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Abstract—Deep learning techniques have emerged as valuable
tools for video analysis and motion detection. Recent advance-
ments in this field have shown promising results. Our objective
is to leverage these video understanding techniques to aid
teachers in evaluating their teaching quality and enhancing their
effectiveness in the classroom. However, existing research on stu-
dent behavior analysis primarily focuses on recognizing actions
pertaining to classroom management, neglecting the identification
of “learning behaviors” exhibited by students. To address this
limitation, we introduce a novel video dataset specifically designed
to capture the nuances of “learning behaviors” displayed by
primary-grade students in the mathematics classroom, along with
a dedicated student localization dataset focused on detecting the
location of individuals. Our approach introduces a framework
that utilizes deep learning-based object detection and action
recognition techniques trained on our curated datasets to analyze
and comprehend student learning behaviors in the classroom. To
assess the performance of our approach, we conduct separate
tests on our object detection and action recognition models. Sub-
sequently, our framework is applied to a collection of recorded
360-degree classroom videos, enabling a thorough evaluation of
its capabilities.

Index Terms—deep learning, action recognition, object detec-
tion, student learning behavior analysis

I. INTRODUCTION

Analyzing and understanding student behavior plays a piv-

otal role in elevating the quality and effectiveness of teaching

within the classroom environment. To support teachers in

their professional development, classroom videos have become

widely adopted as primary training materials [1]. These videos

serve as valuable resources that enable educators to observe

and grasp student behavior comprehensively. However, tradi-

tional methods of analyzing classroom videos are often labo-

rious and time-consuming, demanding heavy attention from

teachers as they carefully watch each video frame by frame

to identify individual students and interpret their behaviors

accurately. Fortunately, recent advancements in deep learning

techniques in the field of computer vision have introduced

a promising solution to expedite and enhance the analysis

of student behavior within classroom videos. The utilization

of deep learning techniques in analyzing student behavior

brings numerous benefits, including improved efficiency and

scalability. Instead of relying solely on human observation,

teachers can now rely on computer algorithms to detect and

classify specific student actions, such as counting numbers

or manipulating blocks. This automated analysis significantly

reduces the time and effort required from teachers, enabling

them to allocate more energy towards developing personal-

ized instructional strategies and addressing individual student

needs.

Many existing studies on student behavior understanding

utilizing deep learning techniques focus on either the analysis

of facial features or the recognition of student actions. Facial

feature analysis, such as facial expressions or viewpoints, only

offers a limited understanding of students in a classroom

scene. For instance, in [2], a simple convolutional neural

network (CNN) is developed to determine a student’s compre-

hension based on facial expressions. Other works, such as [3],

propose combinations of facial expressions, and input data

from keyboard and mouse, but primarily study the student’s

engagement level. Additionally, [4] combines facial viewpoints

with recorded teacher speech audio to analyze student atten-

tion and teaching style. On the other hand, action analysis

provides a more comprehensive understanding of students in

the classroom scene. Some studies, like [5], utilize skeleton

data to recognize student actions, while others, such as [6],

employ a combination of 3D CNN and Long Short-Term

Memories (LSTM) for action recognition, albeit with students

facing away from the cameras, which can compromise the

effectiveness of the method. Another approach [7] combines

2D CNN for spatial information and 1D CNN for temporal

information to recognize student actions, yet the proposed

dataset remains relatively small. Although these individual

works have provided valuable insights into several classroom

management aspects, such as recognizing actions of raising

hands and measuring engagement levels, there is a critical

need to focus on identifying specific instances where students

engage in “learning behaviors”. In the context of primary-

grade mathematics learning, these learning behaviors encom-

pass activities like counting, using manipulatives, and writing.

Addressing this need for a deeper understanding of student

learning behaviors in the classroom is essential for developing

more effective educational interventions and improving the

overall teaching quality and learning experience.

To overcome these limitations, we take a proactive approach

by curating a comprehensive video dataset specifically captur-
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ing students engaged in classroom-specific learning behavior

actions. Furthermore, we propose a robust framework for

understanding student behavior, employing deep learning tech-

niques to accomplish two key tasks: student localization and

comprehensive analysis of their actions within the classroom

environment. Additionally, we record a dedicated set of 360-

degree videos in the authentic classroom setting, allowing us

to validate the effectiveness and practicality of our proposed

framework. Through these efforts, we aim to overcome ex-

isting limitations and advance the understanding of student

behavior in real-world classroom scenarios.

In Section II, we review commonly used techniques on

object detection and action recognition. We outline the details

of our proposed framework and the datasets used to develop

it in Section III. We provide the numerical tests and results in

Section IV. Finally, we offer further discussion on our findings,

future works, and conclusions in Section V.

II. RELATED WORKS

We will first delve into commonly employed techniques

for object detection, then we will offer valuable insights into

action recognition techniques.

A. Object Detection

Object detection is a technique used to identify the location

and category of objects in an image. Traditional object detec-

tion methods rely on hand-crafted features to locate objects,

such as Local Binary Patterns (LBP) [8] and Scale Invariant

Feature Transforms (SIFT) [9]. However, these methods per-

form poorly and are not easily transferable to other scenarios,

making them unsuitable for our problem.

Recent advancements in deep learning techniques have

made deep learning the preferred method for developing

object detection algorithms [10]. For instance, You Only Look

Once (YOLO) [11], Single Shot Detector (SSD) [12], and

RetinaNet [13] are region-free object detection methods that

use regression to generate bounding boxes. While region-

based methods [14] involve generating object region proposals,

extracting features from the region proposals, and predicting

the object class in each region proposal.

Region-based Convolutional Neural Network (R-CNN) [15]

integrates convolutional neural networks with region-based

methods to improve the performance of region-based object

detection. Fast R-CNN [16] has faster detection speed and

better prediction accuracy than R-CNN. Faster R-CNN [17]

develops a region proposal network (RPN) that generates

object location proposals more efficiently and accurately. Mask

R-CNN [18] adds a parallel object mask to Faster R-CNN,

improving both speed and performance.

B. Action Recognition

The field of action recognition has seen rapid progress in

recent years, thanks to the rapid development of deep learning

techniques. There are two main categories of deep learning-

based action recognition models: vision-based and skeleton-

based. Vision-based techniques typically use convolutional

Fig. 1: The schematic illustration of our student localization

model.

neural networks (CNNs) to directly learn and recognize actions

from video frames [19]. More recently, vision transformers

have been proposed [20] and have led to the development of

new techniques such as multiscale vision transformer [21] and

video swin transformer [22]. Skeleton-based techniques, on the

other hand, use human skeleton data as input instead of raw

video. Because skeleton data has a smaller data size, skeleton-

based techniques have lower computational costs compared

to vision-based techniques. Skeleton data can be treated as

graph data with nodes and edges, and several skeleton-based

action recognition techniques, such as ST-GCN [23], use

Graph Neural Networks (GNNs) [24] to recognize human

actions from skeleton data. However, it can be challenging to

distinguish between similar actions in classroom environments,

where students mainly move their hands, such as writing and

manipulating math manipulatives. Moreover, skeleton-based

action recognition requires preprocessing raw videos to obtain

human skeleton data using tools like OpenPose [25].

All of these works provide valuable insight into how we can

design a deep learning-based framework that combines both

object detection techniques and action recognition techniques

to understand students’ behaviors in the classroom.

In the next section, we will discuss the details of our ap-

proach, including essential aspects of the student localization

method, the action recognition method, and a comprehensive

presentation of the design details behind our proposed student

learning behavior understanding framework.

III. METHODOLOGY

Our proposed student learning behavior understanding

framework consists of two parts: a student localization model

that identifies students and provides bounding boxes around

them in the video, and an action recognition model that

recognizes the behaviors of the detected students.

A. Student Localization

We first discuss the technical details of the student lo-

calization model, which is based on the Region Proposal

Network (RPN) in Faster R-CNN [17].

The student localization model, illustrated in Fig. 1, begins

by using a CNN, denoted as G to extract image features, F ,
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Fig. 2: The schematic illustration of our action recognition

model.

which will be used as input of RPN. The RPN, denoted as

F , comprised of a convolution layer with an n × n square

convolutional kernel, proposes k different bounding boxes.

This convolutional layer is fully connected to a middle linear

layer with m-dimension, which is then connected to two final

linear layers. The first final layer is the box proposing layer,

used to produce parameters for each box, while the second

final layer is the object classification layer, used to predict

whether or not there is an object in each box.

The dimension of the box proposing layer is 4k, as each

proposed box has four parameters: the x and y coordinates

for the center point, as well as the height (h) and width (w)

of the box. The object classification layer applies a sigmoid

function σ(x) to limit the output ranging from 0 to 1, where

sigma(x) = 1
1+e−x . When there is an object in the box, the

output of the object classification layer is used to determine

whether the detected object is a person, with σ(x) ≥ 0.5
indicating a person, and σ(x) < 0.5 indicating that there is no

person in the box. The dimension of the object classification

layer is k.

For our work, we followed the original paper and set n =
3 and k = 9. To extract image features, we used ResNet-

50 [26] pretrained on the ImageNet dataset [27] instead of

VGG-19 [28]. This is because ResNet-50 has shown better

performance than VGG-19 in many computer vision tasks.

B. Student Action Recognition

We will now delve into the technical details of the stu-

dent action recognition model, which is based on the Multi-

Head Pooling Attention (MHPA) in Multiscale Vision Trans-

former (MViT) [21]. As shown in Fig. 2, we start by pro-

cessing the input video clip x, which is a tensor of shape

T × H × W × C, where T is the number of video frames,

H and W are the height and width of the video, and C is

the number of channels. We flatten x and split it into N non-

overlapping tensor tiles, denoted by xp ∈ R
T×P×P , where

P is the size of the split tensor tile and N = HWC/P 2 is

the number of tiles. We then apply a linear layer to process

each tensor tile into a latent vector with a latent dimension of

D, resulting in the tensor xD. Next, we encode the position

information of xD using positional embedding.

The transformer block in our action recognition model

consists of three components: an MHPA, a Multi-Layer Per-

ceptron (MLP), and layer normalization (LN) [29]. Each

transformer block performs the following operations:

xD,1 = MHPA(LN(xD)) + xD,

xD,2 = MLP(LN(xD,1)) + xD,1,
(1)

where xD,1 is the output of the MHPA and xD,2 is the output

of the transformer block. The MHPA applies a multi-head self-

attention mechanism, while the MLP is a feedforward neural

network with a single hidden layer. Layer normalization is

applied before and after the MHPA and MLP to normalize the

output of each layer.
The MHPA comprises multiple attention modules that com-

pute the query Q, key K, and value V for the input tensor

xD as follows:

Q = xDWQ, K = xDWK , V = xDWV , (2)

where WQ ∈ R
D×D, WK ∈ R

D×D, and WV ∈ R
D×D are

the matrices that convert the input xD to the query, key, and

value tensors. The resulting Q, K, and V tensors have the

same dimension as xD (T × P × P × D). Subsequently, a

pooling operation is applied to Q, K, and V to reduce their

size along the first three dimensions. Finally, we compute the

attention score of Q, K, and V using the softmax function as

follows:

Attention(Q,K, V ) = Softmax

(
QKT

√
D

)
V. (3)

To parallelize the attention computation, we use Multi

Head Attention (MHA) [30]. With h heads in MHA, each

head headi, i ∈ [1, h] has a unique set of matrices, namely

WQ,i ∈ R
D×D, WK,i ∈ R

D×D, and WV,i ∈ R
D×D, to

compute the query Qi = xDWQ,i, key Ki = xDWK,i, and

value Vi = xDWV,i, respectively. Each head then computes

the attention using Qi, Ki, and Vi:

headi(xD) = Attention(Qi,Ki, Vi)

= Attention(xDWQ,i, xDWK,i, xDWV,i).
(4)

After computing the attention of each head headi using their

respective query, key, and value matrices WQ,i, WK,i, and

WV,i, we concatenate the outputs from each head and apply

a linear transformation with matrix WO ∈ R
hD×D to obtain

the final output in R
T×P×P×D:

MHA(Q,K, V ) = Concat(head1, ..., headh)WO. (5)

And we finally use an MLP combined with the Softmax to

predict the probability of each action class:

ŷ = Softmax(MLP(MHA(Q,K, V ))), (6)

where ŷ ∈ R
a is the probability of each action class and a is

the number of action classes.
We use Binary Cross Entropy (BCE) loss as the optimality

criterion to compute the loss between the ground truth and the

predicted probability:

L =
1

N

∑
n

(ŷn · log(yn) + (1− ŷn) · log(1− yn)) , (7)
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Fig. 3: Schematic illustration of our deep learning-based

student behavior understanding framework.

where N is the batch size, n = 1, 2, ..., N , ŷn is the predicted

probability, and yn is the ground truth.

C. Student Learning Behavior Understanding Framework

Here we discuss the design details of our deep learning-

based student learning behavior understanding framework.

We show the schematic illustration of our proposed deep

learning-based student learning behavior understanding frame-

work in Fig. 3. Our framework comprises two stages. The

first stage involves detecting students in each frame using

our trained student localization model. In the second stage,

neighboring frames are utilized to recognize the actions of

each student through our trained student action recognition

model. Subsequently, we report the understanding results in

both video and text formats.

In the video format, a bounding box is provided for each

student, along with the corresponding recognized action that

has the highest probability. Similarly, in the text format,

we provide the coordinates of the bounding box for each

student, along with the recognized action and its corresponding

probability.

The process of student learning behavior understanding is

shown in Algorithm 1, which outlines the step-by-step proce-

dure for utilizing our framework to analyze and comprehend

student actions within a classroom environment.

D. Dataset

1) Student localization dataset: COCO dataset [31] is a

widely used large-scale dataset for object detection, segmenta-

tion, and captioning tasks. The original COCO dataset contains

80 different object categories. As we aim to localize students

in videos using our student localization model, we only keep

2 object categories, person and non-person where the images

of our proposed person category are the images from the

person category of the original dataset, and the images of our

proposed non-person category are the union of images from

all other categories in the original dataset. Since in the original

COCO dataset, the number of non-person objects is more than

twice the number of persons, we randomly remove half of the

original non-person objects. Our proposed student localization

dataset has a total of 585,124 annotated objects, where 273,468

are persons and 311,656 are non-persons.

Algorithm 1 Student Learning Behavior Understanding

Input: Classroom environment video V , Student local-

ization model Loc, Student action recognition model Act,
Number of frames used to recognize action z

Output: Location coordinates and actions R of each

student in the video

Initialize: T ← ∅, A ← ∅
for each frame fv in V do
C ← Loc(fv)
for each detected object o in C do

if object category of o is non-person then
pass

else
t ← location coordinate of o
v ← z neighboring frames of fv within t
c ← Act(v)
R ← R ∪ {(t, c)}

end if
end for

end for
return R

2) Student learning behavior dataset: In our endeavor to

comprehend primary-grade student learning behaviors within

the mathematics classroom environment, we focused on three

major actions: manipulation of math manipulatives, counting

objects, and writing.

Our curated dataset includes 170 videos collected from

Vimeo (https://vimeo.com/) featuring students performing at

least one of these actions and recorded an additional 15 videos,

each featuring only one of the three actions. We cropped all

the collected videos to a size of 224×224 and split them into

5-second video clips, resulting in a total of 1,805 video clips.

After analyzing the video clips, we found that the actions

of ‘manipulating’ and ‘counting’ were too similar, with stu-

dents working on objects in both cases, as shown in Fig. 4.

Therefore, we merged ‘manipulating’ and ‘counting’ into a

single action in our dataset. The statistics of our final dataset

are shown in Table. I.

We also created a series of pre-recorded 360-degree

videos featuring classroom teaching environments to test our

proposed student behavior understanding framework. These

videos feature an original resolution of 5760 × 2880 and

include 24 individuals, with three teachers and 21 students

present in each video. The total duration of our 360-degree

classroom videos is 33 minutes and 22 seconds. As shown in

Fig. 5, the videos provide an immersive learning experience

and allow viewers to explore the entire classroom environment.

Action Manipulating and counting Writing Total
Number of video clips 1,189 616 1,805

TABLE I: Statistics of our student actions dataset.
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(a) (b)

Fig. 4: (a) A student doing manipulation, and (b) a student

doing counting.

Fig. 5: One frame of our pre-recorded 360-degree classroom

environment video.

IV. EXPERIMENTS

To verify the efficacy of our approach in analyzing students’

behavior within a classroom setting, we carried out three

experiments: student localization, student action recognition,

and video detection on the pre-recorded 360-degree classroom

environment videos using our proposed deep learning-based

student behavior understanding framework.

A. Experiment Setup

Our training of the student localization model builds upon

the pretrained Faster R-CNN model, specifically trained on the

original COCO dataset [31]. In this process, we maintain the

fixed state of all layers in ResNet-50 fixed and solely finetune

the Region Proposal Network (RPN) using our dedicated

student localization dataset. The student localization model

undergoes a rigorous training process spanning 60 epochs. For

training, we utilize 96% data, amounting to 561,232 annotated

objects, as our comprehensive training dataset. The remaining

4% of the data, comprising 23,892 annotated objects, is

reserved as the test dataset to evaluate the model’s perfor-

mance. To optimize the student localization model, we employ

Stochastic Gradient Descent (SGD) [32] with a learning rate

of 1 × 10−4. This choice of optimization method aids in

refining the model’s parameters and enhancing its accuracy

in localizing students within the classroom environment.

Our training process for the student action recognition

model builds upon the pretrained MViT-B model [21], which

was initially trained on the Kinetic-400 dataset [33]. To lever-

age the advantages of the pretrained model, we follow [34]

to employ a two-step approach consisting of linear probing

followed by finetuning. The model is trained for a total of

80 epochs. Specifically, we allocated 20 epochs for the linear

probing stage and an additional 60 epochs for the finetuning

stage. This multi-stage training approach ensures that the

model effectively captures and recognizes student actions in

the classroom environment. To create our training, validation,

and test datasets, we assign 80% of the video clips (amounting

to 1,416 video clips) as the training dataset. Additionally, 5%

of the clips (97 video clips) are used as the validation dataset

to determine optimal hyperparameters. Finally, the remaining

15% of the clips (292 video clips) are reserved as the test

dataset, enabling us to evaluate the performance of the final

model accurately. We use AdamW optimizer [35] to optimize

the student action recognition model with a learning rate of

1×10−3 during the linear probing stage and a learning rate of

1× 10−6 during the finetuning stage. After the completion of

training, we utilized the final trained student localization and

student action recognition models, as outlined in Section III-C

of our proposed student behavior understanding framework.

These models were employed to perform student behavior

understanding in our recorded 360-degree videos of classroom

scenes.

B. Test 1: Student Localization

To begin, we present the numerical test results for our

student localization model. Table II showcases the perfor-

mance of our student localization model in comparison to two

baseline models: RetinaNet [13] with ResNet-50 [26] as the

backbone and SSD [12] with VGG-16 [28] as the backbone.

Both baseline models followed the same training strategy as

our student localization model, beginning with pretraining on

the original COCO dataset [31] and then training on the

student localization dataset while keeping all layers in the

backbone model fixed. We conduct a comprehensive analysis

by comparing various factors, including mean average preci-

sion (mAP), inference rate (samples/s) on the test set of the

student localization dataset, floating point operations (FLOPs),

and the number of trainable parameters (Param #).

Our observations reveal that our student localization model

outperforms the baseline models in terms of mAP. Specifically,

our model achieves an mAP that is 8.66% higher than that

of RetinaNet [13] and 18.57% higher than that of SSD [12].

This signifies the superior accuracy of our student localization

model in accurately identifying and localizing students within

the classroom environment.

Moreover, our student localization model exhibits a reason-

able computational complexity. When performing inference

on the test dataset, it shows a 25.3% faster inference rate

compared to RetinaNet [13], while being 52.3% slower than

SSD [12]. In terms of floating point operations (FLOPs),

our model demonstrates 14.7% fewer FLOPs than RetinaNet,
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(a) (b) (c)

Fig. 6: Example results of our student behavior analysis workflow: (a) correct analysis of the action of a student, (b) wrong

analysis of the action of a student, and (c) a student back to the camera.

Model mAP (%)
Inference rate

(samples/s)
GFLOPs Param #

Ours 43.28 18.3 197.2 41.8M
RetinaNet 34.62 14.6 231.3 34.1M

SSD 24.71 38.4 34.9 35.6M

TABLE II: Comparison of different object detection models

on the student localization dataset.

indicating more efficient processing, while still utilizing 5.6×
more FLOPs than SSD [12].

Overall, the test results affirm the superiority of our student

localization model, surpassing the baseline models in terms of

mAP while maintaining a reasonable computational complex-

ity.

C. Test 2: Student Action Recognition

We now proceed to present the results of our student action

recognition experiment. Table III showcases the performance

of our model in comparison to five baseline models: three

vision-based action recognition models (X3D-L [36], Slow-

Fast [37] with ResNet50 [26] as the backbone, and Video Vi-

sion Transformer (ViViT) [38]) and two skeleton-based action

recognition models (CTR-GCN [39] and MS-G3D [40]).

For the vision-based action recognition models, all base-

line models were pretrained on the Kinetics-400 dataset and

subsequently finetuned on our student action dataset. The

skeleton-based action recognition models, on the other hand,

were pretrained on the NTU-RGB+D-120 dataset [41] and

finetuned using the skeleton data extracted from our student

action dataset using AlphaPose [42].

We conducted a comprehensive comparison, focusing on

performance metrics, especially accuracy on the test set of the

student action dataset, as well as computational complexity

indicators, including inference rate (frames/s) on the test set,

floating point operations (FLOPs) during inference, and the

number of trainable parameters (Param #).

In our analysis, we initially compared our model with

the three vision-based action recognition models. Our model

demonstrated the best performance, achieving an accuracy

of 96.14%, while maintaining a reasonable computational

cost, with an inference rate of 232.3 frames/s and 170.4

GFLOPs. The closest performing baseline model was ViViT,

with an accuracy only 4.62% lower than our model. However,

ViViT [38] came with a significantly higher computational

complexity, with 1.4× more FLOPs than our model, and a

much slower inference rate, being 3.3× slower than ours.

X3D-L [36] exhibited a performance of 16.01% degradation

than our model, but with a faster inference rate (41.3% faster

than ours) and lower computational complexity (3.3 × fewer

FLOPs than our model). SlowFast [37] with ResNet50 [26] as

the backbone achieved a performance of 22.32% degradation

than our model, with lower computational cost (2.35× fewer

FLOPs) and a faster inference rate (41.3% faster than our

model).

Next, we compared our model with the two skeleton-

based action recognition baseline models. We observed that

skeleton-based models had a significantly smaller number of

trainable parameters, with CTR-GCN having 1.4M parameters

and MS-G3D having 3.2M parameters, compared to our model

with 36.6M parameters. Additionally, skeleton-based models

demonstrated faster inference rates, with CTR-GCN being

3.06× faster and MS-G3D being 2.61× faster than our model.

However, the performance of skeleton-based models was no-

tably worse than our model, with CTR-GCN being 43.67%

worse and MS-G3D being 38.96% worse. This indicates that

skeleton-based models are unsuitable for our dataset.

In conclusion, our model outperformed all baseline models.

It achieved superior performance with a reasonable compu-

tational cost, demonstrating its suitability for student action

recognition tasks in our dataset.
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Model Acc (%)
Inference rate

(frames/s)
GFLOPs Param #

Ours 96.14 232.3 170.4 36.6M
X3D-L 80.13 328.3 39.5 5.3M

SlowFast+R50 73.82 353.9 50.9 33.6M
ViViT 91.52 54.2 413.7 133.1M

CTR-GCN 52.47 943.7 8.7 1.4M
MS-G3D 57.18 837.6 16.9 3.2M

TABLE III: Comparison between our action recognition model

and other baseline action recognition models.

Action TP # FP # Precision
Manipulate and count 41 11 0.79

Write 103 21 0.83

TABLE IV: Numerical result of our student behavior analysis

workflow on the 360-degree classroom environment videos.

D. Test 3: Student Behavior Understanding

Our final experiment involves testing our student behavior

understanding framework on our recorded real-world 360-

degree classroom environment videos. To understand student

behavior in these videos, we followed our proposed framework

in Section III-C. After conducting our analysis, we manually

checked the results and counted the number of true posi-

tive (TP) and false positive (FP) recognized actions. We then

calculate the precision of each action using the formula:

Precision =
TP

TP+FP
. (8)

The results are shown in Table. IV. We observed that our

workflow was able to accurately capture students and their

behaviors in most cases. An example of an accurately analyzed

result is shown in Fig. 6 (a). However, when students per-

formed actions that were not included in our dataset, such as

talking, our model would randomly classify the action as either

writing, manipulating, or counting, as shown in Fig. 6 (b).

Additionally, when students had their backs to the camera,

our model would always misclassify their actions, as shown

in Fig. 6 (c). This is likely because our training videos only

included actions performed in front of the students, and did

not capture actions performed with the student’s back facing

the camera.

V. CONCLUSION AND FUTURE WORK

Conclusion. In this work, we present a deep learning-based

framework that effectively leverages object detection and

action recognition techniques to gain a comprehensive under-

standing of student behavior in classroom environments. To

facilitate this research, we also introduce a novel video dataset

specifically featuring students’ actions within the classroom

environment. We commence our evaluation by assessing the

performance of the two individual components: the object

detection model and the action recognition model, using our

proposed datasets. Subsequently, we conduct a comprehensive

evaluation of the framework as a whole, utilizing a collec-

tion of recorded 360-degree classroom environment videos.

Through meticulous comparison and analysis, we demonstrate

that our proposed framework excels in accurately capturing

students and recognizing their actions. The results highlight the

potential of our framework to significantly enhance teaching

practices in classrooms. By leveraging the power of deep

learning techniques and employing innovative methodologies,

our research provides valuable insights into student behavior

analysis and presents a promising avenue for further improving

educational settings.

Future work. (1) One of the weaknesses in our work lies in

the inability of our student localization model to differentiate

between students and teachers. This limitation arises due to

the training dataset, which only distinguishes between persons

and non-person objects. To address this, enhancing the current

student localization dataset by incorporating specific categories

for students and teachers and augmenting the dataset with

a larger collection of student images would greatly improve

the performance of our framework. (2) Another area for

further improvement is enhancing the generalization ability

of our framework. Currently, our student action recognition

dataset predominantly focuses on capturing students from the

front view. However, in real classroom scenarios, students can

adopt various angles and poses in relation to the camera. To

address this limitation, collecting a diverse set of unlabeled

videos featuring students in different angles and engaging

in more complex actions would aid in enhancing the gen-

eralization ability of our framework. Additionally, incorpo-

rating reinforcement learning with human feedback (RLHF)

techniques could further refine our framework’s ability to

accurately recognize student actions. (3) Exploring additional

features, especially the analysis of student facial expressions

and recorded audio in the classroom environment, can provide

a more comprehensive understanding of student behavior in

classroom scenes. Investigating these aspects will be a focus of

our future work. (4) Last but not least, applying our proposed

framework to real-world applications, particularly integrating

web-based virtual reality techniques, where educators can

freely access recorded or streaming 360-degree classroom

environment videos with students and their actions annotated

using our framework, presents another major direction for

future work. By addressing these aspects in future work, we

can further strengthen our framework’s ability to differentiate

between students and teachers, improve its generalization

capabilities, and ultimately enhance its performance in real-

world classroom environments.
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[8] M. Heikkilä, M. Pietikäinen, and C. Schmid, “Description of interest
regions with local binary patterns,” Pattern recognition, vol. 42, no. 3,
pp. 425–436, 2009.

[9] T. Nguyen, E. Park, J. Han, D.-C. Park, and S.-Y. Min, “Object detection
using scale invariant feature transform,” in Genetic and evolutionary
computing. Springer, 2014, pp. 65–72.

[10] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object
detection,” Advances in neural information processing systems, vol. 26,
2013.

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[13] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[14] S. Gould, T. Gao, and D. Koller, “Region-based segmentation and object
detection,” Advances in neural information processing systems, vol. 22,
2009.

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[16] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[17] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

[18] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[19] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” arXiv preprint arXiv:1406.2199, 2014.

[20] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[21] H. Fan, B. Xiong, K. Mangalam, Y. Li, Z. Yan, J. Malik, and C. Feichten-
hofer, “Multiscale vision transformers,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 6824–6835.

[22] Z. Liu, J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin, and H. Hu, “Video swin
transformer,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 3202–3211.

[23] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Thirty-second AAAI
conference on artificial intelligence, 2018.

[24] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE transactions on neural
networks, vol. 20, no. 1, pp. 61–80, 2008.

[25] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d
pose estimation using part affinity fields,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 7291–
7299.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[29] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv
preprint arXiv:1607.06450, 2016.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[31] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[32] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of
a regression function,” The Annals of Mathematical Statistics, pp. 462–
466, 1952.

[33] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev et al., “The kinetics
human action video dataset,” arXiv preprint arXiv:1705.06950, 2017.

[34] A. Kumar, A. Raghunathan, R. M. Jones, T. Ma, and
P. Liang, “Fine-tuning can distort pretrained features and
underperform out-of-distribution,” in International Conference
on Learning Representations, 2022. [Online]. Available: https:
//openreview.net/forum?id=UYneFzXSJWh

[35] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in International Conference on Learning Representations, 2018.

[36] C. Feichtenhofer, “X3d: Expanding architectures for efficient video
recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 203–213.

[37] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks
for video recognition,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 6202–6211.

[38] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, and C. Schmid,
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