2011.13550v1 [cs.LG] 27 Nov 2020

arxiv

Tight Hardness Results for Training Depth-2 ReLLU Networks*

Surbhi Goel Adam Klivans* Pasin Manurangsi® Daniel Reichman?

November 30, 2020

Abstract

We prove several hardness results for training depth-2 neural networks with the ReLU activa-
tion function; these networks are simply weighted sums (that may include negative coefficients)
of ReLLUs. Our goal is to output a depth-2 neural network that minimizes the square loss with
respect to a given training set. We prove that this problem is NP-hard already for a network
with a single ReLU. We also prove NP-hardness for outputting a weighted sum of £ ReLUs
minimizing the squared error (for k£ > 1) even in the realizable setting (i.e., when the labels are
consistent with an unknown depth-2 ReLU network). We are also able to obtain lower bounds
on the running time in terms of the desired additive error €. To obtain our lower bounds, we
use the Gap Exponential Time Hypothesis (Gap-ETH) as well as a new hypothesis regarding
the hardness of approximating the well known Densest xk-Subgraph problem in subexponential
time (these hypotheses are used separately in proving different lower bounds). For example, we
prove that under reasonable hardness assumptions, any proper learning algorithm for finding
the best fitting ReLU must run in time exponential in 1/e2. Together with a previous work re-
garding improperly learning a ReLU [GKKT17], this implies the first separation between proper
and improper algorithms for learning a ReLU. We also study the problem of properly learning
a depth-2 network of ReLUs with bounded weights giving new (worst-case) upper bounds on
the running time needed to learn such networks both in the realizable and agnostic settings.
Our upper bounds on the running time essentially matches our lower bounds in terms of the
dependency on e.

1 Introduction

Neural networks have become popular in machine learning tasks arising in multiple applications
such as computer vision, natural language processing, game playing and robotics [LBH15]. One
attractive feature of neural networks is being universal approximations: a network with a single
hidden layer! with sufficiently many neurons can approximate arbitrary well any measurable real-
valued function [HSW89, Cyb89]. These networks are typically trained on labeled data by setting
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the weights of the units to minimize the loss function (often the squared loss is used) over the
training data. The challenge is to find a computationally efficient way to set the weights to achieve
low error. While heuristics such as stochastic gradient descent (SGD) have been successful in
practice, our theoretical understand about the amount of running-time needed to train neural
networks is still lacking.

It has been known for decades [BR89, Meg88, Jud88] that finding a set of weights that minimizes
the loss of the training set is NP-hard. These hardness results, however, only apply to classification
problems and to settings where the neural networks involved use discrete, Boolean activations.
Our focus here is on neural networks with real inputs whose neurons have the real-valued ReLU
activation function. Specifically, we consider depth-2 networks of ReLUs, namely either a single
ReLU or a weighted sum of ReLUs 2, and the optimization problem of training them giving labelled
data points, which are defined below.

Definition 1. A rectifier is the real function [z]; := max(0,z). A rectified linear unit (ReLU) is
a function f(x): R™ — R of the form f(x) = [(w,x)]+ where w € R" is fivzed. A depth-2 neural
network with & ReLUs (abbreviated as k-ReLU) is a function from R™ to R defined by

k

RELle,...,wk,a(Z) = Zaj[<wj7z>]+'
j=1
Here x € R™ is the input, a = (ay,...,a;) € {—1,1}F is a wvector of “coefficients”, wi =
(w],...,wp) € R™ is a weight vector associated with the j-th unit. When ap = --- = a = 1,

we refer to RELUy1  wk 4(2) as the sum of k ReLUs, and we may omit a from the subscript.

We note that the assumption that ai,...,ax € {+1,—1} is without loss of generality (e.g.,

[PS16]): for any non-zero ai,...,a; € R\ {0} and w',..., w* we may consider a; = |Z—i|, e, a =
g—ihand w! = |ai|w!,...,WF = |ap|w" instead, which represent the same depth-2 network of k
eLUs.

When training neural networks composed of ReLUs, a popular method is to find, given training
data, a set of coefficients and weights for each gate minimizing the squared loss.

Definition 2. Given a set of m samples x1,...,Xy, € R™ along with m labels y1,...,ym € R, our
goal is to find w',...w" a which minimize the average squared training error of the sample, i.e.,
1 m
. 2
B DR,k a05) ) M
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We refer to the optimization problem (1) as the k-ReLU training problem (aka k-ReLU regression ).
When w? = (w], ..., w}) are assumed to have Euclidean norm at most 1 and y; are assumed to
be in [—k, k], we refer to the optimization problem above as the bounded k-ReLU training problem.

Sometimes we assume that the “coefficient” vector a is fixed in advance (and known to the
optimizer) and not part of the input to the training problem. We mention this explicitly when rele-
vant. Also observe that in the optimization problem above we are looking for a global minimum
rather than a local minimum. A multiset of samples {(x;,¥i) }icm] is said to be realizable if there

exist wl,--- , w” a which result in zero training error.

2We also assume all the biases of the units are 0.



Our goal is to pin down the computational complexity of the training problem for depth-2
networks of ReLLUs, by answering the following question:

Question 1. What is the worst-case running time of training a k-ReLU?

We focus on depth-2 networks which are rather involved and give rise to nontrivial algorith-
mic challenges [VW19, BJW19]. Understanding shallow networks seems to be a prerequisite for
understanding the complexity of training networks of depth greater than 2.

1.1 Owur results

We first consider arguably the simplest possible network: a single ReLU. We show that, already for
such a network, the training problem is NP-hard. In fact, our result even rules out a large factor
multiplicative approximation of the minimum squared error, as stated below.

Theorem 1 (Hardness of Training a single ReLU). The 1-ReLU training problem is NP-hard.
Furthermore, given a sample of m data points of dimension n it is NP-hard to approrimate the
optimal squared error within a multiplicative factor of (nm)l/ polyloglog(nm)

Given such a strong multiplicative inapproximability result, a natural question is whether one
can get a good algorithm for additive approximation guarantee. Notice that we cannot hope for
additive approximation in general, because scaling the samples and their labels can make the addi-
tive approximation gap arbitrarily large. Hence, we must consider the bounded 1-ReLU Training
problem. For this, we give a simple 20(1/ 62)poly(n, m) time algorithm with additive approximation
€. Furthermore, it easily generalizes to the case of the bounded k-ReLLU Training problem for k > 1,
but we have to pay a factor of k° in the exponent:

Theorem 2 (Training Algorithm). There is a (randomized) algorithm that can solve the bounded
k-ReL U training problem to within any additive error € > 0 in time 2O(k5/62)poly(n,m).

Perhaps more surprisingly, we can prove a tight running time lower bound for the bounded
1-ReLU training problem, which shows that the term 1/¢? in the exponent is necessary. Our
running time lower bound relies on the assumption that there is no subexponential time algorithm
for approximating the Densest k-Subgraph problem within any constant (multiplicative) factor.
Recall that, in the Densest x-Subgraph (DxS) problem, we are given a graph G = (V, F) and a
positive integer k. The goal is to select a subset T C V of k vertices that induces as many edges as
possible. We use den,(G) to denote this optimum?® and N to denote the number of vertices, |V|.
Our hypothesis can be stated formally as follows.

Hypothesis 1. For every constant C > 1, there exist' § = 6(C') > 0 and d = d(C) € N such that
the following holds. No O(2°N)-time algorithm can, given an instance (G, k) of DS where each
vertex of G has degree at most d and an integer £, distinguish between the following two cases:

e (Completeness) den,(G) > 4.

e (Soundness) den,(G) < £/C.

*Equivalently, den, (G) := maxpcy, 7= [E(T)|.
1As C increases, § and d decreases.




While this hypothesis is new (we are the first to introduce it), it seems fair to say that refuting
it will require a breakthrough in current algorithms for the DS problem. There are also other
supporting evidences for the validity of this hypothesis: please see the beginning of Appendix C for
an additional discussion. As mentioned earlier, assuming this hypothesis, we can prove the tight
running time lower bound for the bounded 1-ReLLU Training problem:

Theorem 3 (Tight Running Time Lower Bound for 1-ReLU Training). Assuming Hypothesis 1,
there is mo algorithm that, for all given € > 0, can solve the bounded 1-ReLU training problem
within an additive error € in time 20(1/62)poly(n,m).

We remark that, akin to standard conventions in the area of fine-grained and parameterized
complexity, all lower bounds are stated against algorithms that work for all values of € with the spec-
ified running time. Indeed, it is possible to significantly speed up the time bound 201/ 62)poly(n, m)
for extreme values of ¢; for instance, enumerating all possible w over a ©(e)-net® of B" gives an algo-
rithm that runs in time O(1/€)?™poly(m), which is asymptotically smaller than 20(1/ 62)poly(n, m)

when € = o < \/nlloW) Nonetheless, our lower bounds can be extended to include a large range of

“reasonable” e. Further discussion on such an extension is provided before Section 1.3.

An interesting consequence of Theorem 3 is that it gives a separation between proper and im-
proper agnostic learning of 1-ReLU. Specifically, [GKKT17] shows that improper agnostic learning
of 1-ReLU can be done in 20/ E)poly(n) time, while Theorem 3 rules out such a possibility for
proper agnostic learning. (See Appendix F.2 for the relation between learning and training.)

Training k-ReLU: The Realizable Case. An important special case of the k-ReLLU Training
problem is the realizable case, where there is an unknown k-ReL U that labels every training sample
correctly. When k = 1, it is straightforward to see that the realizable case of 1-ReLLU Training can
be phrased as a linear program and hence can be solved in polynomial time. On the other hand,
we show that, once k > 1, the problem becomes NP-hard:

Theorem 4 (Hardness of Training k-ReLU in the Realizable Case). For any constant k > 2, the
k-ReLU training problem is NP-hard even in the realizable case.

Our result is in fact slightly stronger than stated above: specifically, we show that, when the
samples can be realizable by a (non-negative) sum of k ReLUs (i.e. k-ReLU when a is the all-one
vector), it is still NP-hard to find a k-ReLU that realizes the samples even if negative coefficients in
a are allowed. Furthermore, while we assume in this theorem that k is a constant independent of
n, one can also prove an analogous hardness result, when k grows sufficiently slowly as a function
of n. We refer the reader to Appendix E for more details.

Observe that Theorem 4 implies that efficient multiplicative approximation for the k-ReLU
Training problem is impossible (assuming P#NP) for £ > 2. As a result, we once again turn
to additive approximation. On this front, we can improve the running time of the algorithm in
Theorem 2 when we assume that the samples are realizable, as stated below.

Theorem 5 (Training Algorithm in the Realizable Case). When the given samples are realizable
by some k-ReLU, there is a (randomized) algorithm that can solve the bounded k-ReLU training
problem to within any additive error € > 0 in time 20((K*/e) log3("C/E))poly(n,m).

"Recall that an §-net (also refer to as an J-cover) of a set S C R™ is a set T C R™ such that, for every = € S,
there exists y € T where ||z — y|]2 < §. It is well-known that, for any ¢ € [0, 1], there is a d-net of the unit ball B”™ of
size (3/0)™ and that it can be found in (3/8)°™ time.



Importantly, the dependency of € in the exponent is O(l /€), instead of 1/€? that appeared in
the non-realizable case (i.e. Theorems 2 and 3). We can also show that this dependency is tight
(up to log factors), in the realizable case, under the Gap Exponential Time Hypothesis (Gap-
ETH) [Dinl6, MR17], a standard complexity theoretic assumption in parameterized complexity
(see e.g. [CCKT17]). Gap-ETH states that there exists > 0 such that no 2°("-time algorithm
can, given a CNF formula with n Boolean variables, distinguish between (i) the case where the
formula is satisfiable, and (ii) the case where any assignment violates at least 0 fraction of the
clauses. Our running time lower bound can be stated more formally as follows.

Theorem 6 (Tight Running Time Lower Bound for the Realizable Case). Assuming Gap-ETH, for
any constant k > 2, there is no algorithm that, for all given € > 0, can solve the bounded k-ReLU
training problem within an additive error € in time 20(1/E)poly(n,m) even when the input samples
are realizable by some k-ReLU.

Relation to Learning ReLUs. k-ReLU Training is closely related to the problem of proper
learning of k-ReLU. In fact, an algorithm for the latter also solves the former. Hence, our hardness
results immediately implies hardness of proper learning of k-ReLU as well. Furthermore, our
algorithm also works for the learning problem. Please refer to Section F.2 for more details.

Stronger Quantifier in Running Time Lower Bounds. As stated earlier, our running time
lower bounds in Theorems 3 and 6 hold only against algorithms that work for all ¢ > 0. A
natural question is whether one can prove lower bounds against algorithms that work only for
some “reasonable” values of €. As explained in more detail below, we can quite easily also get a
lower bound with this latter (stronger) quantifier, for any “reasonable” value of e.

First, our lower bounds in Theorems 3 and 6 both apply in the regime where the lower bounds
themselves are 2°(™); in other words, ¢ = ©(1/y/n) in Theorem 3 and € = ©(1/n) in Theorem 6.
These are essentially the smallest possible value of € for which the lower bounds in Theorems 3
and 6 can hold, because the aforementioned algorithm that enumerates over an e-net of B" solves
the problem in time O(1/€)°™poly(n). On the other hand, for smaller values of €, we can get a
running time lower bound easily by “padding” the dimension by “dummy” coordinates that are
always zero. For instance, if we start with ¢ = ©(1/4/n), then we may pad the instance to say
n’ = n? dimensions, resulting in the relationship ¢ = ©(1/ vn! ). To summarize, this simple padding
technique immediately gives the following stronger quantifier version of Theorem 3:

Theorem 7. For any non-increasing and efficiently computable® function € : N — Rt such that
w(y/logn) < ﬁ < o(y/n), assuming Hypothesis 1, there is no algorithm that can solve the bounded

1-ReLU training problem within an additive error e(n) in time 2°(/<)*) poly(n, m).
Notice that the constraint w(y/logn) < ﬁ is also essentially necessary, because for ¢ >

1/% our algorithm (Theorem 2) already runs in polynomial time. A strong quantifier ver-

sion of Theorem 6 similar to above can be shown as well (but with w(logn) < ﬁ < o(n)). We

omit the full (straightforward) proof via padding of Theorem 7; interested readers may refer to the
proof of Lemma 3.4 of [DKM19b] which employs the same padding technique.

6That is, we assume that computing ¢(n) can be done in time poly(n) for any n € N.



1.2 Independent and concurrent work

There have been several concurrent and independent works to ours that we mention here. We
remark that the techniques in these works are markedly different than the ones in this paper. For
a single ReLU, [DWX18] proved that the 1-ReLU Training problem is NP-hard. With respect to
two ReLUs, [BJW19] showed that finding weights minimizing the squared error of a 2-ReLU is
NP-hard, even in the realizable case. The work of [BDL18] considered the problem of training a
network with a slightly different architecture, in which there are two ReLLUs in the first hidden layer
and the final output gate is also a ReLU (instead of a sum gate as in our case); they showed that,
for such networks with three ReLUs (two in the hidden layer, one in the output layer), the training
problem is NP-hard even for the realizable case. As a result of having an output gate computing a
ReLU, our NP-hardness result (regarding training a sum of two ReL.Us) does not imply their result
and their hardness result does not imply our hardness result for training a sum of 2 ReLUs.

1.3 Related work

The computational aspects of training and learning neural networks has been extensively studied.
Due to this, we only focus on those directly related to our results.

We are not aware of a previous work showing that the general k-ReLU training problem is
NP-hard for & > 2, nor are we aware of previous results regarding the hardness of approximating
the squared error of a single ReLU. The k = 2 case and the k& > 2 case seem to require different
ideas and indeed our proof technique for Theorem 6 is different than those of [BDL18, BJW19].
Moreover, the question of generalizing the NP-hardness result from k£ = 2 to & > 2 is mentioned
explicitly in [BDL18]. Finally, we remark that neither [DWX18] nor [BJW19] provides explicit
running time lower bounds in terms of 1/e for the problem of training k& ReLUs within an additive
error of €. To the best of our knowledge, our work is the first to obtain such lower bounds.

[Vu98] has proven that finding weights minimizing the squared error of a k-ReLU is NP-hard
when a is the all-one vector (or alternatively, when all the coefficients of the units are restricted to
be positive) for every k > 2.

Some sources (e.g. [ABMM18, Bacl17]) attribute (either implicitly or explicitly) the NP-hardness
of the k-ReLU Training problem to [BR89], who consider training a neural network with threshold
units. However, it is unclear (to us) how to derive the NP-hardness of training ReLUs from the
hardness results of [BR89]. Several NP-hardness results for training neural networks with archi-
tectures differing from the fully connected architecture considered here are known. For example,
in [BG17], the training problem is shown to be hard for a depth-2 convolutional network with (at
least two) mon-overlapping patches. To the best of our knowledge, these architectural differences
render those previous results inapplicable for deriving the hardness results regarding the networks
considered in this work.

Several papers have studied a slightly different setting of improper learning of neural networks.
An example is [LSSS14] who show that improper learning of depth-2 networks of w(1) ReLUs
is hard, assuming certain average case assumptions. More recently, [GKKT17] show that even
for a single ReLU, when |(w,x)| tends to infinity with n, learning [(w,x)]; improperly in time
g(€) - poly(n) is unlikely as it will result in an efficient algorithm for the problem of learning sparse
parities with noise which is believed to be intractable. These hardness results for improper learning
do imply hardness for the corresponding training problems. Nonetheless, it should be noted that
the fact that these results have to rely on assumptions other than P # NP is not a coincidence: it



is known that basing hardness of improper learning on P # NP alone will result in a collapse of
the Polynomial Hierarchy [ABXO08].

On the algorithmic side, Arora et al. [ABMM18] provide a simple and elegant algorithm that
exactly solves the ReLLU training problem in polynomial time assuming the dimension n of the data
points is an absolute constant; Arora et al.’s algorithm is for the networks we consider, and it has
since been also extended to other types of networks [BDL18]. Additionally, there have also been
works on (agnostic) learning algorithms for ReLUs. Specifically, Goel et al. [GKKT17] consider
the bounded norm setting where the inputs to the ReLUs as well as the weight vectors of the units
have norms at most 1. For this setting, building on kernel methods and tools from approximation
theory, they show how to improperly learn a single n-variable ReLU up to an additive error of € in
time 200/9) . poly(n). Their result generalizes to depth-2 ReLUs with k units with running time of
20(Vk/e). poly(n) assuming the coefficient vector a has norm at most 1. The algorithm they provide
is quite general: it works for arbitrary distribution over input-output pairs, for € that can be small
as 1/logn and also for the reliable setting.

A limitation of our hardness results is that they consider ”pathological” training data sets that
are specifically constructed to encode intractable combinatorial optimization problems. Several
works in literature have tried to overcome this issue by considering the training/learning problems
on more “benign” data distributions, such as log-concave distributions or those with Gaussian
marginals. On this front, both algorithms and lower bounds have been shown for depth-2 net-
works [SVWX17, BJW19, GKK19].

Using insights from the study of exponential time algorithms towards understanding the com-
plexity of machine learning problems as is done in this work is receiving attention lately [ST17,
DKM19a, SFGP19].

1.4 Organization of the Paper

In the remainder of the main body of this paper, we provide high-level overviews of our proofs
(Section 2) and discuss several potential research directions (Section 3). The appendix contains
all the details of our proofs and is organized as follows. Appendix A contains several additional
notations that will be used throughout the proofs. In Appendix B, we prove the NP-hardness of
1-ReLU Training (Theorem 1). We then prove the running time lower bound for the problem in
Appendix C. In Appendix D, we consider the problem of training (non-negative) sum of k& ReLUs,
and prove hardness for the problem. We then use these hardness to prove our NP-hardness and
running time lower bound of the k-ReLU Training problem (Theorems 4, 6) in Appendix E. Finally,
our algorithms are presented in Appendix F.

2 Proof Overview

Below we provide the informal overviews of our proofs and intuition behind them. All full proofs
can be found in the appendix.

NP-Hardness of Training 1-ReLU. Our reduction is from the (NP-hard) Set Cover problem,
in which we are given subsets T7,...,Tys of a universe U, and the goal is to select as few of these
subsets as possible whose union covers the entire universe U. We reduce this to the problem of
1-ReLU Training, where the dimension n is equal to M. We think of each coordinate of w as



an unknown (i.e. variable); specifically, the desired solution will have w; = —1 iff T; is picked
and 0 otherwise. From this perspective, adding a labelled sample (x,y) is the same as adding a
“constraint” [w - x|; = y. There are two types of constraints we will add:

e (Element Constraint) For each u € U, we add a constraint of the form [1 + > Tisu w;| L =0

The point is that such a constraint is satisfied when wu is covered by the selected subsets.

e (Subset Constraint) For each i € [M], we add a constraint of the form [y + w;], = v for some
small v > 0. This constraint will be violated for any selected subset.

By balancing the weights (i.e. number of copies) of each constraint carefully, we can ensure that the
element constriants are never unsatisfied, and that the goal is ultimately to violate as few subset
constraints as possible, which is equivalent to trying to pick as few subsets as possible that can
fully cover U. This completes the high-level overview of our reduction.

We remark that there is a subtle point here because we cannot directly have a constant such that
1 or 7 in the constraints themselves. Rather, we need to have “constraint coordinate” and adding
the constants through this coordinate. This will also be done in the other reductions presented
below, and we will not mention this again.

The outlined proof, together with the ©(log|U|) inapproximability of Set Cover [LY94, Fei98],
already gives a hardness of approximation of a multiplicative factor of ©(log(nm)) for the 1-ReLU
Training problem. To further improve this inapproximability ratio to (nm)l/ polyloglog(nm) e re-
duce from the Minimum Monotone Circuit Satisfiability (MMCS) problem, which is a generalization
of Set Cover. In MMCS, we are given a monotone circuit and the goal is to set as few input wires
to true as possible under the condition that the circuit’s output must be true. Strong inapprox-
imability results for MMCS are known (e.g. [DHK15]). Our reduction from MMCS proceeds in a
similar manner as that of the Set Cover reduction above. Roughly speaking, the modification is
that each unknown is now whether each wire is set/evaluated to true, whereas the constraints are
now to ensure that the evaluation at each gate is correct and that the output is true.

Tight Running Time Hardness of 1-ReLU Training. We now move on to the proof overview
of the tight running time lower bound for 1-ReLLU Training. Recall that we will be reducing from
the Densest x-Subgraph (DxS) problem, in which we are given a graph G = (V, E) and k € N. The
goal is to find a set of k vertices that induces the maximum number of edges.

To motivate our construction, a simple combination of dimensionality reduction and d-net can
in fact find a ReLU that point-wise approximates the optimal ReLU to within an additive factor
of § in time 201/ 52)poly(n). That is, if the ReLU that achieves the optimal error has weight vector
w*, then we can find a weight vector w such that |[w - x| —[w* - x];| < § for all input samples
(x,y) in time” 200/8) poly(n).

_ Indeed, this is an explanation why, in the realizable case, we can get € squared error in
201/ poly(n) time by simply picking § = \/e. Now, since we need our hardness here (for the
non-realizable case) to hold with stronger running time lower bound of 200/ 62)poly(n), we have to
make sure that whenever § > ¢, the aforementioned point-wise approximation of § is not sufficient
to get an error of €. Suppose that, for an input labelled sample (x,y), the optimal ReLU outputs
y' and our approximation outputs y” (where |y — 3’| < ). Notice that the difference in the square

"We assume throughout that m = poly(1/d), which is w.l.o.g. due to standard generalization bounds. See
Section F.



error between the two for this sample is only at most O((y' — y)8) + 62. Now, if we want this
quantity to be at least € for any § > Q(¢), then it must be that |y’ — y| = Q(1). In other words,
we have to make our samples so that even the optimal ReLU is “wrong” by Q(1) additive factor
(on average); this indeed means that, if the ReLU we find is “more wrong” by an additive factor
of O©(e), then the increase in the average squared error would be §2(¢) as desired.

With the observation in the previous paragraph in mind, we will now provide a rough description
of our gadget; they will all be formalized later in the proof of Lemma 14. Given a DkS instance
(G = (V,E), k), our samples will have |V| dimensions, one corresponding to each vertex. In the
YES case where there is T C V of size « that induces many edges, we aim to have our ReLLU weight

1

assigning N to all coordinates corresponding to vertices in 7', and zero to all other coordinates.

To enforce this, we first add a sample for every vertex v € V that corresponds to the constraint

o]

We refer to these as the cardinality constraints. While this may look peculiar at first glance, the

effect is that it ensures that roughly speaking w has k coordinates that are “approximately” —= and

NG
the remaining coordinates are “small”. To see that this is the case, observe that the average mean
2
. 2 1 1 1 .
squared error here is 1 — 57 5>~ o/ [wv - m] . + 7 2vev [WU - m] R The last term is small

and may be neglected. Hence, we essentially have to maximize ) [WU — ﬁ} . This term is
+

indeed maximized when w has k coordinates equal to %{, and zeros in the remaining coordinates.
Notice here that this also fits with our intuition from the previous paragraph: even in the optimal
ReLU, the value out put by the value (which is either 0 or ﬁ) is Q(1) away from the input label
of the sample (i.e. 1).

So far, the cardinality constraints have ensured that w “represents” a set T C V of size roughly
k. However, we have not used the fact that T contains many edges at all. Thus, for every
edge e = {u,v} € E, we also add the example corresponding to the following constraint to our
distribution:

1

[ 1.75}
— Wy t+w,———| =1.
2 +

VE

We call these the edge constraints. The point here is that, if e is not an induced edge in 7', then
the output of the ReLU will be zero. On the other hand, if e is an edge in T, then the output of
the ReLU will be 0'—\/25‘. Hence, the more edges T induces, the smaller the error.

By carefully selecting weights (i.e. number of copies) of each sample, one can indeed show that
the average square error incurred in the completeness and soundness case of Hypothesis 1 differs

by e =Q <#> Hence, if we can solve the 1-ReLU Training problem to within an additive error

VIV
of € in time 2°(1/ 62)poly(n, m), we can also solve the problem in Hypothesis 1 in time 2°(VD) | which
breaks the hypothesis.

Hardness of Training k-ReLU in the Realizable Case. We next consider the problems of
Training k-ReLU for k > 2 in the realizable case. Both the NP-hardness result (Theorem 4) and the
tight running time lower bound (Theorem 6) employ similar reductions. These reductions proceed



in two steps. First is to reduce from the NP-hard k-coloring problem to the problem of training
non-negative sum of k ReLUs, in which we fix the coefficient vector a to be the all-one vector and
only seeks to find w!, ..., w* that minimizes the squared error. Then, in the second step, we reduce
this to the original problem of k-ReLU Training (where the coefficient vector a can be negative).

Step I: From k-Coloring to Training Sum of k ReLUs. The NP-hardness of Sum of k ReLUs
Training in fact follows directly from a reduction of [Vu98|. We will now sketch Vu’s reduction, since
it will be helpful in our subsequent discussions below. Vu’s reduction starts from the k-coloring
problem, in which we are given a hypergraph G = (V| E) and the goal is to determine whether
there is a proper k-coloring® of the hypergraph. Given an instance G = (V, E) of k-coloring, the
number of dimensions in the training problem will be n = |V| where we associate each dimension
with a vertex. Notice that now we have k& unknowns associated to each vertex v: w),...,wF. In
the desired solution, these variables will tell us which color v is assigned to: specifically, w? > 0 iff
v is colored 7 and wf) < 0 otherwise.

Adding a labelled sample (x, ) is the same as adding a “constraint” [w' x| +---+[wF-x], = .
There are two types of constraints we will add:

e (Vertex Constraint) For every vertex v € V, we add a constraint? [wl]y +--- + [wh], = 1.
This constraint ensures that, for every v € V', we must have w!y > 0 for at least one i, € [k],
meaning that the vertex v is assigned at least one color.

e (Hyperedge Constraint) For every hyperedge e = {vq,...,v} € E, we add a constraint!”

[wy, + -+ wl ]y +-- + [wh + -+ wffl]Jr = 0. This ensures that the hyperedge e is not

monochromatic. Otherwise, we have i,, = --- = 4,, meaning that wivll 4+ +wf}21 > 0, which
violates the hyperedge constraint.

This finishes our summary of Vu’s reduction, which gives the NP-hardness of training a (non-
negative) sum of k£ ReLUs.

Step II: Handling Negative Coefficients. The argument above, especially for the hyperedge
constraints, relies on the fact that the coefficient vector a is the all-one vector. In other words, even
if the input hypergraph is not k-coloring, it is still possible that there is a k-ReL.U (possibly negative
weight vector a) that realizes the samples. Hence, the reduction above does not yet work for our
original problem of k-ReLLU Training. To handle this issue, we use an additional gadget which is
simply a set of labelled samples with the following properties: these samples can be realized by a
k-ReLU only when the weight vectors a is the all-one vector. Essentially speaking, by adding these
samples also to our sample set, we have forced a to be the all-one vector, at which point we restrict
ourselves back to the case of (non-negative) sum of £ ReLUs and we can use the hard instance from
the above reduction from k-coloring. These are the main ideas of the proof of Theorem 4.

Tight Running Time Lower Bound. As stated earlier, the tight running time lower bound for
the bounded k-ReLU Training problem (Theorem 6) follows from a similar reduction, except that
we now have to (1) carefully select the number of copies of each sample and (2) scale the labels y;’s
down so that the norm of each of w',..., w" is at most one. Roughly speaking, this means that
the labels for the vertex constraints become ©(1/ \/m ) instead of 1 as before. In other words, each
violated constraint roughly contributes to ©(1/|V|) squared error. Since it is known (assuming

8 A proper k-coloring is a mapping x : V — [k] such that no hyperedge is monochromatic, or equivalently |x(e)| > 1
for all e € E.

9This constraint corresponds to x being the v-th vector in the standard basis and y = 1.

10This constraint corresponds to x being the indicator vector of e and y = 0.
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Gap-ETH) that distinguishing between a k-colorable hypergraph and a hypergraph for which every
k-coloring violates a constant fraction of the edges takes 2°IV]) time (e.g. [Pet94]), we can arrive at
the conclusion that solving the bounded k-ReLLU Training problem to within an additive squared
error of € = ©(1/|V|) must take 220/IVD) = 291/ time as desired.

We remark here that, interestingly, [Vu98| used the reduction from k-coloring only for the case
of k = 2 units and employed an additional gadget to handle the case k > 2. To the best of our
knowledge, this approach seems to decrease the resulting error e, which means that the running
time lower bound is not of the form 2%(1/¢). On the other hand, we argue the hardness directly
from k-coloring for any constant k > 2. This, together with a careful selection of the number of
copies of each sample, allows us to achieve the running time lower bound in Theorem 6.

Training and Learning Algorithms. Our k-ReLU training algorithm is based on the approach
of [ABMM18]. The main idea behind the algorithm is to iterate over all possible sign patterns
(whether each ReLU is active or not) of the inputs and subsequently solve the so formed convex
optimization for each fixed pattern. The best hypothesis over all different sign patterns is chosen
as the the final hypothesis. It is not hard to see that the run-time for such an algorithm would be
2(m+1)kpoly(n) since there are 2™F different sign patterns.

Using standard generalization bounds, one can show that the number of samples m needed for
the empirical loss to be € close to the true loss is at most O(k*/¢?). Plugging this into the above
algorithm gets us the desired running time (2O(k5/ 62)poly(n, m) as in Theorem 2) for the agnostic
setting. For the realizable setting, we use an improved generalization result of [SST10], which
implies that m = O(k‘2 /€) suffices; plugging this into the above algorithm yields us Theorem 5.

3 Conclusions and Open Questions

We have studied the computational complexity of training depth-2 networks with the ReLLU acti-
vation function providing both NP-hardness results and algorithms for training ReLLU’s. Along the
way we have introduced and used a new hypothesis regarding the hardness of approximating the
Denset k-Subgraph problem in subexponential time that may find applications in other settings.
Our results provide a separation between proper and improper learning showing that for a single
ReL U, proper learning is likely to be harder than improper learning. Our hardness results regarding
properly learning shallow networks suggest that improperly learning such networks (for example,
learning overparametrized networks whose number of units far exceeds the dimension of the labeled
vectors [AZLL19, DLL'18]) might be necessary to allow for tractable learning problems.

We stress here that our hardness results apply to minimizing the population loss'! as well, since
one may simply create an instance where the population is just the training data. Furthermore, the
standard procedure for training neural networks is to perform ERM which is essentially minimizing
the training loss. In fact, a bulk of theoretical work in the field focuses on generalization error
assuming training error is small (often 0). Therefore, we believe it is a natural question to study
the hardness of minimizing training loss.

Neural networks offer many choices (e.g., number of units, depth, choice of activation function,
weight restrictions). Indicating which architectures are NP-hard to train can prove useful in guiding
the search for a mathematical model of networks that can be trained efficiently. It should be

1 The population loss is the expected square loss with respect to the distribution of data points.
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remembered that our NP-hardness results are worst-case. Therefor they do not preclude efficient
algorithms under additional distributional or structural assumptions [Rou20]. Finally, as we focus
on networks having significantly fewer units than data-points, the NP-hardness results reported
here are not at odds with the ability to train neural networks in the overparmeterized regime where
there are polynomial time algorithms that can fit the data with zero error [ZBH'16].

While we restrict our attention to algorithms for training networks with bounded weights, our
exponential dependency of the running time on k (the number of units) makes these algorithms
impractical. It remains an interesting question whether the dependency of the running time on k
can be improved, or alternatively whether strong running time lower bounds can be shown in terms
of k (similar to what is done for € in this work).

While we have focused on depth-2 networks, algorithms and lower bounds for deeper networks
are of interest as well, especially given the multitude of their practical applications. It would be
interesting to see whether the algorithms and hardness results extend to the setting of depth greater
than 1. An interesting concrete question here is whether training/learning becomes harder as the
network becomes deeper. For instance, is it possible to prove running time lower bounds that grow
with the depth of the network?
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A  Preliminaries and Notation

We use B" = {x € R" | ||x||? < 1} to denote the (closed) unit ball and "1 = {x € R" | ||x||* = 1}
to denote the unit sphere in n dimensions. Moreover, we use e; to denote the i-th vector in the
standard basis, i.e., e; has its i-th coordinate being 1 and other coordinates being zeros.

For any n,k € N, w!,...,wF € R", a € {~1,1}* and distribution D over R" x R, let

£(w1, . ,wk, a;D) := E(x,y)~D [(RELle’m’wk’a(X) - yl)2]

to denote the expected squared loss with respect to D. We may write a sequence of labelled samples
S = ((Xi, ¥i))iejm) in place of D to denote the expression when the distribution is uniform over S.

With this notation, the k-ReLU Training problem is: given a multiset of labelled samples
S = {(xi,Yi) Yie[m) Where x1,...,Xm € R, y1,...,9m € R, find wl ..., wFcR"and a € {—1,1}*
that minimizes £(w?,. .. ,wk a; S ). The bounded k-ReLU Training problem is similar except that
X1, .., Xm C B y1, ..., Ym € [—k, k] and the minimization is over w',..., w* € B*, a € {-1,1}".
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Additionally, we define the bounded sum of k-ReLU Training problem to be the restriction of the
bounded k-ReLU Training in which we only consider a = (1,...,1).

For brevity, when a is the all-one vector (i.e. a; = - - = ap = 1), we may drop a from the
notation and simply write £L(w; D) := Ex ) p[(RELUw1 _ wk (1,..1)(X) — vi)?].

Furthermore, we use xox’ to denote the concatenation between vectors x and x’, and 0,, 1, for
p € N to denote the p-dimensional all-zero vector and the p-dimensional all-one vector respectively.

B Hardness of training a single ReLU

In this section, we prove our hardness of 1-ReLU Training (Theorem 1). Specifically, our first result
is the NP-hardness of the problem stated below, which proves the first part of Theorem 1.

Theorem 8. 1-ReLU Training problem is NP-hard, even when the samples x; belong to {—1,0,1}".

In all of our hardness reductions for 1-ReLU (both in this section and Section C), we will always
consider non-negative labels y;, which means that it is always better to pick a; to be 1 and not —1.
For convenience, we will assume this throughout and do not explicitly state that a; = 1.

Proof of Theorem 8. We reduce the Set Cover problem to the 1-RelLU Training problem. Recall
that, in the Set Cover problem, we are given a finite set U along with a family 7 = {T3,..., Ty}
of M subsets of U. Our goal is to determine if one can choose t subsets from 7 whose union equals
U. Set Cover is well known to be NP-hard [Kar72].

We consider a ReLU on n = M +2 dimensions, where we view each coordinate of the (unknown)
weight vector w as a variable. Specifically, for each T; € T, we have a variable wz,. In addition,
we have two dummy variable w; and w.. We let v = 0.01/M?2.

We introduce the following labelled samples. First, for each u € U, let x,, be n-dimensional
vector having 1 for the coordinate corresponding to the dummy variable wq, —1 in all coordinates
that correspond to a subset T; € T containing u, and 0 to all other coordinates. (In other words,
X, = e1 + ZTiBu er..) We label this vector by y, = 0. This labelled sample corresponds to the
constraint

wy + Z wr; =0 (2)

T;5u +

Second, for every T; € T let x7, be the n-dimensional vector having —1 in the Tj-th coordinate, 1
in the coordinate corresponding to w. and 0 for all other coordinates. We label this vector by +.
(In other words, x7, = ey + er, and y7; = v.) This corresponds to the constraint

[w, + wr ]y =7 (3)

We add the n-dimensional vector having 1 in the coordinate corresponding to w; and 0 elsewhere.
We label these vectors by 1. This corresponds to the constraint

[wi]y =1 (4)

We add the n-dimensional vector having 1 in the coordinate corresponding to w, and 0 elsewhere.
We label these vectors by . This corresponds to the constraint

[w'Y]+ =7 (5)
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In summary, the sample multiset is S = {(Xu, Yu) tuev U {(x1;,y1;) }13e7 U {(€1,1)} U {(e4,7)}
Clearly this reduction runs in polynomial time. We now prove the correctness of this reduction.
(YES Case) Assume there is a cover of size t for the set cover instance; suppose without loss
of generality that this cover consists of the first ¢t subsets 11,...,T; in 7. Assigning wp, = wp, =
...=wr, = —1L,w; =1, w, = v and 0 to all other variables results in an average squared error of

%. This because exactly t of the constraints from (3) are violated and each violated constraint

contributes v2 to the squared error. All other constraints are satisfied.

(NO Case) Suppose contrapositively that there is a weight vector w such that £(w;S) < %

First, observe that w; > 0.9; otherwise, the squared error from (4) alone is more than (0.1)? >
7?t. Observe also that wy < 0.2/M; otherwise, the squared error from (5) must be more than
(0.2/M — )% > (0.1/M)? > ~%¢.

Our main observation is that the family 7’<_w7 = {T; : wr, < —w,} is a set cover. The reason is
as follows: by the definition of v we have that ) . E(T\Txw) WT; 2 ~Wy - M > —0.2. As a result,

if there is an element u € U that is not covered then the corresponding constraint (2) for u will
incur already a square error of at least (0.7)2 > 2t (recall that ¢ is no larger than m). Thus, the
observation follows.

The last step of the proof is to show that the family 7., contains at most k subsets. To see
that this is the case, observe that, for every T; € T<_,,, we have [wy + wr,]+ = 0, meaning that
the corresponding constraint (3) incurs a squared error of 2. Since the total squared error is at
most y%t, we can immediately concludes that at most ¢ subsets belong to T<—w,-

Thus, T< ., is a set cover with at most ¢ subsets, which completes the NO case of the proof. [

Observe that in the hardness result above the set of samples is not realizable. This is not a
coincidence as it is a simple result that when there are set of weights with zero error the train-
ing problem for a single ReLU is solvable in polynomial time via a simple application of linear
programming.

B.1 Hardness of Approximating Minimum Training Error for a single ReLU

The reduction above coupled with the fact that set cover is hard to approximate within a fac-
tor O(log [U]) [LY94, Fei98] in fact immediately implies that the problem of approximating the
minimum squared error to within a multiplicative factor of O(log(nm)) is also hard. In this subsec-
tion, we will substantially improve this inapproximability ratio. Specifically, we will show that this
problem is hard to approximate to within an almost polynomial (i.e. (nm)!/Polyloglog(nm)y factor,
thereby proving the second part of Theorem 1:

Theorem 9. 1-ReLU Training problem is NP-hard to approximate to within a factor of (nm)l/(log log(nm))()

where n is the dimension of the samples and m is the number of samples.

To prove Theorem 9, we will reduce from the Minimum Monotone Circuit Satisfiability problem,
which is formally defined below.

Definition 3. A monotone circuit is a circuit where each gate is either an OR or and AND gate.
We use |C| to denote the number of wires in the circuit.

Definition 4. In the MINIMUM MONOTONE CIRCUIT SATISFIABILITY; (MMCS;) problem, we are
given a monotone circuit of depth i, and the objective is to assign as few TRUEs as possible to the
input wires while ensuring that the circuit is satisfiable (i.e. output wire is evaluated to TRUE).
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The hardness of approximating MMCS has long been studied (e.g. [ABMPO01, DS04]). The
problem was known to be NP-hard to approximate to within a factor of 2log! “IC] for any constant
e > 0 [DS04]. This has recently been improved to |C’|1/(1°g1°g‘0|)o(1) by Dinur et al. [DHK15]'2.

o(1)

Theorem 10 ([DHK15]). MMCS3 is NP-hard to approzimate to within |C|'/108108ICDT factor.

The main result of this subsection is that, for any constant £ > 0, there is a polynomial-time
reduction from MMCSy to the problem of minimizing the training error in single ReLLU such that
the optimum of the latter is proportional to the optimum of the former. From Theorem 10 above,
this immediately implies Theorem 9. The reduction is stated and proved below.

Theorem 11. For every £ > 0, there is a polynomial-time reduction that takes in a depth-f mono-
tone circuit C' and produces samples {(X,yi) bicpm) where x; € {0,1}" such that the minimum

squared training error'® for these samples among all single ReLUs is exactly OPTyncs(C)/(10|C])%+2.

Proof. Let v := 1/(10|C|)**!. We consider a ReLU with n = |C| 4 1 variables. For each wire j,

we create a variable w;. Additionally, we have a dummy variable w,. (Note that, in the desired

solution, we want w; to be 1 iff the wire is evaluated to TRUE and 0 otherwise, and w, = 7.)
Dummy Variable Constraint. We add the following constraint

[wy ]+ = 7. (6)
Input Wire Constraint. For each input wire ¢, we add the constraint
[wy = wil+ = 1. (7)

Output Wire Constraint. For the output wire o, we add the constraint

[wol 4+ = 1. (8)

OR Gate Constraint. For each OR gate with input wires 41, ..., and output wire j, we
add the constraint

[wj —wiy — -+ —wy ] = 0. (9)

AND Gate Constraint. For each AND gate with input wires i1,...,4; and output wire 7,
we add the following k£ constraints:

[wj —wi, ] =0, [w; —w;, ]+ = 0. (10)

We will now show that the minimum squared error possible is exactly OPTyvcs(C) - 2.

First, we will show that the error is at most OPTycs(C)-v2. Suppose that ¢ is an assignment
to C with OPTyvcs(C) TRUEs that satisfies the circuit. We assign w., =+, and, for each wire j,

12Tt should be noted that Dinur et al. [DHK15] in fact shows that there exists a PCP with D = (log log n)o(l) query
over alphabet of size n?1/P) with perfect completeness and soundness at most 1/n. The result we use (Theorem 10)
follows from their result and from the reduction in Section 3 of [DS04] which shows how to reduce D-query PCP
over alphabet F' with perfect completeness and soundness s to an MMCS3 instance of size FDpoly(n) and gap
O(1/s)"/P /D. Plugging this in immediately implies the hardness we use.

13For convenience, we are using the total squared error (i.e. |S|- L£(w;S)), not the average squared error (i.e.
L(w;S)), in the theorem statement and its proof.

19



we assign w; to be 1 if and only if the wire j is evaluated to be TRUE on input ¢ and 0 otherwise.
It is clear that every constraint is satisfied, except the input wire constraints (7) for the wires that
are assigned to TRUE by ¢. There are exactly OPTyvcs(C) such wires, and each contributes 72
to the error; as a result, the training error of such weights is exactly OPTyvcs(C) - 2.

Next, we will show that the minimum squared training error has to be at least OPTyvcs(C) ~2.
Suppose for the sake of contradiction that the minimum error § is less than OPTycs(C) - 2.

Observe that, from OPTyncs(C) < |C| and from our choice of v, we have
s<|Cl-4*<0.1 (11)

Consider an assignment ¢ that assigns each input wire ¢ to be TRUE iff w; > w.. At the heart
of this proof is the following proposition, which bounds the weight of every FALSE wire.

Proposition 12. For any wire j at height h that is evaluated to FALSE on ¢, w; < (2|C))"-(y+V5).

We note here that we define the height recursively by first letting the heights of all input wires
be zero and then let the height of the output wire of each gate G be one plus the maximum of the
heights among all input wires of G.

Proof of Proposition 12. We will prove by induction on the height h.

Base Case. Consider any input wire 7 (of height 0) that is assigned FALSE by ¢. By definition
of ¢, we have w; < w,. Note that w, must be at most v + V8, as otherwise the squared error
incurred in (6) is already more than §. Thus, we have w; <y + /3 as claimed.

Inductive Step. Let h € N and suppose that the statement holds for every FALSE wire at
height less than h. Let j be any FALSE at height h. Let us consider two cases:

e j is an output of an OR gate. Let i1,...,7; be the inputs of the gate. Since j is evaluated
to FALSE, i1, ...,4; must all be evaluated to FALSE. From our inductive hypothesis, we have
Wiy, - wi, < (2]C[PL- (7 +/8). Now, observe that w; can be at most v/& +w;, +- - - +w,,
as otherwise the squared error incurred in (9) would be more than §. As a result, we have

wy SV k- QIO (y+ V) = Va+[C]- QIOD" - (v +V5) < (2IC)" - (v +V5)

e j is an output of an AND gate. Let i1, ...,4; be the inputs of the gate. Since j is evaluated
to FALSE, at least one of iq,...,%; must all be evaluated to FALSE. Let ¢ be one such wire.
Observe that w; can be at most v/d 4+ w;, as otherwise the squared error incurred in (10)
would be more than d. Hence, we have

wj Vo +w <VE+ICN (v +V8) < 2IC)" - (v + V).
where the second inequality comes from the inductive hypothesis.

In both cases, we have w; < (2|C|)" - (7 + v/3), which concludes the proof of Proposition 12. [

Now, consider the output wire o. We claim that o must be evaluated to TRUE on ¢. This is
because, if 0 is a FALSE wire, then Proposition 12 ensures that w, is at most

@ICD - (v +v8) Z @’ (v + VO] 7)< 0.1,
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where the second inequality comes from our choice of . This would mean that the squared error
incurred in (8) is at least 0.81 > §. Thus, it must be that ¢ satisfies C.

Finally, observe that, since ¢ assigns each input wire i to be TRUE iff w; > w,,, each input wire
that is assigned TRUE incurs a squared error of 42 from (7). As a result, the number of input wires
assigned TRUE is at most % < OPTwmmcs(C), which is a contradiction as we argued above that ¢

satisfies C'. This concludes our proof. O

C Running Time Lower Bound for 1-ReLLU Training

In this section, we prove our nearly tight running time lower bound for bounded 1-ReLLU Training
(Theorem 3). Recall that our lower bound relies on the hypothesis that there is no 2°(N)-time
algorithm that can approximate Densest x-Subgraph to within any (multiplicative) constant factor
(Hypothesis 1). While this hypothesis might seem strong (especially given the fact that there is
no known large constant factor inapproximability for DxS although we have such hardness un-
der stronger assumptions, e.g. [AAM™T11, Man17]), it should be noted that refuting it seems to
be out of reach of known techniques. In particular, it is known that o(IN)-level of the Sum-of-
Squares Hierarchies do not give constant factor approximation for DkS even for bounded degree
graphs [BCVT12, CMMV17, Man15]. Furthermore, these Sum-of-Squares lower bounds are proved
via reductions from a certain family of random CSPs, whose Sum-of-Squares lower bounds are
shown in [Sch08, Tul09]. This means that, if Hypothesis 1 is false, then one can refute this fam-
ily of sparse random CSPs in subexponential time. This would constitute an arguably surprising
development in the area of refuting random CSPs, which has been extensively studied for decades
(see [AOW15] and references therein).

We stress here that our lower bound in Theorem 3 only holds if we are only allowed to consider
a ReLU with weight vector w within B” (i.e. having norm at most 1). If we modify the problem so
that we are allowed to output a ReLU with arbitrary weight, then our lower bound in Theorem 3
does not hold. It is an interesting open problem whether one can extend our lower bound to such
modified problem as well, or whether a faster algorithm exists in that case.

The rest of this section is devoted to proving Theorem 3. The proof is easier to state if we
consider a slight modification of Hypothesis 1 where in the soundness we do not only guarantee
that den,(G) is small but also that denp,(G) is small for some large constant B, as stated below.

Hypothesis 2. For any constants C, B > 1, there exist § = 6(C,B) > 0 and d = d(C, B) € N such
that the following holds. No O(2°N)-time algorithm can, given an instance (G,r) of DS where
each vertex of G has degree at most d and an integer £, distinguish between the following two cases:

o (Completeness) den,(G) > L.

e (Soundness) denpg,.(G) < ¢/C.

It turns out that the two hypotheses are actually equivalent:
Proposition 13. Hypothesis 1 and Hypothesis 2 are equivalent.

Since the proof of their equivalence is just a simple observation, we defer them to Appendix C.2.
With Hypothesis 2 in mind, we can now state (the properties of) the heart of our proof: the
reduction from DkS to the problem of .
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Lemma 14. For some constants C, B > 1, there is a polynomial time algorithm that takes in
an N-vertex graph G with bounded degree d and integers k,£, and produces a multiset of samples
S = {(x, i) iepm) € B™ x [0,1] and two positive real numbers OPT,e € R such that

o (Completeness) If deny(G) > ¢, there w € B"™ such that L(w;S) < OPT
o (Soundness) If denp,(G) < ¢/C, then, for any w € B", we have L(w;S) > OPT +e.

e (Error bound) e > Qg4 c p (\/Lﬁ)

By plugging in appropriate parameters, it is simple to see that Lemma 14 implies Theorem 3.

Proof of Theorem 3. Suppose for the sake of contradiction that there is an 2°(1/ 52)poly(n)—time
algorithm A that solve the 1-ReLLU Training problem to within an additive error of e. We may
solve the distinguishing problem in Hypothesis 2 as follows. Given an instance (G, k,f), we first
apply the reduction in Lemma 14 to produce a multiset of samples S = {(x;, yi)}ie[m} where x; € B"
and positive real numbers OPT, e = Q(1/v/N). We then run the algorithm A with accuracy € to
obtain a ReLU weight vector w with norm at most one. By checking whether £(w;S) < OPT +e,
we have distinguished the two cases in Hypothesis 2. Furthermore, our algorithm runs in time
200/ poly(n) = 20 poly(n). Hence, this violates Hypothesis 2.

We conclude the proof by recalling that Hypotheses 1 and 2 are equivalent by Proposition 13. [

C.1 Reducing Densest k-Subgraph to Agnostic Learning of ReLUs

We proceed to the main technical contribution of this section, the proof of Lemma 14. The proof
closely follows the intuition given in Section 2.

Proof of Lemma 14. We will give the reduction for C, B = 1000. Before we specify S, recall that
we use N and M to denote the number of vertices and the number of edges of G respectively.
Furthermore, let us define several additional parameters that will be used throughout:

o Let § = ﬁ
o Lety= 10(1)0d and ¢ = 10110d2

KO K62 12 062
o Let OPT:(l_'V)('(l—\/iN—FW)-F’YC‘(1—2\/§M+32M>.

12 52 £62
Now that, a priori, it may not be clear that € is even positive. However, note that both of the terms
2 2 .
(I —=9)C- ’giN and ~( - ?éLM are Od(%). However, ~( - 4\;—% = Qd(ﬁ). Now, notice that, we may
assume w.l.o.g. that' £ > /3 and that!® k > Q(N). Hence, this positive term is at least Qg (

In other words, for sufficiently large N, € is positive and furthermore € = Qd(\/iﬁ) as desired.

7%)
-

Note that, in the non-trivial case, it is always simple to find s vertices that induce |x/2] edges, by repeatedly
adding one edge at a time. This bound is at least /3 for any x > 2.
51n particular, if & = o(V), then the algorithm that enumerate all subsets of size & already runs in time polynomial

in () =200,
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We can now define the multiset of samples S = {(x;,¥;) }ic[m) Where x; € B" as follows. First,
we let n = N + 1; we associate each of the first N coordinates by each vertex of G and we name
the last coordinate .

e We create (10%°-d3N M) - (1— () copies of the labelled sample (e, %) in S. This corresponds
to the constraint

Wiy =

Sl

We refer to this as the constant constraint for *.

e For each vertex v € V, we add (10%° - &3N M) - (1_]\7)( copies of the sample (3 (e, — de,), 1)
to S. This corresponds to the constraint

%[WU — 0w,y = 1.

This is referred to as the cardinality constraint for v.

e Finally, for each edge e = {u,v} € E, we add (10% - d&3>NM) - V—Jé copies of the sample
(3 (Wy + Wy — 3.50w,), 1) to S. This corresponds to the constraint

1
§[wu +w, — 350w, ] = 1.

We refer to this as the edge constraint for e.

For notational convenience, let us separate the average square error £(w; S) into three parts, based
on the type of constraints. More specifically, we let

L (w;S) = (1-¢)- <% - [W*]+>2’

2
£Card(w; S) — % . <Z (1 — %[Wv - 5W*]+> ) s and

veV

1 2
,Codge(w; S) = VMC . Z <1 — §[wu + w, — 3.55W*]+>
{u,v}eFE

By definition, we of course have £(w;S) = L*(w; ) + L4(w; S) + Lo (w; S). Tt will also be
useful to expand out the term £ (w; S) and £°%°(w; S) as follows:

£ (wr; S) B 1
A= )N N — (Z[WU - 5W*]+> +7 (Z[WU - 5‘”*]3) :

veV veV
L9 (w; S) 1 )
{uv}eE {uv}eFl
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(Completeness) Suppose that there exists a set T C V of size k that induces at least ¢ edges.
Then, we can set w, = %, w, to be 0v/2 iff v € T and zero otherwise. It is obvious to see that

the ||[wlj2 = 1 as desired. Moreover, we have £*(w;S) = 0,

) k02
card . =(1— . 1_—H -
T
and
%) 062
L% (w; S) <AC (1 —=—+ = .
(w; 5) <76 ( 2\/§M+32M>

In total, we have £(w;S) < OPT as desired.

(Soundness) Suppose for the sake of contradiction that denp, (G) < ¢/C but there exists w € B"
such that £(w;S) < OPT +e. Let Ay = dw, and Ay = 2.5dw,. We partition the set of vertices V
into three sets:

o Vo, ={veV |w, >}
* Viug) ={veV|w, € (A, )}
o Vo, ={veV|w, < \}

From this point on, we will write each edge {u,v} in E as an ordered tuple (u, v) such that w, > w,
(tie broken arbitrarily). We can then partition the set of edges E into three parts:

o Exy, i={(u,v) € E|ueVsy,}
L4 E()\1,)\2) = {(U,'U) e E ‘ ’LL,’U E ‘/()\1,)\2)}’
o By, ={(uy,v) e Elve Vo, ANu ¢ Voy,}

Observe that

ﬁedge(w; S) > M — [wu + Wy, — 3.55W*]+ . (12)

(u,w)EE

S

Let us now write 5, ,ycp[Wu + Wy — 3.50w. ] as

Z [Wy + Wy — 350w, |4 + Z [Wy, + W, — 350w, |4 + Z [Wy + Wy — 3.50W,] 4.

(u,U)EE2A2 (uvv)eE(Al)\z) (u,U)EESAI

The last summation Z(u V)EE<y [Wy + W, — 3.50w, ]+ is simply zero because, for all (u,v) € E<,,,
’ > 1 -
we have w, < A9 and w, < Ay, meaning that w, + w, — 3.50w, < 0.
Let us now consider the second term Z(u D)EE A )[Wu+wv—3.5f5w*]+. Observe that L(w;S) <
’ 1,72

OPT +¢e < 0.01 implies that w, > %, which means that Ay > g = ﬁ. Notice that E(,\LAQ) is

exactly the set of edges induced by V(y, ). Since A\; > ﬁ, we must have [V, )| < 36k
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(because otherwise ||[w|l2 > 1). As a result, from the assumption that denp,(G) < ¢/C, we have
|E(x1,00)| < 0.001¢. Hence, we have

> [Wut Wy — 3.56w.]; < 0.001¢ - 156w, < 0.01¢- 4.

(u,V)EE (A Ag)

Finally, let us bound Z(u,v)€E>,\2 Wy, + W, — 3.50w, ]+ as follows:

> [ Wutwy—350w. < ) (2w, — 3.50w.])

(u,v)EEE)\Q (u,v)eEzA2
< > 2wu—dway
(u,v)EE> N,
<2d Z — 0w, ]+
ueVsy,

where the last inequality follows from the fact that every vertex in graph G has degree at most d.
Combining the above two inequalities, we have

> [ Wut Wy —350w,]y <0016 +2d > [Wy — 6w
(u,v)eE UEV> 1,

Plugging the above inequality back into (12), we arrive at

edge fYC
Lo (w; §) > 2 | M —0.0145 — 2d > [wWu—owily | (13)

uEVZAz
Observe also that

£ (w; §) > d-9)¢ (N Z v — OW,] )

veV

’UEVZ>\2 UE‘/(Al)Q)
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By summing up (13) and (14), we have
Eedge(w; S) + Ecard(w; S)

S 26 (M 0.0066 —2d Y [w, — 5w*]+)

UGVEAQ

+ % (N — Z Wy — OWy |4 — Z Wy — 5W*]+)

vEV> ), VEV(A; Ag)

> 26 (1—=7)¢ 2vdN
1 (M = 0.0148) + == (N <1+(

W) C DL e —dwde = Y W - dwy

UEVZAZ

VEV(AA9)
1< (1 —7)¢
> 7 (M = 0.0168) + =—== | N = 1.01 dowe—dwile— > [wy—owiy |, (15)
VEVZA, VEVAL Ag)
where in the last inequality we use the fact that < 2u 01

which follows from our choice of ~.
Now, for each v € Vy, ,), the AM-GM 1nequahty 1mphes that

W2 = (0w + (W — 6w))? > 46w, (W, — Sw,) = 40w,

Wy — OW,] 4.
Similarly, for each v € V5 ,,, the AM-GM inequality implies that

= (1.250w, + (W, — 1.250w,))?
> 50w, (W, — 1.250w,)

> 4.16wy (W, — OWy)

> 416wy [wy — OWy] 4,

where the second-to-last inequality follows from w, > Aow, = 2.50w,, which implies that (w, —
1.250w,) > 2 (w, — ow.,).

Plugging the above two inequalities back into (15), we get

L5950 (w; ) + £ (w; §) > 1 (M~ 0.010-5) + e/l <N— !

N
veV
7C (1-79)¢ 1 9
(M 0.01¢ - &) + ~ <N—45W*(1—w*)>,

where the second inequality follows from ||w]j2 < 1.

Recall also that £*(w;S) = (1 —() < 1

2
75 W*> . Adding this to above, we have

2
L(w:S) > Xg (M —0.01¢-5) + ;VV)C <N _ 45;*(1 - wz)> +(1-0) <% - w*>
¢

. 2
= 47 (M =0.01£-8) + (1 =7)¢ — <(1 NV)C'M;* (-w)—(1-9) (%”’”) )
(16)
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We will now bound the term

(I-7)¢ 1 2 1 ?
D(w,) = : A=w)—(1-0)——=—w.) .
(we)im S W) - (1= 0) (- w
In particular, we will show that D(w*) < D(1/v/2) + %

First, notice that, if w, > %, then we immediately have D(w*) < D(1/y/2), as the former is
larger than the latter term-wise. Hence, we may only consider the case w, < % Let o, = % —W,.
We may write D(w*) — D(1/v/2) as

D(w,) - D(1/v) = L3k (”* ¢*)—(1—C)¢i

Wi

= 0. <(14_5];Y[)C <v\? +1> - (1—C)so*>

Recall that w, > % As a result, we must have

2(1 —
D) - (VD) < o (2 - (1= )
__1 2(1 —7)¢
“1-¢ (1 =¢)ps) (T - (1= C)@*)
. L ((=7¢)
(AM-GM Inequality) < ¢ < 5N )
5¢?
<3
where the last 1nequahty follows from ( = 0.99 and § = L\/— > W Thus, in both cases, we have
D(w,) < D(1/+/2) + %~. Plugging this back into (16), we have
. < C(-y¢ 5¢
L(w;S) > (M 0.0145) + (1 — )¢ 1VBON ~
6 B 1 0.01667¢ 5_@)
>7<<1 4\/§M>+(1 7)C<1 VBN +< iY; N

- 0.0146~v¢  5¢?
=0PT +e+ < i N
0.01¢ [ 0o
> =
OPT + e+ — ( - 500g>
. (K/3) - 52= -y
2OPT—|—6—|—02[1C< d2f — 500¢

> OPT + ¢,

where, in the second to last inequality, we assume w.l.o.g. that ¢ > k/3 and the last inequality
follows from our choice of ¢ and . This is a contradiction. O
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C.2 Simplifying the Hypothesis: Proof of Proposition 13

The proof is a simple “trivial” reduction; the key observation here is that denp,(G) cannot be
much larger than den,(G). Hence, by picking the constant C' in Hypothesis 1 to be sufficiently
large, we can arrive at a hypothesis of the form stated in Hypothesis 2.

Proof of Proposition 13. It is obvious that Hypothesis 2 implies Hypothesis 1, by simply plugging
B =1 into the former.

To prove the converse, for any C,B > 1, let C' = and let § = 6(C’) and d = d(C’) be
as in Hypothesis 1. Now, we claim that, if den,(G) < £/C’ for any graph G and any ¢, then
denp,(G) < £/C. To see that this is the case, suppose contrapositively that denp,(G) > ¢/C, i.e.,
there exists ' C V of size Bk such that |E(T)| > ¢/C. Then, let us consider a random subset
T" C T of size k. We have
> =
- C 2B ('

el = 1B (e ) 2 L=

Bk(Br —1) -

where we assume w.l.o.g. that £ > 2 in the inequality. This indeed implies that den,(G) > ¢/C".
The previous paragraph means that, if we can distinguish the two cases in Hypothesis 2 (with
constants C, B), then we can also distinguish the two cases in Hypothesis 1 (with constant C'). As
a result, if the former cannot be done in O(25N ) time, then nor does the latter. In other words,
Hypothesis 1 implies Hypothesis 2. O

D Hardness of Training (Non-negative) Sum of £ ReLUs

In this section, we consider the bounded sum of k-ReLU Training problem. Recall that this is
the restriction of the bounded ¥ ReLU Training problem, in which we only allow the coefficient
vector a to be the all-one vector 1;; hence, here we are simply looking for a sum of & ReLUs, i.e.
> i€k [w’ - x],. We prove the NP-hardness of the bounded sum of k-ReLU Training, as stated
more precisely below. We note here that a hardness of similar form was already obtained in [Vu98],
except that there each ReLU is allowed to have a bias term. Hence, for completeness, we include
the full proof of the following theorem later in this section.

Theorem 15. For any constant k > 2, the bounded sum of k-ReLU Training problem is NP-hard.

Furthermore, we show that a tight running time lower bound for the task of bounded k-ReLLU
Training to within an error of e requires 21/ 6)poly(n,m) time, even in the realizable case. Our
training algorithm in the realizable case (Theorem 5) can be adapted to only consider a = 1j, with
the same running time. Hence, our running time lower bound here is essentially tight in terms of e.

Our running time lower bound is based on the Gap Exponential Time Hypothesis (Gap-
ETH) [Din16, MR17], which states that there is no 2°™-time algorithm that can distinguish be-
tween a satisfiable 3CNF formula and one which is not even (1 — §)-satisfiable for some constant
d > 0. (We remark that the lower bound can also be based on the weaker Exponential Time Hypoth-

1
esis (ETH) [IP01, IPZ01], but the lower bound will only be of the form 29<5'P°ly log(1/5)>poly(n, m).)

Theorem 16. Assuming Gap-ETH, for any constant k > 2, there is no 20(1/E)poly(n,m)—tz'me
algorithm that can solve the bounded sum of k-ReLU Training problem within an additive square
error of €, even in the realizable case.

28



As the reader might have noticed, Theorems 15 and 16 are similar to Theorems 4 and 6, except
that the latter are for the bounded k-ReLU Training (where a is not restricted to 1x). Indeed, we
will use Theorems 15 and 16 to prove Theorems 4 and 6 in the upcoming section.

Both Theorems 15 and 16 are based on a single reduction from the hypergraph k-coloring
problem. Recall that, in the hypergraph k-coloring problem, we are given a hypergraph G = (V, E)
and the goal is to find a proper coloring x : V' — [k]. (A coloring Y is said to be proper if it does
not result in any hyperedge e being monochromatic, i.e., |x(e)| = 1.) The main properties of the
reduction is given in the lemma below. As mentioned earlier in Section 2, this reduction is in fact
almost the same as that of [Vu98], except that the number of copies of each sample are different;
this is needed in order to prove the tight running time lower bound (Theorem 16).

Lemma 17. For any integer k > 2, there exists a polynomial time reduction that takes in an
N-vertex hypergraph G whose edge size is at most t, and produces a multiset of samples S =
{(xi,9i) Yiepm) € B™ x [0,1] and a positive integer € € RY such that

e (Completeness) If G is k-colorable, then there exists w',..., wF € B" such that the samples
are realizable by the sum of k ReLUs Eje[k][wj x|y (ie. L(wh,...,wF; S)=0).

o (Soundness) If every k-coloring of G results in « fraction of edges being monochromatic for

some v € (0,1), then L(w!,...,wF; S) > To0125 % for allw', ..., wF e R

Proof. Let V and E denote the set of vertices and the set of hyperedges of G respectively. Recall
that we use N and M to denote |V| and |E| respectively. For convenience, let us rename the
vertices as 1,2,...,n.

Let n = N and'® m = 3", deg(i) + |V|. For each vertex i € V, we create degq(i) copies of

the sample x; = e; and label them by y; = ﬁ; we refer to such samples as the vertex ¢ samples.
Moreover, for each hyperedge e = {i1,...,i,}, we create a sample (X,y.) with x, = % ;1»:1 e;;

and label it with y. = 0; similarly, we refer to this as the hyperedge e sample. This completes our
construction.
(Completeness) Suppose that the graph is k-colorable; let x : V' — [k] be its proper k-coloring.

We define wl, -, w* by w¢ = ﬁ iff x(i) = a and —ﬁ otherwise. Consider the sum of k ReLUs

x> [wh-x]y + -+ [wF.x]. For each vertex i, we have

[l [ aly = [l ] =

tvVin

Moreover, for each hyperedge e = {i1,--- ,i4}, we have
1 k 1~ 1~
W Xe]p 4+ + WYXy = %szj +- %Zwij =0,
=], =t .

where the second equality follows from the fact that the edge e is not monochromatic. Hence, the
samples are realizable by a sum of k ReLLUs as desired.
(Soundness) Suppose contrapositively that for some constant & > 2, there exists a sum of k

ReLUs x — ZZe[k] [WZ -x]4 such that £(w!,... ,wh: S)<e:= 7100];’29”.

16We use deg (i) to denote the number of hyperedges that ¢ belongs to.
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L 1

Let T denote the set of vertices i € V such that there exists ¢; € [k] where w;* > 5. - ﬁ
; ¢ ¢ 1
Note that, for each i ¢ T, we have > ,c[W" x4 = 3 pcylwil < SN In other words,
we incur a square loss of at least ﬁ for each copy of the vertex ¢ samples. This means that
. d 1
L(wt ... ,wh: S) > M . ﬁ. From our assumption, this can be at most €, which gives
M
Z degG(i)§6-4t3-m-n§%, (17)

1€(V\T)

where the latter comes from our choice of €, and from m < (¢t + 1)M.

Now, consider the coloring x : V' — [k] where we assign x (i) = ¢; for all i € T', and assign x(i)
arbitrarily for all ¢ ¢ T. From (17), the number of hyperedges that contain at least one vertex
outside of T is at most yM /2. Next, consider each hyperedge e = {i1,...,%,} that is contained in

T (i.e. e CT). e is monochromatic if and only if £(i;) = - - - = £(iy), which means that
Z [WZ “Xely = [Wz(il) Xely = = (Wml) + wh’2) + -+ wé(i‘l)) > 1
el+ = € VAN i K L 2kt2y/n’

Lelk]

0(3)

i

1
2kt\/tn
matic hyperedge e contained in 7' incurs a square loss of more than EQ%% in the hyperedge e

sample. As a result, the number of such hyperedges is less than

where the last inequality comes from w,*” > for all ¢ € S. In other words, each monochro-

M
€- (4k*t'n) -m < 77
As a result, in total, the number of monochromatic hyperedges for the coloring x is less than v M.

This concludes our proof. O

With the above reduction ready, Theorem 15 and Theorem 16 follow easily from known results
on hardness of coloring. For Theorem 15, we may use the (classic) NP-hardness of coloring:

Theorem 18 ([Lov73, Sto73]). For any k > 2, deciding whether a given hypergraph G is k-colorable
18 NP-hard. Furthermore, this holds even when G has mazrimum edge size at most 3.

Proof of Theorem 15. We reduce from hardness of coloring in Theorem 18. Let G = (V, E) be
the input hypergraph whose hyperedges are of size at most 3. By applying the reduction from
Lemma 17, we get a set of samples {(x;,¥;)}icm)- Lemma 17 guarantees that, if the graph is -
colorable, then there is a sum of k ReLUs ) €k [w’ x|, with w!,..., wF € B that realizes these
samples. On the other hand, if G is not k-colorable, then the soundness guarantee of Lemma 17
.1 . UM 1 _ 1
implies that any sum of £ ReLUs incurs an average square error of at least 1557235 % = @000 Nar
Hence, the bounded sum of & ReLLU Training problem is also NP-hard. ]

Remark 1. If we plug in hardness of approximate coloring (e.g. [DRS05, Bhal8]) to our reduc-
tion instead of the hardness of exact coloring in Theorem 18, then we can actually get a stronger
soundness where the constructed samples are not realizable even for any sum of k' ReLUs for any
constant k' > k. In fact, using the hardness of approzimation of coloring in [Bhal8], k' can even
be taken as large as (logn)'—°(),
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We note, however, that such strong soundness does not hold for the problem of bounded k-ReL U
Training (with possibly negative coefficient). In particular, our gadget in Lemma 21 has a soundness
guarantee that only holds against k-ReLU, but not even (k + 1)-ReLU. It remains an interesting
open question to extend such stronger soundness to this case as well.

We now move on to prove our running time lower bound (Theorem 16). To prove this result,
we will use the following running time lower bound, which is explicit in [Pet94]:

Theorem 19 ([Pet94]). Assuming Gap-ETH, for any k > 2, there exists v > 0 such that the
following holds. There is no 2°N) time algorithm that can, given an N-vertex (k + 1)-uniform
hypergraph G, distinguish between the following two cases:

e (Completeness) G is k-colorable.
e (Soudness) Any k-coloring of G violates more than v fraction of its hyperedges.

We remark that, strictly speaking, Petrank only proved the above theorem in the case of k = 2,
for which the problem of 2-coloring 3-uniform hypergraph is equivalent to the so-called Max NAE
3SAT, which was proved to be hard to approximate in [Pet94, Theorem 4.3]; the reduction is a
linear time reduction from the gap version of 3-SAT, which yields the running time lower bound
we stated above. Nonetheless, it is also very simple to generalize the result to the case k > 2. We
sketch the argument in Appendix D.1.

Proof of Theorem 16. We reduce from hardness of coloring in Theorem 18. Let G = (V, E) be a
(k + 1)-uniform hypergraph. By applying the reduction from Lemma 17, we get a set of examples
{(xi,¥i) }iefm). Lemma 17 guarantees that, if the graph is k-colorable, then there is a sum of k
ReLUs Zje[k] [w/ - x|, where w!,... , w¥ € B" that realizes these samples. On the other hand, if
any k-colorable of G results in at least v fraction of the hyperedges being monochromatic, then the
soundness guarantee of Lemma 17 implies that any sum of £ ReLLUs incurs an average square error
of more than € := 55725 % =0y (%)

Hence, if there is a 2°(1/9poly(n)-time learning algorithm for 2-ReLUs (in the realizable case)
to within square error of ¢, then we can distinguish the two cases in Theorem 19 in time 2°V) time.
By Theorem 19, this violates Gap-ETH. O

D.1 On hardness of coloring

In this section, we briefly sketch the proof of Theorem 18. First, Theorem 4.3 of [Pet94] immediately
implies the following.

Theorem 20 ([Pet94]). Assuming Gap-ETH, there exists v > 0 such that the following holds.
There is no 2°N) time algorithm that can, gwen an N -vertex S-uniform hypergraph G, distinguish
between the following two cases:

o (Completeness) G is 2-colorable.
e (Soudness) Any 2-coloring of G violates more than 7y fraction of its hyperedges.

We may now prove Theorem 18 as follows.
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Proof Sketch of Theorem 15. Given an N-vertex 3-uniform input hypergraph G = (V,E) from
Theorem 20. We create a new hypergraph G’ = (V’, E’) where V' is simply V together with k& — 2
additional “dummy vertices” (i.e. V' =V U{u1,...,ur—2}). We then let E' = {eU{uq,...,up_2} |
e € E}. Tt is simple to check that, for any v € [0, 1], there exists a k-coloring of G’ with v fraction
of edges being monochromatic if and only if there exists a 2-coloring of G with v fraction of edges
being monochromatic. O

E Handling Negative Coefficients: Hardness of k-ReLU Training

In this section, we show that our hardness from the previous section can be easily extended to the
case where the coefficients in front of each ReLLU unit is allowed to be negative. Specifically, we
will prove Theorems 4 and 6 here.

The main gadget used to translate our results from the non-negative coefficient case to the more
generalized case here is just a set of points that can be realized by a weighted sum of £ ReLLUs only
when all the coefficients are positive, as stated below.

Lemma 21 (Main Gadget). For any k € N, there exists a set of samples S = {(Xi, i) Yaepm) <
B x [0, k] and a positive real number T € RT such that

e (Completeness) The samples can be realized by 3 ;1) [W7 - %], for some W',... w* ¢ BF.
e (Soundness) For any w',...,.w* e RF, a € {~1,1}"\ {1;}, L(Ww!,..., wF a;5) > 7.
Moreover, the set S can be constructed in time 20%).

We will construct our gadget in the above lemma in Section E.1. Before we do so, let us use
it to prove Theorem 4. The main idea is simple: we start from the NP-hard instance from the
non-negative weights case and extend the dimension by k (where we simply add k zeros to the end
of each sample). Then, we construct additional samples using the gadget (Lemma 21); the gadget
samples are embedded in the last k coordinates and the remaining coordinates are just zeros. The
key observation here is that, if a weighted sum of £ ReLLUs with negative weights is used, then it
must incur the error from the soundness of Lemma 21. Otherwise, we are back to the case where
all coefficients are non-negative, for which we already know the hardness.

At this point, we would also like to remark that, while in all our proofs we only consider constant
k> 2, we can in fact take k to be as large as O(logn) for Theorem 4. The bottleneck here is the
construction time 29%) of the gadget in Lemma 21; since we want this to be polynomial time, we
can take k to be at most O(logn).

Proof of Theorem 4. Let S = {(xi,¥i)}icim) Where x; € {0,1}" be the NP-hard instance from
Theorem 15, and let S = {(X4, 7i) biepm) where x; € B* be the samples from Lemma 21. We
construct the multiset of new samples S = {(x;, ¥i) Yic[n) Where X; € B" as follows.

o Let n =n+k and m =m +m.
e For every i € [m], we add m copies of the labelled sample (x; o O, 0.5y;) in S.

N

e For every i € [m], we add m copies of the labelled sample (0,, o X;,0.57;) in S.
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(Completeness) Suppose that {(x;, yi) }ic[m) are realizable by a sum of k-ReLUs } ;1 [wi - x] 4

where wl

,...,w* € B". Recall also from Lemma 21 that the samples {(%;, Yi) biepm) can be realized
by a sum of k-ReLUs Zje[k][wj - %]y where w!,...,w* € B¥. For every j € [k], let W/ =
0.5w7 0 0.5w7. Tt is easy to check that |[W'|,...,|[W*|| < 1 and that the constructed samples can

be realized by the k-ReLU 3~ cpn[W? - X].

(Soundness) Suppose that any sum of k-ReLUs incurs an average loss of at least on the

1
poly(n)
samples {(x;,yi) }ie[m). We will show that any weighted sum of k-ReLUs }_;y a;[W; - X]4 incurs a

loss of at least P0+() on the constructed samples {(X;, J;) }ic[)- Consider the following two cases:

y(n
® a; = - =a; = +1. In this case, the assumption on {(x;,y;) }i[m) implies that the weighted
sum of k-ReLUs incurs an average loss of at least m on the samples {(x; 00, 0.5¥;) }ic[m]-

Since (the copies of) these samples contribute to half of the total number of constructed
samples, we have that the weighted sum of k-ReL.Us incurs an average loss of at least % .
on the constructed samples {(X;,¥i) }ic[m)-

1
poly(n) =z poly(n)

e a; = —1 for some j € [k]. In this case, the soundness of Lemma 21 implies that the weighted
sum of k-ReLUs incurs an average loss of at least 7 on the samples {(0,, o X;,0.57;) }icjm)-
Since (the copies of) these samples contribute to half of the total number of constructed
samples, we have that the weighted sum of k-ReLUs incurs an average loss of at least 0.57
on the constructed samples {(X;,¥;)}icpm)- Finally, recall that 7 is a positive constant that
depends only on ¢; hence, 0.57 > 1/poly(n).

O

We remark that it is straightforward to see that, when plugging the above reduction into
Theorem 16, we also immediately get Theorem 6. We omit the full proof here, but note that the
main observation is that, the error incurred in the second case (a; = —1 for some j € [k]) is an
absolute constant that only depends on k. This means that, for any sufficiently small €, we are
forced to use a; = --- = a = 1, which takes us right back to Theorem 16.

E.1 Construction of the Gadget

We now move on to the construction of our main gadget (Lemma 21). Before we state the proof for
general k, let us first note that the case for k = 2 is incredibly simple: just create two samples (u, 1)
and (—u, 1) where u can be any unit vector. (This construction is in fact the same as a gadget
used in [BJW19].) These samples can be realized by the sum of 2 ReLUs [w'!-x], + [W?-X], where
w1 = u and wg = —u. To see that they cannot be realized by weighted sum of 2 ReLUs with a
negative coefficient [Wq - X|4 — [Wa - X4, observe that Wy - u or wy - (—u) must be non-positive,
meaning that it must output a non-positive value on at least one of u or —u. Hence, the samples
are not realizable by such a weighted sum of 2 ReL.Us.

The above example is a special case of a more general phenomenon: if we look at the “sign

pattern” (i.e. whether w! - %,... ,WF . % are positives), there can be as many as 2% such patterns;
2% — 1 such patterns may result in a positive output in the (positive) sum of ¢ ReLUs, with the
only exception being when wy - X,..., W, X < 0. However, if we look at the sign patterns for a

weighted sum of k ReLUs with at least one negative coefficient, then only at most 2¥ — 2 patterns
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can result in positive outputs. (For instance, if the coefficient of [v~vk -X]4+ is negative, then the sign
pattern w! - %,...,w* 1. % < 0 and Wj - X > 0 cannot result in a positive output.) Although we
do not use these bounds directly in the above samples for k = 2, we do use the fact that u and —u
cannot correspond to the same sign pattern. Roughly speaking, our soundness proof for the general
case below also proceeds by arguing that, since there are fewer sign patterns that result in positive
outputs when there is a negative coefficient, pigeonhole principle implies that some samples that
should not be from the same sign pattern must be from the same sign pattern when there is a
negative coefficient, which would lead to a large square error similar to the case k = 2 above.

To formalize our construction, recall that a set of vectors in R is said to be in general position
if any d of these vectors are linearly independent. We use B(x,r) := {x | [[x — x'|| < r} to denote
the ball of radius r around x. It is well known that for any d,t € N, x € R? and r € R*, it is
possible to construct a set of t vectors in B(x,r) that are in general position in poly(d,t) time.

Proof of Lemma 21. Let f(X) = [Z1]++-- -+ [Tx]+ be the sum of k-ReLUs, in which the j-th ReLU
weight vector w; is just the j-th standard basis vector. We construct our samples as follows:

e For every u € {—1,+1}%\ {~14}, let S, C B(m, 801) be the set of any 2* - k points in

general position. (As stated before the proof, this can be constructed in 20(k) time.)
o Let S :=Uyeq_1,413#\{-1,} Su- The samples are (X, f(x)) for all x € S.

Before we prove the completeness and soundness of the gadget, we first define the real number
7 that will be used in the soundness. We let

0.1 )
T = -min ¢ 1, - X
K[S| we (-1 A (“1) [|w || 1 Z v - x|

SHCSu,|ShI=k x€S,,

A priori, it might not be clear that 7 has to be positive. To see that this is the case, observe
that inf) =y ersa |w - x||? is exactly equal to min;j— )‘3 where )\; is the j-th eigenvalue of
the (k x k)-matrix whose rows are x € S;. Since the vectors in Sy are in general position, this
matrix must be full rank, which implies that all its eigenvalues are non-zero. As a result, we have
inf =1 Dxes, [|W- x||? > 0, which in turn implies that 7 > 0 as desired. (Note here that 7 only
depends on k and our choices of {Sy}u-)

(Completeness) By construction, the samples are realizable by f, which is a sum of £ ReLUs.

(Soundness) We now consider any weighted sum of k ReLUs, such that at least one of the
coefficient is negatlve Without loss of generality, we may assume that this is a function of the
form g(x) = Z? WXy — Z?:k' +1[W7 - %]y for some non-negative integer &’ < k. We will show
that ¢ incurs an average loss of at least some positive constant. To do so, we define the following
notations: let sgn(z) = 41 if z > 0 and 0 otherwise. For every “sign pattern” s € {0,1}*, let
Ps; C RF denote the subsets of points X € R* such that sgn(Ww/ - Xx) = s; for all j € [k]. Now,
consider the following two cases:

e CaseI: (Py,,.. 00U Po00,.01)) NS # 0. Let X be any element of (Pg,....0,0)U Pl0,0,....0, 1)) nSs.
From % € S, it is simple to check that!'” f(x) > ?/— However, from x € P(O 0,.,0,0)Y%0,0,...0,1)>

In particular, if X € Sy and u; = 1, then we must have &; > 0.4/vk, which implies that f(%) > 0.4/Vk.
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we have g(x) < 0. Hence, g must incur an average square loss of at least ﬁ . %, which is at

least 7 by the definition of the latter.

e Case II: (Poy,...00) Y P0,0,.,01) NS =0.

Fix any u € {—1,+1}%\ {=1;}, since |Sy| = 2¥ - k and Usefoye s = R”, there must exists
a sign pattern sy such that |Sy N Ps,| > k. From the assumption of this case, we must also
have that s, # (0,0,...,0),(0,0,...,0,1).

As a result, by pigeonhole principle'®, there exists two distinct u',u? € {—1, +1}*\ {-1,}
such that s;1 = s,2. Let s* = s1 = s,2; we have that |Ps« N Sy, |[Ps« N Sy2| > k.

Furthermore, observe that, for all X € Ps«, we have

k' k
gF) = _si-wlx— ) sTow %

j=1 j=k'+1
K’ k
= sj wl — E % wl X
]:1 j:kl+1
=w"-x,

J J
error incurred by g on the constructed samples is at least

! . .
where we define w* = (Z?Zl sE-wl — Z;?:k,ﬂ sk w3>. As a result, the average square

% Z (f(x) - g(i))z = ﬁ Z (f(x) —w*- 5())2 (18)

X€E Py« O(Su1 Usug) XE Py« O(Su1 USuz)

Next, observe that, for all X € S,1, we have f(X) = sgn(u') - x where define sgn(u) as
(sgn(uj))jepw- Similarly, for all X € Sz, we have f(X) = sgn(u?)-x. Moreover, since u' # u?
both belong to {£1}¥, we must have || sgn(u') — sgn(u?)|2 > 2. From this, we must have
either |[w* —sgn(u')|| > 1 or ||[w* — sgn(u?)|| > 1; without loss of generality, we assume the
former. We may lower bound the right hand side term in (18) by

1 e - 1, ~
BRSO R D DI N

X€E Py« ﬂSul X€E Py ﬂSul

>T

ey )

where the first inequality follows from || sgn(u') — w*|| > 1 and the last inequality follows
from |Ps< N Sy1| > k and from our definition of 7 (especially the second term with u = u').

Hence, in both cases, we have that the average squared error incurred by g must be at least T,
which concludes our proof. O

®Note that there are 2% — 1 pigeons and only 2¥ — 2 holes.
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F Training and learning algorithms

In this Section, we describe algorithms for learning and training RelL.Us. We begin in Section F.1
by giving a simple training algorithm, whose running time is ostensibly super-polynomial. Then,
in Section F.1, we define the learning problem and show, using standard generalization arguments,
that in fact the aforementioned training algorithm gives the claimed running time lower bound (in
Theorems 3 and 6).

F.1 A Simple Training Algorithm

In light of the NP-hardness from the previous sections, a polynomial time algorithm for training
depth-2 ReLUs do not exist (unless P = NP). Nevertheless, it is still possible to train the ReLUs
in super polynomial time. For instance, [ABMMI18] gives a simple algorithm that runs in time
n@%m) and output the optimal training error (to within arbitrarily small accuracy). Below, we
observe that their approach also yields an 2™ . poly(n,m, k) time algorithm. Before we proceed
to the statement and the proof of the algorithm, we remark that, the NP-hardness proof from
Section D in fact implies that, assuming the Exponential Time Hypothesis (ETH) [IP01, IPZ01]'?,
the bounded k-ReLU training problem cannot be solved exactly in 2°(™ time for any constant
k > 2. Hence, the dependency m in the exponent is tight in this sense. However, it is unclear
whether the dependency on k can be improved.

Lemma 22. There is an 2FH™) . poly(n, m,1/6, C)-time algorithm that, given samples {(x;, Yi) Yiem)

where x; € R™ and an accuracy parameter § € (0,1), finds the weights wq,...,wy € B" a €
{—1,1}* that minimizes L(w',..., w¥* a;S) up to an additive error of 5. We assume the bit com-
plexity of every number appearing in the coordinates of the x;’s and y;’s is at most C.

Proof. First, we iterate over all possible a € {—1,1}*. Moreover, for each ReLU term [(w;, ;)]
guess whether it equals 0 or (wj,x;) + b; and replace the term in the error function accordingly.
Furthermore, if the guess [(w;,x;)]+ = 0 was made then add the linear constraint (w;,x;) < 0.
Else, add the linear constraint (w;,x;) > 0. After all guesses are made we get a convex optimization
program with linear constraints. It is well known that such a convex optimization problem can
be solved in time polynomial in n,m, 1/, C using a separation oracles and the ellipsoid algorithm
(see for example, [B¥15, Section 2.1]). Since the number of guesses is at most 2¥ - (2™)* the claim
follows. O

F.2 Learning k-ReLUs

We will now use the above training algorithms to give learning algorithms for ReLLUs. We follow
the agnostic learning model for real-valued function from [Hau92, KSS94]. A concept class C : Y%
is any set of functions from X to ). We say that a concept class C is properly agnostically learnable
with respect to loss function ¢ : Y x Y — RT if, for every 6,e¢ > 0, there is an algorithm A such
that, for any distribution D over X x ), takes in independent random samples from D and outputs
a hypothesis h € C such that, with probability 1 — ¢, the following holds:

L(h;D) < Iniél L(c;D) + €
ce

YETH states that 3SAT with n variables and m = O(n) clauses cannot be solved in 2°(™ time.
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where L(f; D) := E(x,y)~pll(f(x),y)] is the expected loss for f over D. Furthermore, if X C R"
and the algorithm A runs in time polynomial in n and 1/4, then C is said to be efficiently properly
agnostically learnable. Throughout this section, we only consider the quadratic loss function (i.e.,
0(y,y') = (y —y')?) and this will henceforth not be explicitly stated.

The concept classes we consider are the classes of sums of k¥ ReLUs, where each coefficient has
magnitude at most one, and the distribution D is allowed to be any distribution on the ball. More
specifically, the class k-ReLU(n), which represent the sums of k ReLUs, is defined as follows:

Definition 5 (k-ReLU(n)). For any n,k € N and any w',...,w* € R",a € {-1,1}*, we use
RELUw1 k@ B" = [~k k] to denote the function RELUg1  wk o(X) = Zle a;j[(wj,x)];. Let
k-ReLU(n) denote the class {RELU 1 oo | W' ..., wh € B ae {-1,1}}.

We show that, for any fixed number of RelLUs k, the class above can be efficiently agnostically
properly learned, as stated below.

Theorem 23. For any n,k € N, ReLU(n, k) can be efficiently agnostically properly learned for the
quadratic loss function in time 20°/<) . (n/8)°0) time.

When the sum of RelLU’s is realizable, we can get better running time both in terms of k, e:

Theorem 24. For any n,k € N, ReLU(n,k) can be efficiently properly learned in the realizable
case for the quadratic loss function in time 20(k* /elog? (k/c)) . (n/8)°W) time.

We remark that learning algorithms immediately imply training algorithms, by simplying letting
D be the uniform distribution on the input set of labelled samples S = {(x;,¥i)}ic[m). Thereby,
Theorems 23 and 24 imply Theorems 2 and 5, respectively.

F.2.1 Generalization Bounds

Before we get to our proofs, we state the necessary generalization bounds.

Theorem 25 ([BM02]). Let D be a distribution over X x Y and let £ : Y x Y — R be a b-bounded
loss function that is L-Lispschitz in its first argument. Let F C (Y")* and for any f € F, let
L(f; D) := Exy)~p[l(f(X),y)] and L(f;S) = LS U(f(xi), i), where each sample (x;,y;) € S
1 drawn independently uniformly at random according to D. Then, for any § > 0, with probability
at least 1 — 3, the following is true for all f € F:

L(FiD) = L(F:S)| < 4-L-Ron(F) +2-b- 1/ 2B (19)

m

where Ry, (F) is the Rademacher complexity of the function class F.

While the above bound is generic and easy to apply it turns out to be not tight, especially when
L(f;S) is small. Below we list such a bound from [SST10]; for simplicity of presentation, we only
state the bound when L£(f;S) = 0 which suffices for us. To state the bound, we also require the
notion of smoothness of the loss; we say that a loss £ is H-smooth if it is differentiable in the first
variable and the derivative is H-Lipchitz.
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Theorem 26 ([SST10]). Let D, S, ¢, F, L, R (F) be as in Theorem 25. Furthermore, assume that
£ is H-smooth. Then, for any 6 > 0, with probability at least 1 — §, the following is true for all
f € F such that L(f;S) = 0:

L(f;D)<C (H log3 m - R (F)? + M) , (20)

m
where C' > 1 is an absolute constant.

To see the differences between Theorems 25 and 26, notice that, if we ignore the second term
in (20) for the moment, we only require m = Oy 5(1/€) to get L(f; D) < € in the latter whereas the
former would need m = Oy, 5(1/€%). This will indeed result in the difference in the running time of
the learning algorithms for k-ReLUs in the realizable versus agnostic case.

Finally, we also use the following bounds on the Rademacher complexity:

Theorem 27 ([KSTO08]). Let X C B™ and let W = {x — (x,w) | |[w||2 < 1}. Then,
Rin(W) < V/1/m.
Fact 1. Let Fy, Fa CRY be any function classes and let F = {f1 + fo | f1 € F1, f2 € Fa}. Then,
Rin(F) < R (F1) + R (F2).

Theorem 28 ([BM02, LT91]). Let 1) : R — R be Lipschitz with constant Ly, and suppose that
¥(0) = 0. Let Y C R, and for a function f € Y¥, let ¢o f denote the composition of ¢ and f. For
FCY¥ letpoF ={of|feF}. It holds that Ry (o F) < 2 Ly - Ry (F).

F.2.2 Properly Learning ReLLUs: The Agnostic Case

Our proof of Theorem 23 follows by an application of a standard generalization argument to bound
the sample complexity given the algorithm in Lemma 22. It turns out that in our case, the number
of samples needed only depends on k and e (and not the dimension n) due to boundedness of our
networks. Hence, by applying the algorithm from Lemma 22, we immediately get Theorem 23.

We now proceed to prove Theorem 23. For ease of presentation, when we invoke the algorithm
from Lemma 22, we will ignore the accuracy parameter § and pretend that the algorithm output
an actual optimal solution. The presence of § only adds an additive term which we can make
sufficiently small.

Proof of Theorem 23. First, let us describe the algorithm. Given samples S = {(x;, ¥;) }ic|m] Where

. {1024 k(14 log(l/d))—‘
€2 ’

We use the algorithm from Lemma 22 to solve for wy, ..., wg,a that minimizes the training error
for the m samples. Then, we simply output the hypothesis A = RELUw,, .. w a-

Clearly, the algorithm is a proper learning algorithm. Furthermore, the running time is 20+ poly(n,m) =
20 /) poly(n,m,1/6) as desired.

Thus, we are left to bound the error L(h; D). To do this, first, observe that, from Theorem 27 and

Theorem 28, we have R,,(1-ReLU(n)) < \/% Hence, from Fact 1, we have R,,,(k-ReLU(n)) < %
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Now, observe that, for the region [—k, k] x [k, k| the loss function £(y',y) = (v — y)? is (2k)-
Lipschitz in the first argument and (4k%)-bounded. As a result, from Theorem 25, the following
holds for all f € k-ReLU(n) with probability at least 1 — §:

2k log(1/6) e
D)= L(f:5)|<4-(2k) —=+2-(4k?) - | =—LZL < = 21
LUSD) = (8 <4 (2h) - =+ 2 (ak) [ < (21)
where the second inequality comes from our choice of m.
Let fopr € k-ReLU(n) be the minimizer of £(f;D). Since h minimizes the training error,
L(h; S) < L(fopr; ). (22)

As a result, we have
L) S £059) + £ C Lifors ) + £ 2 LfopriD) + e = B S5D)
D) < LS +5 < LlforriS) 45 < LlforriD)+e= | min  LED) )+

which concludes the proof. O

The results above should be compared to those of [GKKT17] who showed similar learnability
results as above, except that their algorithm is improper. That is, their algorithm would output
a (modification of) low-degree polynomial, as opposed to sums of ReLUs (which our algorithm

outputs). We remark here that, while our algorithm is advantageous to their in this sense, their
algorithm is faster extends to a larger class of networks.

F.2.3 Properly Learning ReLLUs: The Realizable Case

Next we prove Theorem 24. For the realizable setup we can get better guarantees by using the
improved generalization bound from Theorem 26.

Proof of Theorem 2. First, let us describe the algorithm. Given samples S = {(x;, ¥;) }ic[m) such
that

€ €

[1060 - k%1log®(10Ck/e€) N 8k2log(1 /5)}

where C is the constant from Theorem 26.

We use the algorithm from Lemma 22 to solve for wy,..., wg,a that minimizes the training
error for the m samples. Then, we simply output the hypothesis h = RELUw,, .. w;,a-

Clearly, the algorithm is a proper learning algorithm, and the running time is 20(m) poly(n,m) =
20((k3/6)'1°g3(k/e))poly(n, m,1/6) as desired. Furthermore, since S is realizable, we must have L(h; S) =
0.

Finally, we will apply the generalization bound from Theorem 26. To do so, first recall from
the proof of Theorem 23 that R,,(k-ReLU(n)) < 5—% and that, in the region [—k, k] x [—k, k] the
squared loss function is (4k?)-bounded. Furthermore, the squared loss is 2-smooth. As a result, we
may apply Theorem 26 which implies that, with probability 1 — d, we have

2 2,
L(hD) < C <210g3m.&+w> e
m m

where the inequality follows from our choice of m. O
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