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ABSTRACT

We study phrase structure induction from visually-grounded
speech. The core idea is to first segment the speech waveform
into sequences of word segments, and subsequently induce phrase
structure using the inferred segment-level continuous represen-
tations. We present the Audio-Visual Neural Syntax Learner
(AV-NSL) that learns phrase structure by listening to audio and
looking at images, without ever being exposed to text. By training
on paired images and spoken captions, AV-NSL exhibits the capa-
bility to infer meaningful phrase structures that are comparable to
those derived by naturally-supervised text parsers, for both English
and German. Our findings extend prior work in unsupervised lan-
guage acquisition from speech and grounded grammar induction,
and present one approach to bridge the gap between the two topics.

Index Terms— multi-modal learning, unsupervised learning,
grammar induction, speech parsing

1. INTRODUCTION

Multiple levels of early language acquisition happen without
supervisory feedback [1]; it is therefore interesting to consider
whether automatic learning of language, from identifying lower-
level phones or words to inducing high-level linguistic structure
like grammar, can also be done in natural settings. In these
settings, we have access to parallel data from different modalities,
while the amount of data is limited. To this end, two concurrent
lines of effort have been pursued:

* Zero-resource speech processing, exemplified by the unsuper-
vised discovery of sub-phones, phones, and words [2], involves
constructing speech models without relying on textual interme-
diates, and models how children naturally learn to speak prior
to acquiring reading or writing skills.

* Grammar induction is a process that learns latent syntactic
structures, such as constituency [3] and dependency trees [4],
without relying on annotated structures as supervision.

In recent years, multi-modal learning has emerged as a
promising and effective objective in various domains: in speech
processing, [5] proposes leveraging parallel image-speech data to
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Fig. 1: We study the process of inducing constituency parse
trees on unsupervised inferred word segments from raw speech
waveforms. No intermediate text tokens or automatic speech
recognition (ASR) is needed. For illustration, here we show the
gold parse tree from the given text caption.

acquire associated words [6] and phones [7]; in syntax induction,
[8] proposes to induce constituency parses from captioned images.
These successes, coupled with insights from developmental psy-
chology [1], motivate us to develop a computational model that
utilizes the visual modality to acquire both low-level words and
high-level phrase structures directly from speech waveforms, with-
out relying on intermediate text or any form of direct supervision.
In this paper, we present the Audio-Visual Neural Syntax
Learner (AV-NSL,; Fig. 1), which induces the syntactic structure
of visually grounded speech utterances. The speech utterances
are represented by sequences of continuous speech segment
representations, which are derived from a pretrained model that
simultaneously discovers word-like units and learns segment
representations [9]. AV-NSL (1) learns to map the representations
of speech segments and images into a shared embedding space,
resulting in higher similarity scores for segments and images that
convey similar meanings, (2) estimates the visual concreteness of
speech segments using the learned embedding space, and (3) out-
puts speech segments with higher concreteness as the constituents.
To assess the effectiveness of AV-NSL, we compare it with
both the ground truth and the grounded text parser VG-NSL [§],
as well as several alternative modeling choices such as compound-
PCFGs [10] over acoustic units. An ablation study supports the
reasonability of our approach. As a by-product, we improve over
the previous state of the art in unsupervised word segmentation.



2. RELATED WORK

Grounded grammar induction. Since the proposal of the vi-
sually grounded grammar induction task [8], there has been
subsequent research on the topic [11, 12, 13, inter alia]. To the
best of our knowledge, existing work on grammar induction from
distant supervision has been based almost exclusively on text input.
The most relevant work to ours is [12], where speech features are
treated as auxiliary input for video-text grammar induction; that is,
[12] still requires text data and an off-the-shelf automatic speech
recognition model. In contrast to existing approaches, AV-NSL
employs raw speech data and bypasses text to induce constituency
parse trees, utilizing distant supervision from parallel audio-visual
data.

Spoken word discovery. Following the pioneering work in
spoken term discovery [14], a line of work has been done to
discover repetitive patterns or keywords from unannotated speech
[15, 16, 17, inter alia]. Other related work has considered tasks
such as unsupervised word segmentation and spoken term dis-
covery [18, 19, 20, 21, inter alia], and the ZeroSpeech challenges
[22] have been a major driving force in the field. In a new line
of work, [6, inter alia] show that word-like and phone-like units
can be acquired from speech by analyzing audio-visual retrieval
models. [9] shows that word discovery naturally emerges from
a visually grounded, self-supervised speech model, by analyzing
the model’s self-attention heads. In contrast, AV-NSL attempts
to induce phrase structure, in the form of constituency parsing on
top of unsupervised word segments.

Speech parsing and its applications. Early work on speech pars-
ing can be traced back to SParseval [23], a toolkit that evaluates
text parsers given potentially errorful ASR output. In the past, syn-
tax has also been studied in the context of speech prosody [24, 25],
and [26, 27, 28] incorporate acoustic-prosodic features for text
parsing with auxiliary speech input. [29] trains a text parser [30] to
detect speech disfluencies, and [31] trains a text dependency parser
from speech jointly with an ASR model. There is concurrent work
[32] that extends DIORA [33] to unsupervised speech parsing.
On the application side, syntactic parses of text have been applied
to prosody modeling in end-to-end text-to-speech [34, 35, 36].
While this work builds upon pre-existing text parsing algorithms,
we focus on phrase structure induction in the absence of text.

3. METHOD

Given a set of paired spoken captions and images, the Audio-
Visual Neural Syntax Learner (AV-NSL) infers phrase structures
from speech utterances without relying on text. The basis of
AV-NSL is the Visually-Grounded Neural Syntax Learner (VG-
NSL) [8, §3.1], which learns to induce constituency parse trees
by guiding a sequential sampling process with text-image match-
ing. We break down the problem into two steps: (1) obtaining
sequences of word segments, and (2) extracting segment-level
self-supervised representations. With these simple extensions to
VG-NSL, AV-NSL induces phrase structure without reading text,

but rather by listening to speech and looking at images.

3.1. Background: VG-NSL

VG-NSL [8] consists of a bottom-up text parser and a text-image
embedding matching module. The parser consists of an em-
bedding similarity scoring function score and an embedding
combination function combine. Given a text caption, denoted
by a sequence of word embeddings W = {w?}¥ | of length N,
the parser synthesizes a constituency parse tree by recursively
scoring and combining adjacent embeddings at each step. At
step £, VG-NSL (1) evaluates all consecutive pairs of embeddings
(wk,wt 1) and assigns a scalar score to each with scoreg, (2)
selects a pair (w!, ,wf, , ;) based on the corresponding scores, and
(3) combines the selected pair of embeddings via combine to form
a new phrase embedding for the next step, copying the remaining
ones to the next step. In VG-NSL, score is parameterized by
a 2-layer ReLLU-activated MLP, and combine is defined by the
Lo-normalized vector addition of the input embeddings. The
resulting tree is inherently binary and there are /N —1 combining
steps in total, as the parser must combine two nodes in each step.

VG-NSL trains the word embeddings W and a text-image
embedding matching module (parameterized with ®) jointly by
minimizing the phrase-level hinge-based triplet loss:
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where c, i are the corresponding vector representations to a pair
of parallel text constituent and image; ¢’ is the representation of
an imposter constituent that is not paired with i; i’ is an imposter
image representation that is not in parallel with ¢; § is a constant
margin; [-]4 :=max(-,0). By minimizing the above loss function,
the embedding space brings semantically similar image and
text span representations closer to each other, while pushing
apart those that are semantically different. Additionally, the loss
function can be adapted to estimate the visual concreteness of a
text span: intuitively, the smaller the loss related to a candidate
constituent c, the larger the concreteness of ¢, and vice versa.
Taking the additive inverse of values inside both [-] operators,
the concreteness of a constituent c is defined as

concrete(c;i) = Z[cos(i,c) —cos(i,c’)—4]

c’

+Z[cos(i’,c) —cos(i’,c)— .,
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Finally, the estimated concreteness scores are passed back to the
parser as rewards to the constituents. VG-NSL jointly optimizes
the visual-semantic embedding loss, and trains the parser with
REINFORCE [37].

UIn the training stage, the pair is sampled from a distribution where the proba-
bility of a pair is proportional to exp(score); in the inference stage, the argmax
is selected.
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Fig, 2: Tllustration of AV-NSL, which extends VG-NSL [8] to audio-visual inputs. Taking a pair of speech utterance and its corresponding
image as the input, AV-NSL encodes spans of speech utterances and images into a joint embedding space. We train AV-NSL by
encouraging it to output more visually concrete spans as constituents. Note that no text is used throughout.

3.2. Audio-Visual Neural Syntax Learner

AV-NSL extends VG-NSL by: (1) incorporating audio-visual
word segmentation to obtain sequences of word segments from
unannotated speech, (2) jointly optimizing segment-level embed-
dings and phrase structure induction, and (3) employing deeper
parameterization for the score and combine functions in the parser
to handle the noisier speech representations. In AV-NSL, score and
combine are parameterized by GELU-activated [38] multi-layer
perceptrons (MLPs). Below we describe (1) and (2) in detail.

Audio-visual word segmentation: For word segmentation, AV-
NSL leverages VG-HuBERT [9] (Fig. 2; bottom), a model trained
to associate spoken captions with natural images via retrieval.
After training, spoken word segmentation emerges via magnitude
thresholding of the self-attention heads of the audio encoder: at
layer [, we (1) sort the attention weights from the [CLS] token
to other tokens in descending order, and (2) apply a threshold p to
retain the top p% of the overall attention magnitude (Fig. 3, top).

Empirically, however, the VG-HuBERT word segmenter
tends to ignore function words such as a and of. Therefore, we
devise a simple heuristic to pick up function word segments by
inserting a short word segment wherever there is a gap of more
than s seconds that VG-HuBERT fails to place a segment (Fig. 3).
We additionally apply unsupervised voice activity detection [39]
to restrict segment insertion to only voiced regions. The length
of the insertion gap s, the VG-HuBERT segmentation layer ,
attention magnitude threshold p%, and model training snapshots
across random seeds and training steps, are all chosen in an
unsupervised fashion using minimal Bayes’ risk decoding (§3.4).

Speech segment representations: We use the word segments
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" a pair of people'stand "onadark beachflying a kite

Fig. 3: Example of VG-HuBERT word segmentation (top). Differ-
ent colors denote different attention heads, and color transparency
represents the magnitude of the attention weights. Adjacent at-
tention boundaries (vertical dashed lines) are used as the word
boundaries. Segment insertion (bottom): short segments (marked
with “+7) are placed in long enough gaps between existing seg-
ments to recover function words. Best viewed in color.

output by VG-HuBERT to calculate the representations. Let
R = {r; };"F=1 denote the frame-level representation sequence,
where T is the speech sequence length. Audio-visual word
segmentation returns an alignment A(i) =1, that maps the i"
word segment to the p™ to ¢ acoustic frames. The segment-level
continuous representation for the i™" word is w? = Zt cA®) B tTits
where a; ¢ is the attention weights over the segments specified by
A(4). In AV-NSL, R is the layer representation from a pretrained
speech model (e.g., VG-HUBERT), and a; ; is the [CLS] token
attention weights over frames within each segment.

3.3. Self-Training with s-Benepar

[40] has shown that self-training can usually improve parsing
performance: the approach involves training an additional parser
to fit the output generated by a pre-existing learned parser. Con-



cretely, [40] uses Benepar [30], a supervised neural constituency
parser, as the base model for self-training, where it (1) takes a
sentence as the input, (2) maps it to word representations, and (3)
predicts a score for all spans of being in the constituency parse
tree. For inference, the model evaluates all possible tree structures
and outputs the highest-scoring one.

Following [40], we apply self-training to improve AV-NSL.
We extend Benepar to the speech domain and introduce s-Benepar,
which takes segment-level continuous mean-pooling HuBERT
representations, instead of words, as the input, and outputs the
constituency parse trees.

3.4. Unsupervised Decoding

Another key ingredient of AV-NSL is applying consistency-based
decoding [8], which is similar in spirit to minimum Bayes risk
(MBR) decoding, for both spoken word segmentation and phrase-
structure induction. Given a loss function ¢ygr(01,02) between
two outputs O; and Os, and a set of k outputs O ={0s,...,O% },
we select the optimal output

2 . e

O= argon,léréogo&mk (0',0".
For word segmentation, we define the loss between two segmen-
tation proposals S; and Sy as £ypr(S1,S2) = —MIOU(S,Ss),
where MIOU(+,-) denotes the mean intersection over union ratio
across all matched pairs of predicted word spans. We match
the predicted word spans using the maximum weight matching
algorithm [41], where word spans correspond to vertices, and
we define edge weights by the temporal overlap between the
corresponding spans.

For phrase structure induction, the loss function between two

parse trees 71 and T3 is yr(T1,72) = 1 — F1(7T1,72), where
Fi () denotes the F} score between the two trees.

4. EXPERIMENTS
4.1. Setup

Datasets. We first evaluate models on SpokenCOCO [42], the
spoken version of MSCOCO [43] where the text captions in
English are read verbally by humans. It contains 83k/5k/5k
images for training, validation and testing, respectively. Each
image has five corresponding captions.

We also extend our experiments to German, where we synthe-
size German speech from the Multi30K captions [44].% It contains
29k/1k/1k images for training, validation and testing, respectively.
Each image has one corresponding caption. Following [8], we
use pretrained Benepar [30], an off-the-shelf parser, to generate
the oracle parse trees for captions.

Preprocessing. For oracle word segmentation, we use the Mon-
treal Forced Aligner [45] trained on the specific language (i.e.,

2Synthesized with pre-trained German Tacotron2 from https: //github.
com/thorstenMueller/Thorsten-Voice.

English or German). We remove utterances that have mismatches
between ASR transcripts and text captions.

4.2. Baselines and Toplines

We consider the following baselines and modeling alternatives to
examine each component of AV-NSL.:

Trivial tree structures. Following [8], we include baselines with-
out linguistic information: random binary trees, left-branching
binary trees, and right-branching binary trees.

AV-cPCFG. We train compound probabilistic context free gram-
mars (cPCFG) [10] on word-level discrete speech tokens given
by VG-HuBERT. Unlike in AV-NSL, the segment representations
are discretized via k-Means to obtain word-level indices; that
is, AV-cPCFG leverages visual cues only for segmentation and
segment representations, and not for phrase structure induction.

DPDP-cPCFG. In contrast to AV-cPCFG, DPDP-cPCFG does
not rely on any visual grounding throughout. We use DPDP [46]
and pre-trained HUBERT [47] followed by k-Means to obtain
discrete word indices.’

Oracle AV-NSL (topline). To remove the uncertainty of unsu-
pervised word segmentation, we directly train AV-NSL on top
of oracle word segmentation via forced alignment. Due to the
absence of VG-HuBERT, the frame-level representations R are
obtained from pre-trained HuBERT while the attention weights
a;,; are parameterized by a 1-layer MLP, jointly trained with the
tree sampling module instead.

4.3. Evaluation Metrics

Word segmentation. We use the standard word boundary pre-
diction metrics (precision, recall and F1), which are calculated by
comparing the temporal position between inferred word bound-
aries and forced aligned word boundaries. An inferred boundary
located within +20ms of a forced aligned boundary is considered
a successful prediction.

Parsing. For parsing with oracle word segmentation, we use
PARSEVAL [48] to calculate the Fj score between the predicted
and reference parse trees. For parsing with inferred word segmen-
tation, due to the mismatch in the number of nodes between the
predicted and reference parse trees, we use the structured average
intersection-over-union ratio (SAIOU [49]) as an additional
metric.

SAIOU takes both word segmentation quality and temporal
overlap between induced constituents into consideration. Con-
cretely, the input is two constituency parse trees over the same
speech utterance, 71 ={a;};-; and T2 ={b;}"" |, where a; and
b; are time spans. Suppose a; from 77 is aligned to b; from 75. In
a valid alignment, the following conditions must be satisfied: (1)
any descendant of a; may either align to a descendant of b; or be
left unaligned; (2) any ancestor of a; may either align to an ances-
tor of b; or be left unaligned; (3) any descendant of b;, may either

3We sweep the number of word clusters over {1k,2k,4k,8k,12k,16k}.



Model Output SAIOU

Syntax Induction Segmentation Seg. Representation (continuous/discrete) Selection

Right-Branching VG-HuBERT+MBR; 0.546
Right-Branching =~ DPDP 0.478
AV-cPCFG VG-HuBERT+MBR;y VG-HuBERTy+4k km (discrete) last ckpt. (supervised) 0.499
AV-cPCFG VG-HuBERT+MBR;y VG-HuBERT+8k km (discrete) last ckpt. (supervised) 0.481
DPDP-cPCFG DPDP HuBERT>+2k km (discrete) last ckpt. (supervised) 0.465
AV-NSL VG-HuBERT+MBR;; VG-HuBERT} (continuous) MBR over 10" layer 0.516
AV-NSL VG-HuBERT+MBR;; VG-HuBERT}q 1; 12 (continuous) MBR over {10%,11%,12"} Jlayer ~ 0.521

Table 1: Fully-unsupervised English phrase structure induction results on SpokenCOCO. Subscripts denote layer number, e.g. HUBERT
denotes the 10™ layer representation from HuBERT. We list the best-performing hyperparameters for each modeling choice.

Method Decoding Precision Recall [}
DPDP [46] supervised 17.37 9.00 11.85
VG-HuBERT[9] supervised 3619 2722 3107
© VG-HUBERT  supervised ~ 3434 2985 3194
w/ seg. ins. (ours) MBR 33.31 3490 34.09

Table 2: English word segmentation results on the SpokenCOCO
validation set. Supervised decoding methods require an annotated
development set to choose the best hyperparameters. The best
number in each column is in boldface. VG-HuBERT with segment
insertion and MBR decoding achieves the best boundary F3.

align to a descendant of a; or be left unaligned; (4) any ancestor
of b;, may either align to an ancestor of a; or be left unaligned.

Given a Boolean matrix A, where A; ; =1 denotes that a;
aligns to b;, we compute the structured average IoU between 71
and 75 over A by

ny n2

SAloU(ﬂ,E;A):HLm D> A loU(aiby) |

i=1j=1

and the final evaluation result is obtained by maximizing the
SAIOU score across all valid alignments. The calculation of
the optimal SAIOU score can be done within O(n?m?) time by
dynamic programming.

4.4. Unsupervised Word Segmentation

We validate the effectiveness of our unsupervised word segmenta-
tion approach. We first compare our improved VG-HuBERT with
segment insertion to the original VG-HuBERT [9] and DPDP
[46], a speech-only word segmentation method (Table 2). We find
that segment insertion improves recall and hurts precision, and
achieves the highest F score.

Next, we compare MBR-based and supervised decoding. For
efficiency in practice, we implement MBR-based decoding as
follows: we first run a pilot hyperparameter selection, performing
word segmentation on all candidates in the SpokenCOCO vali-
dation set, and subsequently choose the 10 most selected sets of

Segment Representation Output Selection SAIoU
HuBERT last ckpt. 0.538
HuBERTQA’G’&lU’lQ MBR 0.536

Table 3: Results of self-training with s-Benepar, trained on outputs
from the best AV-NSL model (SAIOU 0.521) from Table 1. Inputs
to s-Benepar are segment-level HUBERT representations instead
of VG-HuBERT representations.

hyperparameters to perform another round of MBR selection on
the training set.

For German word segmentation, we employ identical models
and settings as those used for English, as [S0] has shown that the
word segmentation capability of English VG-HuBERT demon-
strates cross-lingual generalization without any adaptation. On
German Multi30K, our method achieves an I} score of 37.46
with MBR, which outperforms that of supervised hyperparameter
tuning (36.45).

4.5. Unsupervised Phrase Structure Induction

We quantitatively show that AV-NSL learns meaningful phrase
structure given word segments (Table 1). The best performing
AV-NSL is based on our improved VG-HuBERT with MBR top
10 selection for word segmentation, VG-HuBERT layers as the
segment representations, and another MBR decoding over phrase
structure induction hyperparameters, including training check-
points and segment representation layers. Comparing AV-NSL
against AV-cPCFG and AV-cPCFG against DPDP-cPCFG, we
empirically show the necessity of training AV-NSL on continuous
segment representation instead of discretized speech tokens, and
the effectiveness of visual grounding in our overall model design.

Next, we compare the performance of AV-NSL with and
without self-training (Table 3), and find that self-training with
an s-Benepar backbone improves the best AV-NSL performance
from 0.521 (Table 1) to 0.538.

Thirdly, Table 4 isolates phrase structure induction from word
segmentation quality with oracle AV-NSL. Unlike in Table 1, we
can adopt PARSEVAL F score [48] for evaluation since there is no



Model Output o)
Syntax Induction Seg. Representation  Selection
Right-Branching N/A N/A 57.39
VGNSL word embeddings  Supervised  53.11
oracle AV-NSL HuBERT,; Supervised  55.51
oracle AV-NSL — s-Benepar HuBERT, ~ MBR 5724

Table 4: PARSEVAL F} scores given oracle segmentation. The
best number is in boldface.

Model Output

SAIoU
Induction Segmentation Selection
Right-Branching VG-HuBERT+MBR; N/A 0.456
Left-Branching VG-HuBERT+MBR N/A 0.461
AV-NSL VG-HuBERT+MBR MBR 0.487

Table 5. Phrase structure induction results on the German
Multi30K test set. The best number is in boldface.

mismatch in the number of tree nodes. With proper segment-level
representations, unsupervised oracle AV-NSL matches or out-
performs text-based VG-NSL. Similarly to Table 3, self-training
with s-Benepar on oracle AV-NSL trees further improves the syn-
tax induction results, almost matching that of right-branching trees.

Perhaps surprisingly, right-branching trees (RBT) with oracle
and VG-HuBERT word segmentation reach the best English
SAIoU and F3 scores on SpokenCOCO, respectively. We note
that the RBTs highly align with the head-initiality of English
[51], especially in our setting where all punctuation marks were
removed. In contrast, our experiments on German show that
AV-NSL out-performs both RBTs and left-branching trees in
terms of SAIOU (Table 5).*

4.6. Analyses

Unsupervised Constituent Recall: Following [8], we show the
recall of specific types of constituents (Table 6). While VG-NSL
benefits from the head-initial (HI) bias, where abstract words are
encouraged to appear in the beginning of a constituent, AV-NSL
outperforms all variations of VG-NSL on all constituent categories
except NP.

Ablation Study: We introduce three ablations to evaluate the
efficacy of high-quality word segmentation, visual representation,
and speech representation (Table 7). Concretely, we train AV-NSL
with the following modifications:

1. Given the number of words n, we divide the speech utterances
uniformly into n chunks to get the word segmentation, and
use the same visual representations as AV-NSL.

2. We replace visual representations with random vectors, where
each pixel is independently sampled from a uniform distribu-

“4For German grammar induction with oracle segmentation, oracle AV-NSL
attains 33.94 F7 while LBT/RBT attain 26.70/25.30 F1 respectively.

Model I Constituent Recall

NP VP PP ADJP
VG-NSL [8] 504 79.6 262 420 220
VG-NSL + HI 533 746 325 665 21.7
VG-NSL + HI + FastText 544 78.8 244 656 220
oracle AV-NSL 555 555 681 66.6 22.1

Table 6: Recall of specific typed phrases, incl. noun phrases
(NP), verb phrases (VP), prepositional phrases (PP) and adjective
phrases (ADJP), and overall F} score, evaluated on SpokenCOCO
test set. VG-NSL numbers are taken from [8].

Model Visual i)
Word Segmentation Seg. Repre.
MFA HuBERT, ResNet 101 55.51
Uniform HuBERT: ResNet 101 48.97
MFA HuBERT random 31.23
MFA logMel spec  ResNet 101 42.01

Table 7: PARSEVAL F scores for ablations over word segmenta-
tion, visual representation, and speech representation.

tion, and use the oracle word segmentation.

3. We replace the self-supervised speech representations (Hu-
BERT) with log-Mel spectrograms.

We observe significant performance drops in all settings, com-
pared to oracle AV-NSL. This set of results complements Table 1,
stressing that precise word segmentation and both high-quality
visual and speech representations are all necessary for phrase
structure induction from speech.

5. CONCLUSION AND DISCUSSION

Previous research has achieved notable progress in zero-resource
speech processing and grammar induction by employing multi-
modal techniques. In our study, we propose an approach to
model human language acquisition that leverages the visual
modality to acquire language competence. Our approach, AV-
NSL, encompasses the extraction of word-level representations
from speech and the derivation of syntactic structures from those
representations, thereby eliminating the reliance on text. Through
quantitative and qualitative analyses, we demonstrate on both
English and German that our proposed model successfully infers
meaningful constituency parse trees based on continuous word
segment representations. Our work represents the initial step in
grammar induction within textless settings, paving the way for
future research endeavors, which include but are not limited to
(1) building end-to-end models that take spoken utterances and
produce their syntactic analysis, (2) understanding the contribu-
tion of various grounding signals to grammar induction, and (3)
modeling human language acquisition in grounded environments.
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