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Measuring student motivation in foundation-level
inorganic chemistry courses: a multi-
institution study

Justin M. Pratt, *a Joanne L. Stewart, b Barbara A. Reisner, c

Anne K. Bentley, d Shirley Lin, e Sheila R. Smith f and Jeffrey R. Raker g

The association between student motivation and learning, and changes in motivation across a course,

were evaluated for students enrolled in one-semester foundation-level inorganic chemistry courses at

multiple postsecondary institutions across the United States. The Academic Motivation Scale for

Chemistry (AMS-Chemistry) and the Foundations of Inorganic Chemistry American Chemical Society

Exam (i.e., a content knowledge measure) were used in this study. Evidence of validity, reliability, and

longitudinal measurement invariance for data obtained from the AMS-Chemistry instrument with this

population were found using methodologies appropriate for ordinal, non-parametric data. Positive and

significant associations between intrinsic motivation measures and academic performance corroborate

theoretical and empirical investigations; however, a lack of pre/post changes in motivation suggest that

motivation may be less malleable in courses primarily populated by chemistry majors. Implications for

inorganic chemistry instructors include paths for incorporating engaging pedagogies known to promote

intrinsic motivation and methods for incorporating affect measures into assessment practices.

Implications for researchers include a need for more work that disaggregates chemistry majors when

evaluating relationships between affect and learning, and when making pre/post comparisons.

Additionally, this work provides an example of how to implement more appropriate methods for treating

data in studies using Likert-type responses and nested data.

Introduction

Research on student experiences in upper-level chemistry
courses (i.e., post-general chemistry and organic chemistry
courses) is rare in the STEM and chemistry education research
literature (National Research Council, 2012). Bodner and
Weaver (2008) argued in this Journal that such research, in
particular, is necessary in upper-level chemistry courses due to
the unique pedagogical challenges of such courses that arise from
reliance on prerequisite coursework as a starting place for new
learning (Bodner and Weaver, 2008). This lack of scholarship is

likely due in part to small populations (N typically less than 20)
in these courses that limit possible experimental designs, data
collection techniques, and statistical power for analyses asso-
ciated with studies of affect. These limited-sized populations,
though, have been more suited to cognitive-focused work in
upper-division courses that has in turn resulted in associated
literature reviews (e.g., Bain et al., 2014; Bain and Towns, 2016;
Rodriguez and Towns, 2020). While insights into the affective
experiences of students in general chemistry and organic chem-
istry courses exist (e.g., Villafañe et al., 2016; Liu et al., 2017, 2018;
Gibbons et al., 2018; Raker et al., 2019), there is limited under-
standing of how findings from experiences of students in gateway
chemistry courses translate into more homogeneously populated
courses (e.g., majors-focused courses which are often upper-
division courses). While students in introductory courses are
making decisions about persistence in the major, students in
upper-division courses are making decisions about career, grad-
uate school, and professional school (Seymour and Hunter, 2019).
Upper-division courses are where students are exposed to
the broader array of chemistry subdisciplines and begin
to develop specialized interests in chemistry (e.g., laser
spectroscopy, computational chemistry, air-sensitive syntheses);
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Bodner and Weaver (2008) asserted that upper-division courses
are where students are exposed to ‘‘real’’ chemistry. Thus, under-
standing affect in upper-division courses will help us to begin to
understand how student experiences impact chemistry learning
across the entire post-secondary chemistry curriculum. In this
study, we investigated a measure of motivation for students
enrolled in foundation-level inorganic chemistry courses at multi-
ple study sites in the United States. Our results suggest that
motivation is less malleable for students in non-gateway courses
(i.e., is relatively unchanged between pre/post measures), and
provides further evidence that the relationship between motiva-
tion and performance is persistent and significant in chemistry
courses across the undergraduate curriculum.

Self-determination theory

Motivation is operationalized in our study through the theoretical
lens of Self-Determination Theory (SDT) (Deci and Ryan, 2000;
Ryan and Deci, 2000). SDT assumes that people (i.e., students
taking an inorganic chemistry course in our study) have funda-
mental psychological needs that must be satisfied to thrive
and learn. These needs include competence, relatedness, and
autonomy. Competence is an individual’s need to feel effective in
their interactions, express their understanding and abilities,
and seek out challenges that align with their cognitive level.
Relatedness is an individual’s need for connection, to be cared
for, and for a sense of belonging and community. Autonomy
is an individual’s need to feel in control of their environment,
their actions, and their behavior. These needs factor into
three types of motivation on a continuum based on autonomy
(Howard et al. 2017).

The two ends of the continuum are amotivation and intrinsic
motivation. Amotivation is characterized by a lack of interest and
feeling forced to do something or not being in control of the
learning experience. Intrinsic motivation is characterized by a
person’s inner interests, perceived autonomy or control over a
task, and competence. In the middle of the continuum lies
extrinsic motivation, which represents various stages of increasing
autonomy, competence, and relatedness. These stages are related
to external factors including reward systems, deadlines, the desire
to avoid guilt or shame, and finding value in the task itself.
Overall, SDT operationalizes three types of motivation in terms of
autonomy (i.e., level of self-determination or control), the source
of the motivation, and how the type of motivation is regulated
(i.e., prompted, responded to, put into action).

When SDT is used as a lens to interpret student learning,
intrinsic motivation supports learning by fulfilling basic psy-
chological needs, while amotivation hinders learning as these
needs are not met. Extrinsic motivation provides a pathway
from amotivation to intrinsic motivation through increasing
levels of autonomy, relatedness, and competence with decreasing
reliance upon external motivators. Empirical evidence from chem-
istry course settings and other STEM course settings supports the
assumptions of SDT regarding meeting psychological needs and
emphasizing intrinsic motivation to support learning (e.g., Black

and Deci, 2000; Vaino et al., 2012; Hagger et al., 2015; Kiemer
et al., 2015). Previous studies have also shown that intrinsic
motivation is linked to increased achievement (Lepper et al., 2005;
Tseng and Tsai, 2010) and persistence in STEM (Vallerand
and Blssonnette, 1992; Vallerand, 1997; Allen, 1999; French
et al., 2005; Lavigne et al., 2007; Maltese and Tai, 2011; Morrow
and Ackermann, 2012).

To increase intrinsic motivation and the likelihood of suc-
cess in a class, focus should be placed on supporting student
autonomy, competence, and relatedness. Learning environment
structures are known to strongly influence student motivation
and actions in the classroom (Potvin and Hasni, 2014). With
more teacher-centered instructional practices, where the teacher
is perceived as the locus of authority, students have less autonomy
and are more likely to feel amotivated due to lacking opportunities
to demonstrate competence or feel connected with peers or the
instructor (Soenens et al., 2012). With more student-centered
instruction that offers students more choices and control, students
are more likely to develop autonomy, make connections with peers,
and have opportunities to demonstrate their understanding, all of
which lead to increased intrinsic motivation (e.g., American Psy-
chological Association Presidential Task Force on Psychology in
Education, 1993; Lepper and Henderlong, 2000; Chirkov and Ryan,
2001; Niemiec and Ryan, 2009; Reeve, 2012; Vansteenkiste et al.,
2012; León et al., 2015). Situations where students have choices,
instructors are encouraging, and students’ inner curiosities and
interests are primed, all support intrinsic motivation and the
likelihood of student learning (Zimmerman, 2000; Deci and Ryan,
2008; Niemiec and Ryan, 2009).

Prior affect work in chemistry education has considered
students’ affective experiences in gateway chemistry courses
(i.e., general chemistry and organic chemistry courses); how-
ever, the impact of academic major has been mostly overlooked
(e.g., Bauer, 2005; Grove and Bretz, 2007; Liu et al., 2017, 2018).
This is likely because gateway courses typically have low
numbers of chemistry majors, even in the context of large
enrollment courses, making single-institution quantitative
studies not feasible. Research outside of chemistry has shown
significant relationships between motivation, and other affec-
tive measures, with academic major, as well as the alignment
between major and course content (e.g., motivation for majors
in majors-focused courses is different than the motivation of
majors in non-majors-focused courses) (e.g., Chase and Keene,
1981; Debacker and Nelson, 2000; Zhi-ling, 2003; Cole et al.,
2006; Allen and Robbins, 2010; Glynn et al., 2011; Kirn and
Benson, 2013; Shell and Soh, 2013; Wang and Degol, 2013;
Komarraju et al., 2014). Additionally, studies have indicated
that year in school is related to motivation (e.g., first-year and
third-year students differ) (Mercincavage and Brooks, 1990;
Coppola et al., 1997; Lynch, 2008; Cao, 2012; Ackerman et al.,
2013; Planchard et al., 2015). As such, there is precedent that we
need to investigate motivation across chemistry courses given
the concentration of majors, particularly chemistry majors, in
courses varies. In addition, as students progress through the
chemistry curriculum, a larger fraction of students are
chemistry majors; thus, the population becomes more distinct,
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homogeneous, and warrants investigating how motivation
relates to chemistry major and year in school.

Inorganic chemistry education

Inorganic chemistry courses provide an opportunity not only to
shed light on an understudied context but also to study a
sample of students that primarily consists of chemistry majors.
Foundation-level inorganic chemistry courses are varied in
both curriculum and placement in a chemistry degree program
(ranging from first year courses to junior and senior-level
courses); however, there is a core set of topics that unite these
courses: atoms and electronic structure, covalent bonding
and molecular orbital theory, transition metal complexes and
coordination chemistry, acids and bases, symmetry and group
theory, solids and solid-state chemistry (Raker et al., 2015a).
An additional commonality is that inorganic chemistry courses
are predominately taken by chemistry majors (Raker et al.,
2015a, 2015b). It is through upper-level inorganic chemistry
courses (and other upper-level courses) that students develop a
deeper understanding of the scope of chemical research and
potential chemistry careers. As Reisner and colleagues noted, the
postsecondary inorganic chemistry course is a key opportunity
to introduce primary literature and promote research skill
development (Reisner et al., 2015). Recent work has analyzed
inorganic chemistry students’ achievement emotions (i.e., anxi-
ety and enjoyment) in relation to content knowledge, and calls
for further work focused on student experiences in inorganic
chemistry (Pratt and Raker, 2020). As such, based on previous
research, we expect to observe differences in how motivation
changes and how motivation is related to content knowledge
acquisition in our foundation-level inorganic chemistry course
contexts, as compared to gateway-course contexts.

Research questions

This study is an initial investigation of the learning experiences
of students within an inorganic chemistry course. The purpose is
to characterize student experiences in foundation-level inorganic
chemistry courses, including affective experiences using the
Academic Motivation Scale – Chemistry (AMS-Chemistry)
(Liu et al., 2017) and cognitive experiences using the 2016 ACS
Foundations of Inorganic Chemistry Exam (ACS Exams, 2016).
Results provide insight into how student motivation relates to
inorganic chemistry content knowledge. To this end, we address
three research questions (RQs):

1. What validity and reliability evidence supports using
the AMS-Chemistry with students taking a foundation-level
inorganic chemistry course?

2. What differences in student motivation towards inorganic
chemistry are found when comparing motivation at the begin-
ning and end of the course?

3. How is motivation towards inorganic chemistry associated
with student content knowledge assessed by a summative
examination?

Methods

This study had three sequential stages: (1) gathering evidence for
validity and reliability of data generated from the AMS-Chemistry,
(2) gathering evidence for longitudinal measurement invariance
between AMS-Chemistry administrations, and (3) determining
changes in AMS-Chemistry scores and associations with student
content knowledge.

Participants

During Fall 2018 and Spring 2019 semesters, inorganic faculty
members from eighteen colleges/universities within the United
States participated in a multi-institution project focused on
curricular change in foundation-level inorganic chemistry
courses. While each studied foundation-level inorganic chemistry
course is unique, all of the studied courses had general chemistry
as a prerequisite; other perquisite requirements varied with some
including organic chemistry while others required physical chem-
istry. Institution Review Board applications were submitted and
approved at each study site.

Faculty members administered achievement/performance
and affective measures to students in their foundation-level
inorganic chemistry courses. At the beginning of the semester,
students completed a consent form agreeing to have their data
de-identified and shared with the research team. To minimize
students’ perceptions that participation would influence their
course grades, consent forms were returned in a sealed envelope
that was opened only after final grades were submitted for the
term. Regardless of consent status, all students completed the
cognitive and affect measures as part of their normal classroom
experiences. After consent status was known, faculty members
collated data for consenting students (N = 449), removed identifiers,
and provided the de-identified matched data to the research team.

The focus of the study herein is the affect measure of
motivation towards chemistry courses using the AMS-Chemistry
(Liu et al., 2017). The AMS-Chemistry was administered to
students at two timepoints: pre (approximately the second week
of the term) and post (approximately the last week of the term).
The 2016 ACS Foundations of Inorganic Chemistry Exam (called
the ACS exam herein) was given at all sites at the conclusion
of the semester as a summative assessment of student content
knowledge (ACS Exams, 2016). The ACS exam is a 60-question
assessment designed to assess an array of topics covered in
foundation-level inorganic chemistry courses. Only a subset of
students participated in all three data collections (i.e., completed
pre AMS-Chemistry, post AMS-Chemistry, and the ACS exam);
N = 396 students participated in at least one of the three data
collections (82% of total sample). For each analysis presented
below, listwise deletion was used to subset the data corpus
appropriately.

Academic motivation scale – chemistry (AMS-C)

The AMS-Chemistry (Liu et al., 2017) is a 28-question survey
designed to measure three types of course-specific motivation
aligned with Self-Determination Theory: amotivation, extrinsic
motivation, and intrinsic motivation (Deci and Ryan, 2000;
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Ryan and Deci, 2000). The survey was adapted for use in
postsecondary chemistry contexts from the Academic Motiva-
tion Scale (Vallerand et al., 1992). Work with general chemistry
(Liu et al., 2017) and organic chemistry (Liu et al., 2018)
students supports that the AMS-Chemistry has seven subscales
(see Fig. 1). Each subscale corresponds to a motivation
sub-construct with differing degrees of regulation (i.e., the
thoughts, actions, or behaviors through which students act to
influence their choice, effort, or persistence) which is how SDT
was operationalized into the AMS-C. For each subscale there are
four questions/items with Likert-type response formats
(Carifio and Perla, 2007). Students indicate ‘‘To what extent
each of the following statements corresponds to one of the reasons
why you are enrolled in this chemistry course’’ with five response
options: Not at all (A), A Little (B), Moderately (C), A Lot (D), and
Exactly (E). To make the AMS-Chemistry more course-specific,
the stem was modified to specify ‘‘. . .why you are enrolled in this
inorganic chemistry course’’ (see Appendix 1). Modifying the
stem in this way is supported by previous work measuring
achievement emotions in another chemistry-specific disciplin-
ary context (Raker et al., 2019; Pratt and Raker, 2020).

Gathering evidence of validity and reliability for AMS-
Chemistry data

While the AMS-Chemistry has been shown to function well with
general chemistry and organic chemistry student populations, the
AMS-Chemistry has not previously been used with an inorganic
chemistry student population. Therefore, it is important to pro-
vide evidence for validity and reliability of generated data, in line
with the Standards for Educational and Psychological Testing (called
the Standards herein) (Arjoon et al., 2013; American Education
Research Association et al., 2014). One key evidence for validity in
this study is internal structure validity to determine if the AMS-
Chemistry functioned similarly with this new sample of students
(i.e., measured the intended seven subscales/factors of motivation
with the new sample). To investigate this, categorical responses
(A–E) were numerically transformed (1–5, respectively) to repre-
sent the ordinal nature of the data, and confirmatory factor
analyses (CFA) were conducted. Previous studies of the internal

structure validity of data from the AMS-Chemistry have treated
the data as continuous when conducting CFA analyses
(Liu et al., 2017, 2018). However, the data generated are ordinal
and should be treated as such by using either diagonal
weighted least squares (DWLS) or weighted least squares—mean
and variance adjusted (WLSMV) estimators. DWLS is the default
estimator for ordinal data in the LISREL program (Jöreskog, 2019)
and the R (R Core Team, 2017) package Lavaan (Rosseel, 2012),
while WLSMV is the default ordinal estimator in Mplus
(Muthén and Muthén, 2017). When sample sizes are small and
data are non-normally distributed, DWLS can produce proble-
matic results and WLSMV is recommended (DiStefano and
Morgan, 2014). As such, we conducted a seven factor CFA using
the WLSMV estimator in Mplus 8.3. A schematic of the seven-
factor model is provided in Fig. 2. Note: all latent constructs
(subscales) are modeled as correlated based on previous analyses
of the AMS-Chemistry (Liu et al., 2017, 2018) and based on the
theoretical conjecture that all seven constructs/subscales are
interrelated with motivation. Additionally, this CFA is a congene-
ric model where the only constraints are on which items load onto
which latent construct, and which latent constructs are correlated;
no correlated error variances were modelled. This model aligns
with previous investigations of the internal structure of the
AMS-Chemistry. While the congeneric CFA model evaluates the
internal structure of the AMS-Chemistry for the overall inorganic
chemistry student sample, a multilevel CFA was also conducted to
evaluate the internal structure of the AMS-Chemistry when
accounting for the nested nature of the data; since students are
nested within multiple classrooms/institutions, a multilevel CFA
evaluates the impact of between-institution differences on the
internal structure validity of the data (Dyer et al., 2005).

CFAs are evaluated based on model fit using a combination
of statistics, including the chi-squared test (w2), the Comparative
Fit Index (CFI), the Tucker Lewis Index (TLI), the Root Mean
Square Error of Approximation (RMSEA), and the Standardized
Root Mean Squared Residual (SRMR) (Hooper et al., 2008; Kline,
2016; Parry, n.d.). However, when the WLSMV estimator is
used, only the CFI, TLI, and RMSEA are appropriate fit indices
(Yu, 2002; Beauducel and Herzberg, 2006; Bandalos, 2008;

Fig. 1 Diagram showing the subscales of the AMS-Chemistry (Liu et al., 2017) and the alignment with Self-Determination Theory (Deci and Ryan, 2000;
Ryan and Deci, 2000; Reiche, 2013).
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Komperda, Hosbein et al., 2018). Chi-squared values, while
reported, are typically only used for comparison purposes
and not as indicators of model fit due to sensitivity to sample
size and model complexity (Cheung and Rensvold, 2002;
Schermelleh-Engel et al., 2003; Chen, 2007; Mueller and Hancock,
2008; Liu et al., 2017; Komperda, Hosbein et al., 2018). There
are a variety of cutoff values in the literature used to evaluate
the fit of CFA models; cutoff values can be chosen based on
the estimator used and/or previous work within the discipline.
Experts in structured equation modeling do not agree on accep-
table cutoffs, particularly when using the WLSMV estimator
(Beauducel and Herzberg, 2006, Huggins-Manley and Han,
2017, Padgett and Morgan 2021); however, consensus exists that
more conservative cutoff values are necessary when using the
WLSMV estimator. For context, previous work within CER, as well
as on previous psychometric analyses of the AMS-Chemistry, have
used cutoff values of CFI 4 0.91, TLI 4 0.91, and RMSEAo 0.08
(Liu et al., 2017, 2018; Gibbons et al., 2018; Komperda, Hosbein
et al., 2018; Raker et al., 2019). As we employed the WLSMV
estimator in this study, more conservative cutoff values were
chosen, in line with recent evaluations of the WLSMV estimator:
our measures of fit indices were determined to be ‘‘acceptable’’
based on these cutoff metrics: CFI Z 0.98, TLI Z 0.98, and
RMSEA r 0.07 (Padgett and Morgan 2021).

To investigate the reliability of the data (e.g., the internal
consistency of each subscale), Cronbach’s alpha (a) coefficients are
typically used (Cronbach, 1951). However, Cronbach’s a assumes
unidimensionality and that all items are associated with the under-
lying factor to the same degree (i.e., equal item loadings in a
parallel or tau equivalent model) (Komperda, Pentecost et al., 2018).
McDonald’s omega (o) coefficient is a less restrictive alternative
that relaxes the requirement for equal item loadings (i.e.,
a congeneric model) (McDonald, 1999; Hancock and An, 2020),
but is conceptually like Cronbach’s a in interpretation
(Zinbarg et al., 2005; Hancock and An, 2018). To determine which
coefficient is appropriate for the AMS-Chemistry in this context,
we conducted stepwise factor analyses where more constraints
were added to the model, following recommendations by Kom-
perda and colleagues (Komperda, Pentecost et al., 2018):

1. Equal structure but freely estimated item errors and item
loadings to the latent factor (i.e., the congeneric model)

2. Equal structure and equal item loadings but freely
estimated item errors (i.e., the tau equivalent model)

3. Equal structure, item loadings, and item errors (i.e., the
parallel model)

Given the stepwise, additive nature of these analyses, analy-
sis ends when one of the models fails to have acceptable fit

statistics, using the cutoff values articulated above. There are no
consistently agreed upon criteria for interpreting internal con-
sistency coefficients (i.e., acceptable values for either Cronbach’s
a or McDonald’s o) (Arjoon et al., 2013; Taber, 2018). However,
for either coefficient, a value of 0.7 or higher is considered
acceptable and consistent with previous AMS-Chemistry studies
(Liu et al., 2017, 2018) and other affect studies in CER
(Gibbons et al., 2018; Raker et al., 2019; Pratt and Raker, 2020).

Investigating longitudinal measurement invariance

The AMS-Chemistry was administered at two timepoints in this
study, and it is therefore inappropriate to assume the instrument
functioned similarly at both administrations; it is necessary
to investigate whether there is evidence for measurement invar-
iance between timepoints prior to any pairwise comparisons.
Measurement invariance (or measurement equivalence) is
evidence to suggest that the same construct(s) are being mea-
sured across some grouping variable (e.g. between demographic
variables, timepoints, etc.) (Dimitrov, 2010; Millsap, 2011;
Bialosiewicz et al., 2013; Bandalos, 2018; Rocabado et al.,
2020). While explicitly discussed in the Standards (Standard
7.1), many studies assume that instruments function similarly
between groups/timepoints and conduct pairwise comparisons
without evidence to support the appropriateness of the analyses
(American Education Research Association et al., 2014).

For this study, measurement invariance was investigated
between AMS-Chemistry administrations (i.e., longitudinal
measurement invariance between pre and post administrations)
with no correlated error variances. While multilevel confirmatory
factor analysis was investigated, the small number of second-
level groups (only 11 institutions had data for consented indivi-
duals for both pre & post AMS-Chemistry administrations)
as well as small sample sizes at individual sites (ranging from
5 to 55) prohibit analogous measurement invariance studies.
To this end, longitudinal measurement invariance was only
investigated for the overall data corpus. To conduct the analysis,
listwise deletion was used to subset the data corpus into a subset
of participants with both pre and post AMS-Chemistry
responses. A series of increasingly restrictive CFA models were
tested on the subset where various constraints were set equal
between groups and timepoints (Dimitrov, 2010; Millsap, 2011;
Bialosiewicz et al., 2013). The stepwise, additive process for
measurement invariance testing includes:

1. Testing for configural invariance (i.e., same factor structure
between administrations)

2. Testing for metric invariance (i.e., same factor structure and
equal item loadings to latent constructs between administrations)

Fig. 2 Diagram showing the seven factor CFA model testing for internal structure validity of AMS-Chemistry data with students taking a foundation-level
inorganic chemistry course. To simplify interpretation, errors are not displayed in the representation.
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3. Testing for scalar invariance (i.e., same factor structure,
equal item loadings, and equal item intercepts between
administrations)

4. Testing for strict invariance (i.e., same factor structure,
equal item loadings, equal item intercepts, and equal item
residuals between administrations)

Given the stepwise and additive nature of this analysis,
analysis ends when one of the tests fails to have acceptable
fit statistics, using the same cutoff values as previously
described. If evidence for all levels of measurement invariance
are found, the evidence then supports that the AMS-Chemistry
functioned similarly between the two administrations and
pairwise comparisons are appropriate to conduct.

It is worth noting that the most restrictive model, called
‘‘strict’’ or residual invariance (i.e., adding in equal error
variances between groups) (Putnick and Bornstein, 2016), is a
necessary step for researchers investigating full factorial invar-
iance (Meredith, 1993) and seeking to compare observed
scores. Testing for residual invariance is not a requirement
for studies seeking to compare latent factor means between
groups (i.e., not observed scores) since residuals are not part of
the latent factors (Vandenberg and Lance, 2000).

Interpreting scores from the AMS-Chemistry

Based on the validity and reliability evidence (i.e., the seven-
factor solution has acceptable fit and reliability coefficients, see
the Results & discussion section), it was appropriate to analyze
student responses to the AMS-Chemistry in line with Research
Questions 2 and 3. To interpret AMS-Chemistry scores in
relation with a summative measure of content knowledge
(i.e., ACS Exam), two simultaneous analyses were conducted.
The first analysis used a measured variable framework where
each factor was treated as individual subscales as suggested
by the validity and reliability evidence. Factor scores/means
were calculated for each subscale for the AMS-Chemistry by
averaging the numeric responses (1–5) for the four items that
comprised each subscale (a higher average score on the sub-
scale is indicative of increasing agreement with those items and
therefore evidence that the student has that type of motivation
regulation, see Fig. 1); factor scores were then correlated with
ACS exam raw score (total number of questions correct, max of
60). Because of sample size and non-normal distribution of
data, the non-parametric correlation coefficient Spearman’s
Rho (r) was used (Spearman, 1904; Dodge, 2008). The second
analysis used structured equation modeling to retain the
original ordinal nature of the response options and is more in
line with state-of-the-art quantitative research; in this analysis,
AMS-Chemistry responses were grouped by subscale/latent factor
and then used to predict ACS exam raw scores.

Additionally, because evidence for longitudinal measurement
invariance was found (i.e., the AMS-Chemistry functioned similarly
between the two administrations, see the Results & discussion
section), comparisons were conducted between pre and post
scores. The non-parametric omnibus Friedman Test (Friedman,
1937, 1939) and the non-parametric paired samples Wilcoxon
Signed Ranks Test (Wilcoxon, 1945; Rey and Neuhäuser, 2011)

were used to compare subscale scores between timepoints due to
the ordinal and non-normally distributed data. Because multiple
tests were conducted (i.e., each test for each subscale), the chance
of a Type 1 error increases (i.e., increases the chance of concluding
that there is a significant result when there is not one in reality).
Therefore, to minimize Type 1 error, a Bonferroni correction was
employed (Dunn, 1961; Haynes, 2013). The correction is performed
by dividing our original significance level (a = 0.05) by the number
of tests performed (i.e., seven). Therefore, if p r 0.007 it is
considered significant.

Results and discussion

The results of this study showed positive evidence for the
validity and reliability of data gathered using the AMS-
Chemistry with foundation-level inorganic chemistry students.
Additionally, evidence suggested measurement invariance
between timepoints indicating that pre-post comparisons were
appropriate. Lastly, associations between intrinsic motivation
factors and content knowledge (as measured by an ACS exam)
were found. In this section we provide a discussion of how
these results support prior work, offer new insights into inves-
tigating the learning experiences of a predominantly chemistry
major student population within a non-gateway course, provide
a foundation for considering motivation in the context of
inorganic chemistry courses, and provide a useable exemplar
for rigorous measurement analyses.

Evidence of validity and reliability for AMS-Chemistry data

Table 1 includes the response rates for both administrations of
the AMS-Chemistry and the ACS exam. Not all students com-
pleted every measure; as such, we have delineated subsample
sizes for students who completed both pre and post adminis-
trations of the AMS-Chemistry (i.e., measurement invariance
analysis), as well as both the post AMS-Chemistry and ACS
exam (i.e., relationship between motivation and content knowl-
edge analysis).

To investigate the internal structure validity of AMS-
Chemistry data, multiple CFAs were conducted using the
WLSMV estimator and allowing the models to freely estimate
all factor loadings and errors. CFA fit information for the seven-
factor solution of the AMS-Chemistry that was previously
proposed in prior investigations are provided in Table 2
for the entire data corpus (collapsing administrations together,
n = 396), the pre administration (n = 243), and the post admin-
istration (n = 153). Conducting this analysis on individual
administrations (pre/post) as well as on the entire data corpus
(collapsing pre/post together) allows us to comment on the
overall fit of the imposed factor structured on the data. As our
sample sizes from individual administrations are considered
small, conducting the full data corpus analysis was useful in
evaluating the overall factor structure of our dataset. In all
instances, fit indices were well within or at the boundaries of
good fit. These results support that with this sample of students
taking a foundation-level inorganic chemistry course, the
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AMS-Chemistry functions in accordance with SDT and previous
work with general chemistry and organic chemistry students
(Liu et al., 2017, 2018). Furthermore, both pre and post AMS-
Chemistry models have evidence for internal structure validity,
thus analyzing the administrations separately is supported.

To evaluate the impact of the nested nature of the data (i.e.,
multiple institutions/sites) on the internal structure validity,
intraclass coefficients (ICC) were first calculated; ICC values
provide information about the impact of between-institution
differences on the model. Previous studies have suggested that
ICC values Z0.1 are evidence that the nested nature of the data
do impact the model and thus a multilevel CFA is needed
(Vajargah and Nikbakht, 2015). ICC values for the 28 AMS-
Chemistry items are provided in Appendix 2; the values range
from 0.036 to 0.193 with only 11 items having values Z0.1. As
such, the ICC values provide inconclusive evidence for whether
the between-institution differences impact the overall model.
To error on the conservative side, we chose to conduct a
multilevel CFAs on the entire data corpus, the pre administra-
tion, and the post administration to evaluate the impacts of the
nested nature of the data. This multilevel approach adds an
institution/context factor (level two) to the model above the
seven subscales/latent factors shown in Fig. 2 (i.e., a hierarchical
model). Unfortunately, we were unable to evaluate multilevel
CFAs for the pre and post administrations individually due to the
small number of institutions/nests, as well as minimal variability
between institutions. As such, only the collapsed full data corpus
was evaluated in this manner. Model fit information for the
multilevel CFA for the entire data corpus are provided in Table 2;
the fit indices are within the boundaries of good fit and show
improved fit over the un-nested models. This provides further
evidence for internal structure validity of the AMS-Chemistry
when administered with foundation-level inorganic chemistry
students while accounting for between-institution differences.

To investigate the reliability of the AMS-Chemistry, we
determined which reliability coefficient was appropriate

(i.e., Cronbach’s a or McDonald’s o). Assumptions underlying
the two coefficients were tested using additional CFA models.
The first assumption for both measures is whether a congeneric
model (i.e., freely estimated errors and item loadings) fits the
data. Given that the fit indices for the congeneric models for
both the pre and post AMS-Chemistry were within the cut-off
values for good fit (see Table 2), the next step was to test
whether items within each subscale load equally to the latent
construct (i.e., tau equivalent models, an assumption for Cron-
bach’s a). The results of the CFA where constraints were added
to force items within factors to load equally are given in Table 3.

Both pre and post AMS-Chemistry tau equivalent models
have fit indices outside the limits of good fit. This suggests that
both models lack strong overall fit evidence when constraints of
equal item loadings are applied. Therefore, Cronbach’s a is not
an appropriate reliability coefficient for these data, and McDo-
nald’s o is more appropriate as it does not require equal item
loadings within factors (McDonald, 1999; Komperda, Pentecost
et al., 2018; Hancock and An, 2020). However, an assumption of
McDonald’s o is that scales are unidimensional, meaning that
each AMS-C subscale needs to be evaluated individually to
ensure proper model fit prior to evaluating reliability. Pre-
viously, all models evaluated the full 7-factor model without
evaluating each factor individually. Reported in Appendix 4 are
the results of evaluating each subscale individually. The results
of these single factor congeneric models are varied. Both pre
and post administrations of the identified regulation subscale
fail to have fit indices within the boundaries of good fit,
indicating that this subscale does not meet the assumptions
of reliability. All other subscales and timepoints have CFI and
TLI indices approaching or within the boundaries of good fit.
However, RMSEA values are varied with some approaching
adequate fit and others well outside the bounds of adequate
fit. Given the small sample sizes at both timepoints/adminis-
trations, these findings are less concerning as RMSEA values
are sensitive to sample size resulting in evaluated values when
sample sizes are small (Taasoobshirazi and Wang, 2016). As
such, we focus on the CFI and TLI values primarily in this
analysis which all meet or exceed the cutoff values. McDonald’s
o coefficient values for the subscales with adequate fit, for both
administrations of the AMS-Chemistry, are reported in Table 4.
Across both administrations, all scales with evidence to support
unidimensionality/the assumptions of reliability have o 4
0.80. These findings support the internal consistency/reliability
of the data generated from the AMS-Chemistry with students
taking a foundation-level inorganic chemistry course.

Table 1 Number of student responses for survey and examination
administrations

Measure(s) Students (n)
Percentage of student
sample (Ntotal = 449)

Pre AMS-Chemistry 243 54.1
Post AMS-Chemistry 153 34.1
Pre & post AMS-Chemistry 133 29.6
ACS exam 269 59.9
Post AMS-Chemistry & ACS exam 134 29.8

Table 2 Confirmatory factor analysis fit information for 7-factor congeneric measurement models using the WLSMV estimator

Model w2 df p CFI TLI RMSEA RMSEA 90% confidence interval

Entire data corpus (n = 396) 961.2 329 o0.001 0.975 0.971 0.070 0.065–0.075
Pre AMS-Chemistry (n = 243) 687.6 329 o0.001 0.977 0.973 0.067 0.060–0.074
Post AMS-Chemistry (n = 153) 549.8 329 o0.001 0.979 0.975 0.066 0.056–0.076
Multilevel – entire data corpus 742.4 658 0.012 0.980 0.977 0.018

Note: cut-off values for indication of good model fit for this study are CFI Z 0.98, TLI Z 0.98, and RMSEA r 0.07.
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Longitudinal measurement invariance

Tests of longitudinal measurement invariance were conducted
to determine whether the instrument functioned similarly
between the two administrations (n = 133 students completed
both pre & post administrations). To conduct this analysis,
every item on the instrument must have at least one data point
for all response options (1–5). Question 2 on the post admin-
istration lacked any respondents that selected option Not at all.
As recommended by the MPlus user guide, data were manipu-
lated where a randomly selected respondent who originally
selected A Little on Question 2 was recoded to Not at all
(Muthén and Muthén, 2017). This results in modifying a single
data entry of more than 3000 data points (o0.03% of the data)
and is consistent with recommendations for conducting CFAs
with ordinal data (Muthén and Muthén, 2017). Results from
this analysis are shown in Table 5.

When conducting measurement invariance analyses, it is
necessary to see how the fit indices change as increasing
constraints are added. These additional criteria provide evi-
dence for measurement invariance (Chen, 2007; Koziol, 2010;
Rutkowski and Svetina, 2014; Suh and Cho, 2014; Putnick and
Bornstein, 2016; Asparouhov and Muthén, 2019):

� Non-significant differences in the w2 values for consecutive
models (i.e., the additional constraints did not significantly
change the w2 value)

� A DCFI of r0.01 between consecutive models.
� A DRMSEA of r0.015 between consecutive models.
Shown in Table 5 are fit indices and fit indices changes

between consecutive models. Generally, all provide evidence for
measurement invariance. It is worth noting that the DRMSEA
for the strict model is outside the criteria for good fit; all other
measures are within cutoff criteria. The complexity of the
model (i.e., seven factors and two administrations), coupled
with the impact small sample sizes have on RMSEA values, help to
alleviate any concerns and supports strict measurement invar-
iance of the data (Taasoobshirazi and Wang, 2016). Therefore,
there is evidence to suggest that the AMS-Chemistry functioned
similarly at both timepoints and pre/post pairwise comparisons
are acceptable using observed scores.

Interpreting scores from the AMS-Chemistry

Descriptive statistics for students with subscale scores at both
timepoints (n = 133) as well as for the ACS Foundations of
Inorganic Chemistry Exam (n = 134) are reported in Table 6.
While descriptive statistics are provided for all subscales, it is
worth reminding the reader that both pre and post identified
regulation data failed to meet the assumptions of reliability; the
results of this subscale/factor should be interpreted cautiously.

Scores for all measures are non-normally distributed
(Shapiro-Wilk test for normality for all measures is p o 0.05)
and data are ordinal (Shapiro and Wilk, 1965); therefore, non-
parametric statistics were used to analyze the data. A Friedman
test was first performed to indicate if there were detectable
differences between timepoints across the seven subscales of
the AMS-Chemistry; results showed that there were detectable
differences: w2(13) = 817.2, p o 0.001. Follow-up tests to deter-
mine the source(s) of differences by comparing pre/post subscale
scores using Wilcoxon Signed Ranks tests are shown in Table 7
(Wilcoxon, 1945; Rey and Neuhäuser, 2011). No evidence of
significant differences were found after the Bonferroni correc-
tion (pr 0.007) between the pre and post administrations of the
AMS-Chemistry with this sample.

These results differ from previous investigations where
significant changes over time were found with External Regula-
tion with general chemistry students (Liu et al., 2017) and
Amotivation, Introjected Regulation, and Identified Regulation
with organic chemistry students (Liu et al., 2018). Given that

Table 3 Confirmatory factor analysis fit information for 7-factor tau
equivalent measurement models using the WLSMV estimator

Model w2 df p CFI TLI RMSEA

Pre AMS-Chemistry 1366.1 350 o0.001 0.934 0.928 0.109
Post AMS-Chemistry 829.9 350 o0.001 0.953 0.950 0.095

Note: cut-off values for indication of good model fit for this study are
CFI Z 0.98, TLI Z 0.98, and RMSEA r 0.07.

Table 4 McDonald’s o reliability coefficients for the seven subscales of
the AMS-Chemistry at both timepoints

Subscale

McDonald’s o

Pre (n = 243) Post (n = 153)

Amotivation 0.90 0.86
External regulation 0.89 0.88
Introjected regulation 0.90 0.90
Identified regulation — —
To know 0.87 0.89
To accomplish 0.90 0.90
To experience 0.84 0.87

Note: subscales that do not meet the assumption of unidimensionality
do not have a reported o.

Table 5 Longitudinal measurement invariance fit information and model comparisons for 7-factor measurement models comparing pre and post
administrations using the WLSMV estimator

Model w2 df p Dw2 Ddf p for Dw2 a CFI DCFI TLI RMSEA DRMSEA

Configural (equal structure) 1236.4 658 o0.001 — — — 0.977 — 0.974 0.067 —
Metric (add in equal item loadings) 1245.5 679 o0.001 12.9 21 0.913 0.978 0.001 0.975 0.065 �0.002
Scalar (add in equal item intercepts) 1314.8 753 o0.001 86.9 74 0.145 0.978 0.000 0.978 0.061 �0.004
Strict (add in equal item residuals) 1371.8 796 o0.001 �43 43 0.292 0.981 0.003 0.982 0.055 �0.006

Note: cut-off values for indication of good model fit fir this study are CFIZ 0.98, TLIZ 0.98, and RMSEAr 0.07. a Dw2 difference test conducted at
a = 0.05 using the difftest approach in Mplus (Koziol, 2010; Suh and Cho, 2014; Muthén and Muthén, 2017; Asparouhov and Muthén, 2019).
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most students enrolled in foundation-level inorganic chemistry
courses are chemistry majors, these results may suggest that
chemistry majors are a different population than non-chemistry
majors in terms of how motivation towards chemistry courses
is related to course performance. Previous findings from the
AMS-Chemistry with general chemistry and organic chemistry
students, where major was not studied or disaggregated, should
be interpreted cautiously when extrapolating to non-gateway
courses, and future studies should explicitly investigate the
impact of major and/or career goals on the development of
motivation related to chemistry coursework.

To investigate the association between motivation and
content knowledge, two simultaneous analyses were conducted.
The first analysis used a measured variable framework
that involved calculating correlations between the post admin-
istration of the AMS-Chemistry and raw scores from the ACS
Foundations of Inorganic Chemistry Exam (ACS Exams, 2016).
Previous analyses of the AMS-Chemistry have used similar,
measured variable frameworks so analyzing the data in this
manner will allow for comparisons to other studies. Additionally,
the measured variable analysis is most similar to how chemistry
practitioners may analyze these results (i.e., calculating scores
for all seven AMS-Chemistry subscales) making this analysis
useful for readers.

In addition to the measured variable framework, a more
rigorous analysis was also conducted that considered both the
non-normal distribution of the data as well as the ordinal
nature of response options; in this analysis, structured equa-
tion modeling was used to predict raw scores from the ACS
exam using post AMS-Chemistry responses, grouped by latent
factor/subscale. While this is a more robust analysis that is
aligned with the types of data collected, it is not an analysis that
a chemistry instructor would typically use. Thus, providing
both the measured framework analysis and the structured
equation modeling analysis is warranted to speak to both
researchers and practitioners, a specific goal of this Journal.

In both analyses, post administrations of the AMS-
Chemistry were compared with ACS exam raw scores due in
part to the temporal proximity in which each were completed,
as well as literature precedence from other studies using the
AMS-Chemistry (Liu et al., 2018). Results from the measured
variable framework (see Table 8) indicate that two of the seven
subscales have significant correlations with the ACS exam: To
Know and To Accomplish. These subscales are measures of
intrinsic motivation, and both subscales have positive, but
small correlations with ACS exam raw score. These results agree
with Self-Determination Theory which suggests that increased
intrinsic motivation (i.e., internalized motivation associated

Table 6 Descriptive statistics for the seven subscales of the AMS-Chemistry for pre and post administrations and the ACS exam

Measure Min Max Mean Median Mode Standard deviation Skew Kurtosis

Pre amotivation 1 4 1.2 1 1 0.43 2.91 10.65
Pre external regulation 1 5 3.0 3 4 1.02 �0.04 �1.13
Pre introjected regulation 1 5 3.1 3 3 1.08 �0.18 �0.67
Pre identified regulation 1 5 4.0 4 5 0.81 �0.97 0.70
Pre to know 2 5 3.8 4 4 0.85 �0.49 �0.26
Pre to accomplish 1 5 3.5 4 4 0.95 �0.30 �0.66
Pre to experience 1 5 3.1 3 3 1.00 �0.19 �0.53

Post amotivation 1 4 1.3 1 1 0.53 2.22 5.21
Post external regulation 1 5 2.9 3 3 0.98 �0.21 �0.91
Post introjected regulation 1 5 3.2 3 4 1.03 �0.16 �0.87
Post identified regulation 1 5 3.9 4 4 0.78 �1.02 1.07
Post to know 1 5 3.6 4 4 0.84 �0.41 �0.38
Post to accomplish 1 5 3.4 4 4 0.94 �0.29 �0.57
Post to experience 1 5 3.2 3 4 1.02 �0.28 �0.69

ACS exam raw score (out of 60) 14 52 31.3 29.5 26 8.90 0.43 �0.69

Table 7 Wilcoxon signed ranks test comparing pre and post AMS-
Chemistry subscale scores (n = 133)

Subscale Z pa

Amotivation 1.713 0.087
External regulation 0.670 0.503
Introjected regulation 0.635 0.525
Identified regulation — —
To know 2.626 0.009
To accomplish 0.252 0.801
To experience 0.873 0.383

a Note: significance determined at a r 0.007 with Bonferroni correc-
tion. The identified regulation subscale was not evaluated due to failing
to meet reliability assumptions.

Table 8 Spearman’s r correlations comparing post AMS-Chemistry sub-
scale scores with ACS foundations of inorganic chemistry exam raw scores
(n = 134)

Subscale Spearman’s r pa

Amotivation �0.172 0.047
External regulation �0.004 0.963
Introjected regulation 0.130 0.133
Identified regulation — —
To know 0.281 0.001a

To accomplish 0.248 0.004a

To experience 0.222 0.010

a Note: significant at a r 0.007 with Bonferroni correction. The
identified regulation subscale was not evaluated due to failing to meet
reliability assumptions.
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with interest and enjoyment in the topic) supports learning
(Deci and Ryan, 2000; Ryan and Deci, 2000). While no other
subscales have significant correlations at the Bonferroni cor-
rected level, it is worth noting the magnitude and signs of the
correlation values for To Experience (small and positive) and
Amotivation (small and negative). These two subscales further
support the claims of Self-Determination Theory; Amotivation
(i.e., the lack of motivation) hinders learning while To Experi-
ence (an intrinsic motivation component) supports learning.
As such, these results provide further empirical evidence of
the impact of affect on learning, specifically student motivation
and student content knowledge. Previous work in general chem-
istry and organic chemistry courses have further supported this
claim, with similar results showing the impact of amotivation
and intrinsic motivation on learning (Liu et al., 2017, 2018).
Additionally, work in organic chemistry has also demonstrated a
strong connection between student motivation and emotions
directly related to achievement (enjoyment, anxiety, etc.)
(Raker et al., 2019).

Results from the structured equation modeling analysis are
included in Table 9. From this analysis, three AMS-Chemistry
subscales are significant predictors of raw ACS exam scores:
To Know, To Accomplish, and To Experience. All three of these
subscales are measures of intrinsic motivation, which Self-
Determination Theory suggests supports student learning
(Deci and Ryan, 2000; Ryan and Deci, 2000). Similar to the
measured variable framework, signs for the non-significant
predictors provide further support for SDT as a useful frame-
work for conceptualizing student learning in relationship to
motivation.

Overall, results from both analyses suggest that instructors
of inorganic chemistry courses should consider affect in addi-
tion to measures of content knowledge when evaluating the
success of students and impacts of instructional practices.
Considerations of affect should be incorporated into classroom
culture, practices, assessments, etc. and used as additional
evidence to support teaching decisions. Results comparing
pre/post administrations (considering previous findings with
general chemistry and organic chemistry students) also suggest
that while motivation is related to learning, motivation may
also be difficult to change. As such, using instructional practices

that promote intrinsic motivation (e.g., active learning
approaches) can help support student success while also impact-
ing affective characteristics that are key components of the
learning process (Farrell et al., 1999; Eberlein et al., 2008; National
Research Council, 2012; Freeman et al., 2014; Wieman, 2014).

Conclusions and implications

Our results support using the AMS-Chemistry with students taking
foundation-level inorganic chemistry courses. Evidence from our
study suggests that the instrument elicits valid and reliable data
and provides insights into the student experience (RQ 1). Addi-
tionally, the lack of changes in motivation over a semester may
indicate unique characteristics of chemistry majors enrolled in
chemistry courses (RQ 2). Despite the lack of observed changes
over time, associations found between intrinsic motivation
and content knowledge add to the growing body of literature
emphasizing the impacts of affect on student learning (RQ 3).
Associations found with amotivation and extrinsic motivation
complement previous research examining motivation with general
chemistry and organic chemistry students (Liu et al., 2017, 2018)
and provide additional empirical evidence to support SDT as a lens
for interpreting student experiences in the classroom
(Deci and Ryan, 2000; Ryan and Deci, 2000).

Overall, these findings have clear implications for researchers
and practitioners. For researchers, our analyses investigating the
validity, reliability, and invariance of AMS-Chemistry data serves as
a model for future work where Likert-type response data are treated
as ordinal and not continuous (Carifio and Perla, 2007; Bishop and
Herron, 2015) and the nested (i.e., multi-level) nature of collected
data are considered in analyses. Additionally, our efforts to deter-
mine the appropriate reliability coefficient for the data answers the
call from recent work (Komperda, Pentecost et al., 2018) to move
away from using Cronbach’s a as a default measure and to become
more purposeful in analytic choices. Lastly, results showing the
relationships between motivation and student learning provide
evidence to support further investigations of affective measures
and the student experience, and to develop interventions that can
help students move towards intrinsic motivation to foster learning
and success.

For practitioners, these results add to our understanding of students
and understanding of assessment (Rodriguez and Towns, 2019). First
and foremost, these findings support that affect is important for
student learning. As such, instruction should emphasize the affective
experience of students in promoting student success. Additionally,
more than a decade of research shows the positive impacts of
active learning teaching approaches on student learning
(National Research Council, 2012; Freeman et al., 2014;
Wieman, 2014); while not explicitly investigated in this study,
relating active learning pedagogies to student motivation pro-
vides one lens for interpreting these findings. Active learning
promotes student ownership (autonomy), active involvement
in knowledge construction (competence), and feeling part
of a classroom community (relatedness). These components
impact the affective experiences of students (particularly

Table 9 Structured equation modeling analysis using the WLSMV esti-
mator to predict ACS exam raw scores from post AMS-Chemistry
responses, grouped by subscale (n = 134)

Subscale
Standardized
coefficient

Standard
error pa

Amotivation �0.148 0.076 0.051
External regulation �0.026 0.085 0.756
Introjected regulation 0.136 0.083 0.100
Identified regulation — — —
To know 0.282 0.076 o0.001a

To accomplish 0.263 0.084 0.002a

To experience 0.253 0.081 0.002a

a Note: significant at a r 0.007 with Bonferroni correction. The
identified regulation subscale was not evaluated due to failing to meet
reliability assumptions.
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intrinsic motivation) as shown by SDT (Deci and Ryan, 2000;
Ryan and Deci, 2000), other learning theories (Bretz, 2001;
Novak, 2010; Sousa, 2011), previous work in chemistry
(Liu et al., 2017, 2018; Pratt and Raker, 2020) and other
disciplines (Lepper and Henderlong, 2000; Chirkov and Ryan,
2001; Reeve, 2012), and this study, and are positively related to
student learning. As such, chemistry assessments and evalua-
tions should focus not only on measures of student content
knowledge, but also on measures of student experiences.
Affective measures can provide evidence to inform teaching
decisions, as well as provide evidence in interpreting student
success and the effectiveness of instructional practices. By incor-
porating considerations of student experiences (e.g., motivation)
into classroom culture, practices, assessments, etc., chemistry
educators can more effectively support chemistry learning.

Limitations

A key limitation of this study is the lack of additional institu-
tion and student demographics, as well as course and institu-
tion type analyses. Given eighteen institutions/instructors
participated in this project, all responses should be considered
nested within their unique institutional contexts. However,
given only thirteen sites provided AMS-Chemistry data
(see Appendix 3), analyses that considered the multilevel nature
of the data were limited due to limited variability and small n
at the institution level. This resulted in a multilevel analysis
focused on the entire data corpus where pre & post adminis-
trations were collapsed; this calls into question the assumption
of data independence for such an analysis. A more thorough
analysis would analyze the pre and post administrations
individually using a multilevel approach. However, as pre-
viously mentioned, sample sizes at individual institutions
(i.e., nests) limited that ability. Instead, choosing to conduct
the analysis on the data corpus allows us to provide empirical
evidence for the imposed factor structure/SDT when taking
into consideration the ‘‘noise’’ associated with multiple institu-
tions/nests. It does not allow us to comment on the pre and post
administrations nor use the nested data in subsequent analyses
(i.e., comparing institutions/nests). Therefore, our multilevel
approach, while novel for this Journal, should be interpreted
cautiously and conservatively. It is only intended to provide
further support for the 7-factor structure/Self-determination
Theory constructs when considering the additional ‘‘noise’’ or
complexity of multiple institutions/nests.

Additionally, previous work has shown that sex differences
may exist in relation to motivation (Zhi-ling, 2003; Grouzet
et al., 2006; Ackerman et al., 2013; Liu et al., 2017). However,
student demographic information was not collected as part
of IRB procedures for sharing student data outside of
individual institutions; therefore, analyses based on demo-
graphics were impractical. Lastly, previous work suggests that
foundation-level inorganic chemistry courses are highly varied
in terms of content taught (Raker et al., 2015a). As such,
analyses should consider the specific types of foundation-

level inorganic chemistry courses, adding further complexity
and nesting to the analyses. However, given the lack of varia-
bility and thirteen sites at the nesting level, there is insufficient
power and variability to add additional nesting to the analyses.
Despite these limitations, the multiple CFAs conducted have
fit indices well within boundaries of good fit despite not
accounting for instructional contexts and student demo-
graphics. Therefore, these analyses provide support that the
data collected in this study fit the seven-factor AMS-Chemistry
model as conceptualized in SDT for students in foundation-
level inorganic chemistry courses, and that the constructs are
well-defined and rise above any noise associated with factors
such as institution, course, or student demographics not
accounted for in the models. While we cannot extrapolate these
specific results to all populations of inorganic chemistry stu-
dents, the findings provide empirical support for the theore-
tical underpinnings of the work (i.e., SDT) as well as previous
findings from other disciplines (e.g., Mercincavage and Brooks,
1990; Zhi-ling, 2003; Cole et al., 2006; Allen and Robbins,
2010; Kirn and Benson, 2013; Shell and Soh, 2013; Wang
and Degol, 2013; Komarraju et al., 2014; León et al., 2015).
Therefore, the implications of this work are applicable to
courses in inorganic chemistry, and to contexts in which
student samples primarily consist of chemistry majors in
chemistry courses. Future work should consider institution
type, course type, and student demographics in analyses
to expand the evidence regarding the complex relationships
between motivation and student learning. However, it is
worth noting that sufficient sample size is a limiting factor
for these types of analyses; we suggest conducting more multi-
institution studies and/or studies conducted over multiple
years at a single institution as ways to mitigate sample size
limitations.
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Appendices
Appendix 1. Copy of adapted AMS-Chemistry used in this study

Your instructor, in collaboration with the Interactive Online
Network of Inorganic Chemists, is interested in your experience
taking inorganic chemistry this term. We ask that you complete
the survey below. There are no right or wrong answers. Please
be candid and honest in responding to this survey. The
information will be used to evaluate the course.

WHY ARE YOU ENROLLED IN THIS CHEMISTRY COURSE?

Using the scale below, indicate to what extent each of the
following statements corresponds to one of the reasons why
you are enrolled in this inorganic chemistry course.

A = NOT AT ALL B = A LITTLE C = MODERATELY D = A LOT
E = EXACTLY
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WHY ARE YOU ENROLLED IN THIS CHEMISTRY COURSE? A B C D E

1 Because without having taken chemistry, I would not find a high-paying job later on

2 Because I experience pleasure and satisfaction while learning new things

3 Because I think that chemistry courses will help me better prepare for the career I have chosen

4 For the feelings I experience when I am communicating chemistry ideas to others

5 Honestly, I don’t know; I really feel that I am wasting my time taking chemistry courses

6 For the satisfaction I experience while improving my understanding of chemistry

7 To prove to myself that I am capable of succeeding in chemistry

8 In order to obtain a better job later on

9 For the pleasure I experience when I learn new things about chemistry

10 Because taking chemistry will enable me to enter the job market in a field that I like

11 For the pleasure that I experience when I perform chemistry experiments

12 I once had good reasons for taking chemistry courses; however, now
I wonder whether I should continue

13 For the satisfaction I experience while succeeding in chemistry

14 Because when I succeed in chemistry I feel smart

15 Because I want to have a well-paying careers

16 For the pleasure that I experience in broadening my knowledge about chemistry

17 Because taking chemistry courses will help me make more informed choices about my career options

18 For the enjoyment I experience when I think about the world in terms of atoms and molecules

19 I don’t know why I take chemistry courses, I couldn’t care less about them

20 For the satisfaction I feel as I work toward an understanding of chemistry

21 To show myself that I am an intelligent person

22 In order to have a better salary later on

23 Because studying chemistry allows me to continue to learn about things that interest me

24 Because I believe that chemistry courses will improve my skills in my chosen career

25 For the satisfaction I experience while learning about various chemistry topics

26 I don’t know; I can’t understand what I am doing taking chemistry courses

27 Because chemistry courses allow me to experience satisfaction in my quest for knowledge

28 Because I want to show myself that I can succeed in studying chemistry

Appendix 2. Intraclass coefficients (ICC)

Intraclass coefficients (ICC) for the 28 items of the AMS-Chemistry

Item number ICC value

1 0.037
2 0.096
3 0.054
4 0.087
5 0.036
6 0.125
7 0.167
8 0.115
9 0.142
10 0.041
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Table (continued )

Intraclass coefficients (ICC) for the 28 items of the AMS-Chemistry

Item number ICC value

11 0.127
12 0.052
13 0.144
14 0.082
15 0.051
16 0.167
17 0.051
18 0.103
19 0.046
20 0.158
21 0.089
22 0.039
23 0.104
24 0.053
25 0.193
26 0.039
27 0.113
28 0.099

Appendix 4. Results of congeneric factor models for individual subscales/factors of AMS-C

Confirmatory factor analysis fit information for individual, single factor congeneric measurement models using the WLSMV estimator (pre models
n = 243, post models n = 153).

Model w2 df p CFI TLI RMSEA
RMSEA 90% confidence
interval

Pre amotivation factor 7.140 2 0.028 0.995 0.984 0.103 0.029–0.189
Pre amotivation factor 2.569 2 0.277 0.999 0.998 0.043 0.000–0.172
Pre external regulation 4.811 2 0.090 0.999 0.998 0.076 0.000–0.166
Post external regulation 2.187 2 0.335 1.000 1.000 0.025 0.000–0.164
Pre introjected regulation 9.241 2 0.010 0.997 0.990 0.122 0.051–0.206
Post introjected regulation 0.637 2 0.727 1.000 1.002 0.000 0.000–0.114
Pre identified regulation 16.495 2 o0.001 0.985 0.956 0.173 0.102–0.254
Post identified regulation 12.262 2 0.002 0.979 0.936 0.183 0.094–0.287
Pre to know 4.626 2 0.099 0.999 0.997 0.074 0.000–0.164
Post to know 8.142 2 0.017 0.996 0.989 0.142 0.051–0.249
Pre to accomplish 10.137 2 0.006 0.998 0.993 0.129 0.059–0.213
Post to accomplish 4.581 2 0.101 0.999 0.996 0.092 0.000–0.206
Pre to experience 1.630 2 0.443 1.000 1.001 0.000 0.000–0.120
Post to experience 9.174 2 0.010 0.994 0.981 0.153 0.063–0.259

Note: cut-off values for indication of good model fit for this study are CFI Z 0.98, TLI Z 0.98, and RMSEA r 0.07.

Appendix 3. Sample sizes delineated by institution/data collection site

Sample sizes (n) for each data collection delineated by institution/data collection site

Institution Pre AMS-Chemistry Post AMS-Chemistry ACS exam

1 43 — 39
2 — — 5
3 20 15 26
4 — — —
5 7 6 7
6 14 13 14
7 — — —
8 — — —
9 — — —
10 15 15 15
11 7 7 7
12 12 12 12
13 13 8 13
14 5 5 5
15 7 7 7
16 55 52 58
17 32 — 48
18 13 13 13

Note: ‘‘—’’ indicates data were either not provided or IRB-approval was not obtained.
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