
1

Generating multiple choice questions from a textbook:

LLMs match human performance on most metrics
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Abstract
Multiple choice questions are traditionally expensive to produce. Recent advances in large language

models (LLMs) have led to �ne-tuned LLMs that generate questions competitive with human-authored

questions. However, the relative capabilities of ChatGPT-family models have not yet been established

for this task. We present a carefully-controlled human evaluation of three conditions: a �ne-tuned,

augmented version of Macaw, instruction-tuned Bing Chat with zero-shot prompting, and human-

authored questions from a college science textbook. Our results indicate that on six of seven measures

tested, both LLM’s performance was not signi�cantly di�erent from human performance. Analysis

of LLM errors further suggests that Macaw and Bing Chat have di�erent failure modes for this task:

Macaw tends to repeat answer options whereas Bing Chat tends to not include the speci�ed answer in

the answer options. For Macaw, removing error items from analysis results in performance on par with

humans for all metrics; for Bing Chat, removing error items improves performance but does not reach

human-level performance.
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1. Introduction

Multiple choice questions are widely used in education. In contrast to free response questions,

multiple choice questions are scored objectively and at great speed, simply by checking the

selected answer code, e.g. A-D, against an answer key. However, the ease of grading multiple

choice questions (MCQs) comes at a nontrivial cost of creating them, with the greatest e�ort

spent on creating distractor answer options [1, 2].

Automatic generation of MCQs has received increasing research interest over the past two

decades. Early approaches had little training data and so approached the MCQ generation task

as four subtasks in a pipeline architecture: sentence selection, answer selection from selected

sentences, question generation using the sentence and answer, and distractor generation [3].

Each of these subtasks can be addressed using NLP approaches developed outside the MCQ

literature, like summarization techniques for sentence selection, keyword extraction techniques

for answer selection, general question generation [4], and semantic similarity approaches for
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distractor generation. This general approach sidesteps the need for MCQ training data by

leveraging data from other tasks, but as a result inherits biases from those datasets, e.g. a

news-trained summarizer will not select important sentences in a science text [5].

More recently, deep learning approaches have been applied to MCQ generation, but older

neural techniques tend to predominate. For example, one simple approach to generating

distractors is to use an encoder-only model like BERT to predict masked tokens. This approach

has been used to create single-word distractors for vocabulary MCQs [6] as well as multiword

distractors when applied sequentially [7]. Additional work has used bidirectional LSTMs to

generate distractors for reading comprehension MCQs by conditioning on inputs like text,

question, and answer [8, 9, 10] in order to produce distractors that are more relevant.

In contrast, a small amount of work has used large language models (LLMs) for MCQ tasks,

often in conjunction with �ne-tuning. The encoder-decoder T5 model [11] has been used to

generate distractors, either by using its pretraining objective to �ll a span of masked tokens [12],

similar to the BERT work above, or by �ne-tuning T5 to generate distractors conditioned on text

and question [13]. The encoder-only GPT-2 model has also been used to generate distractors

conditioned on text and question [14], analogous to the LSTM work above.

LimitedMCQ training data has been problematic for LLM approaches that use �ne-tuning. The

recently proposed Macaw model [15], based on T5, leverages diverse datasets by representing

various question answering/generation tasks as angles. Each angle consists of slots like A

(answer), Q (question), M (multiple choice options), and C (context) as well as a mapping from

input to output slots. Macaw’s angle-based approach allows a large number of question-oriented

datasets to be used as training data by representing them as angles and training on them all

simultaneously. For example, a question-answering dataset can be used to both answer questions

(Q → A) and generate questions from answers (A → Q), and more complex datasets for reading

comprehension can be used to answer a question based on text (CQM → A) as well as reverse

mappings that generate MCQ elements. By training on a large number of datasets and angles,

Macaw promises more general and robust performance for a variety of question-related tasks.

An evaluation of Macaw compared Macaw-generated MCQs to textbook MCQs in a human

evaluation [16]. That study found that Macaw’s performance did not improve across three

angles that systematically reduced the complexity of the task, C → QMA, AC → QM , and

QAC → M , but rather performed best with AC → QM . The most common error was an

inability to generate four distinct answer options, which was addressed by paraphrasing C up

to 10 times and running AC → QM on each paraphrase to generate more diverse M . This

method improved the generation success of AC → QM from 83% to 97.5%. Finally, the human

evaluation, which measured question meaningfulness and �uency, answer correctness and

presence in the options, distractor distinctness and non-overlap with the correct answer, and

overall quality, found that Macaw MCQs were rated signi�cantly lower than textbook MCQs on

5 of 7 metrics, but that Macaw was rated highly in absolute terms, e.g. 85% compared to textbook

94% on overall quality. One limitation of this evaluation is that while the Macaw questions and

textbook questions were on the same general topic, they were not precisely aligned. Thus it is

possible that some of the di�erences in ratings are due to di�erences in concepts being covered

rather than the questions themselves, e.g. perceived di�culty by the human raters.

In contrast to developments in LLM �ne-tuning, recent work has illustrated how LLMs

can generalize to new tasks without traditional input/output training data. This approach



was popularized by GPT-3, which was shown to successfully complete various tasks without

explicit training as long as it was given task instructions [17] (so-called zero-shot learning), with

performance typically improving if additional demonstrations were provided (so-called few-shot

learning). Remarkably, GPT-3 was able to exceed �ne-tuned state-of-the-art performance on

some benchmark tasks using this approach. Succeeding work has investigated instruction-

tuning, which �ne-tunes an LLM to follow instructions written in natural language for various

tasks, and has found improvements over GPT-3 on benchmark tasks using models with fewer

parameters [18, 19], but of course, even greater gains have been found using instruction tuning

on the largest LLMs (>100B parameters) [20, 21]. The success of instruction-tuned models has

led to commercialization successes like ChatGPT and Microsoft’s Bing Chat, which present

an instruction-following LLM that can follow directions across conversational turns (so-called

chatbot interaction). While these recent instruction-tuned LLMs are impressive in casual

interactions, it is not clear how well they can generate MCQs compared to �ne-tuned LLMs.

The present paper attempts to clarify the state of the art in MCQ generation by conducting a

carefully-controlled human evaluation of three conditions: the �ne-tuned augmented version

of Macaw [16], instruction-tuned Bing Chat with zero-shot prompting, and human-authored

questions from a college anatomy and physiology textbook [22]. In order to control for concept

coverages, conditions are content-aligned, i.e. AI conditions generate MCQs based on the same

input. Our primary research questions are (1) how well do the MCQs produced by the LLMs

compare to textbook MCQs in a human evaluation study, (2) what errors do the LLMs make in

the task, and (3) can LLM errors explain the human performance gap.

2. Human evaluation study

A human evaluation study was conducted to compare the �ne-tuned augmented version of

Macaw (Macaw+) [16], instruction-tuned Bing Chat with zero-shot prompting (Bing Chat), and

human-authored questions from a college anatomy and physiology textbook (Textbook).

2.1. Design

The evaluation study used a within-subjects design with Macaw+, Bing Chat, and Textbook as

conditions. Conditions were presented using a 6 x 3 balanced Latin square (i.e., 3! = 3× 2× 1)

to counterbalance condition order and prevent carryover e�ects between conditions. However,

the underlying context of each MCQ (i.e., the input source sentence and correct answer for

the LLMs) was not counterbalanced. This design decision means that in a fully-used Latin

square, a context in a particular location would be paired with each condition, making fatigue

e�ects equivalent across conditions. The human ratings were analyzed using mixed-e�ects beta

regression with random intercepts for rater and rating question using the glmmTMB R package

[23]. Beta regression is appropriate for continuous bounded outcome variables, unlike linear

regression, which isn’t suitable for bounded outcomes, and logistic regression, which can be

used for proportions, but only when the proportion is a ratio of two counts [24]. Because beta

regression is de�ned on the open interval (0,1), we use a standard transformation to squeeze

our closed interval outcome variables to the open interval [25]. We conducted statistical tests



Write a multiple choice question using the following sentence and answer. Convert the sentence into
a question that matches the answer. Use JSON format.
Sentence: <sentence>
Answer: <answer>

Figure 1: Prompt used to generate MCQs using Bing Chat. Tokens marked by < > were replaced with
their respective input strings.

at α = .05 to address our research questions. If beta regression revealed a signi�cant e�ect of

condition, post hoc tests were conducted to determine di�erences between conditions.

2.2. Participants

Raters (N = 16) were recruited through the Amazon Mechanical Turk (AMT) marketplace from

April to May of 2023 using the CloudResearch platform [26]. Raters were recruited using an

occupation screener that paid 1 cent for their reporting of occupation. Raters were required to

reside in the U.S., Canada, New Zealand, United Kingdom, Ireland, or Australia, and be employed

as a nurse (n = 9), doctor (n = 5), or allied health provider with anatomy and physiology

expertise (n = 2). The educational and occupational constraints we designed to ensure raters

were experts in the evaluation subject domain: they had passed anatomy and physiology in

their studies and used this knowledge on a daily basis. Demographic constraints are enforced by

CloudResearch based on rater responses to previous demographic surveys. Raters were further

required to have completed at least 100 previous AMT tasks with at least a 95% approval rating.

Raters were paid $12 regardless of reliability, based on an estimated 120 minutes to complete the

task. In addition, raters were paid up to $50 in bonuses for passing quality checks determined

by intra-rater reliability: a $5 bonus for passing each check, and an additional $20 bonus for

passing a comprehensive check.

2.3. Materials

A textbook on anatomy and physiology [22] from OpenStax was used as the source of 120

textbook questions. Questions were web scraped from the OpenStax website1, manually checked,

and aligned with the answer key accessible by registering as an instructor. The 120 questions for

this evaluation were drawn from the �rst 4-5 questions from each of the textbook’s 28 chapters.

MCQs for the three conditions were produced as follows. The Textbook condition used the

MCQ as it appeared in the textbook. The LLM conditions both required sentence and answer as

input, so the textbook questions were manually transformed into sentences, and these sentences

and original answers were used as inputs to the LLMmodels. For example, the textbook question

“Which of the following specialties might focus on studying all of the structures of the ankle and

foot?” with associated answer “regional anatomy” was transformed into the sentence “Regional

anatomy might, for example, focus on studying all of the structures of the ankle and foot.” Each

sentence/answer was input to the �ne-tuned, augmented Macaw model described in [16] to

create MCQs for the Macaw+ condition (see Section 1 for key details).

1https://openstax.org/details/books/anatomy-and-physiology

https://openstax.org/details/books/anatomy-and-physiology


Because Bing Chat uses prompt-based input and there is no known best prompt for generating

MCQs, several di�erent prompts were designed based on templates from existing datasets

[18, 19] and informally evaluated using a handful of the above sentence/answer pairs. The

best-performing prompt given in Figure 1 was used to generate all Bing Chat MCQs using the

EdgeGPT API [27]. Note the prompt includes the same sentence/answer used in the Macaw+

condition. Thus all three conditions are aligned on each MCQ context.

Six surveys were created with Qualtrics, an online survey tool, using a balanced Latin square

to de�ne the order of conditions. Because each row of the Latin square only contains 3 orderings,

each ordering was repeated 20 times in a survey for a total of 60 MCQs. The same ordering of

60 contexts was used in each survey; only the condition applied to each position of the ordering

varied across surveys. Each question, correct answer, and answer options were formatted

vertically in that order on a single survey page using the direct assessment methodology [28, 29].

These three elements each had two associated ratings, followed by an overall quality rating,

for a total of seven ratings per question, as shown in Table 1. All ratings were in horizontal

slider format and arranged in descending order. The 0-100 sliders had no numeric indicators

and were initialized at the midpoint. The remaining sliders had numeric indicators and snapped

to integer positions. Each survey had instructions at the beginning to explain the task and the

seven ratings. Survey instructions and an example survey page are shown in Appendix A.

Following the direct assessment methodology, degraded items were created to evaluate the

internal reliability of each rater [29, 28, 30]. Degraded items were created by copying the

question, answer, and options on an existing survey page and then applying the following

transformations. Questions were degraded by deleting a span of words [28], where the length

of the span was determined by the equation spanlength = 0.21696 ∗wordcount + 0.78698 [31].

Degraded answers were created by replacing the correct answer with one of the other answer

options selected at random. Degraded answer options were created by randomly selecting a

remaining incorrect answer option and then duplicating it while removing another incorrect

option at random. Thus each survey of 80 pages contained 60 distinct pages and 20 degraded

versions of distinct pages. An example degraded item is shown in Appendix A.

We refer to a distinct page and its degraded version as a control pair. A sample size of 20

control pairs is su�cient to detect a large (.8 SD) e�ect using a Wilcoxon signed-ranks test

for matched pairs at α = .05 and .95 power on a one-tailed test. Thus if we do not detect a

Table 1

Ratings used in human evaluation study

Measure Scale

The question contains correct information 0-100
The question is grammatical and fluent 0-100
The given correct answer is correct 0-100

The given correct answer is present in the answer options 0-100

Number of answer options that give a correct answer 0-4
Number of answer options that are distinct (no duplicates) 1-4
Quality of the question, given answer, and answer options combined 0-100



large e�ect between ratings of distinct pages and their degraded versions, we infer the rater is

not reliable (i.e., poor intra-rater reliability). The degraded pages were in randomly assigned

positions in each survey and were evenly distanced from their matched distinct pages, modulo

50. This ensured that pages in control pairs had 50 other items between them, making it less

likely that raters would remember their rating on a previous item.

We additionally developed an occupation survey to help us �nd more quali�ed raters. The

occupation survey consisted of two questions, a generic occupation question from the standard

Qualtrics demographics library with 20 answer options, and a conditional branch question

that only appeared if a respondent selected healthcare on the �rst question. The conditional

branch question asked for a more speci�c healthcare occupation, with nine total options

including six matching our recruiting criteria. This indirect approach to asking about speci�c

healthcare occupations was designed to avoid demand characteristics (i.e., false responses) from

asking such questions directly.

2.4. Procedure

Six surveys were sequentially with a default quota of four raters. If a survey had su�ciently

good reliability with less than four raters, it was terminated early; this only happened with

survey 3. Likewise, if a survey had insu�cient reliability with four raters, it was extended with

a quota of an additional four raters; this only happened for survey 2. Raters were allowed to

participate in more than one survey if they passed the comprehensive quality check.

Raters accessed the surveys through AMT and completed the surveys using Qualtrics. Because

the study is a system evaluation and not human subjects research, informed consent was not

obtained. Raters saw the instructions for the survey twice, once as a preview on AMT before

undertaking the survey, and again once they clicked on the survey link. On each following

page, raters read the question, the correct answer, and the answer options, and then completed

the ratings described in Table 1. Raters were paid upon completion of the survey and received

bonuses based on the quality checks passed, i.e. based on their intra-rater reliability for each

rating, with the �nal rating in Table 1 serving as the comprehensive check.

2.5. Results and Discussion

Median completion time across surveys was 133 minutes, giving approximately 100 seconds to

read the question, answer, and options and make 7 judgments. Control checks were considered

to be passed if p < .05 on the aforementioned Wilcoxon signed-ranks test. Seven raters failed

to pass the comprehensive check on a given survey and were excluded from future surveys.

Every check on each survey was passed by at least two raters with the exception of survey 2,

where all but question informative and question fluent were passed by two raters.

Initially, the Cronbach’s alpha inter-rater reliability statistic was calculated for raters passing

control checks in each survey. However, inspection of the raw ratings revealed that while some

raters used 0-100 sliders as a measure of con�dence (as intended), other raters used it in a

binary fashion, leading to nonlinearity and lack of variability among raters. Because Cronbach’s

alpha was invalid for these data, a new agreement metric was constructed based on the contrast

between distinct and degraded items. If we consider that the distinct items are likely good and



Table 2

Inter-rater reliability per survey for included raters.

Survey Question in-
formative

Question
fluent

Answer
correct

Answer
in options

Correct
options

Distinct
options

Combined
quality

κ n κ n κ n κ n κ n κ n κ n

1 .83 2 .85 2 .73 2 .92 3 .80 3 .93 3 .77 3
2 .65 2 .70 2 .23 2 .78 3 .65 2 .80 2 .65 2
3 .68 2 .75 2 .73 2 .98 2 .55 2 .88 2 .80 2
4 .70 2 .75 2 .65 2 .87 3 .75 3 .78 3 .78 2
5 .80 2 .83 2 .70 2 .76 4 .68 3 .81 4 .65 3
6 .68 2 .78 2 .68 2 .92 3 .55 3 .88 3 .70 3

so should have ratings above 50 on most scales and that degraded items are likely bad and so

should have ratings below 50 on the same scales, then we can threshold all ratings to be either

1 (good) or 0 (bad) and calculate balanced accuracy for true positives and true negatives. The

same approach works for correct options if we assume that there is 1 correct option by

default (good) and for distinct options if we assume that there are 4 distinct options by

default (good) and that degraded items have all other values on these metrics. We will refer

to these assumptions as pseudo-truth because we are assuming that the generated MCQs are

generally good and that their degraded variants are generally bad.

Inter-rater reliability was calculated for each rating within a survey using the following

method. First, all ratings were converted to 1/0 as described above, and their balanced accuracy

based on pseudo-truth was calculated. The top two most accurate ratings were kept for inter-

rater reliability (regardless of absolute accuracy) and any additional ratings with accuracy

greater than .8 were also included. Inter-rater reliability was then calculated between included

ratings using Fleiss’s kappa, adjusted for unbalanced classes [32]. The net e�ect of this approach

is that comparing to pseudo-truth was a stricter criterion of intra-rater reliability than using

the Wilcoxon signed-ranks test (e.g. 5 raters passed the Wilcoxon signed-ranks test on survey 1

for question informative, but only 2 raters passed the pseudo-truth procedure), and using

only these raters ensures high inter-rater reliability without sacri�cing validity. Intra-rater

reliabilities are shown in Table 2 in the same order as Table 1 but using abbreviated labels. Final

kappas showed substantial agreement (κ > .60) on 39 of 42 ratings. Ratings shown in Table 2

were used in all further analyses.

To answer our research question of how MCQs produced by the LLMs compare to textbook

MCQs, we ran separate mixed-e�ects beta regressions with random intercepts for rater and

question, using the source of the question as the �xed e�ect (Bing Chat, Macaw+, or Textbook).

Descriptive statistics and regression results are shown in Table 3, with associated p values from

one-way ANOVA. Signi�cant di�erences between conditions were found only for answer in

options and combined quality. However, pairwise contrasts for answer in options

revealed no signi�cant di�erences between Bing Chat (M = .83, SE = .02) and Textbook

(M = .86, SE = .02), p = .068, and no signi�cant di�erences between Macaw+ (M = .86,

SE = .02) and Textbook, p = .083. Pairwise contrasts for combined quality, however,



Table 3

Descriptive statistics and significance of mixed-e�ects beta regressions comparing Bing Chat, Macaw+,
and Textbook conditions.

Rating Bing Chat Macaw Textbook p

M SD M SD M SD

Question informative 93.49 15.05 91.45 19.90 93.95 14.56 .543
Question fluent 95.72 13.81 94.73 17.05 97.83 9.28 .494
Answer correct 83.18 32.31 86.32 28.88 91.93 21.73 .134
Answer in options 88.71 28.27 96.19 13.51 96.09 13.79 .043
Correct options 1.15 .74 1.12 .59 1.04 .41 .355
Distinct options 3.93 .33 3.77 .65 3.98 .17 .103
Combined quality 85.52 24.17 86.93 24.21 93.62 15.80 .006

revealed signi�cant di�erences between Bing Chat (M = .85, SE = .02) and Textbook

(M = .88, SE = .02), p = .009, and signi�cant di�erences between Macaw+ (M = .85,

SE = .02) and Textbook, p = .038. Altogether, the LLM conditions were not signi�cantly

di�erent fromTextbook on six of sevenmeasures. However, answer in options and relatively

low p-values of answer correct and distinct options warrant further investigation.

3. Error analysis

To answer our research question of what errors the LLMs make in MCQ generation, we con-

ducted an error analysis for distinct options and answer in options. MCQs generated

by Macaw+ and Bing Chat were automatically scored using exact string match to determine if

the given answer appeared in the answer options and if the four answer options were distinct

from each other. Errors detected by exact string match were then manually reviewed to deter-

mine if they were actual errors. For example, a failed string match where the only di�erence

was punctuation or an article like “a” would not be considered an actual error.

Macaw+ had 111 questions with distinct options or 92.5%. This is notably lower than the

previously reported success rate of 97.5% [16]. Six of the nine failures occurred when response

options contained lists, e.g. “carbon, hydrogen, oxygen, and nitrogen” which may explain the

di�erence in the previous result if such lists are resistant to paraphrasing. Macaw+ had 120

questions where the given correct answer was one of the answer options, i.e. 100%. So the

primary failure mode of Macaw+ in the evaluation was a failure to generate distinct answer

options in 7.5% of cases, with the majority of these caused by answer options that are lists.

Bing Chat had 120 questions with distinct options, i.e. 100%. Bing Chat had 109 questions

where the given correct answer was one of the answer options or 91%. Of the remaining 11

mismatches, 8 could be considered to be valid questions overall, in the sense that one of the

answer options was the correct answer, but that answer di�ered from the given correct answer

in a nontrivial way. For example, 2 failures used a letter (A-D) to indicate the correct answer

rather than using the given correct answer in the prompt, and another 3 failures used either a

wider or narrower scoping of the answer than was presented in the options, e.g. answer option



“Axons from the retinal ganglion cells in the retina” is a narrower scoping of given correct

answer “retinal ganglion cells.” If such errors are judged leniently, then 8 of 11 of the errors can

be viewed as a failure to precisely follow the prompt’s instructions. So the primary failure mode

of Bing Chat in the evaluation was a failure to include the given correct answer among the

answer options in 9% of cases, with the majority of these cases being otherwise valid questions.

Example errors for Macaw+ and BingChat are shown in Appendix B.

4. Explaining the human performance gap

The error analysis in Section 3 potentially explains the pattern of results in the human evaluation

in Section 2.5. Recall answer in options was signi�cant with Bing Chat having the lowest

mean score, tracking Bing Chat’s failure to include the given correct answer among the answer

options in 9% of cases. The same error could potentially explain the relatively low p-values

of answer correct, since the mismatch between the given correct answer and the answer

options could lower the con�dence of human raters that the given answer is correct. Similarly

for Macaw+, distinct options had a relatively low p-value and Macaw+ had the lowest

mean score, which tracks Macaw+’s failure to generate distinct answer options in 7.5% of cases.

To answer our research question of how LLM errors explain the human performance gap, we

reanalyzed the human evaluation data to determine the e�ect of the above errors on combined

quality, which was the only measure for which pairwise signi�cant di�erences were found

between Bing Chat, Macaw+, and Textbook. Two analyses were conducted for Bing Chat

and Macaw+. First, we used the rating of their primary error type to predict their combined

quality. Second, we tested the di�erence between LLM and Textbook combined quality

when MCQs marked as bad were excluded. For example, if a rater marked a Macaw+ MCQ as

having 4 distinct options (good), then their combined quality rating for that MCQ would

be included in the analysis, otherwise it would be excluded. Both analyses used separate

mixed-e�ects beta regressions with random intercepts for rater and question.

Mixed-e�ects beta regression for Bing Chat ratings using answer in options to predict

combined quality revealed a signi�cant e�ect, p < .001. When answer in options is 0,

estimated combined quality is low (M = .39, SE = .07), and when answer in options

is 100, estimated combined quality is high (M = .89, SE = .02). An additional mixed-

e�ects beta regression was conducted comparing Bing Chat to Textbook using only MCQs

where answer in options was scored highly (above 50). This �ltering procedure removed

34 ratings from the Bing Chat condition and 5 ratings from the Textbook condition out of 360

total ratings. Mixed-e�ects beta regression revealed that with these errors removed, combined

quality for Bing Chat (M = .92, SE = .02) was still rated lower than Textbook (M = .93,

SE = .01), p < .012. A follow-up simulation analysis on the choice of 50 as a threshold

revealed that the signi�cant di�erence between conditions remained up to a threshold of 98.

These results suggest that while answer in options errors strongly in�uence combined

quality for Bing Chat, they do not fully explain the human performance gap.

Mixed-e�ects beta regression for Macaw+ ratings using distinct options to predict

combined quality revealed a signi�cant e�ect, p < .001. When distinct options is not

4 (bad), estimated combined quality is low (M = .59, SE = .06), and when distinct



options is 4 (good), estimated combined quality is high (M = .86, SE = .02). An

additional mixed-e�ects beta regression was conducted comparing Macaw+ to Textbook using

only MCQs where distinct options was scored highly (equal to 4). This �ltering procedure

removed 45 ratings from the Macaw+ condition and 7 ratings from the Textbook condition out

of 360 total ratings. Mixed-e�ects beta regression revealed no signi�cant di�erence between

Macaw+ (M = .91, SE = .02) and Textbook (M = .92, SE = .01), p = .149. These results

suggest that distinct options errors may explain the human performance gap for Macaw+.

5. Discussion

The goal of the present work was to clarify the state of the art in MCQ generation by comparing

two LLMs, the �ne-tuned augmented version of Macaw [16] and instruction-tuned Bing Chat

with zero-shot prompting, to human-authored questions in a carefully-controlled human evalu-

ation. Our results indicate that on six of seven measures tested, both LLM’s performance was

not signi�cantly di�erent from human performance. These six measures relate to individual

components of the MCQ, speci�cally the question stem, the answer, and the answer options,

and are very �ne-grained, so the lack of signi�cant di�erence is particularly notable. Only on

the overall measure of combined quality was a signi�cant di�erence found in favor of the

human-authored questions.

Analysis of LLM errors indicates that Macaw and Bing Chat have di�erent failure modes

for this task: Macaw tends to repeat answer options whereas Bing Chat tends to not include

the speci�ed answer in the answer options. Each of these error types is strongly predictive

of combined quality ratings. For Macaw, removing error items from analysis results in

combined quality ratings that are not signi�cantly di�erent from human-authored questions

on combined quality. For Bing Chat, removing error items improves combined quality,

but resulting ratings remain signi�cantly di�erent from human-authored questions. Altogether,

these results suggest that the LLMs are both remarkably capable of creating MCQs, and the

error analyses suggest future research directions for each LLM on this task.

These results are based on a high-quality human evaluation. It is widely agreed that human

evaluations provide the best evidence of system performance, yet as few as 20% of research

papers on natural language generation include them [33]. We were careful to recruit raters

whose profession required them to be highly knowledgeable in the MCQ content domain. Our

evaluation includes both intra-rater reliability (can raters distinguish between actual items

and intentionally degraded items) as well as inter-rater reliability (do raters agree with each

other). Only raters with high intra- and inter-rater reliability were included in our analysis.

Additionally, the evaluation was designed to minimize confounding e�ects of fatigue as well as

individual rater characteristics like extreme responses.

Our study has two primary limitations. First, we only evaluated questions on the topic of

anatomy and physiology. It is possible that the LLMs would perform di�erently on other topics,

though neither model was trained speci�cally for this topic. Second, the task given to the LLMs

simpli�es the canonical task of generating MCQs from text by providing sentences and answers

instead of selecting them [3]. Therefore, our results should not be taken as representative of

MCQ generation from freeform text.
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Figure 2: Survey instructions.



Figure 3: Survey page illustrating the rating task.



Figure 4: A degraded item. Rating options for degraded items are identical to Figure 3.



B. Error analysis

The LLMs di�er in the types of errors they make during MCQ generation. The primary error

mode of Macaw+ is to fail to make enough distinct options as distractors, especially when the

distractors are lists, as shown in Figure 5. The primary error of Bing Chat is failing to follow

the instructions of the prompt precisely. As shown in Figure 6, Bing Chat has generated a valid

question if the given correct answer had been “fauces,” but the given correct answer was “oral

cavity.”

Figure 5: A typical Macaw+ generation error where insu�icient distractors have been generated.

Figure 6: A typical Bing Chat generation error where the prompt was not followed precisely. The input
sentence was “The fauces connects the oral cavity to the oropharynx." and the input answer was “oral
cavity.” The respective prompt using these elements is given in Figure 1.
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