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Abstract
Many design optimization problems include constraints to prevent intersection of the geo-

metric shape being optimized with other objects or with domain boundaries. When applying
gradient-based optimization to such problems, the constraint function must provide an accurate
representation of the domain boundary and be smooth, amenable to numerical di�erentiation,
and fast-to-evaluate for a large number of points. We propose the use of tensor-product B-splines
to construct an e�cient-to-evaluate level set function that locally approximates the signed dis-
tance function for representing geometric non-interference constraints. Adapting ideas from the
surface reconstruction methods, we formulate an energy minimization problem to compute the
B-spline control points that define the level set function given an oriented point cloud sampled
over a geometric shape. Unlike previous explicit non-interference constraint formulations, our
method requires an initial setup operation, but results in a more e�cient-to-evaluate and scal-
able representation of geometric non-interference constraints. This paper presents the results
of accuracy and scaling studies performed on our formulation. We demonstrate our method
by solving a medical robot design optimization problem with non-interference constraints. We
achieve constraint evaluation times on the order of 10≠6 seconds per point on a modern desktop
workstation, and a maximum on-surface error of less than 1.0% of the minimum bounding box
diagonal for all examples studied. Overall, our method provides an e�ective formulation for non-
interference constraint enforcement with high computational e�ciency for gradient-based design
optimization problems whose solutions require at least hundreds of evaluations of constraints
and their derivatives.

Nomenclature

N� = number of points in the input point cloud representing a geometric shape

Ncp = number of control points for defining tensor product B-splines

N = number of B-spline control points that lie within the domain of interest

Ne = number of points on the geometric shape used for computing error
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1 Introduction

Accurate detection of physical interference between two or more bodies is crucial in the design
of many engineering systems. Non-interference constraints appear in numerical optimization prob-
lems that manipulate an object within an environment containing other objects such that there
is no collision. Many numerical optimization problems must enforce non-interference constraints
manipulate an object within an environment containing other objects such that there is no collision.
Prior literature on these problems describe these constraints using inconsistent terminology, e.g.,
anatomical constraints [1, 2], spatial integration constraints [3, 4], boundary constraints [5, 6], and
interference checks [7]. We observe that these terms represent the same underlying concept applied
to di�erent problem settings; therefore, we propose a common term, geometric non-interference
constraints, since they are employed in design optimization to ensure a design where there exists
no interference between two or more geometric shapes or paths of motion.

In our study, a geometric shape is associated with the design configuration of an engineering
system at a particular instance of time. The geometric shapes of interest in this paper are curves in
two dimensions, or orientable surfaces in three dimensions. We assume that the geometric shapes
are non-self-intersecting but make no assumptions on whether they are open or closed. A path of
motion or trajectory is the set of points that traces the motion of a point on the engineering system
as the system changes configuration over time. The paths considered in this paper are simply curves
in two or three dimensions. We use the term layout to refer to a set of geometric shapes.

Based on the definitions above, we identify three major classes of optimization problems with
geometric non-interference constraints: layout optimization, shape optimization, and optimal path
planning. All three classes are within the scope of problems we address in this paper.

Layout optimization optimizes the positions of design shapes via translation subject to geometric
non-interference, with or without additional boundary constraints. For example, the wind farm
layout optimization problem (WFLOP) consists of positioning wind turbines within a wind farm
in an optimal way while ensuring that interference between turbines and the boundary of the wind
farm is avoided [5, 8–10]. Another example of a layout optimization problem is the packing problem.
Packing problems consist in positioning objects within a domain while minimizing the amount of
space occupied or maximizing the number of objects placed without geometric interference [7, 11].

Shape optimization seeks to optimize geometric shapes subject to geometric non-interference,
with or without additional boundary constraints. For example, shape optimization of an aircraft
fuselage optimizes the shape of a fuselage with constraints ensuring that the passengers, crew,
payload, and all the subsystems fit inside the fuselage [3, 4].

Optimal path planning optimizes the trajectory of a point or a set of points subject to geometric
non-interference, with or without additional boundary constraints. The design optimization of
surgical robots is an example of a problem involving robot motion planning—a class of problems
within optimal path planning—that has attracted recent attention [1, 2]. In the design optimization
of surgical robots, non-interference constraints are imposed such that the robot does not collide with
the anatomy of a patient during operation. Additionally, it is desirable for the robot to maintain a
safe distance from the anatomy, motivating the use of a distance-based non-interference constraint
formulation in such problems. An example of an aerospace application is the representation of
complex no-fly zone shapes in trajectory optimization [12, 13].

The problems just mentioned are solved using numerical optimization algorithms. Historically,
gradient-free algorithms have been more commonly used to solve such problems, e.g., in layout
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optimization [14–16] and in robot motion planning [1]. A major reason behind this was the di�culty
in e�ciently computing the derivatives for a complex model. As models become more complex, that
is, with more disciplines and design variables, solutions become impracticable with gradient-free
algorithms since these algorithms scale poorly with the number of design variables. However, the
recent emergence of modeling frameworks such as OpenMDAO [17] has enabled e�cient design of
large-scale and multidisciplinary systems using gradient-based optimization, including some of the
aforementioned problems with geometric non-interference constraints [2, 3, 5, 9].

Geometric non-interference constraint functions for gradient-based optimization require spe-
cial consideration. These functions must be continuously di�erentiable or smooth in order to be
used with a gradient-based optimization algorithm. They should also be e�cient to compute be-
cause optimization algorithms evaluate constraint functions and their derivatives repeatedly over
many optimization iterations. During some iterations, the optimizer may violate an interference
constraint, and useful gradient information in such iterations is still required despite it being in-
feasible. Consequently, any non-interference constraint function must be defined in the event of an
overlap between objects and provide necessary gradient information.

Design 
body

Feasible space Ω
" > 0

Boundary Γ
" = 0

" < 0
Infeasible space

Figure 1: An ideal constraint function „ indicates geometric interferences using signed distances of
representative points x(i) on a body from the boundary � defining the feasible space �.

Figure 1 shows a diagram with two iterations of a design body in an optimization problem. One
of the designs shown is feasible while the other is not. The feasible design is the one where the
design body is completely inside the feasible space whereas the infeasible design has at least one
point on the design body lying outside the feasible space. For the „ defined in Fig. 1, enforcing
the optimization constraint „(x(i)) Ø ‘ for certain representative points x(i) chosen on the surface
of the design body guarantees non-interference by ensuring that all x(i) stay within the feasible
region for the final optimized design. The constant ‘ can be any small positive value appropriate
for a given problem.

The formulation of the constraint function „, and consequently its derivatives, is inherently
defined by the shape of the boundary � of the feasible space. It cannot always be assumed that
the boundary � is a fixed shape across all optimization iterations, as many problems will consider
the design body and the constraining boundary � both as variables within an overarching design
problem. For example, the simultaneous shape and layout optimization problem in [4] optimizes
the shape of a wing while also considering the packing of internal batteries. We acknowledge that
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„ is dependent on variations in � within the context of an outer loop design problem; however, we
do not consider the sensitivity of „ to variations in � to be within the scope of this paper. For
our study, we focus on the formulation of a non-interference constraint function „ with respect to
a fixed boundary �.

Existing non-interference constraint formulations su�er from various limitations. The formu-
lation of quasi-phi-functions by Stoyan et al. [18] provides an analytical form to represent an
interference for simple geometric shapes. Quasi-phi-functions are continuous but only piecewise
continuously di�erentiable. These functions are also not generalized to represent any arbitrary
shape. The formulation by Brelje et al. [3] is generalized to any triangulated 3D geometric shape,
but has computational limitations. The computational complexity of their method is O(N�), where
N� is the number of elements in the triangulation. They are able to overcome this scaling issue by
making use of graphics processing units (GPUs) but demonstrate their formulation on a geometric
shape with only 626 elements in the triangulation. In their recent work on the WFLOP, Risco et al.
[5] formulate a generic explicit method for geometric shapes in 2D, but the method su�ers from the
same scaling issues as in [3] and contains discontinuous derivatives. The formulation by Bergeles
et al. [1] employs a distance potential function that is calculated with the k-nearest neighbors of
poinst that lie on the boundary. With the use of a k-d tree structure, the computational complex-
ity of the k-nearest neighbor search scales better than linearly (O(k log(N�)), on average) but the
structure is not suitable for gradient-based optimization because the derivatives are discontinuous
when the set of k-nearest neighbors changes.

Outside the domain of non-interference constraint formulations currently employed in optimiza-
tion, we discovered a significant body of research conducted on a remarkably similar problem by
the computer graphics community. Surface reconstruction in the field of computer graphics is the
process of converting a set of points into a surface for graphical representation. A common ap-
proach for surface reconstruction is the representation of surfaces by an implicit function. Implicit
surface reconstruction methods such as Poisson [19], Multi-level Partition of Unity (MPU) [20],
and Smooth Signed Distance (SSD) [21], to name a few, construct an implicit function from a
point cloud to represent a surface. We observed that some of these distance-based formulations
can be applied to overcome prior limitations in enforcing geometric non-interference constraints in
gradient-based optimization.

The objective of this work is to devise a general methodology based on an appropriate surface
reconstruction method to generate a smooth and fast-to-evaluate geometric non-interference con-
straint function from an oriented point cloud. It is desired that the function locally approximates
the signed distance to a geometric shape and that its evaluation time is independent of the number
of points sampled over the geometric shape N�. The function must also be an accurate implicit
representation of the surface implied by the given point cloud. The contribution of this paper is
a new formulation for representing geometric non-interference constraints in gradient-based opti-
mization. We investigate various properties of the proposed formulation, its e�ciency compared
to existing non-interference constraint formulations, and its accuracy compared to state-of-the-art
surface reconstruction methods. Additionally, we demonstrate the computational speedup of our
formulation in an experiment with a path planning and shape optimization problem.

The remainder of this paper proceeds as follows. Section 2 reviews existing geometric non-
interference constraint formulations for optimization. In this section, we also provide a thorough
survey of implicit surface reconstruction methods in order to identify methodologies to be brought
into our formulation. Section 3 presents our methodology to generate a level set function for repre-
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senting geometric non-interference constraints. Section 4 provides numerical results that quantify
the accuracy and e�ciency of our formulation. We demonstrate our accuracy on common bench-
marking models from the computer graphics community and also on geometries with aerospace
applications. We finally demonstrate the application of our method using a surgical robot design
optimization problem. In Sec. 5, we summarize our approach, its potential impact, and avenues
for future work.

2 Related Work

This section presents an overview of related work to the defined research problem. We begin by
reviewing prior methods for enforcing non-interference constraints in gradient-based optimization
in subsection 2.1. We then review the problem of surface reconstruction and its complexities in
subsection 2.2. Various methods for dividing up the domain for the implicit function are introduced
in subsection 2.2.1. In subsection 2.2.2, we present a literature review for methods that approximate
the signed distance function.

2.1 Previous methods for enforcing non-interference constraints in gradient-based optimization

We identify two preexisting methods for enforcing geometric non-interference constraints in
gradient-based optimization that are both continuous and di�erentiable. Previous constraint for-
mulations that are explicitly defined by the set of nearest neighbors (e.g., work by Risco et al. [5]
and Bergeles et al. [1]) have been used in optimization, but we note that they are non-di�erentiable
and may incur numerical di�culties in gradient-based optimization.

Brelje et al. [3] implement a general mesh-based constraint formulation for non-interference
constraints between two triangulations of objects. Two nonlinear constraints define their formu-
lation. The first constraint is that the minimum distance of the design shape to the geometric
shape is greater than zero, and the second constraint is that the intersection length between the
two bodies is zero—i.e., there is no intersection. A binary check, e.g., ray tracing, must be used
to reject optimization iterations where the design shape is entirely in the infeasible region, where
the previous two constraints are satisfied. As noted by Brelje et al., this formulation may make
the optimizer susceptible to getting stuck in an infeasible part of the domain for nonconvex shapes.
Additionally, the constraint function has an evaluation time complexity of O(N�). They initially
addressed this scaling by using parallel processing with graphics processing units (GPUs). Fur-
ther improvements, e.g., a more e�cient FORTRAN-based implementation, bounding box testing,
only using the minimum value in triangle tests, and load balancing, accelerated their derivative
computation by a factor of 500 in one example [4].

Lin et al. [2] implement a modified signed distance function, making it di�erentiable throughout.
Using an oriented set of points to represent the bounds of the feasible region, the constraint function
is a distance-based weighted sum of signed distances between the points and a set of points on the
design shape. This representation is inexact and is found to compromise accuracy to achieve
smoothness in the constraint representation, in practice. Additionally, their formulation also has a
time complexity of O(N�) for evaluation, which we improve upon through the proposed method.

2.2 Surface reconstruction

Our research goal—to derive a smooth level set function from a set of oriented points—closely
aligns with the problem of surface reconstruction in computer graphics. Surface reconstruction is
done in many ways, and we refer the reader to [22, 23] for a full survey on surface reconstruction
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methods from point clouds. We, in particular, focus on implicit surface reconstruction, which
constructs an implicit function whose zero level set represents the smooth surface implied by the
point cloud.

Surface reconstruction begins with a representation of a geometric shape. Geometric shape rep-
resentations (e.g., point clouds, triangulations, meshes containing general polygons) can be sampled
and readily converted into an oriented point cloud and posed as a surface reconstruction problem.
When working with point clouds, there can be many practical di�culties, e.g., the precision of 3D
scanners which will introduce error into scans. As a result, implicit surface reconstruction methods
often take into consideration nonuniform sampling, noise, outliers, misalignment between scans,
and missing data in point clouds. Implicit surface reconstruction methods have been shown to ad-
dress these issues well, including hole-filling [24–26], reconstructing surfaces from noisy samples [19,
27, 28], reconstructing sharp corners and edges [27], and reconstructing surfaces without normal
vectors in the point cloud [28, 29].
2.2.1 Approaches for constructing implicit functions from points

Implicit surface reconstruction methods construct an implicit function from a set of points, that
is not necessarily the original point cloud defining the geometric shape. We identify three classes
of approaches for selecting these points.

One approach for selecting the points for constructing the implicit function is to adaptively
subdivide the implicit function’s domain using an octree structure. Octrees, as used by [19–21,
28, 30, 31], recursively subdivide the domain into octants using various heuristics in order to
form neighborhoods of control points near the surface. Heuristics include point density [21], error-
controlled [20], and curvature-based [31] subdivisions. The error of the surface reconstruction
decays with the sampling width between control points, which decreases exponentially with respect
to the octree depth [19]. Additionally, the neighborhoods of control points from octrees can be
solved for and evaluated in parallel using graphics processing units (GPUs), which allows for fast,
on-demand surface reconstruction as demonstrated in [30].

Another approach is to construct the implicit function by directly using the point cloud defining
the geometric shape. A chosen subset of points in the point cloud and points projected in the
direction of the normal vectors are used to place the radial basis function (RBF) centers in [32].
This approach results in fewer points than octrees that are still distributed near the surface. The
explicit formulation by Hicken and Kaur [33] uses all points in the point cloud to define the implicit
function and shows favorable decay in surface reconstruction error as the number of points in the
point cloud N� increases. This structure has been used in combination with RBFs for hole-filling
in [24] and anisotropic basis functions for representing sharp corners in [27].

Another approach is to construct a uniform grid of points to control the implicit function.
Unlike the aforementioned approaches, the distribution of points is decoupled from the resolution
of the point cloud. As a result, deformations to the geometric shape can be represented without
loss in accuracy near the surface as shown by Zhao et al. [25]. This makes it a popular structure
in partial di�erential equation (PDE) based reconstruction methods that evolve the surface during
reconstruction, such as in [34, 35]. In general, more points representing the implicit function are
required to achieve the same level of accuracy to other approaches. As a result, implicit functions
defined by a uniform grid are more computationally expensive to solve for in both time and memory
usage than the aforementioned approaches, as experienced by Sibley and Taubin [36], but can be
reduced by a GPU-based multigrid approach as implemented by Jakobsen et al. [35].
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2.2.2 Approaches for signed distance function approximation
Another way to classify the implicit function generated in surface reconstruction is as an indi-

cator function or as a continuous function that (in some cases) provides a measure of distance to
the boundary. In these cases, we use the term, signed distance function (SDF). SDFs are commonly
used because it is often useful to know the distance to the boundary. Often, the implicit function
only locally approximates the SDF near the boundary, as is the case with our method. We identify
four approaches for locally approximating the SDF, which are described below.
Explicit formulations

Explicit formulations use the point cloud data to define an explicit formula representing the
implicit function. These methods formulate local linear approximations to the SDF, then interpolate
between these approximations. Risco et al. [5] present the simplest approach which uses the
nearest edge and normal vector to define the function explicitly. The resultant constraint function
is piecewise continuous but non-di�erentiable at points where the nearest edge switches. Belyaev
et al. [37] derive a special smoothing method for defining signed Lp-distance functions, which is a
continuous and smooth transition between piecewise functions. Hicken and Kaur [33] use a modified
constraint aggregation method that defines a basis function with basis weights that exponentially
decay with distance. The resultant formulation is a smooth and di�erentiable approximation to
the SDF, which we identify as a strong candidate for enforcing non-interference constraints with
good accuracy.

Given an oriented point cloud which is a set of ordered pairs P = {(pi, n̨i) : i = 1, . . . , N�},
where pi is the location of the points sampled over the geometric shape, and n̨i are the unit normal
vectors at pi, the explicit level set function defined by Hicken and Kaur [33] is

„H(x) =
qN�

i=1 di(x)e≠fl(�i(x)≠�min)
qN�

j=1 e≠fl(�j(x)≠�min) , (1)

where di(x) is the signed distance to the hyperplane defined by the point and normal vector pair
in the point cloud (pi, n̨i), �i(x) is the Euclidean distance from x to pi, �min is the Euclidean
distance to the nearest neighbor, and fl is a smoothing parameter. To improve accuracy, Hicken
and Kaur suggest modifications to make the linear approximation to a quadratic approximation
by using the principal curvatures of the surface. Unless readily provided by a smooth geometric
representation, the principal curvatures must be approximated from the point cloud, such as the
approximation method by Tang and Feng [31]. To reduce the computational complexity, Hicken and
Kaur suggest only evaluating the k-nearest neighbors, since the basis weights exponentially decay
with distance. However, using the k-nearest neighbors will remove the function’s di�erentiability
as the set of k-nearest neighbors changes. As a result, the evaluation time scales by O(N�) to
be di�erentiable. While not originally purposed for geometric non-interference constraints, the
formulation by Hicken and Kaur is on par in computational complexity with other currently used
non-interference constraint formulations [2, 3, 5]. Note that explicit formulations rely heavily on
the accuracy of the point cloud data and will be susceptible to inaccuracies when provided with
point clouds containing poor data, such as noise and outliers.
Interpolation formulations with radial basis functions

Another method to construct the level set function is to solve an interpolation problem given
an oriented point cloud P. Because the data points of P always lie on the zero contour, nonzero
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interpolation points for the implicit function can be defined on the interior and exterior, as originally
done by Turk and O’Brien [38]. Radial basis functions (RBFs) are then formulated to interpolate the
data. To avoid overfitting, thin-plate splines can be used to formulate the smoothest interpolator
for the data, as noted in [24, 32]. Solving for the weights of an RBF involves solving a linear
system, which is often dense and very computationally expensive due to their global support. Turk
and O’Brien [38] solve up to 3,000 RBF centers, and improvements by Carr et al. [32] allow up
to 594,000 RBF centers to be constructed in reasonable time (hours). On top of the significant
computational expense, interpolating RBFs have been criticized for having blobby reconstructions
[27, 38] which poorly represent sharp features in the geometric shapes.
PDE-based formulations

Another approach is to construct the level set function as a vector field that smoothly approx-
imates the normal vectors n̨i given by the point cloud P. The vector field is then integrated and
fit, usually by a least squares fitting, to make the zero level set fit the point cloud. We classify
the methods that solve for the vector field as a solution to a partial di�erential equations (PDEs)
as PDE-based methods. Poisson’s method [19] uses variational techniques to Poisson’s equation
to construct a vector field. Improvements to this method add penalization weights to better fit
the zero contour to the point cloud in [39]. Tasdizen et al. [34] prioritize minimal curvature and
minimal error in the vector field by solving a set of coupled second order PDEs to derive their
level set function. Zhao et al. [25] use the level set method, originally introduced by Osher and
Sethian [40], for surface reconstruction, with the advantage of modeling deformable shapes. In the
aformentioned PDE-based methods, the setup for the implicit function reduces to solving a PDE by
time-stepping [25, 34] or a sparse linear system [19, 41] in the case of Poisson’s equation. Kazhdan
et al. [19] note that care should be taken when choosing a smoothing filter for the normal field
defined by n̨i, especially for nonuniformly sampled points. In the analysis done by Calakli and
Taubin [21], they found that Poisson’s method often over-smooths some surfaces. We also note
that solutions to PDEs are more di�cult to implement than other methods in practice.
Energy minimization formulations

Another methodology is to solve an optimization problem that minimizes some energy function
with respect to the values of the basis function directly. The smooth signed distance (SSD) surface
reconstruction method [21] minimizes an energy function with three terms. Minimizing these three
terms maximizes smoothness and minimizes the approximation error of the zero level set and the
gradient field to the data in P, all in a least squares sense. Alternative forms, such as in [20, 31],
propose a di�erent energy term to this formulation, which does a direct least squares fit to the
approximate signed distance function. We perform a more thorough discussion of the four energy
terms in Section 3, as our method also poses an energy minimization problem.

The energy minimization problem proposed in these papers is a well-posed unconstrained
quadratic programming (QP) problem. The solution to these unconstrained QP problems reduces
to the solution of a linear system. Making use of hierarchical structures, such as octrees, and com-
pactly supported basis functions, the linear system is sparse and recursively solved at increasing
depths of the structure. These advantages allow for fast solutions on the order of minutes as re-
ported by [21, 31]. It should be noted that the time and space (memory) consumed by hierarchical
approaches grows exponentially with the depth of the octree, so many implementations limit the
depth up to 11. The resultant number of control points in Tang and Feng [31] is on the order of
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106.
Summary

We note that interpolation formulations with RBFs, PDE-based formulations, and energy min-
imization formulations are di�erent approaches to the same problem of approximating the SDF.
The primary di�erences lie within the derivation and implementation of such methods. The energy
minimization formulation by Calakli and Taubin [21] performs a least squares fit to the data in the
point cloud. Thin-plate spline RBFs are an exact solution to an equivalent least squares energy
minimization problem, as derived by [42]. The two-step energy minimization formulation by Sibley
and Taubin [36] follows the same approach as PDE-based methods in which a vector field is solved
for and then a least squares fit is done to fit the surface. We refer interested readers to [21] which
discuss the similarities and di�erences between their energy minimization method, SSD, and the
Poisson’s method.

We summarize the context for all the methods in Table 1, highlighting the main di�erences in
their formulation, basis function representation, and distribution of points controlling the function.
We note that our method is an energy minimization formulation, which uses the same energy terms
as Calakli and Taubin [21], but with a di�erent basis function and di�erent distribution of control
points.

Table 1: Signed distance approximations and their basis function representations.

Formulation Basis Function Point Distribution
[33] Explicit Exponential Point cloud based
[38] Interpolating Thin-plate RBF Point cloud based
[32] Interpolating Polyharmonic RBF Point cloud based
[27] Interpolating Anisotropic RBF Point cloud based
[34] PDE-based Polynomial Uniform grid

[25, 35] PDE-based Linear Uniform grid
[19] PDE-based Quadratic Octree
[39] PDE-based Quadratic B-splines Octree
[36] Energy minimization Linear Uniform grid
[21] Energy minimization Linear Octree

[20, 28, 31] Energy minimization Quadratic B-splines Octree
Our method Energy minimization Cubic B-splines Uniform grid

3 Methodology

3.1 Signed distance function

The approach to our methodology is to compute a level set function „ by approximating the
signed distance function (SDF) of a geometric shape. We assume that the geometric shape partitions
its neighboring space into a feasible region and an infeasible region as shown in Fig. 2. Our goal
is to generate a level set function such that the zero contour of the function approximates the
boundary between the feasible and infeasible regions, i.e., the geometric shape. We also require
that evaluating the implicit function at any point in the domain of interest will determine if the point
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is located on the boundary or within one of the two regions, as indicated by the signed distance
of the point from the boundary. We follow the convention of denoting distances in the feasible
region as positive and those in the infeasible region as negative. The signed distance function in
the neighborhood N µ Rn of a point on the geometric shape can then be defined as

d�(x) =
I

+D(x) if x œ �
≠D(x) if x œ N \ �

(2)

where D : Rn
æ RØ0 measures the shortest distance of a point x to the boundary �. The local

feasible region � µ N and the local infeasible region N \ � are separated by the local boundary
�l = � fl N within the neighborhood, and �l µ �. Note that n = 2 or n = 3 for geometric shapes:
n = 2 implies � is a curve in two dimensions while n = 3 implies � is an orientable surface in
three dimensions. We assume that � is always a connected set. We make no assumptions on the
surface or curve being open or closed. However, we assume that � does not contain the boundary
points or curves if the curve or surface is open to ensure the existence of a neighborhood where
the definition of d� is valid. We also note that for closed geometric shapes, the definition of a local
neighborhood is not necessary, as the feasible and infeasible regions can be simply defined as the
inside and outside of the closed boundary � (see Fig. 1), or vice versa. This is identical to the
standard definition of the signed distance function.

Γ!

Γ

Ω # ∖ Ω

+ −

#((")

("

Figure 2: A 2D open funnel partitions the neighborhood of a point pi into a feasible region � and
an infeasible region N \ �.

3.2 B-spline functions

Our desired level set function is a smooth approximation to the signed distance function of a
geometric shape and is defined as a mapping „ : V µ Rn

æ R, where V is the space where we wish
to evaluate the level set function as a non-interference constraint function during optimization.
This means that the zero level set S = {x : „(x) = 0} implicitly approximates the given geometric
shape. To achieve such an approximation, we utilize tensor product B-splines. A B-spline volume
P : [0, 1]3 æ R3 is defined as

P(u, v, w) =
ni,nj ,nkÿ

i,j,k=0
Ci,j,kBi,d1(u)Bj,d2(v)Bk,d3(w), (3)

where (u, v, w) œ [0, 1]3 are the normalized parametric coordinates, Bi,d1(u), Bj,d2(v), Bk,d3(w) are
the B-spline basis functions of degrees d1, d2, d3 in the i, j, k directions respectively, and Ci,j,k are
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the control points that form the (ni + 1) ◊ (nj + 1) ◊ (nk + 1) control net in the physical coordinate
system. Equation (3) is essentially a tensor product, and hence P is also called a tensor product
B-spline.

A B-spline volume maps a volumetric space in the parametric coordinate system (u, v, w) to the
physical coordinate system (x, y, z) by translating and deforming the volumetric space according
to the control net Ci,j,k. The volumetric space we wish to represent in the physical coordinate
system is a rectangular prism V. This is the physical space where geometric non-interference
constraints need to be evaluated; therefore, we refer to V as the domain of interest. We require
that V encompasses the minimum bounding box for a given point cloud. The minimum bounding
box is the smallest closed box in Rn that contains the input point cloud representing a geometric
shape. We space the control points Ci,j,k across V in a uniform grid and consider them to be
constant. The domain of interest is not always a cube; therefore, parametric coordinates may be
scaled di�erently along di�erent directions. To compensate for this, some directions may contain
more control points than others depending on the dimensions of V.

The B-spline basis functions Bi,d1(u), Bj,d2(v), and Bk,d3(w) are generated by the de Boor’s
recursion formula [43]. The formulas for all three directions are identical, and Bi,d1(u) along the i
direction is computed by recursion

Bi,0(u) =
I

1 if ti Æ u < ti+1
0 otherwise

,

Bi,k(u) = u ≠ ti

ti+k ≠ ti

Bi,k≠1(u) + ti+k+1 ≠ u

ti+k+1 ≠ ti+1
Bi+1,k≠1(u),

(4)

where ti denotes the knots in the i direction. The basis functions corresponding to Ci,j,k provides
support only for (u, v, w) œ [ui, ui+d1+1] ◊ [vj , vj+d2+1] ◊ [wk, wk+d3+1]; thus the basis functions
are sparse. This also means that the number of nonzero terms in the summation of Eq. (3) is
proportional to the degrees d1, d2, and d3.

We define the B-splines for our formulation using uniform knot vectors and a uniform grid of
control points Ci,j,k across V. This makes the mapping (u, v, w) æ (x, y, z) a linear, one-to-one
relationship with (u, v, w) œ [0, 1]3 spanning the entire volumetric space of V. Thus, ˆu

ˆx
, ˆv

ˆy
, and

ˆw

ˆz
are constants that depend only on the dimensions of the rectangular prism V. Since we are

using a standard uniform knot vector, it should be noted that the control points Ci,j,k must lie
beyond V in order for the domain of the B-spline to be V. With this setup, we define our desired
function „ as

„(x, y, z) =
ni,nj ,nkÿ

i,j,k=0
C(„)

i,j,k
Bi,d1(u(x))Bj,d2(v(y))Bk,d3(w(z)), (5)

where u(x), v(y), and w(z) map the physical coordinates to parametric coordinates, and C(„)
i,j,k

are
the values of the function „ at the control points. The derivatives with respect to the spatial
coordinates and derivatives with respect to the control points are easily derived from this form.
The sparsity of the basis functions over the entire domain and the use of uniform knot vectors make
the computation of „ at any given point (x, y, z) in the domain highly e�cient.

Note that for a level set function „ for a curve in two dimensions, V is a rectangle, P reduces
to a B-spline surface, and we omit terms along the k direction in Eq. (5). In all of the remaining
discussion, we assume n = 3 with the geometric shape being a surface in three dimensions.
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3.3 Energies for B-spline fitting

The core of our methodology lies in computing appropriate C(„)
i,j,k

values on the control net so
that the level set function „ approximates the signed distance function with favorable properties
for gradient-based optimization. Note that since our approximation uses B-splines, the resulting
function will already be smooth and fast-to-evaluate. Therefore, the remaining task is to formulate
an approach for reliably estimating C(„)

i,j,k
using the data from an oriented point cloud.

An oriented point cloud is a set of ordered pairs P = {(pi, n̨i) : i = 1, . . . , N�}, where pi are the
physical coordinates of the points sampled over the geometric shape, and n̨i are the unit normal
vectors to the surface (or curve) at pi oriented towards the infeasible region. Our method always
requires an oriented point cloud as its input. However, we note that in cases where only a point
cloud without normal information is available, Principal Component Analysis (PCA) along with a
Minimum Spanning Tree (MST) algorithm can be used for estimating normals and their orientation
[29]. Edge-Aware Resampling (EAR) [44] is another method that can be used for generating noise-
free normals that also preserves sharp features.

We calculate C(„)
i,j,k

values by minimizing an energy function consisting of multiple energies. The
terms in the energy function are adopted from existing surface reconstruction methods [20, 21, 28,
31]. Since the zero contour of our desired level set function „ should approximate the geometric
shape represented by the point cloud, it is straightforward to see that we should minimize energies
to approximately satisfy „(pi) = 0 and Ò„(pi) = ≠n̨i. Hence we first define energies

Ep = 1
N�

N�ÿ

i=1
„(pi)2 and En = 1

N�

N�ÿ

i=1
ÎÒ„(pi) + n̨iÎ

2 , (6)

where Ep estimates the approximation error as the average of squared distances of the point cloud
from the zero contour of „, and En measures the average of squared alignment errors of the level set
function’s gradient when compared to the negative of the unit normal vectors in the point cloud.
Note that we take the negative of the normals (oriented toward the infeasible region) from the point
cloud since we want distances given by „ to be positive inside the feasible region. Minimizing Ep

forces the zero contour of „ to pass through all the points in the point cloud, and minimizing En

tries to orient the function’s direction of steepest increase Ò„ along the normal to the geometric
shape while pointing toward the feasible direction, both in the least squares sense. Minimizing En

is important since the derivatives of the exact signed distance function d� on the boundary of a
geometric shape is along the normal to the boundary, and d� always satisfies the eikonal equation,
i.e., ÎÒd�Î = 1.

If we perform a direct minimization of energies Ep and En, the resulting function attempts
to accurately fit the point data on the geometric shape, and since these energies do not control
the behavior of „ away from the geometric shape, it could create superfluous zero contours away
from the point cloud as reported in previous studies [21]. To overcome this issue, we define the
regularization energy

Er = 1
|V |

⁄

V

...Ò
2„(x)

...
2

F
dV, (7)

where Ò
2„(x) is the Hessian matrix of „ evaluated at x, Î·Î

F
represents the Frobenius norm, and

|V | =
s
V dV is the total volume of V. The regularization energy Er is interpreted as the aggregate
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curvature of „ over the entire volumetric space of V. The minimization of Er smooths the function
„ since forcing the Hessian to be zero forces the variations in the gradient field Ò„ to a minimum.
Since the gradient of „ is approximately aligned with the unit normals on the point cloud when
minimizing En, trying to maintain a constant Ò„ by minimizing Er also helps satisfy the eikonal
equation ÎÒ„Î = 1 for points further away from the point cloud. We evaluate the integral in Er

using the B-spline control points Ci,j,k lying inside V as quadrature points with unit quadrature
weights. Therefore, the regularization energy is approximated as a discrete sum is given by

Er = 1
|V |

⁄

V

...Ò
2„(x)

...
2

F
dV ¥

1
N

Nÿ

i=1

...Ò
2„(xi)

...
2

F
, (8)

where N is total number of quadrature points, typically about the same as the number of control
points Ncp = (ni + 1) ◊ (nj + 1) ◊ (nk + 1).

Some surface reconstruction techniques employ another energy term Ed, which attempts to fit
the signed distance function over the entire domain V. However, minimizing this energy was found
to create overfitting issues and produce high frequency oscillations in the level set function „ in
our investigation and previous studies [31]. As a result, we neglect this energy in our formulation.
Nevertheless, we present it here for the sake of completeness. The signed distance energy is given
by

Ed = 1
N

Nÿ

i=1
(„(xi) ≠ d�(xi))2 , (9)

where signed distances d�(xi) are evaluated at the control points within V (same as quadrature
points in Er). The signed distances d�(xi) can be approximated using distances to the nearest
neighbor in the point cloud and its normal [31], or by evaluating the explicit equation (1). Note
that minimizing Er can act as a regularization to avoid overfitting caused by Ed but careful weighting
of the four energies according to the geometric shape is necessary.

3.4 Final energy minimization problem

Finally, we define the total energy function f as

f = 1
N�

N�ÿ

i=1
„(pi)2

¸ ˚˙ ˝
Ep

+ ⁄n

N�

N�ÿ

i=1
ÎÒ„(pi) + n̨iÎ

2

¸ ˚˙ ˝
⁄nEn

+ ⁄r

N

Nÿ

i=1
ÎÒ

2„(xi)Î2
F

¸ ˚˙ ˝
⁄rEr

, (10)

where ⁄n and ⁄r are the relative penalization weights for En and Er with respect to Ep. The energy
minimization problem that yields the desired level set function „ is then given by

minimize f = Ep + ⁄nEn + ⁄rEr

with respect to C(„)
i,j,k

.
(11)

Note that the function values at the control points C(„)
i,j,k

directly a�ect Ep, En, and Er through the
definition of „ using B-splines (see Eq. (5)). If the geometric shape is a curve in two dimensions, then
the optimization variables are C(„)

i,j
. The choice of penalization weights is not obvious. Penalization
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weights may require tuning on a case-by-case basis depending on the geometric shape. In general,
we recommend ⁄n ≥ 10≠2 and ⁄r ≥ 10≠4 based on the parameter study presented in Sec. 4.

We provide a summary of our methodology in Algorithm 1 for geometric shapes that are surfaces
in three dimensions. The algorithm is easily adapted for curves in two dimensions by simply
omitting terms along the k direction.

Algorithm 1 A scalable and di�erentiable geometric non-interference constraint formulation
1: Discretize the given geometric shape into an oriented point cloud P.
2: Define the domain V for non-interference constraint evaluation, where V is a closed box in R3 and

contains the minimum bounding box of P.
3: Select the appropriate numbers of control points ni, nj , and nk along each direction, and define the

corresponding uniform grid of control points Ci,j,k and uniform knot vectors.
4: Select appropriate weights ⁄n and ⁄r, and solve the energy minimization problem (11) to obtain C(„)

i,j,k.
5: Evaluate the geometric non-interference constraint(s) during each optimization iteration using the „

given by Eq. (5) and optimized C(„)
i,j,k from Step 4.

3.5 Implementation details

We initialize C(„)
i,j,k

for the energy minimization problem (11) by evaluating the explicit equation
(1) at each control point Ci,j,k. This initialization gives an overall good initial guess for the signed
distance near the geometric shape, hence it results in smaller Ep and En values. While the initialized
B-spline function „ is always di�erentiable for degree two or more, points of non-di�erentiability
in the exact signed distance function will create regions of high curvatures in „. Hence, this
initialization may result in a large Er term, even for smooth geometric shapes.

The minimization of Er is thus necessary to smooth these regions of high curvatures, although
compromising the accuracy at representing the exact SDF in these regions. Thus, ⁄r should be large
enough to enable smoothing of high curvatures that exist in the exact signed distance initialization
but small enough so that it does not induce a large error in representing signed distances near the
geometric shape. This is essential for better convergence in the overarching optimization problem
when solved using a gradient-based algorithm.

In our implementation, we define the B-spline domain V by extending the minimum bounding
box for the point cloud along its diagonal by 15%. The choice of 15% is purely empirical, and it can
be lower or higher depending on the optimization problem requirements. The additional margin
allows optimization algorithms to evaluate the constraint function at locations that are away from
the geometric shape.

Higher order B-splines are computationally expensive. However, they improve the local degrees
of freedom and the ability to control the function. In our experiments with the Stanford Bunny
model shown in Fig. (5), we found no significant reduction in error for B-spline degrees higher than
three. Hence, we recommend cubic B-splines for reasonable accuracy and computational e�ciency.

Additionally, it is often too computationally expensive to express a non-interference constraint
for an optimization problem by representing all optimization constraints „(x(i)) Ø 0 individually,
especially for a large number of points x(i) on the design. Instead, we recommend implementing
a smooth minimum or maximum function such as KS-aggregation [45] to reduce the number of
constraints in the optimization problem.

As an additional note, we consider an extension to the current problem in which the boundary �
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of the feasible space, which is discretized and represented by a point cloud P, is also varying during
an optimization problem. In such a case, Algorithm 1 must be completed at every optimization
iteration and the derivatives of the constraint values {„(x(i)), for i = 1, 2, ..., Nd} with respect
to P must be computed. For computing these derivatives, we would apply the direct or adjoint
method where the states are the control point values C(„)

i,j,k
computed as a solution to the energy

minimization problem. Therefore, to compute the derivatives, we have to solve M systems of linear
equations where M is the lower between the number of points representing the boundary (N�) or
the number of points representing the engineering design system (Nd). Note that this operation
will scale at a minimum of O(M) and may be impractical to perform at every iteration of a large
optimization problem. We hope for this problem to be addressed in a future work.

Lastly, we note that the energy minimization problem (11) is inherently an unconstrained
quadratic programming (QP) problem, and we follow the derivation from Calakli and Taubin [21]
to reduce problem 11 to the solution of a sparse, symmetric, positive definite linear system. Using
a conjugate gradient solver, the solution to this problem is able to be completed on the order of
seconds, depending on the number of control points. We release the python package to perform the
energy minimization and evaluation of the non-interference constraint in an open-source package
(https://github.com/LSDOlab/lsdo genie). Further numerical studies are presented in the next
section.

4 Numerical Study

This section presents the results of various numerical studies using our formulation. We begin
by studying our method using simple two-dimensional geometric shapes in subsection 4.1. In
subsection 4.2, we investigate the dependence of our method on various parameters using the
Stanford Bunny dataset. Subsection 4.3 then compares our method to previous non-interference
constraint formulations using the Stanford Bunny, and other surface reconstruction methods using
three datasets from the Stanford 3D Scanning Repository. We demonstrate the accuracy of our
method in representing geometric shapes for aerospace optimization applications in subsection 4.4.
We conclude the section by demonstrating the application of our method by solving a medical robot
design optimization problem with non-interference constraints in subsection 4.5.

We implement the proposed method in a Python environment, and run all experiments on a
desktop with an 8-core Ryzen 7 @ 3.6 GHz processor and 32 GB of RAM. We do not implement
multi-threading or parallelization with GPUs in any of our numerical experiments.

4.1 Investigations using simple geometric shapes in two dimensions

We begin by applying our formulation to curves in two dimensions. Because our formulation
is generic, no modifications are required to Eq. (10), and the terms in the k direction are simply
ignored for 2D geometric shapes.

For 2D curves, the isocontours from the level set function (LSF) „ can be readily visualized
to facilitate a better understanding of the function both near and far from the curve. Figure 3
visualizes the isocontours of the initialized and energy minimized LSF for a rectangle using our
formulation. We initialize C(„)

i,j
using the explicit equation (1). Neglecting the sharp corners in this

example, the contours of the initialized function closely match the exact signed distance function
(SDF). Thus, the explicit method provides an excellent approximation of the SDF. We observe that
the contours of the LSF are more rounded near the corners after energy minimization. Minimizing
Er smooths sharp corners on all isocontours, however, not to a degree that compromises En and Ep
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near the zero contour. We note that En and Ep have less influence compared to Er on the isocontours
corresponding to 1 and 2, hence these contours are even more rounded.
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Figure 3: The ≠1, 0, 1, and 2 contours of the initialized (left) and the energy minimized (right)
level set function „.

A LSF representing multiple geometric shapes may also be obtained using a single B-spline.
Figure 4 shows the exact SDF and a one-dimensional slice of our energy minimized LSF „ along
the x axis for a domain containing multiple circles. We note that the non-di�erentiable points
in the exact SDF can lie inside or outside of a geometric shape. This example illustrates how
our energy minimization formulation balances the trade-o� between minimizing the curvature of
„ and maximizing the accuracy at representing the SDF near points of non-di�erentiability and
high curvature. Our energy minimized LSF „ poorly approximates the SDF near points of non-
di�erentiability and high curvature. However, in regions without any non-di�erentiabilities or high
curvatures, the zero level set preserves a good approximation to the exact SDF. For the remainder
of the numerical results section, we only consider a single geometric shape within the domain of
interest V, because the error of our formulation increases with the minimum bounding box diagonal.

4.2 Investigations using a complex geometric shape in three dimensions

We use the well known Stanford Bunny scanned dataset (shown in Fig. 5) to analyze our
formulation’s performance on three-dimensional geometric shapes. This dataset contains a large
point cloud which we consider as an exact surface. We coarsely sample this point set and apply
our method, measuring the accuracy of the resultant energy minimized LSF. The Stanford Bunny
contains small scale features, sharp corners, flat surfaces, and smooth surfaces which will test the
accuracy of our formulation in representing di�erent geometric features. The sampled point set is
free of noise, missing data, and nonuniformity, which are challenges not investigated in this paper.

We use the root-mean-squared (RMS) error and max error to evaluate the accuracy of our energy
minimized LSF in approximating the signed distance function. The errors are normalized by the
minimum bounding box diagonal L to ensure that they are independent of the size of a geometric
shape. This allows for a common metric for comparing accuracies across di�erent geometric shapes.
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Figure 5: The Stanford Bunny model.

The errors are defined as

RMS error = 1
L

Ûq
Ne
i=1(„(xi) ≠ d�(xi))2

Ne

, and (12)

max error = max
i=1,2,...,Ne

1
L

|„(xi) ≠ d�(xi)|, (13)

where Ne is the number of points xi used to calculate the error, and the signed distances are
approximated using explicit equation (1) on the large point cloud. We define the on-surface error
by evaluating points that lie on the geometric shape where the true value is zero. The o�-surface
error is computed by evaluating points that are near but do not lie on the geometric shape. To
acquire these sample points, we take the original sample points and move them in the direction of
the normal vectors by specified distances.

The energy minimization problem has two di�erent resolution scales: the resolution of the point
cloud data and the resolution of the B-spline control grid. The energy minimized LSF’s ability to
approximate the signed distance is best when both resolutions are very fine. Unlike hierarchical
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structures or explicit methods, the control grid resolution for our method is independent of the
point cloud resolution. As a result, we conduct an experiment to highlight the e�ects of varying
the two resolution scales. Table 2 tabulates the results of our nine experiments, in which on-surface
error and fitting times from of our experiments are shown. Fitting time is the time to solve energy
minimization problem (11). We show averaged the fitting times across N� resolutions because it
does not influence the fitting time given a constant number of control points Ncp. In terms of the
on-surface error, increasing both resolutions correlates to a decrease in both RMS and maximum
error. In our results, the maximum error of our function monotonically decreases with increasing
Ncp, however, does not monotonically decrease with increasing N�. The source of this comes from
the fact that the optimal solution will compromise regions it can not fit in order to get a better
overall solution (a decrease in RMS error). In terms of the fitting time, increasing the number of
control points Ncp increases the time to solve the energy minimization problem. We note that for
each application of our method, a compromise between accuracy and fitting time must be made
when selecting the resolutions.

Table 2: The relative on-surface error for our method applied to the Stanford Bunny model.
Penalization weights used were ⁄n = 10≠2, and ⁄r = 5 ◊ 10≠4.

32 ◊ 31 ◊ 25 40 ◊ 39 ◊ 32 48 ◊ 45 ◊ 33
Ncp = 24, 800 Ncp = 49, 920 Ncp = 71, 280

N� = 5k RMS 1.0 ◊ 10≠3 7.5 ◊ 10≠4 6.7 ◊ 10≠4

Max 4.7 ◊ 10≠3 3.7 ◊ 10≠3 3.3 ◊ 10≠3

N� = 25k RMS 8.2 ◊ 10≠4 5.4 ◊ 10≠4 4.6 ◊ 10≠4

Max 3.7 ◊ 10≠3 3.3 ◊ 10≠3 2.7 ◊ 10≠3

N� = 64k RMS 7.8 ◊ 10≠4 5.1 ◊ 10≠4 4.2 ◊ 10≠4

Max 6.1 ◊ 10≠3 5.1 ◊ 10≠3 2.9 ◊ 10≠3

Average fitting time 4.79 8.90 15.87(seconds)

While we do not propose an exact method for selecting the penalization weights ⁄n and ⁄r, we
provide a fixed point parameter study on each weight. Figure 6 shows the resulting errors from
varying each penalization weight about the fixed point ⁄n = ⁄r = 1 using the Stanford Bunny
dataset. The study on ⁄r shows that small values (⁄r < 1) have very little e�ect on the RMS error,
and large values (⁄r > 1) significantly reduce the energy minimized function’s accuracy. The study
on ⁄n suggests that for a given geometric shape, there exists an optimum value of ⁄n that minimizes
the energy minimized function’s error. In all studies, we observed an increase in the minimization
time as the corresponding weight increased (not visualized in the figure). These observations lead
us to recommend the use of ⁄n ≥ 10≠2 and ⁄r ≥ 10≠4 for reasonable accuracy for this particular
geometry.

The ability of our function to represent nonzero level sets of the Stanford Bunny is visualized
in Fig. 7. The level sets form good approximations of the o�set surfaces, with a maximum relative
distance error of 9.8◊10≠3. In these visualizations, we observe the region of highest error to be near
the neck and feet of the model, where sharp edges and corners exist. Most notably, the 0.005 and
0.01 level sets remove the ears of the model, despite them being in the exact SDF representation.
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Figure 6: The RMS errors for on- and o�-surface points while varying ⁄n and ⁄r about 1. This
result uses the Stanford Bunny sampled at N� = 25, 000, and a control point grid of 31 ◊ 31 ◊ 26.

As a thin feature, the removal of the ears in the 0.005 and 0.01 level sets is consistent with similar
observations by Tang and Feng [31].

Figure 7: Isocontours of the energy minimized LSF for the Stanford Bunny. The colors represent the
error of the isocontour to the true signed distance value. The isocontours and error are normalized
by the minimum bounding box diagonal.

4.3 Comparison to other methods using complex geometric shapes in three dimensions

We show the computation time and accuracy of our method compared to explicit non-interference
constraint formulations in Fig. 8, varying the sample size N� of the Stanford Bunny. We observe
that the method presented by Lin et al. [2] and the explicit method presented by Hicken and Kaur
[33] scale in evaluation time with O(N�), while our method scales independently of N�. We note
that formulation from Lin et al. is not an attempt at approximating the signed distance function,
thus is neglected from the RMS error comparisons. In terms of on-surface error, the explicit method
has a steady decay in RMS error with respect to increasing N�, suggesting a power law relationship.
Our method has a similar decay up to N� = 104, where the RMS error decays slower for larger
N� > 104. Similarly, the o�-surface RMS error of the explicit method steadily decays for both the
±0.005 and ±0.01 contours, and our method decays until N� = 104. For N� > 104, the o�-surface
error of our method decays slowly. Our method’s ±0.01 contours have significantly more error than
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the ±0.005 contours, while the explicit method has similar error for both sets of isocontours. For
both on-surface and o�-surface error, our method performs better in terms of accuracy up until the
±0.005 contours and N� < 2 ◊ 104. From this information, we conclude that the explicit method
will outperform in terms of accuracy and underperform in terms evaluation time compared to our
method for most very finely sampled geometries. We note that our method can achieve better
accuracy than shown in Fig. 8 by a trade-o� in fitting time as shown in Table 2. Additionally,
we note that the explicit method requires a noise-free, uniform sampling to achieve the presented
results, which is not always feasible.
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Figure 8: Evaluation time per point (left), on-surface root-mean-square error (center), and o�-
surface root-mean-square error (right) varying the sampling (N�) of the Stanford Bunny model.
Our method was applied using a control point grid of (31 ◊ 31 ◊ 26) and ⁄n = 10≠2, ⁄r = 5 ◊ 10≠4.

We apply our method using two additional scanned datasets from the Stanford 3D Scanning
Repository. Table 3 records the results of the on-surface error of our method, as well as the
reported on-surface error from four notable surface reconstruction methods for necessary context.
The methods are smooth signed distance (SSD) reconstruction [21], Multi-Level Partition of Unity
(MPU) [20], wavelets [46], and screened Poisson (SP) [39]. The results for the surface reconstruction
methods were obtained from [20, 28, 31, 39] and were not reproduced in our investigation, resulting
in missing data in the table. Of the three scanned datasets, our energy minimized LSF maintains
on-surface RMS error and max error on the same order of magnitude compared to the four other
methods.

4.4 Application to aircraft design problems

We now apply our formulation to a number of geometric shapes involved in novel aircraft design.
Aircraft design optimization is a long standing problem and has been the subject of recent interest
in problems involving geometric non-interference constraints, e.g., the layout optimization of air
cargo [11], trajectory optimization with complex no-fly zone shapes [12, 13], aerodynamic shape
optimization [3], and joint battery layout and wing shape optimization [4]. To enable gradient-
based design optimization involving these constraints, a new generic method is required to represent
numerous components within an aircraft’s design. We recognize the potential for our formulation
and demonstrate its capabilities by conducting an experiment.

In this experiment, we apply our formulation and quantify the resultant errors of five geometric
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Table 3: Reported on-surface error of surface reconstruction methods and our method for three
benchmarking datasets. We reconstruct using Ncp = 25, 000, ⁄n = 10≠2, and ⁄r = 5 ◊ 10≠4.

Model SSD [21] MPU [20] Wavelets [46] SP [39] Our method

Stanford Bunny RMS 8.0 ◊ 10≠4 1.0 ◊ 10≠3 1.1 ◊ 10≠3 8.0 ◊ 10≠4 6.3 ◊ 10≠4

Max ... ... ... ... 4.5 ◊ 10≠3

Armadillo RMS 3.0 ◊ 10≠4 ... 1.2 ◊ 10≠3 4.0 ◊ 10≠4 1.3 ◊ 10≠3

Max 9.0 ◊ 10≠4 1.9 ◊ 10≠3 2.0 ◊ 10≠3 8.0 ◊ 10≠4 7.6 ◊ 10≠3

Dragon RMS 3.5 ◊ 10≠4 8.0 ◊ 10≠4 1.4 ◊ 10≠3 5.1 ◊ 10≠4 1.4 ◊ 10≠3

Max ... 4.8 ◊ 10≠3 ... 5.1 ◊ 10≠3 1.0 ◊ 10≠2

shapes commonly associated with aircraft design. The geometries we model include a fuselage and
a wing from a novel electric vertical take-o� and landing (eVTOL) concept vehicle [47], a human
avatar [48], a luggage case, and a rectangular prism representing a battery pack within the wing.
A visualization of these components in a feasible design configuration is illustrated in Fig. 9.

Figure 9: Components necessary for spatial integration in aircraft design optimization. A cross
section view is shown for an aircraft fuselage, wing, battery pack, human avatar, and luggage.

Table 4 tabulates the on-surface error of the energy minimized LSF for each geometry. We
observe that the smallest relative on-surface error is of the smooth fuselage shape, while the largest
relative error is of the human avatar. We note from this example that geometries with features
well proportioned to their minimum bounding box diagonal are better fit using our method. For
example, the small scale features (e.g. hands and feet) of the human avatar produce large relative
error, yet the smooth fuselage with no small-scale features has very low relative error. We observe
that the bounding boxes of the fuselage, wing, and battery pack are poorly proportioned between
each dimension, yet do not result in an increase of relative error compared to other geometries.
Geometries with longer minimum bounding box diagonals will result in larger absolute errors.

4.5 Application to medical robot design optimization

We now apply our method for enforcing geometric non-interference constraints to a medical
robot design problem involving concentric tube robots (CTRs). CTRs are composed of two or
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Table 4: Relative on-surface error of our method on various components of engineering systems. All
geometries were sampled at N� = 25, 000. The optimization weights ⁄n = 10≠2 and ⁄r = 5 ◊ 10≠4

were used.

Fuselage Luggage Wing Battery pack Human avatar

Relative error RMS 7.6 ◊ 10≠5 1.8 ◊ 10≠4 2.5 ◊ 10≠4 4.4 ◊ 10≠4 7.8 ◊ 10≠4

Max 5.7 ◊ 10≠4 1.8 ◊ 10≠3 1.0 ◊ 10≠3 1.8 ◊ 10≠3 3.8 ◊ 10≠3

Absolute error RMS 0.24 cm 0.01 cm 1.28 cm 0.66 cm 0.14 cm
Max 1.78 cm 0.15 cm 5.29 cm 2.61 cm 0.67 cm

Discretization 47 ◊ 29 ◊ 29 33 ◊ 44 ◊ 28 29 ◊ 47 ◊ 29 29 ◊ 47 ◊ 29 37 ◊ 32 ◊ 34
Fitting time 6.7 13.5 39.4 15.6 21.3(seconds)

more long and slender pre-curved tubes made of superelastic materials. They can be designed to
reach points in a large region of interest by rotating and translating the tubes relative to each
other at their bases. These characteristics make them ideal for minimally invasive surgeries where
a surgeon can operate on a small region of interest with high dexterity through actuation at the
base.

In the foundational works of Sears and Dupont [49] and Webster et al. [50], expressions for the
shape and tip position of the CTR are derived with respect to the robot’s geometric and control
variables. Bergeles et al. [1] use these expressions to perform gradient-free optimization of the CTR’s
geometric and control variables with anatomical constraints. These anatomical constraints, i.e.,
geometric non-interference constraints, enforce that the CTR does not interfere with the anatomy
(e.g., the right ventricle of the heart shown in Fig. 10) during operation. Recent work by Lin et al. [2]
shows that gradient-based optimization enables an e�cient and scalable solution to simultaneously
optimize the large set of the tube’s geometric and control variables while enforcing anatomical
constraints. The experiment we now present follows the workflow of Lin et al. [2], however, using
our new formulation for representing the anatomical constraint function.

The presented workflow involves the solution of multiple optimization problems, including an
initial path planning problem, and the geometric design and control of the CTR (the ‘simultaneous
optimization problem’ described by Lin et al. [2]). The path planning problem solves for a paramet-
ric 3D curve that represents an optimal collision-free path to the surgical site within the anatomy.
Then, points along this path serve as inputs to the geometric design and control optimization of
the CTR, which involve a kinematic model of the robot. In both subproblems, the non-interference
constraints are enforced by evaluating a discrete set of points along the path or physical CTR to
ensure that no points lie outside of the anatomy.

We begin our experiment with an investigation in the heart anatomy which represents the non-
interference constraint of the problem. The initial oriented point cloud of the heart is obtained
from segmentation and 3D reconstruction by magnetic resonance imaging (MRI) scans. Due to the
limited machine accuracy, error introduced by aligning multiple scans, and normal approximation,
the oriented point cloud is noisy, nonuniform, and contains poorly oriented normals. We perform
a simple and necessary smoothing step on this point cloud as illustrated in Fig. 10. Although less
precise at capturing small scale features, the smoothing step assists our method in reconstructing
a smooth zero contour for constraint representation.
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Figure 10: Preprocessing the raw scanned data (left) to a smooth approximate model (right).

The smooth representation has relative errors 3.1◊10≠3 (RMS) and 1.9◊10≠2 (max) compared
to the original noisy representation. The error in our energy minimized function obtained from the
smoothed heart model is tabulated in Table 5. We observe that the on-surface RMS and max error
of our representation is an order of magnitude less than the error introduced by the smoothing
step. This implies that our representation of the smooth model is no worse than the smoothing
step itself. We see that our method generates a function with a reliable zero level set of the smooth
heart geometry, with an on-surface RMS error of 2.1 ◊ 10≠4. This error is lower compared to all
the other examples in Table 3, and we attribute this to the smoothness of the heart geometry. We
also note that the max on- and o�-surface absolute errors of our representation are of the same
order as the diameter of the CTR itself, typically 0.5-2.0 mm.

Table 5: Accuracy of our method in representing a smoothed heart model. Minimum bounding box
diagonal is 244.75 mm. The anatomy is sampled at N� = 100, 000, and our method uses a control
point discretization of (28 ◊ 23 ◊ 37), ⁄n = 10≠2, and ⁄r = 10≠4.

Relative error Absolute error

On-surface RMS 2.1 ◊ 10≠4 0.053 mm
Max 1.8 ◊ 10≠3 0.432 mm

5mm O�-surface RMS 3.1 ◊ 10≠3 0.758 mm
Max 4.3 ◊ 10≠3 1.058 mm

We now solve the two optimization subproblems using our energy minimized LSF of the
smoothed heart model to enforce the geometric non-interference constraint. In the model from Lin
et al. [2], the non-interference constraint was imposed using a penalization function g(x), where it
was defined as negative for the feasible region, and positive for the infeasible region. In our imple-
mentation, we represent this function with our energy minimized LSF in the form g(x) = ≠„(x).
The results from this experiment are shown in Table 6, where the number of function evaluations
and optimization time are tabulated for each subproblem and non-interference constraint method.
The time to solve the energy minimization problem for our method is denoted as the fitting time.
Between the two subproblems, the number of function evaluations and optimization time is signifi-
cantly more for the design subproblem due to the inclusion of the kinematics models. Between the
two non-interference constraint methods, we observe a significant decrease in optimization time by
using our new method for both subproblems. Even when accounting for the fitting time, our method
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provides a significant speedup for the design subproblem. However, we note that the speedup pro-
vided by our method for computationally inexpensive optimization problems, such as the path
planning subproblem, may be negated by the fitting time to solve for the energy minimized LSF.
For geometries with larger N� and more complex optimization problems requiring more function
evaluations, we expect the speedup in optimization time to be more pronounced.

Table 6: Constraint function evaluations and optimization time for the concentric tube robot’s path
planning and design optimization. The anatomy is represented using N� = 1, 842.

Lin et al. [2] Our method
Subproblem Path planning Design Path planning Design
Function evaluations 37 35,142 62 20,793
Optimization time 4.2 sec 3 hr 11 min 0.9 sec 1 hr 24 min
Fitting time N/A 8.7 sec

5 Conclusion

In this paper, we presented a new method for modeling interference between geometric shapes in
gradient-based optimization. In Sec. 1, we consolidated the terminology used in prior literature and
call this category of constraints ‘geometric non-interference constraints’. Additionally, we framed
the set of optimization problems with geometric non-interference constraints into three groups:
layout optimization, shape optimization, and optimal path planning problems. Section 2 reviewed
the existing geometric non-interference constraint formulations in gradient-based optimization and
contextualized our formulation within the field of surface reconstruction. Section 3 presented
our new constraint formulation, which approximates the signed distance function using B-splines
computed by solving an energy minimization problem. Section 4 presented accuracy and scaling
studies with our formulation. We also solved a path planning and shape optimization problem
using our new formulation.

The contribution of this paper is a new formulation for representing geometric non-interference
constraints in gradient-based optimization. This formulation involves a scalable, smooth, and fast-
to-evaluate constraint function that approximates the local signed distance to a geometric shape.
The use of B-spline functions is key to our formulation being scalable, smooth, and fast-to-evaluate.
We showed that our formulation achieves a level of accuracy on the same order of magnitude as
surface reconstruction methods used in computer graphics. Additionally, our formulation yields
better accuracy, up to a certain limit, and scales better in evaluation time with respect to the number
of points sampled on the geometric shape N� compared to previous non-interference constraint
formulations used by the optimization community. The fitting time for our formulation is on the
order of seconds and scales with the number of B-spline control points. To accurately represent
small-scale features under our new formulation, we must perform uniform refinement of the B-spline
control points, which will increase the number of control points and, consequently, the fitting time
required to achieve the level of accuracy desired. Evaluation times are on the order of 10≠6 seconds
per point as measured on a modern desktop workstation, entirely independent of the number of
sample points N�. The method results in a 78% and 56% speedup in optimization time for a
path planning and design subproblem, respectively, for an existing concentric tube robot (CTR)
gradient-based design optimization problem.
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We identify multiple directions for future work. Adaptive octrees with B-splines can represent
small-scale features such as edges and sharp corners more accurately. Using octrees for discretiza-
tion instead of using a uniform grid can clearly yield faster and more accurate solutions in problems
where any of the modeled geometries remain constant during optimization iterations, e.g., the CTR
or wind farm layout optimization problems. However, it is worth restating that when geometries
evolve during optimization, rediscretizing surfaces using octrees in each optimization iteration be-
comes unreasonably expensive, and we only recommend a uniform discretization in such cases.
Even when using a uniform discretization, the computational cost to compute the total derivatives
of the constraints with respect to the changing geometries with our new formulation may still be
impractical for such an optimization problem. In its current state, our formulation is relatively
well-suited for a fixed-boundary with detailed geometric features that require a fine discretization
(N� large), because existing explicit formulations have evaluation times that increase with the
number of points. However, for geometries that can be represented with coarse meshes, we expect
the evaluation times of our formulation and explicit formulations to be comparable. Acceleration
with multi-threading or graphics processing units (GPUs) is another possible direction for future
research.
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