
REVIEW

Characterizing biological responses to climate

variability and extremes to improve

biodiversity projections

Lauren B. BuckleyID
1*, Emily Carrington1, Michael E. DillonID

2, Carlos Garcı́a-RobledoID
3,

Steven B. Roberts4, Jill L. Wegrzyn3, Mark C. Urban3

1 Department of Biology, University of Washington, Seattle, WA, United States of America, 2 Department of
Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, United States of

America, 3 Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United
States of America, 4 School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, United

States of America

* lbuckley@uw.edu

Abstract

Projecting ecological and evolutionary responses to variable and changing environments is

central to anticipating and managing impacts to biodiversity and ecosystems. Current model-

ing approaches are largely phenomenological and often fail to accurately project responses

due to numerous biological processes at multiple levels of biological organization responding

to environmental variation at varied spatial and temporal scales. Limited mechanistic under-

standing of organismal responses to environmental variability and extremes also restricts

predictive capacity. We outline a strategy for identifying and modeling the key organismal

mechanisms across levels of biological organization that mediate ecological and evolutionary

responses to environmental variation. A central component of this strategy is quantifying

timescales and magnitudes of climatic variability and how organisms experience them. We

highlight recent empirical research that builds this information and suggest how to design

future experiments that can produce more generalizable principles. We discuss how to create

biologically informed projections in a feasible way by combining statistical and mechanistic

approaches. Predictions will inform both fundamental and practical questions at the interface

of ecology, evolution, and Earth science such as how organisms experience, adapt to, and

respond to environmental variation at multiple hierarchical spatial and temporal scales.

Introduction

The problem: Unpredictability in climate change biology

Biological responses to climate change vary dramatically among populations and species to the

degree to which some have argued that they are inherently unpredictable [1,2]. Simple

approaches to predicting the responses of individual populations or species exhibit mixed per-

formance. Shifts in species’ distributions are often poorly predicted by statistical models corre-

lating either species occurrences to their environment [3] or traits to the magnitude of species’

response [4]. Some species predicted to become extinct from climate change have persisted
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through adaptation [5], whereas other species became extinct before their threat was known

[6]. Further, biologists are just beginning to understand how genetic and epigenetic variation

alters adaptation and resilience [7].

Although the responses of well-studied organisms to average conditions are generally

known, the role of environmental variability in shaping organismal performance and fitness is

still poorly understood [8,9]. Organisms integrate variability in different ways and apply strate-

gies including microhabitat choice or plastic changes in physiology to avoid low-fitness condi-

tions [10]. Along with variability, organisms must also contend with an increasing incidence

of climate extremes, which are when variability crosses a threshold [11]. However, responses

to variability and extremes are not often understood, tested properly, nor incorporated into

predictive modeling [12]. Improving projections of biological responses is imperative for pol-

icy and management since the biodiversity and ecosystem impacts of increases in variability

and extremes are accelerating [13,14]. Accurately predicting climate change impacts is essen-

tial to maximize the effectiveness of limited conservation and management resources [15].

The limited understanding of biological responses to extremes also stems from constraints

in quantifying the incidence of climate extremes. For example, approaches to quantifying

marine heat waves have only recently been developed and have uncovered increases in fre-

quency and duration over recent decades [16] with implications for species, communities, and

ecosystems [17]. Coupling the recent advances in threat quantification with information on

organismal sensitivity offers a path forward in predicting biological responses to thermal

extremes and variability [18].

Here we propose an approach to tackle the problem of unpredictability in climate change

biology that focuses on characterizing and generalizing the mechanisms by which organisms

respond and adapt to environmental variability. We aim to engage and inspire synergies

among physical scientists quantifying environmental variability and extremes, molecular and

organismal biologists probing the biological mechanisms underlying responses to environ-

mental variability, and computational researchers working to improve biodiversity projec-

tions. We first overview existing biodiversity projection approaches and challenges that

limited their performance. We then present and illustrate a strategy for characterizing key

organismal mechanisms and incorporating them in predictive models. We address questions

essential to improving projections of biodiversity responses to climate change: How can we

tractably identify the key organismal mechanisms across levels of biological organization that

mediate ecological and evolutionary responses to environmental variation? How can we feasi-

bly and generally include these mechanisms in predictive models?

Biodiversity projection approaches and challenges

The ongoing and looming biodiversity impacts of climate change are well established. How-

ever, the definitive proportions of species estimated to face extinction in the IPCC (Intergov-

ernmental Panel on Climate Change) WGII and the IPBES (Intergovernmental Science-Policy

Platform on Biodiversity and Ecosystem Services) reports are based on coarse modeling

approaches with high uncertainty. For example, one study that informed the IPCC report proj-

ects that with emissions pledges corresponding to ~3.2˚C warming, ~49% of insects, 44% of

plants, and 26% of vertebrates will lose>50% of their ranges and thus face a high risk of

extinction [19]. In contrast, overall rates of extinction are estimated at 9% for a similar rise in

temperature when aggregated over 131 studies implementing a spectrum of modeling

approaches and a more conservative ~95% range loss threshold for extinction risk [13].

These and other biodiversity projections which inform policy recommendations are mostly

generated by correlative niche models [14]. In this approach, species’ locality data are

PLOS CLIMATE Biodiversity responses to climate variability and extremes

PLOSClimate | https://doi.org/10.1371/journal.pclm.0000226 June 16, 2023 2 / 19

https://doi.org/10.1371/journal.pclm.0000226


correlated with underlying environmental data to estimate an environmental response surface,

often termed a “climate envelope” [20]. Correlative niche models can be readily implemented

using limited data and perform well on some tasks such as describing existing species distribu-

tions [21]. However, they often perform poorly in extrapolation, due to issues such as novel cli-

mates, changing species interactions, complex relationships between environmental variables,

or interactions between environment and genotype/epigenotype [3]. Yet, alternative modeling

approaches are not sufficiently general or parameterized well enough to make biodiversity pro-

jections at the scales desired to inform policy. Thus, we are ill-prepared to understand which

species are under the greatest threats from climate change and design mitigation strategies to

prevent their loss.

One way to improve our ability to predict climate change responses is to create models that

incorporate the links between environmental variation, evolutionary history, genetic and epi-

genetic variation, functional traits, and subsequent demographic responses [14,22,23]. Func-

tional traits are organismal properties that affect individual performance, including survival,

development, growth, and reproduction [24]. This functional approach builds from a growing

body of research that suggests that linking physiological traits to realistic environmental varia-

tion is often central to understanding ecological and evolutionary dynamics [11,25]. Moreover,

an understanding of realistic genetic and epigenetic contributions to the phenotype is needed

to predict changes to functional traits [7,26–28]. Lastly, because traits link multiple biological

levels, functional trait models can reveal how responses to environmental variability integrate

across multiple levels of biological organization, including ecosystem properties.

Two classes of models leverage functional traits to better predict responses to novel and var-

iable environments. Mechanistic niche models scale up from functional traits and their envi-

ronmental interactions to performance and ultimately fitness and are often discussed as a

means of improving predictions of climate change responses (Fig 1). Researchers have devel-

oped mechanistic niche models that provide proof-of-principle for a variety of species [22].

However, these models are seldom applied widely because we usually lack the high-quality

data to parameterize them for most species on Earth [14]. Moreover, the lack of a flexible, gen-

eral modeling framework creates a roadblock for those without the time or resources to

develop a model crafted for an individual species or ecosystem [15].

Hybrid niche models offer a practical alternative to purely mechanistic niche models. They

incorporate key biological mechanisms, but use computational pattern-based approaches to

inform uncertain or unknown parameters or relationships. Despite the benefits of this more

flexible, mechanistic approach, these models have seldom been implemented [14,29–32]. Con-

sequently, a potentially important process-based tool for predicting biological responses to cli-

mate change remains underdeveloped and under-used.

Here, we seek to define a middle ground by developing models that are feasible to parame-

terize and implement computationally but capture the key biological mechanisms needed to

predict responses to climate variability and change [14,30,32–35]. We follow the recommenda-

tions for creating interoperable biodiversity projection models that are developed with open,

reproducible, flexible, and integrative design principles [15]. Resultant models should account

for uncertainties in data sources, model structure, and outputs [36].

Environmental variability

Organismal and ecosystem processes respond to multiple climatic conditions at numerous

spatial and temporal scales ranging from minutes to millennia and meters to miles [8,37–39].

Yet, most ecological predictions rely on environmental variables, such as air temperatures,

measured at unrealistically large spatial and temporal resolutions relative to organismal
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processes as well as body sizes, movement distances, and generation lengths [38–41]. This mis-

match in scales reduces predictive accuracy by omitting variation at the scale of an organism’s

exposure [42,43] (Fig 2). Moreover, the non-linear responses of many biological processes to

environmental variation cause performance at average conditions to depart dramatically from

average performance over time [44,45]. Hence, we have yet to resolve the basic links between

organismal fitness and environmental heterogeneity and their scaling and incorporate these

insights into predictive models.

Examples are rapidly accumulating showing that variability and extremes can shape organ-

ismal and ecological responses to climate, with implications for distributions and diversity

[46]. An assessment of responses to climate and weather extremes across taxa found that the

majority of responses (including changes in body condition, fitness components, abundance,

and distribution) were negative, followed by many ambiguous responses [47]. Most cases of

neutral or positive responses were for species that benefit from disturbance. Short-term

weather was found to better predict bird distributions than long term climate averages [48].

Tolerance to thermal extremes better predicts Drosophila distributions than does the thermal

sensitivity of population growth [49].

The interaction of gradual climate warming and increasing extreme events is likely to exac-

erbate biodiversity impacts. Gradual warming can cumulatively stress organisms or elevate

environmental variability and extremes into a thermal range that severely impacts organisms,

which has been termed the press and pulse, respectively, of climate change impacts [50].

Fig 1. Correlative, hybrid, and mechanistic niche models for predicting distributions differ in their input, modeling approach, and output. Climate
inputs are usually several temporally-aggregated (e.g., quarterly, annually) gridded datasets for correlative models versus climate time series for mechanistic
models. Occurrence coordinates are input into correlative models whereas mechanistic models are parameterized with genotypes or phenotypes and other
biological information. Correlative models predict the probability of occurrence based on statistically relating the climate data to occurrences and then spatially
projecting the relationship. Mechanistic models explicitly model the processes by which organisms respond to the climate conditions. Often, empirically
measured performance curves are used to estimate survival and fecundity (bottom row). Fitness estimates as a function of genotype or phenotype are estimated
for each grid cell. Hybrid models meld correlative and mechanistic approaches. The most common strategy is to input biologically-informed layers into
correlative models (middle row), but other strategies include using biological information to inform statistical relationships or statistically estimating
parameters in process models.

https://doi.org/10.1371/journal.pclm.0000226.g001
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Thermal extremes, rather than gradual warming, appear to be driving insect responses to cli-

mate change, with implications for agriculture and biodiversity [51,52]. Heat extremes of the

early 21st century are projected to become routine during the late 21st century and will inter-

act with other weather extremes including drought and intense precipitation [53]. Organisms

that can capitalize on these increasingly common extremes will be the winners of climate

change, while those that cannot will be the losers. Yet, we still cannot predict which species are

winners or losers or when current winners will become losers [12, but see 54].

Organisms in many regions will experience combinations of environmental conditions that

are novel across their evolutionary history due to climate change [55,56]. However, linkages

between organisms and their environments that are estimated statistically without attention to

biological mechanisms are likely to extrapolate poorly across spatial and temporal scales and

Fig 2. A thermal image of an intertidal mussel bed reveals substantial thermal variation over fine spatial scales
(~1m, see visual image inset) as well as temperatures that exceed cool air temperatures due to solar heating.

https://doi.org/10.1371/journal.pclm.0000226.g002
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to novel environments [3]. Extrapolation requires a more holistic understanding of the numer-

ous physiological processes responding to multiple environmental cues at disparate spatial and

temporal scales. Additionally, the reshuffling of communities and other human-induced

changes is also exposing organisms to novel species interactions [57], but phenomenological

approaches tend to implicitly assume species interactions remain fixed [14]. Empirical and

theoretical work has largely focused on thermal and moisture sensitivity, but research is

increasingly highlighting the importance of considering how multiple environmental factors

interact to influence physiology and performance.

Thermal variability tends to increase overall performance, via the increase in biological

rates with temperature, until variability results in stressful temperatures [58]. Carryover effects

including plasticity and damage can influence what temperatures are stressful [59]. Timescales

of environmental variability relative to generation times and the duration of sensitive life

stages are known to influence whether organisms can respond to the variability via plasticity

or genetic adaptation [60]. In particular, high levels of unpredictable environmental variation

often will be associated with constitutive molecular stress responses and potential tradeoffs

with the strength of induced responses. The frequency and intensity of short term environ-

mental variation relative to seasonal variation can determine the extent of temporal fluctua-

tions in selection, the role of plasticity in altering selection, and resultant rates of evolution

[61,62]. Spatial and temporal behavioral shifts can substantially buffer organisms from expo-

sure to climate variability and change, which can slow thermal adaptation [41,43,59].

Comparisons of tropical and temperate elevation gradients have highlighted how organis-

mal sensitivity shifts in response to environmental variability. Tropical organisms are thought

to be particularly sensitive to climate change due to the evolution of thermal specialization to

relatively constant, warm climates [63]. However, finer-scaled analyses indicate that high tem-

poral environmental variability also can produce impacts of a similar or greater magnitude in

temperate areas [64,65]. The survival of tropical organisms may be particularly affected by

increasing variability. Increasing temperatures increase ectotherm energetic costs and decrease

activity times at tropical or low-elevation sites [66]. Conversely, increasing temperatures may

increase energy balance (and thus fecundity) at high-elevation sites [67].

Biological variability

Heterogeneous responses result from both differences in how much climate change organisms

experience and how sensitive they are to it [60]. Many efforts to forecast responses to climate

change focus on species, but within- and across-population variability can be pronounced and

drive heterogeneous responses. Recent methodological advances facilitate linking genotype to

phenotype and examining interactions with the environment, but generalizing these linkages in

a manner that accounts for environmental and biological variability has been a challenge [26].

Organisms are also differentially sensitive to environmental variation in a variety of ways

that can alter responses [68]. For example, plasticity is a common means by which organisms

respond to predictable environmental variation in ways that enhance their fitness [69]. Pheno-

typic plasticity can facilitate evolution under certain circumstances by enabling persistence or

reducing variation in selection across time or space, but it can alternatively slow evolution by

buffering selection [69]. Epigenetics, the change in phenotypes without a change in genotype

due to the environment, is a primary mechanism contributing to phenotypic plasticity [7,70].

Genetic variation also could provide the means for populations to evolve changed traits or

different forms of plasticity to deal with environmental heterogeneity [26]. In particular, addi-

tive genetic variation in functional traits can provide the fuel for evolutionary responses that

can rescue declining populations assuming large enough initial population sizes [61].
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Evolutionary responses will occur proportional to this additive genetic variation, and this vari-

ation can be augmented especially by gene flow from populations already experiencing the

local conditions [61]. Populations often differ across climate gradients in their adaptations to

local conditions [28], and therefore species might harbor many of the important genetic vari-

ants necessary to survive future climates. The degree to which future responses to climate

change will involve genetic, epigenetic, or some combination of both often remains unknown,

yet is one of the most critical questions in climate change biology. The important point is to

research these forms of biological variability further and incorporate what we do know into

tractable models.

Making progress toward characterizing organismal responses to
environmental variability

Characterizing and modeling how organisms experience environmental variability can reduce

unpredictability in climate change biology. Identifying key timescales of environmental varia-

tion can inform the design of experiments investigating phenotypic and performance

responses [8]. The characterizations can aid in simulating and parsing responses to realistic

environmental variability. They can also be used to create variable environments without cur-

rent analogs, which can be simulated to robustly test organismal mechanisms thought to medi-

ate responses to variability.

Much of our understanding of organism-environment linkages currently derives from

unrealistic or poorly planned empirical measurements. Many organismal thermal responses

can be approximated by estimating thermal performance curves (TPCs) relating performance

to body temperature [71] (Fig 4A). TPCs, or more simply thermal tolerances [72], have gained

prominence as a tool for understanding physiological responses to variable temperatures

[63,64]. However, TPCs are usually derived from experiments conducted at constant tempera-

tures. Although some studies indicate that non-linear averaging techniques can use TPCs mea-

sured under stable conditions to accurately estimate responses to variable environments [73],

others find substantial deviations due to carryover effects such as acclimation and damage

[58,74]. Determining how TPCs can be measured, constructed, and applied to predict

responses to variability is an important objective [71].

Two primary strategies for constructing TPCs relevant to variable environments are 1)

devising statistical approaches to integrate across responses to environmental variability to

estimate TPCs and 2) conducting performance measurements in environmental conditions

with equivalent means but distinct patterns of environmental variation. Knowledge of

response times can inform how to temporally integrate physiological responses measured in

constant conditions to variable environments [25]. Promising statistical approaches for esti-

mating performance in variable environments include scale-transition theory, a form of non-

linear averaging [25,44,64]; an analytic framework [75] for distinguishing time-dependent

effects including stress, acclimation, and compensation; alternative TPC descriptors including

time-dependent shifts in response to acute stress [76]; and thermal death time models that

unify estimates of thermal tolerance limits [77].

Time series measurements using -omics or physiological markers are increasingly feasible

and can be used to assess the timescales of responses to environmental variation and clarify

why non-linear averaging sometimes fails [78,79]. A promising approach is linking assays

across levels of organization from genotype (SNP variation) to epigenome (whole genome

methylation) to transcriptome (RNA abundance) to biologically relevant small molecules

(metabolomics) to (energy and survival related) phenotypes [26]. Physiological (e.g., lipids)

and genomic markers (e.g., heat shock proteins) can expediently capture responses to
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environmental variation. For example, bees exhibit parallel geographic clines in thermal toler-

ance and gene expression [28], and metabolomic profiling revealed that butterflies exposed to

chronic warming shifted biochemical pathways involved in metabolism [80].

Case studies

We highlight cases where mechanistic or hybrid niche models have captured crucial biological

dynamics in response to environmental variability that would otherwise have led to inaccurate

results with correlative models (Table 1). We illustrate the process of quantifying exposure and

sensitivity to environmental variability for intertidal mussels (Mytilus spp.) (Fig 2). Intertidal

gradients are notable for dramatic shifts in environmental conditions at fine spatial (cm) and

temporal scales (min). Tidal cycles transfer organisms from cool, relatively constant aquatic

environments to more variable aerial environments often marked by pronounced solar heating

and desiccation [25,37]. Small differences in tidal height can dramatically alter the duration

and timing of aerial exposure, and complex interactions with other stressors (e.g., low salinity,

pH, oxygen) are common.

Techniques to quantify environmental variability at scales relevant to organisms (“organis-

mal climatology”, [37]) are increasingly feasible [40]. “Robomussel” physical models, which

have been extensively deployed [87], reveal body temperature clines that depart dramatically

from smooth latitudinal gradients. Indeed, thermal extremes are most pronounced at northern

latitude sites where long midday low tides often occur in summer [87]. Mussel body tempera-

tures at 3 tidal heights at a site in Oregon, USA revealed substantial variation, and deviations

from air temperatures (Fig 3A), that can be difficult to interpret. Fortunately, approaches

including frequency analyses [8] and extreme value statistics [88] can be used to characterize

key timescales and magnitudes of environmental variation relevant to organisms. Fourier

transforms can decompose variation into sine waves of different frequencies and the

Table 1. Examples of mechanistic or hybrid niche models that project different responses to climate change than
correlative niche models by accounting for biological responses to environmental variability. We focus on animal
examples since plant studies more commonly incorporate mechanistic approaches.

Mechanistic Niche Models

Insects: Fitness estimates show that beetle populations along a tropical mountain will shift from growth to decline
with a temperature increase of 2–3˚C [23]. Beetle populations lack the genetic variation to adapt to global warming
[27].

Insects: Temporal expansions of montane butterfly thermal opportunity in response to recent climate change have
generally offset survival impacts of thermal extremes. Phenotypic plasticity buffers fitness responses to
environmental variation to promote the evolution of wing solar absorptivity [62].

Reptiles: Fitness advantages of longer lizard reproductive seasons associated with climate change will be offset by
decreased summer survival of early life stages in response to thermal extremes [81].

Birds and mammals: Desert mammals have fared better through recent climate change than birds due to a greater
capacity to buffer thermal extremes [82].

Mammals: Koala distributions are limited by water stress associated with heat waves and rainfall timing.
Mechanistic and correlative projections of climate change responses diverged due to weather extremes and the
breakdown of correlations among climate variables [83].

Hybrid Niche Models

Corals: Correlative SDMs that account for thermal extremes exceeding a coral’s physiological tolerance project
greater habitat contractions in response to climate change [84].

Amphibians: Hybrid and mechanistic SDMs projected different current and future energetically suitable habitat for
salamanders than correlative models due to changes in resistance to water loss in response to thermal variability
[85].

Mammals: Correlative SDMs incorporating mechanistic predictors of pika surface activity times, which account for
behavioral buffering of environmental variability, predicted less habitat loss in response to climate change than
those incorporating only climate predictors [86].

https://doi.org/10.1371/journal.pclm.0000226.t001
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Fig 3. A) Robomussel physical logger daily maximum temperatures depart substantially from air temperatures (purple) during 2007 in Boiler Bay, Oregon,
USA (Data from [87]). Temporal variability is substantial and increases higher in the intertidal (color). B) A frequency analysis of the daily maximum
temperature data reveals that body temperature variation is pronounced at daily or circatidal [log(frequency) = 0], 2 week (tidal cycle apparent at the high site),
and annual time scales. C) We then apply a TPC for assimilation rate to 10 minute body temperatures at the lower-mid intertidal site and rolling averages at
coarser timescales (S1 Text). We omit the 10 minute data because estimated performance on many days ranges from 0 to the maximum. Even the coarser
temporal scale data demonstrate the importance of accounting for fine temporal scale variation when considering performance implications. Code and data for
analysis are available at https://github.com/lbuckley/VariabilityExtremesMussels.

https://doi.org/10.1371/journal.pclm.0000226.g003
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corresponding magnitudes indicate how timescales contribute to overall variation. Our focal

site reveals strong variation at intervals corresponding to short-term variability (diel, circati-

dal), tidal cycles (2 weeks), and annual variation (Fig 3B).

Experiments with intertidal mussels exemplify the need for caution when using perfor-

mance responses to constant conditions to predict responses to environmental variability.

TPCs vary both among organismal performances and with the magnitude of environmental

variation [89]. Short-term performance is generally measured without thorough consideration

of acclimation or thermal history [10,71]. Yet, feeding (clearance) rate TPCs for twoMytilus

species shift to warmer water temperatures in warmer seasons (Fig 4A). An experiment with

PacificM. trossulus found that neither short-term (feeding rate, byssal thread production) nor

long-term (growth, survival) responses to fluctuating water temperatures were well predicted

by nonlinear averages of performance in constant environments [74].

However, feeding responses to short-term (1-day) thermal fluctuations were used success-

fully to predict MediterraneanMytilus growth responses to constant and diurnally fluctuating

thermal regimes [91] (Fig 4B). Whether experimental temperature fluctuations were beneficial

or detrimental depended on the thermal environment. At the coolest mean temperatures, fluc-

tuations resulted in warm temperatures that accelerate growth without inducing thermal stress

(Fig 4B). When mean temperature approximated near-future heatwaves (23.5˚C), thermal

fluctuations resulted in stressfully warm temperatures that were detrimental to growth. How-

ever, when the mean temperature approximated end-of-century heat waves (26˚C), thermal

fluctuations provided relief from stressful temperatures that enhanced growth.

To roughly gauge the performance implications of temporal variation (assuming no carry-

over effects), we apply a TPC for assimilation rate [92, in 93] to 10-minute resolution body

temperature data at the lower-mid intertidal site. Assimilation is a key performance metric,

Fig 4. A) Clearance rate TPCs exhibit seasonal acclimation for mussel species (Data from [90]). B) Thermal fluctuations shift from augmenting to
detrimenting long-termM. edulis shell length growth as average temperatures increase to approximate future marine heat waves (Data from [91]).

https://doi.org/10.1371/journal.pclm.0000226.g004
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and we assume its temperature-dependency is maintained when the mussel emerges from

water. Estimates often vary within days from poor performance to maximum performance as

mussels experience fine temporal scale environmental variation as they move in and out of the

water. We use rolling averages to portray how averaging body temperatures from daily to

weekly to monthly masks variation in performance, particularly stressful periods that fall out-

side the critical thermal limits of the TPC (Fig 3C). The temporal aggregation highlights that

mean performance does not equal performance at a mean temperature due to non-linear

responses, which is a well-known mathematical outcome called Jensen’s inequality [25,44].

Indeed, assimilation estimates increase from 92 to 122 to 137 cal/day as performance is esti-

mated using ten-minute, daily, or monthly averaged body temperature data.

Experiments reveal mechanisms that drive deviations from our rough estimates. Both

reversible and irreversible (developmental) plasticity altered the thermal tolerance of Califor-

nia mussels (M. californianus) and the energetic cost of plasticity reduced growth [94]. Expo-

sure to a single heat extreme rapidly and persistently improvedM. californianus thermal

tolerance and survival of subsequent heat extremes [95]. Mussels from higher in the intertidal

(high variability) acclimated more [96]. Environmental histories (including parental exposure)

result in carry-over effects that alter bivalve phenotypes [97]. Both genetic and epigenetic vari-

ation determine the extent of environmental memory [70]. Environmental variability can

either mask or unmaskM. californianus physiological variation across levels of organization

by reducing or accentuating fitness differences, respectively [79]. Further characterizing time

series responses to environmental variation across levels of organization will be important to

characterizing biological responses.

Mechanistic models have clarified how environmental variability shapes mussel fitness and

demography, including by altering energy allocation. For example, allocation to energetically

costly byssus fibers, that can improve attachment and thus survivorship, trades off with energy

available for growth and reproduction [98]. Constraints onM. edulis distributions differ

among regions between acute thermal survival and cumulative energetics [99]. This study sug-

gests mechanistic models are likely needed when the thermal gap between performance failure

and mortality is large relative to environmental fluctuations, indicating distinct thermal limits

at acute and longer timescales [99]. Mechanistic models can also aid accounting for biotic

interactions. TPCs have been applied to assess the relative thermal sensitivities of performance

and energetics of mussels and their predators [93], but thermal history alters interaction rates

and thus also needs to be incorporated [100].

Overall, this case study illustrates how an in-depth understanding of the spatial and tempo-

ral scales of environmental variability and biological responses can be integrated into mecha-

nistic models that provide more realistic and accurate predictions for the future. Our case

study suggests that SDM projections could be improved by using daily or sub-daily gridded

environmental data to estimate body temperatures, which can depart substantially from air

temperatures averaged over longer periods or not accounting for microhabitat effects (see

approach below). Seasonal assimilation rates or other performance or fitness metrics thought

to limit distributions could be input into correlative SDMs to create a hybrid SDM. Correlative

SDMs and mechanistic calculations of mussel growth rates were integrated to identify thermal

limits on distributions used to forecast future distributions [101].

Toward models better accounting for organismal mechanisms

So how can we feasibly and generally include these organismal mechanisms, such as genetics

and plasticity, mediating responses to environmental variability in predictive models?

Responses to environmental variability are inherently difficult to incorporate in correlative
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niche models because their climate input is static climate layers that are un-linked to the man-

ner in which organisms experience the environment (Fig 1). In such cases, mechanistic models

can be used to provide biologically-informed input layers for correlative models that translate

environmental variability into performance measures via response functions, such as the activ-

ity time available to the organisms [102] (yielding hybrid models). Incorporating estimates of

extremes relevant to particular organisms (heatwaves and droughts) can be used to refine cor-

relative SDM output [103]. Another approach is to exclude areas identified as unsuitable by

mechanistic approaches (e.g., those subject to environmental extremes) from correlative SDM

output.

The climate inputs to these models should also be developed at the spatial and temporal

scales that are relevant to focal organisms. While most correlative models assume body tem-

peratures are equal to air or water temperatures, mechanistic models often include microcli-

mate models, which can scale conditions from sensor to organism height and estimate

unavailable variables such as surface temperature, and biophysical models for predicting body

temperatures and water balance [22,38,40]. Using the finest temporal scale of weather data at a

spatial scale consistent with home range or dispersal distance provides one starting point.

Aggregating organismal responses in an appropriate manner temporally will require decisions

about what time scale is most important for determining biological responses in a particular

species, depending on the degree to which behavior, acclimation, demography, or evolution

determine fitness.

An advantage of mechanistic models is that they can account for how genotypes and pheno-

types mediate responses to climate time series to determine organismal conditions and perfor-

mance (Fig 1). These linkages can account for phenotypic plasticity and behavior [10,41].

Experimentally identified determinants of fitness components (survival and fecundity) also

can be incorporated. Survival is often governed by acute stress events whereas growth and

reproduction are often determined by chronic environmental conditions (e.g., energy balance

across a season) [67]. Estimates of natural selection and genetic variation can be used to incor-

porate evolution in the models [24,62].

Mechanistic models have been developed and tested for particular taxa, but a concerted

effort is needed to develop modeling approaches that can be applied more generally [22].

Comparing responses to environmental variability across taxa, levels of organization, and loca-

tions based on genotypes, phenotypes, and life histories in mechanistic models will likely sug-

gest common principles that can support more general conclusions for similar species.

Nevertheless, a complete mechanistic understanding of the processes linking environments to

organismal fitness is likely to remain logistically and scientifically prohibitive for many non-

model species and systems [14]. Also, parameterizing these data-hungry models is likely to be

difficult and often will need to rely on assumptions or values taken from distant species.

Hybrid models offer an efficient way to build semi-mechanistic models that include key bio-

logical constraints to inform computational pattern-based models. However, these models

remain under-used and under-developed, with most hybrid models consisting of including

mechanistic predictors (e.g., activity times, water of energy balances, incidences or durations

of stressful environmental conditions) in correlative models [104].

Emerging biologically-informed data science approaches offer great potential to develop

new forms of hybrid SDMs. Such approaches can leverage accumulated biological and envi-

ronmental knowledge to generate projections to account for biological (e.g., energetic, func-

tional, evolutionary) constraints and processes [105,106]. For example, experimental data on

salinity and thermal tolerance was incorporated into a Gaussian Process Model to inform sta-

tistical modeling of seaweed distribution limits [107]. Bayesian hierarchical joint species distri-

bution modeling can be used to account for traits, phylogenies, and species interactions in
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estimating environmental responses [108]. New trait and range shift databases offer opportu-

nities to further develop machine learning approaches to improve the ability of traits to predict

climate change responses by accounting for thresholds, non-linearities, and interactions

[4,109]. Machine learning classification or regression tree approaches can account for the

influence of traits on distributions, for example of marine species [110]. Another promising

hybrid modeling approach is inverse modeling whereby model parameters can be inferred

from model endpoints such as species’ occurrences [30,32]. For example, Approximate Bayes-

ian Computation, or ABC, was used to estimate salamander overwintering survival based on

lake ice dynamics [111].

In our experience, few species, systems, or questions can be answered with a purely mecha-

nistic model given knowledge gaps of important parameters or functions. However, hybrid

models that leverage new machine learning and Bayesian techniques to estimate unknown

model features offer an efficient way to incorporate mechanisms in advance of empirical work

that fills in these gaps. Such work could eventually lead to more mechanistic approaches, and

thus all of this modeling should be viewed along a continuum and as a process. Moreover, we

advocate for ensemble forecasts that incorporate multiple predictions, ranging from correla-

tive to mechanistic, which often have higher accuracy than single models and allow for esti-

mating structural uncertainties (uncertainties due to model choice).

Conclusions

The current unpredictability in climate biology might often derive from (physiologically and

ecologically) diverse organisms responding to environmental variation at fine spatial and tem-

poral scales. These responses are not well characterized by correlative models, which do not

extrapolate well beyond mean conditions to variable or extreme biotic or abiotic environ-

ments. We argue that characterizing biological responses to environmental variability provides

a path toward improving predictions of biodiversity responses to climate change. Central to

the characterization is identifying key timescales and magnitudes of environmental variability,

experimentally probing responses to the variability across levels of biological organization, and

identifying general principles that allow tractable incorporation of the biological mechanisms

into predictive models.

Crucial to using organismal mechanisms to improve biodiversity projections is improving

datasets for parameterization and validation. There is great potential to leverage datasets

including phenology, abundance, trait, and distribution data at multiple temporal (months to

decades to paleo) and spatial (local to global) scales to better test niche models. There is also

potential to innovate approaches to utilize natural history collections to assess genetic, physio-

logical, and phenotypic responses to climate change [112]. Efforts to measure and catalog phe-

notypes along with life history and habitat information are rapidly advancing (e.g., TraitNet,

TraitBank, ButterflyNet), but the available traits are often not those needed for mechanistic

models. Organismal mechanisms of responses to environmental variability and mechanistic

models should be used for prioritizing functional trait collection and assembly [24]. Methods

to characterize environmental sensitivity such as thermal performance curves (TPCs) should

be revisited to better account for environmental variability in future models. We also advocate

for the inclusion of TPCs in existing trait databases or the creation of a database specific to

these important traits. Cyberinfrastructure is needed to work toward the vision of integrating

numerous existing mechanistic model components to create a unified, modular model [15]. A

commitment to and investment in characterizing biological responses to environmental vari-

ability, rather than relying on models that necessarily omit environmental variability, is needed

to improve predictability in climate change biology.
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