckInd + In(R? /A0 + (ck —
1)In(1/€’) and note that L(vs) > 1 implies that In(1 + (ck — 1) In(¢’/7)/B) > ck so that

1+ In(1/ky) - (ck—1)/pB 1_ln(k)'(ck—1)/ﬂ
1+1In(l/v)-(ck—1)/8 ck

Zln( )2 1 - O(lnk/(kInd)),

L(yi+ - +19s) = L(kys) > L(vs) — O(1/(kInd)) .
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Proof of Lemma 4.13. Take the “k” in Section 5.1 to be k + 1, and let the initial vector “w” be
defined as follows. As specified in Section 5.1, we take its first and last entries to be 0. For 1 < i < k,
let the i-th entry of “w” from Section 5.1 be given by

Ws; = L(Ul — Ui—l) .

Define
i L(y) = O(logk) .

For ¢ = 0.99, consider any first move {[i4, jo|} in the noisy clumping game, starting from the
vector w.

Suppose first that this move does not consist of {[1, k+1]}. We show that this move corresponds
to a choice of J satisfying the conditions that

(i) All the subsets S&°%(v) for (i,7) € J are disjoint.
(ii) For each (i,7) € J, v is a gapped scale for 1.
For each a € [m],

(A) If wy < 7 for all i, < € < j,: by definition of w, this means that L(vy — vy_1) < 7 for all
max(iq,2) < £ < min(ja, k). SO Vmax(ia—1,1)» - - - » Vmin(ja,k) are all separated by a distance of
at least 7. This means that S5'°%¢(y) = {¢} while Sfr(v) = [k]\{¢}, so 7 is a gapped scale for
every i, < £ < jo. Add (€,7) for all i, <0< joto J. B

(B) If wy > max(w;,, w;,) + 0.99 for all i, < £ < j,: this means that

v — v K min(T(via — Uia—1)7 T(Uja — 'Uja—l))

for all max(iq,2) < ¢ < min(jg, k). In fact, because of the margin between ¢ = 0.99 and the
constant 0.9 in the definition of L and by Observation 5.11, this ensures that

vy — vy K min(T(via — 'Uz'a—l)a T(Uja — 'Uja—l))

for all ig < £ < jg.

Let 7 be such that L(y) = min(wj,,wj,). If the minimum is achieved by the former (resp.
the latter), then v is a gapped scale for i, (resp. j,) and Sffse(v) = {iag,---,Ja — 1} (resp.
S;{'fse('y) ={iay---yJa —1}). Add (ig,7) (resp. (Ja,7)) to J.

It is clear from the above construction of J that the two conditions (i) and (ii) hold.

Finally, we need to relate the removal of neurons indexed by Uj; ¢ 75595 (y) from [k] to Steps
2 and 4 of the clumping game. Indeed, for each (i,7) € J, if the pair came from case (A) above
and corresponds to an index ¢ for which i, < ¢ < j,, then S9°¢(v) = {¢}. Recall that for all [i, j,]
in case (A), there is a pair in J corresponding to each such ¢. On the other hand, if (¢,7) instead
came from case (B) above and [i4, jo| is the corresponding interval from the move of the noisy
clumping game, then S§'°%¢(v) C [k] is the set {iq, ..., jo — 1}. Putting things together, we conclude
that U(; )e757°(7) = Uafias -, ja — 1}. Soif [if, ji],. .., [if, ji] are the intervals defined in Step
2 of the game, then U(M)EJSZ?"’se('y) =Ug{i, ..., Jo —1}.

Note that for every 1 < a < n, L(vj:41 — vix—1) < L(ming:<y<;x wy) and additionally, if
L(mings <p<jx we) > 1, then L(vj:i1 — vix—1) > L(ming <e<jx wy) — O(1/(klogd)). For d greater
than a sufficiently large constant, the quantity O(1/(klogd)) is at most 1/100k, so if ¢1,...,{s are
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the neurons remaining after the first step of the algorithm, the vector with entries consisting of
L(vg, — vy, ) is a valid 1/100k perturbation of the vector obtained from Step 2 of the clumping
game.

We have thus shown that any initial 0.99-legal move {[i4, jo|} in the noisy clumping game that
does not consist solely of the interval [1, k 4 1] corresponds to a valid set J of neurons that can be
learned and removed from consideration in the first iteration of our recursive learner, and moreover
the sequence of pairwise separations between successive v;’s associated to the remaining neurons
corresponds to the new vector w in Step 4 from making the move {[i4, jo]} in the noisy clumping
game. See Figure 2 for an illustration of this correspondence.

0 31 2 2 3.1 1 1 31 2 2 31 0
w= e o - o *—o ® *—o
i i i > i J3 iy Ja
0 1 1 0
w= ™ ° °

Figure 2: Example of a 1-legal move in the (noiseless) clumping game, with 7 = 3. Initially,
the vector is given by w = (0,3.1,2,2,3.1,1,1,3.1,2,2,3.1,0), and the move is given by (i1,J1) =
(1,3), (i2,j2) = (4,6),(i3,73) = (7,9), (i4,44) = (10,12). The vector resulting from this move is
(0,1,0). Below the entries of w is a sequence of points v; such that the distance between the
(i — 1)-st and i-th point is 7 satisfying L(7y) = w;. The highlighted regions correspond to clumps
of neurons for which there is a gapped scale and which can thus be learned using the analysis in
Case 2a in Section 4.4. After these neurons are learned and subtracted out of the network, the
remaining three neurons have pairwise separations 7,72 for which (L(v1), L(72)) ~ (1, 1).

The above reasoning can then be applied in an identical fashion to subsequent moves in the
clumping game / subsequent iterations of the recursive learner, provided the move does not consist
solely of the interval [1, k + 1].

Lemma 5.1 and Lemma 5.8 ensure the existence of a sequence of 0.99-legal moves in the noisy
clumping game at the end of which the game ends with the vector w consisting of a single zero
entry. The last move in this sequence must be the move [1,k + 1]. If ¢1,..., ¢ € [k] are the only
remaining neurons prior to this final move, the move [1,k 4 1] is only 0.99-legal provided that
L(vg, — vy, ,) > 0.99, but in this case |vy, —vg,| < k-T(1) < &’ for all a,b € [s], as desired. O

6 Conclusion and Future Directions

In this paper, we provided the first PAC learning algorithm that learns narrow (constant k) one-
hidden-layer neural networks in polynomial time. Our algorithm used random contractions of higher
order moment tensors and subsequently performed an iterative procedure to repeatedly learn some
clumps of neurons. This allowed us to avoid depending on the condition number of the weight
matrix, which was a core assumption in several prior works.

One obvious drawback of our technique is the unsatisfactory dependence on k in our runtime

O; 2 . ) . .
dk°"*" " " Note that known CSQ hardness results rule out the possibility of improving to d°®*)
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for our algorithm, but we leave as an interesting open question closing the gap between our upper
bound and these lower bounds. Furthermore, harnessing the power of non-CSQ style approaches as
in [CM20, CKM22] could potentially allow us to get an algorithm that runs in time poly(d)-(1/)"®*)
for some function h.

Another worthwhile direction is to investigate other applications of the power sum estimate
technique proposed in our work to tensor problems in the absence of separation conditions.
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A Deferred Preliminaries

A.1 Hermite polynomials

Recall the definition of the probabilist’s Hermite polynomials:

H,(z)=(-1)"ez - W(f?’

Under this definition, the first four Hermite polynomials are
Ho(z) =1, Hi(z) ==z, Ha(z)=2*—-1, Hz(x)=2>— 3z

The Hermite polynomials comprise an orthogonal basis of the Hilbert space £2(R,w) where w
is the standard Gaussian measure on R. In this function space, the inner product is defined as
(f,9) = Ezopn(0,1)[f (z)g(z)]. Under this inner product, we have

(Hp, Hy) = Epon0,0) Him(2) Hy (z) = m! - I[m = n].
The normalized probabilist’s Hermite polynomials are given by Hy(z) £ TH ¢(x); these com-

prise an orthonormal basis of £2(R,w). Finally, given z € R? we define the Hermite tensor
Sy(x) € (RH)®* to be the tensor whose (iy,...,i)-th entry is given as follows. Suppose that ele-
ment j € [d] appears among i1, ...,i; a total of n; times. Then the (i,...,7)-th entry of S is

given by H;l:l ﬁnj ().
A.2 Measuring distance between networks

Here, we will show that parameter closeness implies closeness in the square loss, which also implies
the closeness between moment tensors.

Lemma A.1 (Lemma 3.3 from [CKM21]). For any unit vectors u, v/,

E [relu({u, 7)) — relu((/, z))]* < %Hu _ |2

Lemma A.2. For two 2-layer ReLU networks fxu, fx w with the same width k and for which
A1, [[N]]1 £ R for some R > 0, we have

[fau = fvwllz S kmax(1,R) - dparam ((A, 1), (X, u).
Proof. By AM-GM, for any permutation 7:

E 2
Hf)\,u - f/\’,u’H% =K (Z Ai - relu(<ui7$>) - )‘;T(i) ’ Fe|u(<u;(i),1’>)>

k 2
=E (Z(/\Z — )\;(i)) -relu((u;, z)) + Z)\’ . (relu (ui,x)) — relu(<u;(i),x>))>

i=1
k 2
< (2k) - Z]E [()\Z - )‘;r(i))Q - relu((u;, =) } (2k) ZE {/\/2 <re|u (ug, z)) — relu({u (l),x>)) ]
i=1
: 5k
<EY (=N’ + 3 ZXQ s — )13
=1 =1

5k?
< k'2 : dparam((Aa u)> (Alv u,))Q + 77?/2 : dparam(()‘a u)7 ()\,, u,))Q

< E2(1 4 2R?) - dparam((A, 1), (X, u'))?,
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where in the third step we used Lemma A.1. Therefore, we conclude that

||f)\,u _f)\’u ||2 kv 1+2R dparam (X,u/)),
as claimed. n

Lemma A.3. For the 2-norm of fyu and the Frobenius norm of its moment tensor, it holds that:

ITe(N )| < v2m-d2 - |

Proof. To prove this equation, we firstly need to decompose the ReLU activation function relu(-)
with the Hermite polynomials. From Lemma A.2 of [GGJ"20], we have:

o0
relu(z Z cpHy(x
k=0
where the coefficients are
1 1 (—1)k+1(2k — 3)1!

co = (k>1) and cory1 = 0.

——,0 ==, Co =
Vo T V2 - (2k)!

Note that, these coefficients are slightly different from [GGJT20] since our definition of H,, is
unnormalized (which means their H,, stands for our Hy).

Therefore, we can express Ty(\, u) as:

E[fxu(z) - Ho(z)] = 1 CZZ)\U = 00 ¢ Ty(A\ ).

=1

Now, we take the Frobenius norm of both sides, we have:

(-3 2
= NTe(X, ) [[p = [[E [fau(z) - He(z)]] > (Elfaulz) - Heal)])
el " agld)!
z Pra(@)?] - E [Hea(@)?) = lfralle - EIH @

-Vdt- o)

Since (£ — 3)!! < V¢!, we can conclude that:

ITe(A W) F < V2r - d72) frulle.

Lemma A.4. For any unit vector g € S*1, it holds that:

M7 (A, w) = MJ(X, @) lop < (| Te(A, 0) = Ty (N, 0 -
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Proof. Notice that:
Mf()\, u) =T;(A\u)g,...,9,: 1], Mf()\', u) =T,(N,a)g,...,9,::]
Then, for any unit vector v € S* !, we have:

ol (MJ(\u) — MJ(N,u)) v = (Te(\u) — To(N,w)) [g, - -, g, v, 0]

= (Tf()‘?u) - Tg()\',u/),g(}@ g ®’U>
< TeAw) = TN W[ llg@ ... @ g@v@ ||y
= |70 w) = TN - (gl 2013) < (| Teh w) = TV W) -

which leads to the conclusion that

1247 (X, a) = M7 (N, w)llop < | Te(A, 1) = (N, w) || .

A.3 Proofs for anti-concentration

We use the following standard bound:

Lemma A.5. Given unit vector u € S¥1, if g is a random unit vector, then with probability at
least 1 — 0,
Vd|(u, )| € [¢d,¢ \/In(2/5)]

for some absolute constants c,c > 0.

Proof. We can write g as h/||h|| for b ~ N (0,1d). Then (u,h) ~ N (0, ||v||) and we have

Pr{|(u, )| > /21In(2/0)] < 6/2

Prll{u, h)] < (6/2)/v/2/7] < 8/2.
Additionally, Pr[|||h|| — Vd| > Vd/2] < exp(—(d)). The lemma follows by a union bound. O
We can now complete the proofs of the two lemmas from Section 2.2:

Proof of Lemma 2.2. Take any u = m - (uj + 0 - uj) and note that by Lemma A.5 applied to
i J

§ = 1/10k*, we have |(u,g)| € [mkg\fv A 1?/(5%2)]. The lemma follows by a union bound over all
i,j € [k] and o € {£1}. O

Proof of Lemma 2.3. Take u in Lemma A.5 to be u; and § = 1/10k to conclude that /d|(u, g)| >
¢/10k. The lemma follows by a union bound over i. O

Finally, we record the following elementary inequality:

Lemma A.6. For any a,b € R satisfying |al,|b] <1,

min |a — ob> <|a® —b*| <2 min |a — ob|.
oe{x1} oe{£1}

Proof. Both bounds are immediate from the fact that |a? — b?| = |a — b| - |a + b|. O
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B Deferred Proofs From Section 4

B.1 Proof of Lemma 4.2

This was essentially, e.g., in Corollary 42 of [DK20]. Note that while that work considered the case
of positive A;, their proof of Corollary 42 does not use positivity. Additionally, their guarantee is
stated for all even £ only because their algorithm only makes use of even /¢, even though their proof
of Corollary 42 applies equally well to £ = 1.

Additionally, their guarantee is stated in terms of relu activation instead of absolute value
activation. But note that |z| = relu(z) + relu(—z), so because ¢y is the ¢-th normalized probabilist’s
Hermite coefficient of relu(-) and satisfies ¢, = ©(£~%/2) (see e.g. [GGJ120, Lemma A.2]). we

A~

conclude that the corresponding Hermite coefficient for |- | is 2¢¢, so E[T] = T;. The claim for £ =1
follows similarly.
B.2 Proof of Lemma 4.3

The degree-1 Hermite coefficients of f; 5, is zero, while the degree-1 Hermite coefficients of

fwru are given by w, so the expectation of % Zflv:l(ya — foau(Za))ze is w. By Lemma 4.2,
the deviation between the empirical mean and the population mean is bounded by ¢'/2 provided
N > poly(d) (R? + ||A||?)/€%. This establishes the first bound.

Note that by Lemmas A.2, A.3, and A.4, we have the following

HMéJ()\, u) - Méq(/)‘\a ﬁ) - Mg()\[kres]’ u[kres])H2 S 5/ (11)

for all ¢ =2,4,...,2k+2. By Lemma 4.2, the deviation between the empirical mean % Zivzl(ya —
f5 4(a))xq and the population mean is bounded by ¢'/2 provided N > dO®) (R2 +||A||3) /€. This
establishes the second bound by triangle inequality with (11).

B.3 Proof of Lemma 4.5
By AM-GM, it suffices to show
[fwpm = foza = Pl S poly(d, R) (e + &) Jw + w (12)

holds for any 0 < w < 1. By hypothesis, for all 7, j € [kres] we have that |v; — vj] < &, so by the
fact that we are conditioning on the event of Lemma 2.2,

i — ujl| < k3.

Let ST and S~ denote the partition of [kres| into indices i for which argmin, ey qy[lu; — o -1l is
+1 and —1 respectively. Also define AT £ Y icst Ai and AT £ > ics— Ai- Consider the network

h* & Xrelu((u1, ) + A relu({(—uq, x)) .

Then by Lemma A.2,
| — fres|l S €RE*V. (13)

By Lemma A.3 applied to h* — fies, we conclude that

1T (AT, A7), (w1, —u1)) = Ti (A )y U] 2 S €R K202
I T2((AF, A7), (ur, —u1)) — To(Aeo]s Uikl S €'R k2d?e’ .
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By combining these with Lemma 4.3, we find that the empirical estimates % fo:l 2(Ya—f5 4(a))Ta
and + Zivzl V21 (Ya — f5 4(2a)) (@azy —1d) are (& + poly(d)Re’)-close to

Ti(( AT, A7), (w1, —u1)) = (AT = A7)w and To((AT, A7), (ur, —uy)) = (AT + )\_)uluir,

provided N > poly(d) (R? + HXH%) /€. By right-multiplying the latter empirical estimate by g, we
get an estimate of To((AT, A7), (ug, —u1)) g = (u1,g) - (AT + A7) -u whose error in Ls is of the same
order. By the fact that we are conditioning on the event of Lemma 2.3, |{uy, g)| > 1/kV/d.

We conclude that we have access to both (AT + A7)u; and (AT — A7 )uy, and thus to ATuy
and A"u; and also the scalars AT and A\™, to error of order poly(d)(Re’ + ¢'). If AT and A\~ are
both at most cw in magnitude for sufficiently small ¢, then ||h*|| < w and the estimator h = 0
already achieves the desired bound in (12). Otherwise, we can use our estimates of ATu; and A\~ uy
to estimate uj to Lo error of order poly(d)(Re’ + §)/w. By Lemma A.2, we obtain an estimate
h = ptrelu({u,-)) + p~relu({—u,-)) satisfying

Ih* = Al < poly(d, R)(e' + &) /w. (14)

Combining Egs. (2), (13), (14) yields the desired bound (12) upon noting that the bound on ||h*—hl||
dominates among the three bounds.

B.4 Proof of Lemma 4.17

Since in a one-hidden-layer ReLLU network (without bias term), F'(0) = 0, and furthermore F is a
2kR-Lipschitz continuous function, we conclude that |F(z)| < 2kR - ||z||2 for Vo € RY. Next, we
can apply the proof of Lemma A.1 of [CKM21] to show that G(x) := F(z)? — i is a zero-centered,
sub-exponential random variable with sub-exponential norm |G|y, = O(u + 4R?k?). Finally, by
using the concentration property of sub-exponential random variables, we conclude that:

L
N ;G(fﬂi)

with probability at least 1—4. Here, the sample size N = O(K?log(1/§)/t?), where K = u+4R?k3.

<t
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