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Abstract. 3D point cloud tracking has recently witnessed considerable
progress with deep learning. Such progress, however, mainly focuses on
improving tracking accuracy. The risk, especially considering that deep
neural network is vulnerable to adversarial perturbations, of a tracker
being attacked is often neglected and rarely explored. In order to attract
attentions to this potential risk and facilitate the study of robustness in
point cloud tracking, we introduce a novel transferable attack network

(TAN) to deceive 3D point cloud tracking. Specifically, TAN consists of
a 3D adversarial generator, which is trained with a carefully designed
multi-fold drift (MFD) loss. The MFD loss considers three common
grounds, including classification, intermediate feature and angle drifts,
across different 3D point cloud tracking frameworks for perturbation
generation, leading to high transferability of TAN for attack. In our
extensive experiments, we demonstrate the proposed TAN is able to not
only drastically degrade the victim 3D point cloud tracker, i.e., P2B [21],
but also effectively deceive other unseen state-of-the-art approaches such
as BAT [33] and M2Track [34], posing a new threat to 3D point cloud
tracking. Code will be available at https://github.com/Xiaoqiong-Liu/
TAN.
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1 Introduction

3D point cloud tracking, aiming at localizing the target of interest in a sequence
of point clouds given its initial state (e.g., a 3D bounding box), is one of most
fundamental components of 3D computer vision and has a wide range of crucial
applications such as autonomous driving, robotics, and scene understanding. In
recent years, rapid progress has been made in 3D point cloud tracking owing to
the development of deep learning on point sets (e.g. [19,20]), and many excel-
lent deep trackers (e.g., [6,11,21,24,27,33,34]) have been proposed. Despite this,
current progress mainly focuses on improving the accuracy of point cloud track-
ing. The potential risk that, a deep tracker may be attacked by the, even small,
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Fig. 1. Illustration of TAN to attack the victim 3D tracker P2B [21] and its trans-
ferability to fool other unseen approaches including BAT [33] and M2Track [34]. It is
worth noticing that, the two unseen trackers perform better than the victim tracker,
while they are deceived by our approach, showing its transferability for attack.

adversarial perturbations, is often ignored and rarely studied, which may cause
severe consequences when deploying the tracking system in practice.

The problem of adversarial attack has been firstly explored in [7,25] for
2D images, demonstrating that deep neural network could be deceived via
adding small imperceptible perturbations to the original input image. Study-
ing adversary examples to the deep network is beneficial for understanding
deep learning and facilitating its robustness [12]. Inspired by this, the research
of adversarial attack for the 3D point clouds has been investigated recently.
However, current field mainly focuses on attacking point cloud classification
task (e.g., [9,10,13,17,18,30,36]), and very little attention is paid to adversar-
ial attack on 3D point cloud tracking. Compared with attack on classification,
adversarial attack on point cloud object tracking is different and more challeng-
ing. First, instead of handling only one candidate for attack in classification,
attack on tracking requires to deal with dense candidates within the research
region. Besides, tracking is a temporal video task and all point clouds except for
the first one will be attacked, while only one static point cloud is attacked in
classification.

Considering the importance of point cloud object tracking and to attract
attention to the exploration of adversarial attack on it for facilitating robustness,
we introduce a novel framework, dubbed Transferable Attack Network (TAN),
for attacking 3D object tracking in point cloud. TAN aims at deceiving not only
the victim tracker but also other unseen tracking models (see Fig. 1). Specifi-
cally, TAN consists of a 3D adversarial generator that is constructed in encoder-
decoder style. It takes as input a clean search region point cloud and then outputs
the adversarial perturbations to generate a perturbed search region point cloud
against the tracker. In order to train TAN, we propose a novel and simple but
effective multi-fold drift (MFD) loss, which is the key to achieving high trans-
ferability of TAN for attack. Concretely, it considers three different drifts on
classification, intermediate feature representation and angle, carefully designed
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for 3D tracking. Because these three drifts are common grounds across different
point cloud tracking frameworks, our TAN is learned to possess a good transfer
capacity from the victim tracker to other unseen models.

In this work, we choose popular state-of-the-art P2B [21] as the victim point
cloud tracker, and apply our TAN with proposed MFD loss to generate adver-
sarial perturbation. In extensive experiments on the challenging KITTI [5], we
demonstrate that our approach is able to effectively fool P2B [21] by drastically
degrading its tracking performance. In addition, we verify the transferability of
TAN, learned by attacking P2B and then fixed when transferring, on other recent
unseen 3D point cloud trackers consisting of BAT [33] and M2Track [34]. Experi-
mental results show that, even without seeing the architectures of these trackers,
the perturbations generated from TAN can successfully fool these models, which
poses a new threat to 3D point cloud tracking.

We notice that, there exist attempts to exploring adversarial attack on 2D
object tracking in video sequences (e.g., [8,28,31]), but our TAN for adversarial
attack on 3D point cloud tracking is considerably different. First, TAN aims to
perturb geometric object points, while other 2D attacker works on image pixels.
Besides, unlike the 2D case, it is essential to specially consider the sparsity
character of point cloud data when designing 3D adversarial attack. Finally,
TAN is designated to generate the highly transferable perturbation from the
victim tracker to other unseen models, differing from other 2D methods.

To our knowledge, the proposed TAN is the first investigation of transferable
adversarial attack on object tracking in 3D point cloud. We hope that it draws
researchers’ attention on developing more attack methods on point cloud track-
ing for better understanding this task and the potential risk of its deployment
in practical applications. In summary, we make the following contributions:

1) We introduce a novel Transferable Attack Network (TAN) that effectively
fools not only the victim tracker but also other unseen methods. To our knowl-
edge, TAN is the first study of transferable attack on 3D point cloud tracking.

2) We propose the Multi-Fold Drift (MFD) loss that specially considers drifts on
common grounds across different trackers, consisting of classification, inter-
mediate feature and angle, leading to high transferability of TAN.

3) We conduct extensive experiments to verify the effectiveness of TAN in
attacking the state-of-the-art P2B and show its high transferability to suc-
cessfully fool other unseen but stronger trackers.

2 Related Work

3D Point Cloud Object Tracking. 3D point cloud tracking has been greatly
explored in recent years. Inspired by the success in 2D tracking [1,3,14,16], deep
Siamese architecture has been exploited in many 3D point cloud trackers. The
method of SC3D [6] is the first in applying Siamese network for 3D tracking.
Nevertheless, this approach suffers from heavy computation burden because of
exhaustive search strategy for candidate generation. To improve SC3D, the work
of P2B [21], drawing inspirations from region proposal network (RPN) [22] for
2D Siamese tracking [15], introduces a 3D proposal network to efficiently obtain
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candidates for tracking. The approach of BAT [33] proposes a box-aware repre-
sentation to encode the geometric information of target for point cloud tracking,
enhancing the robustness. The work of V2B [11] learns the shape-aware features
to deal with the sparsity issue in point clouds for tracking. The work of MLVS-
Net [27] explores multi-level features for 3D tracking. The work of M2Track [34]
leverages motion information for improving tracking. The algorithm of PTT [24]
uses Transformer [26] for augmenting target-aware feature representation for
improvements. The work of PTTR [35] explores Transformer to fuse template
and search region point clouds for tracking. Different from the above approaches
that mainly focus on improving 3D tracking accuracy, our method aims at learn-
ing adversarial attack against 3D trackers, which facilitates point cloud tracking
from another direction.

Adversarial Attack on Point Cloud. Recently, the study of adversarial
attack on point cloud has drawn great attention. The work of [30] proposes
the first adversarial attack on point cloud classification task. Several attack
approaches have been studied and displayed promising attacking performance.
The method of [17] extends the adversarial attack for 2D images to point cloud.
The work of [9] aims at learning transferable perturbations with auto-encoder
reconstruction for 3D point cloud classification. The method of [18] generates
adversarial perturbations with joint gradients of original point clouds and out-
liers. The approach of [13] learns adversarial examples for point cloud classi-
fication with small point manipulations. The work of [10] introduces a shape-
invariant 3D adversarial attack method for classification. The method of [36]
presents a label-guided network to generate adversarial examples for point cloud
attack. Different from the above methods for point cloud classification, this paper
aims at the task of adversarial attack on point cloud object tracking, which is
more challenging compared to attacking classification models.

Adversarial Attack on 2D Tracking. The task of attacking 2D object track-
ing has been largely explored in recent years. The methods in [8,28] propose to
generate the adversarial perturbation to attack the tracker via an optimization-
based iterative manner. The work of [2] introduces a dual-attention approach to
learn the one-shot adversarial attack for tracking. The algorithm of [4] presents
an adaptive adversarial attack to fool the aerial object tracker. The work of [31]
proposes to deceive a 2D tracker with perturbation from an adversarial generator
trained with a cooling-shrinking loss. Different from the aforementioned meth-
ods for adversarial attack on 2D tracking, our TAN is designated for fooling
3D point cloud tracking with high transferability, which requires significantly
different design as discussed before.

3 The Proposed Methodology

In this section, we detail the Transferable Attack Network (referred to as TAN).
The overall pipeline for training TAN is shown in Fig. 2. As in Fig. 2, TAN con-
tains a 3D adversarial generator in encoder-decoder architecture. During train-
ing, it receives the clean search region point cloud and outputs perturbation used
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Fig. 2. Illustration of TAN, which consists of a 3D adversarial generator and the victim
tracker P2B, and is trained by our multi-fold drift (MFD) loss for high transferability

to generate adversarial search region point cloud. The adversarial search region
together with the clean template are fed to the victim tracker for obtaining the
adversarial classification scores Sa, heading angles θa and intermediate features
F a for proposals. Since the goal of TAN is to drift final tracking result away
from the proposal with the highest confidence obtained by the victim tracker,
we feed clean search region point cloud to the victim tracker, which, with the
clean template, is used to generate clean classification scores Sc and intermediate
features F c for proposals, guiding attack with MFD loss as described later.

In this work, we adopt P2B [21], a recent state-of-the-art 3D tracker, as our
victim. But note, other Siamese 3D trackers could also be used in TAN. The brief
architecture of P2B is shown in Fig. 2 (the orange block). It receives a pair of
template and search region point clouds, and then fuses the template feature into
the search region feature to obtain target-specific feature, which goes through
voting and classification, and clustering to obtain proposal cluster feature for
final prediction. We refer readers to [21] for more details regarding P2B.

3.1 3D Encoder-Decoder Adversarial Generator

The 3D adversarial generator G is used for generating the perturbation to obtain
the adversarial example. As shown in Fig. 2, G is composed of an encoder GEnc

and a decoder GDec. In this work, we adopt PointNet++ [20] as encoder due to
its simplicity and excellent performance in many tasks. It is worth noting, other
3D point cloud backbones (e.g., [32]) could be used as well. For the decoder part,
following U-Net architecture [23] for segmentation, we stack a set of interpolating
and pointnet [19] layers. To introduce more information from encoder to decoder,
we apply skip connections between them.

The generator G takes the clean search region x as input and outputs the
corresponding perturbation Λ as follows,

Λ = GDec(GEnc(x)) (1)
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The perturbation Λ is the learned point cloud offset that has the same size as
of x. Afterwards, it is used to shift the points in x for generating the adversarial
search region x̃ for attack. Mathematically, the adversarial search region x̃ is
obtained as follows,

x̃ = Λ + x (2)

3.2 Multi-fold Drift Loss

After obtaining the adversarial search regions x̃ in Eq. (2), we feed it together
with the clean search region x and template z to the pretrained victim 3D tracker
P2B (see again Fig. 2) to obtain classification scores, heading angles and features
of proposals, as follows,

{Sc, θc, F c} = P2B(z, x) {Sa, θa, F a} = P2B(z, x̃) (3)

where Sc, θc (note, θc is not used) F c and Sa, θa, F a are classification scores,
angles, and cluster features of proposal, respectively. P2B(·, ·) represents infer-
ence execution of tracker P2B. With the predictions for x and x̃, we can compute
multi-fold drift (MFD) loss LMFD, containing a center-aware classification drift
loss Lcen-cls, a feature drift loss Lfea and a heading angle drift loss Lang, to train
TAN, as described in the following.

(1) Center-aware Classification Drift Loss. Since the highest classification
score usually directly determines the target position in P2B (and also in other
trackers), we introduce a center-aware classification drift loss Lcen-cls to drive the
target on predicted by the clean classification score Sc away on the adversarial
classification score Sa. Different than existing 2D attack approaches [4,31] that
simply decrease distance between positive and negative classification scores, our
center-aware drift loss aims at reducing the classification distance between the
region centered at target within a radius r and the outside area beyond a radius
γ (γ > r) on the adversarial classification score, which ensures that the predicted
target can be shifted far away. Mathematically, Lcen-cls is expressed as follows,

Lcen-cls = max
p∈Rcen

r

(Sa[p]) − max
p∈Rout

γ

(Sa[p]) (4)

where (Sa[p]) is the classification score for proposal cluster p, and Rcen
r and Rout

γ

represent the regions centered at the proposal cluster with highest score with
radius r and outside region beyond radius γ based on clean classification results.
In particular, they are mathematically expressed as follows,

Rcen
r = {p | ‖p − pcen‖2 ≤ r} Rout

γ = {p | ‖p − pcen‖2 > γ} (5)

where pcen = arg maxp Sc[p] denotes the target proposal cluster with the highest
confidence based on Sc.

For point cloud tracking, we observe that, due to the sparsity nature, point
cloud in Rout

γ may be almost empty. In this case, it is difficult the find adversarial
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distractors to fool the tracker. To deal with this, we consider another region Rout
r

that is closer to Rcen
r in the classification drift loss, and modify Eq. (4) as follows,

Lcen-cls = max
p∈Rcen

r

(Sa[p]) − ( max
p∈Rout

r

(Sa[p]) + max
p∈Rout

γ

(Sa[p]))/2 (6)

where Rout
r = {p | ‖p−pcen‖2 > r}. Note that, the new classification drift loss in

Eq. (6) weights more importance on find adversarial distractors in Rout
γ because

Rout
r contains Rout

γ , which indicates the preference of adversarial distractors far
away from the target center. With our center-aware classification drift loss, we
can decrease and meanwhile increase the confidence of target and background
regions, causing confusion on classification to fool the tracker.

(2) Feature Drift Loss. Besides attacking directly the tracker on classification,
we consider attack on the intermediate features as well, because feature space
is a common ground across different backbones of various trackers. In specific,
we introduce a feature drift loss Lfea that drives the adversarial features away
from the clean features, resulting in drift on the final classification from another
direction. Mathematically, Lfea is defined as follows,

Lfea = −‖F c[pc] − F a[pa]‖2 (7)

where pc and pa denote the max-score proposals based on clean and adversarial
classification results Sc and Sa in Rcen

r . F c[pc] and F c[pc] represent their features,
respectively. With feature drift loss, we can push adversarial features away from
normal clean features, further enhancing attack and transferability.

(3) Angle Drift Loss. For point cloud tracking, the target is represented with
a rotated 3D bounding box. A heading angle in the range [−π, π] is utilized to
indicate the direction of the target. Considering that a perturbed angle can also
decrease tracking performance (e.g., success, which is measured by the Intersec-
tion over Union), especially in the case of extremely spare point cloud, and bring
potential risk for downstream tasks such as motion planning, we introduce an
angle loss Lang that aims at drifting the heading angle to targeted directions. In
specific, we design the Lang to enforce the heading angle of the tracking result to
drift to the horizontal (i.e., 0 or π). Mathematically, Lang is defined as follows,

Lang = ‖h(θa[pa])‖2 (8)

where pa is the max-score proposal based on adversarial classification results Sa,
and h(·) denotes the piecewise functions as follows,

h(x) =

{

x · sgn(x) 0 ≤ x < π/2 or − π/2 ≤ x < 0

π − x · sgn(x) −π ≤ x < −π/2 or π/2 ≤ x < π
(9)

where sgn(·) denotes the sign function.
With the above Lcen-cls, Lfea and Lang, LMFD is computed as follows,

LMFD = λcen-cls · Lcen-cls + λfea · Lfea + λang · Lang (10)

where λcen-cls, λfea and λang represent the weights to balance the loss. Our MFD
loss aims to drift the tracking result from multiple common perspectives across
different frameworks, allowing effective attack on both victim and unseen models.
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3.3 Overall Loss

Overall Loss. In addition to LMFD that drifts the target, a distance loss Ldist

is utilized so that the adversarial perturbation is imperceptible to naked eyes. It
is defined using L2 norm as follows,

Ldist = ‖x̃ − x‖2 (11)

The overall loss LTAN to train TAN is then expressed as follows,

LTAN = LMFD + λdist · Ldist (12)

The training of TAN is performed in an end-to-end manner. Algorithm 1
illustrates its training process. Once the training has been completed, TAN will
be directly applied for generating the adversarial search region given the clean
search region to fool the victim tracker. Besides, it can be transferred to deceive
other unseen approaches as described later.

Algorithm 1. Training Process of TAN

Input: z: clean template; x: clean search region; P2B: pretrained tracker;
1: Initialize 3D generator G, load P2B and freeze its parameters;
2: repeat

3: Get clean z and x;
4: Get adversarial perturbation by feeding x to G (Eq. (1));
5: Get adversarial search region x̃ (Eq. (2));
6: Get predictions and features by feeding z, x and x̃ to P2B (Eq. (3));
7: Compute LMFD (Eq. (10)), Ldist (Eq. (11)) and overall loss LTAN (Eq. (12));
8: Compute gradient of LTAN w.r.t the weights of G and update these weights;
9: until convergence

Output: trained G∗

4 Experiments

Implementation. We implement our TAN by PyTorch on a PC machine with
3 Nvidia RTX A6000 GPUs. The victim tracker is P2B [21] (CVPR 2020), which
is applied as it is during training. We train TAN using Adam optimizer. The
learning rate is set to 0.0001 with a decay of 0.95. The parameters r and γ used
in the center-aware classification drift loss are empirically set to 0.35 and 0.65,
respectively. The weights λcen-cls, λang, λfea and λdist in feature drift and overall
losses are set to 2.5, 1, 1 and 5, respectively.

Dataset and Evaluation Metrics. We conduct experiments on the most pop-
ular 3D point cloud tracking dataset KITTI [5]. The dataset settings for train-
ing and testing follows [21]. For point cloud tracking, one-pass evaluation [29] of
Success and Precision is applied to measure performance. The Success is defined
using IoU between predicted box and groundtruth box, while Precision is defined
as AUC for errors from 0 to 2m. Since we aim to degrade tracking performance,
we use drop rates of Success and Precision to measure attack performance.
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Table 1. Attack of TAN on P2B [21] using Precision and Success drop rates.

Precision Success

Ori. (%) Att. (%) Drop Rate Ori. (%) Att. (%) Drop Rate

P2B (victim) Car 74.4 41.4 44.4% 59.9 33.6 43.9%

Pedestrian 51.7 21.6 58.2% 31.2 11.6 62.8%

Van 47.4 27.9 41.1% 40.7 24.1 40.8%

Cyclist 41.1 19.6 52.3% 28.7 14.4 49.8%

Average 53.7 27.6 48.5% 40.1 20.9 47.9%

(a) Attack results on Car (b) Attack results on Pedestrian

(c) Attack results on Van (d) Attack results on Cyclist

Groundtruth P2B (original) P2B (attack)

Fig. 3. Qualitative attack effects of our method on P2B in terms of different categories.

4.1 Overall Attack Performance

Fig. 4. Visualization of clean search regions
(top) and corresponding adversarial search
regions (bottom).

Table 1 reports the overall attack per-
formance of TAN on P2B1. P2B is
one of the recent state-of-the-art 3D
trackers with excellent result. Despite
this, our TAN is able to significantly
degrade its performance. Specifically,
our TAN decreases the Success scores
of P2B on Car, Pedestrian, Van and
Cyclist from 59.9%, 31.2%, 40.7% and
28.7% to 33.6%, 11.6%, 24.1% and
14.4%, respectively, with drop rates of
43.9%, 62.8%, 40.8% and 49.8%. On
average, we degrade the Success score
from 40.1% to 20.9% with an enor-

1 In this work, we choose to train P2B on different categories ourselves, because many
models are not provided. The training settings are the same as in official P2B. Due
to difference in PyTorch version and machine, the results may be slightly different.
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Table 2. Ablation study on MFD loss using average Precision and Success scores.

Average precision Average success

Lcen-cls Lfea Lang Ori. (%) Att. (%) Drop Rate Ori. (%) Att. (%) Drop rate

� 53.7 32.5 39.5% 40.1 24.2 39.7%

� � 53.7 28.4 47.1% 40.1 23.1 42.4%

� � � 53.7 27.6 48.5% 40.1 20.9 47.9%

Table 3. Transfer of TAN to other unseen trackers BAT [33] and M2Track [34].

Precision Success

Ori. (%) Att. (%) Drop Rate Ori. (%) Att. (%) Drop Rate

BAT (unseen) Car 74.3 47.8 35.7% 62.0 36.0 41.9%

Pedestrian 71.7 32.3 55.0% 43.5 25.6 41.1%

Van 62.3 24.9 60.0% 51.8 21.9 57.7%

Cyclist 47.1 37.1 21.2% 29.5 19.2 34.9%

Average 63.9 35.5 44.4% 46.7 25.7 45.0%

M2Track (unseen) Car 81.1 35.8 55.9% 67.2 34.4 48.8%

Pedestrian 89.5 48.7 45.6% 60.8 35.6 41.4%

Van 65.8 45.7 30.5% 52.7 36.8 30.2%

Cyclist 93.4 76.9 17.7% 71.5 46.7 34.7%

Average 82.5 51.8 37.2% 63.1 38.4 39.1%

mous drop rate of 47.9%, which shows the effectiveness of our approach in
deceiving the 3D point cloud tracker. In addition to the quantitative analy-
sis, we qualitatively demonstrate the attack effect. As shown in Fig. 3, we can
observe that the proposed TAN can effectively drift the tracker. Moreover, we
show the clean and learned adversarial search region points in Fig. 4, from which
we can see they are visually similar and the perturbations are imperceptible.

4.2 Ablation Study

This section studies the impact of different drift losses in MFD loss. Table 2
shows the results. From Table 2, we can see that, when using drift loss Lcen-cls,
the drop rates for Precision and Success are 39.5% and 39.7%, respectively. When
incorporating feature drift loss Lfea in MFD, we improve the drop rates to 47.1%
and 42.4% with 7.6% and 2.7% gains. Together with the angle drift loss Lang,
we obtain the best drop rates 48.5% and 49.7%. These experiments show that
each drift loss in MFD is beneficial for improving drop rates for better attack.

4.3 Transfer to Unseen Trackers

TAN aims at high transferability to unseen trackers. To verify this, we conduct
experiments by applying TAN learned with P2B to unseen trackers BAT [33] and
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M2Track [34]. BAT introduces a box-aware representation to enhance the target
features for improvement. M2Track explores motion cues to boost performance.
Note, both BAT and M2Track perform better than the victim model P2B.

Since not all models on KITTI are provided, we train our own models for
BAT and M2Track and use them for experiments. Table 3 shows the attack
performance by transferring TAN to other trackers. From Table 3, we can observe
that, by applying TAN to BAT and M2Track, the average Success scores are
decreased from 46.7%/63.1% to 23.3%/38.4%, achieving drop rates of 45.0%
and 39.1%, respectively. Likewise, we can see that, the average Precision scores
are significantly reduced from 63.9%/82.5% to 35.5% and 51.5% with drop rates
of 44.4% and 37.2%, which shows the high transferability of TAN to other unseen
trackers and poses a new threat to 3D point cloud tracking.

5 Conclusion

In this paper, we propose a Transferable Attack Network (TAN) against 3D point
cloud trackers. In specific, we design a 3D adversarial generator in TAN and train
it using a novel multi-fold loss that considers classification, intermediate feature
and angle for perturbation generation. Because the multi-fold loss is carefully
designed for general purpose, it enables high transfer of TAN to other trackers. In
our experiments, we show that TAN is able to successfully attack a recent state-
of-the-art 3D tracker P2B. Besides, we validate its transferability to other unseen
models by degrading their performance. Our results show the vulnerability in
recent 3D trackers, which prompts us to design robust methods for safety-critical
applications. In addition, the study of properties of adversarial examples, has
the potential to be leveraged to enhance the robustness.

References

1. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-
convolutional Siamese networks for object tracking. In: ECCVW (2016)

2. Chen, X., et al.: One-shot adversarial attacks on visual tracking with dual atten-
tion. In: CVPR (2020)

3. Fan, H., Ling, H.: Siamese cascaded region proposal networks for real-time visual
tracking. In: CVPR (2019)

4. Fu, C., Li, S., Yuan, X., Ye, J., Cao, Z., Ding, F.: AD2attack: adaptive adversarial
attack on real-time UAV tracking. In: ICRA (2022)

5. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The Kitti
vision benchmark suite. In: CVPR (2012)

6. Giancola, S., Zarzar, J., Ghanem, B.: Leveraging shape completion for 3d Siamese
tracking. In: CVPR (2019)

7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

8. Guo, Q., et al.: SPARK: spatial-aware online incremental attack against visual
tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020.
LNCS, vol. 12370, pp. 202–219. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58595-2 13

https://doi.org/10.1007/978-3-030-58595-2_13
https://doi.org/10.1007/978-3-030-58595-2_13


Transferable Adversarial Attack on 3D Object Tracking in Point Cloud 457

9. Hamdi, A., Rojas, S., Thabet, A., Ghanem, B.: AdvPC: transferable adversarial
perturbations on 3D point clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm,
J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 241–257. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58610-2 15

10. Huang, Q., Dong, X., Chen, D., Zhou, H., Zhang, W., Yu, N.: Shape-invariant 3d
adversarial point clouds. In: CVPR (2022)

11. Hui, L., Wang, L., Cheng, M., Xie, J., Yang, J.: 3d Siamese voxel-to-BEV tracker
for sparse point clouds. In: NeurIPS (2021)

12. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial
examples are not bugs, they are features. In: NIPS (2019)

13. Kim, J., Hua, B.S., Nguyen, T., Yeung, S.K.: Minimal adversarial examples for
deep learning on 3d point clouds. In: ICCV (2021)

14. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution
of Siamese visual tracking with very deep networks. In: CVPR (2019)

15. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with
Siamese region proposal network. In: CVPR (2018)

16. Lin, L., Fan, H., Zhang, Z., Xu, Y., Ling, H.: SwinTrack: a simple and strong
baseline for transformer tracking. In: NeurIPS (2022)

17. Liu, D., Yu, R., Su, H.: Extending adversarial attacks and defenses to deep 3d
point cloud classifiers. In: ICIP (2019)

18. Ma, C., Meng, W., Wu, B., Xu, S., Zhang, X.: Efficient joint gradient based attack
against SOR defense for 3d point cloud classification. In: ACM MM (2020)

19. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for
3d classification and segmentation. In: CVPR (2017)

20. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learn-
ing on point sets in a metric space. In: NIPS (2017)

21. Qi, H., Feng, C., Cao, Z., Zhao, F., Xiao, Y.: P2B: point-to-box network for 3d
object tracking in point clouds. In: CVPR (2020)

22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: NIPS (2015)

23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

24. Shan, J., Zhou, S., Fang, Z., Cui, Y.: PTT: point-track-transformer module for 3d
single object tracking in point clouds. In: IROS (2021)

25. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv:1312.6199 (2013)
26. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)
27. Wang, Z., Xie, Q., Lai, Y.K., Wu, J., Long, K., Wang, J.: MLVSNet: multi-level

voting Siamese network for 3d visual tracking. In: ICCV (2021)
28. Wiyatno, R.R., Xu, A.: Physical adversarial textures that fool visual object track-

ing. In: ICCV (2019)
29. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR

(2013)
30. Xiang, C., Qi, C.R., Li, B.: Generating 3d adversarial point clouds. In: CVPR

(2019)
31. Yan, B., Wang, D., Lu, H., Yang, X.: Cooling-shrinking attack: blinding the tracker

with imperceptible noises. In: CVPR (2020)
32. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: ICCV

(2021)

https://doi.org/10.1007/978-3-030-58610-2_15
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1312.6199


458 X. Liu et al.

33. Zheng, C., et al.: Box-aware feature enhancement for single object tracking on
point clouds. In: ICCV (2021)

34. Zheng, C., et al.: Beyond 3d Siamese tracking: a motion-centric paradigm for 3d
single object tracking in point clouds. In: CVPR (2022)

35. Zhou, C., et al.: PTTR: relational 3d point cloud object tracking with transformer.
In: CVPR (2022)

36. Zhou, H., et al.: LG-GAN: label guided adversarial network for flexible targeted
attack of point cloud based deep networks. In: CVPR (2020)


