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ABSTRACT

We apply a previously-developed asymptotic model to study instability and breakup of metal filaments of
nanometric dimensions exposed to heating by laser pulses, and placed on thermally conductive substrates.
One particular aspect of this setup is that the considered heating is volumetric, since the absorption length of
the applied laser pulse is comparable to a typical filament thickness. In such a setup, absorption of thermal
energy and filament evolution are coupled, and must be considered self-consistently. The asymptotic
model that we use allows for significant simplification, since it reduces a complicated problem involving
Navier-Stokes equations coupled with heat transport. Such simplification is crucial both for understanding
the main features of the problem, and for the purpose of developing efficient simulations of the filament
evolution and subsequent nanoparticle formation. The presented computational results are obtained in
the GPU computing environment, which allows for fully nonlinear time-dependent simulations in large
three-dimensional computational domains. We focus in particular on the influence of filament size on the
evolution. It is found that filaments’ width and thickness play an important role, with thicker and/or wider
filaments absorbing more energy and therefore evolving differently from thinner ones. This finding opens
the door to considerations of self- and directed-assembly of metal nanoparticles via suitable choice of the
initial metal geometry on the nanoscale.
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1. INTRODUCTION

Metal particles, films, and other geometries characterized by nanoscale dimensions have, in recent years,
been considered extensively in a variety of applications. These include plasmonics of relevance to solar cells,
catalysis, and biomedical applications among others, as reviewed extensively [1, 2, 3, 4, 5, 6]. Developing
such systems on the nanoscale is not trivial and a variety of approaches have been considered, with many
researchers in the field considering self and directed assembly one of the most promising. As commented by
Makarov et al. in arecent review: ‘Indeed, a self-assembly process via dewetting of heated thin films is a cost-
effective and environment-friendly approach for almost disordered nanostructures fabrication. . . Therefore,
development of a method based on lithography-free and single-step dewetting, making possible fabrication
of both ordered and disordered nanostructures, would be very prospective for a broad range of plasmonic
applications’ [4].

In experiments and applications, typically laser pulses are used to bring the metals rapidly above the melting
point, to facilitate dynamics on fast (nanoseconds) time scales. Modeling such systems is challenging, since
a variety of effects must be included, in particular regarding the coupling of thermal effects due to the laser
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heating (including melting and solidification) with fluid dynamics, as discussed in our recent review [7].

In the present paper, we build upon our previous work for coupling of fluid dynamics with thermal effects [8,
9], which constitutes a self-consistent and asymptotically-accurate framework for a complex problem. The
resulting set of equations is discretized and solved in a GPU-based computing environment, using our
open-source, publicly available code [10]. Our particular focus is on evolving metal filaments of various
sizes; such simple geometry illustrates the importance of careful coupling of the fluid dynamics with thermal
transport and provides a rudimentary proof-of-principle of the use of initial metal geometry to control the
final droplet (nanoparticle) size and number, without the additional complexities that would be anticipated
for more elaborate initial geometries.

2. MODEL

Understanding the role that heat flow plays in the evolution and dewetting of thin nanoscale films is a
complicated problem, with a large number of physical effects and complicating factors being potentially
relevant. Some examples specific to our study include the very short time scales characterizing the pulsed
laser source; phase change and fluid flow leading (ideally) to dewetting and pattern formation; the temperature
dependence of physical properties; and accurate description of the heat flow itself. In particular, as will be
discussed more precisely below, the relevant time scales of some of the key processes are comparable, and
therefore require a self-consistent formulation. This is particularly important for laser-irradiated metals: as
the film or pattern height evolves, the heat absorption changes also, leading to a direct coupling between the
fluid flow and heat transport processes. Since material parameters such as surface tension and viscosity are
also (sometimes strongly) temperature-dependent, we arrive at a complex problem that is very challenging
to model and resolve, either analytically or computationally. Given the above, a range of models of varying
complexity (and accuracy) can be proposed [7], depending on the degree to which coupling of thermal and
fluid mechanical aspects is implemented, how heat flow is modeled, and which additional effects (such as
dependence of material parameters on temperature) are included.

In earlier work [11], a quasi-one-dimensional model (1D) for film evolution was studied, where only heat
flow in the out-of-plane direction is accounted for. While this can be justified in certain cases, we later
showed [12] that inclusion of lateral heat flow can influence results significantly. However, this demonstration
involved simulating the full heat diffusion equation with a moving boundary, which has high computational
cost and has so far been implemented only for small computational domains. Scaling up to larger 3D
domains is neither feasible nor desirable: we need a simplified formulation that will allow us to develop
better understanding of the relevance of heat flow, while yet retaining the key physics.

The most complete model consists of the Navier-Stokes equations for the molten metal film, coupled with
heat equations for the metal and substrate, plus appropriate boundary conditions and constitutive equations
for the temperature-dependent material parameters. In our recent work [8, 9] we formulated a simplified
asymptotic model for this setup based on a long wave formulation for a thin metal geometry. The metal film
thickness (z = h(x, y, t) where x and y are the in-plane coordinates) evolution is governed by the following
4th order nonlinear partial differential equation,

0;h+V,- ﬁ(iﬁvz (FV3h+I1(h)+ h*MaV, (AT)) | =0 (D

where V; = (0y,0y,0). This equation, here given in non-dimensional form, uses typical film thickness in
the experiments, H (~10 nm), as the out-of-plane lengthscale, and the wavelength of maximum growth,
Am, obtained from linear stability analysis of a flat isothermal film, as the in-plane lengthscale, leading
to the small aspect ratio € = H/L < 1, where L = A, /(27), and Ay ~ 100nm. (The instability is due to
the destabilizing disjoining pressure, discussed further below and extensively in our earlier works [7, 13].)
The time scale is fs] = 3Ltmelt/ (€3Ymelt) (Where pimelr and Ymel; are the fluid viscosity and surface tension



at the melting temperature, Tpei¢); consistent with the timescale of evolution of melted films, #, = 20 ns
(exact values depend on the metal considered). Following the time derivative term in Eq. (1), the terms are
the capillary, disjoining pressure, and Marangoni terms, respectively. Here, u(7T) represents temperature-
dependent viscosity (scaled by pmelr), I is the leading order surface tension (scaled by ymelr), and Ma is
the Marangoni number accounting for variation of surface tension due to temperature gradients at the metal
surface, AT. The film evolution is coupled to a self-consistent model for the film temperature, which we
now outline before discussing Eq. (1) in more detail.

The heat flow model developed in our recent work [8] exploits further the long-wave approximation. The
metal has much higher thermal conductivity than the substrate, and the temperature variation across the
film (in the short, z-direction) may be shown to be weak. One can then derive a governing equation for the
leading-order temperature of the metal film, T¢(x, y, ), given in non-dimensional form as,

Pe hd; Ty = V- (W Tp) — K (0, Ts) | =0 + hQ. )

The major advantage of this formulation is that the film temperature can be computed self-consistently based
on the current value of the film thickness, h, and without carrying out computationally expensive resolution
of the temperature in a time-dependent computational domain (determined by the evolving film thickness,
h). This type of asymptotic modeling forms the basis for our proposed work. In Eq. (2), the Peclet number
is defined by

Pe = (00) meltYmelt€” H/ (3fmelt kmelt), A3)

where (p, ¢, k)melt are the density, heat capacity, and thermal conductivity of the metal film at the melting
temperature, & = ks/(€?kmelr) is the scaled ratio of thermal conductivities of the substrate and the metal,
and Ty is the substrate temperature. The last term in the equation is due to laser heating, averaged over the
metal thickness,

h
Q= h‘lfo F(H)[1-R(h)]exp[-as(h—2)]dz. 4)

Here, af_l is the dimensionless absorption length for laser radiation in the metal film and F(¢) captures
the temporal shape of the laser pulse, taken to be Gaussian centered at specified time #, and of prescribed
width o (measured in tens of nanoseconds in dimensional terms). In general the reflectivity of the film on
a transparent substrate, R(h), can be found by solving Maxwell’s equations [14], but the resultant form is
cumbersome; following [15, 16] we approximate it by

R(h)=[1-ro(l—exp(-a:rh))] 5)
where rg and a; are fitting parameters.

Returning to the film evolution, Eq. (1), the temperature dependence of surface tension enters via the
capillary term, reflecting the balance of normal stresses at the metal-air interface, and the Marangoni term,
reflecting the tangential stress balance. An asymptotic approach (consistent with the above assumptions)
including both spatial and temporal dependence of the surface tension leads to

M
y=I+e=2AT (©6)

where yt specifies the gradient of surface tension with respect to temperature. In general, I may depend on
average film temperature (normalized by Tiej¢), but for simplicity in the current simulations we use I = 1.

The temperature dependence of viscosity p(7) is modeled by an Arrhenius-type relationship,

E 1
s =smv (g2

S(Ty) = %(tanh(Tmeh(Tf— 1)+5)+1) @®)




where R is the universal gas constant, and E is the activation energy [17]. Here, we follow the approach
developed in [15] in utilizing Eq. (7). Here, spatial dependence of viscosity is used to for the purpose of
melting/solidification control and the Sigmoid function in Eq. (8) is used to sharpen the phase transition.

To close the problem, one needs to couple the thermal problem in the film with the heat transport in the
substrate. Solving for the substrate heat flow is straightforward, since the computational domain is fixed: one
just needs to specify appropriate boundary conditions. In this work, we assume Dirichlet lateral boundary
conditions (specified by substrate temperature T at the domain boundary being room temperature), perfect
thermal contact at z =0, and a Newton cooling condition,

0,Ts=Bi(Tg—T,) at z=-H,. ©)]

Here the Biot number is specified by Bi = a Hy/ ks where @ measures the thermal contact between the
substrate and the medium below z = — H;.

For metal films of nanoscale thickness, instability due to destabilizing metal-substrate interaction is an
important effect, since the range of the interaction potential is comparable to the film thickness [18]. This
is currently modeled via a disjoining pressure of the form

H(h) =«k[(he/R)" = (hy I W)™ (10)

with equilibrium dimensionless film thickness h., constant x (related to the Hamaker constant A by
K = Al (Ymeith® H?)), and exponents n > m > 1 [11]. In simulations of the model, such a disjoining
pressure term will ensure that the film height nowhere goes to zero, but instead approaches the minimum
value h. as dewetting proceeds (we typically use h, = 0.1, corresponding to 1 nm; while this value is larger
than that expected in experiments [13], this choice avoids the numerically more expensive simulations that
are required for smaller values of h.). Interfacial potentials for liquid metals are undoubtedly more complex
than specified here, however, based on our earlier body of work and extensive comparison to experiment
(see in particular [13]), we expect that the present form is sufficient for our purposes; further details on
disjoining pressure models in this context are given in our recent review [7].

3. RESULTS

In the present paper we focus on setups relevant to recent experiments [19], involving so-called ‘membranes’.
Membranes are essentially very thin solid substrates with overlaid nanoscale metal patterns, obtained by
combining lithographic techniques with chemical etching of the underlying silicon [19]. One important
motivation for using membranes is that one is able to observe not only the final outcome of the experiments,
but also the time evolution. Such information can be obtained since membranes are optically transparent and
allow for the use of dynamic transmission electron microscopy (DTEM), which provides unique nanosecond
temporal and nanometer spatial resolution [19]. From the modeling perspective, a key point is that in such a
setup, one typically has very small values of the Biot number, Bi, meaning that the bottom boundary of the
substrate is essentially insulating. Therefore, the membrane setup allows for precise control of heat flow.
Ignoring radiation losses, on the timescale of the experiments heat is lost (in the limit Bi — 0) only through
lateral boundaries, and with an appropriate choice of geometry, such losses could be minimized as well. As
a consequence, one can melt the metals with much lower laser pulse energy, and model the thermal field
more precisely.

An additional potential simplification when modeling the heat flow for experiments on thin membranes is
that the substrate Peclet number Peg (defined analogously to the fluid one introduced in Eq. (2)), is typically
small. This suggests that, instead of solving a full diffusion problem in the substrate, it is be sufficient to
solve a much simpler boundary value problem (BVP) for the temperature. Our results indicate that, for
sufficiently thin substrates (such as membranes), the differences in the solutions of the diffusion equation
and the BVP for substrate temperature are minimal [8].
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(b) Maximum temperature of the filaments from (a).

Fig. 1 Final metal configurations obtained after applying laser heating to filaments of different initial
heights, h. The figure shows the view from above, with the title of each plot showing the maximum initial
filament height using non-dimensional units as described in the text. In each of the panels in part (a), the
filament width w is four times the height.

Figure 1 shows an example of our computational results, simulating evolution of metal filaments, surrounded
by a thin layer whose thickness, .., corresponds to the stable thickness resulting from the disjoining pressure,
Eq. (10). As mentioned above, for computational reasons, i, may be assigned a value larger than realistic;
see the discussion in Ref. [13]. This becomes relevant due to the form of the heat source term in equation
(2), where energy is absorbed by the film according to its local thickness; a too-large value for h, could
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(b) Maximum temperature of the filaments from (a).

Fig. 2 Final metal configurations obtained after applying laser heating to filaments of different initial
widths, w. The figure shows the view from above, with the title of each plot showing the maximum initial
filament width using non-dimensional units as described in the text. In each of the panels in part (a), the
filament height £ is fixed at h = 1.

lead to overestimates of the local heat absorbed by the film in dewetted regions (where no metal should be
present in practice), and potentially inaccurate predictions. We account for this effect by “turning off” the
heat absorption term in the part of the domain covered by this equilibrium layer.

The initial condition in the simulation is a metal filament, defined by
h(x,y,0) = h. + A (tanh(x — x7) tanh(x — x) + 1) (tanh(y — y1) tanh(y2 — y) + 1),

where x; =20 and x, = 120 are the lateral boundaries of the filament (making a filament of length 100
dimensionless units) and y; = 70— w/2, y» = 70+ w/2 are the transverse boundaries (setting the filament
width, w, which we vary in simulations). The scaling factor Ay determines the height of the filament and is
also varied in simulations, as described below. Initially both metal and substrate are assumed to be at room
temperature. Then, the laser pulse is applied, the metal temperature increases (discussed more precisely
in what follows) and, when the filament temperature rises above the melting point, it starts evolving as a
Newtonian fluid. When the laser energy begins to decrease, the filament temperature decreases also, and
once it drops below the melting temperature, the evolution stops. Figure 1 shows the final result of this
process.

The simulations are carried out using our in-house previously developed GPU-based code [10]. The
computational method itself is based on finite difference spatial discretization, combined with Crank-
Nicolson temporal evolution within an ADI (alternate direction implicit) framework; see [9] for details.



Figure 1, part (a) shows that filaments of different initial height evolve differently. Thin filaments (see, €. g.
panel (a) in part (a)) do not absorb enough heat and barely melt; we discuss filament temperatures in more
detail in what follows. As filament thickness increases, the amount of absorbed energy increases as well;
the filaments spend more time in the liquid phase, and therefore instabilities have more time to develop.
For the present configuration, the behavior observed in Fig. 1 part (a) involves ‘beading’ or ‘pearling’ type
instabilities, which propagate from the filament ends [20]. Such propagation takes time, and therefore longer
liquid lifetimes allow instabilities to propagate further towards the center of the filament.

Figure 1, part (b) shows the maximum temperature of the filaments from Fig. 1, part (a) as a function of
(non-dimensional) time. This figure confirms that thicker filaments become hotter, and their temperature is
above melting for a longer period of time. Both effects are relevant from the viewpoint of filament dynamics:
higher temperatures lead to lower viscosity and therefore faster evolution, and longer liquid lifetimes allow
a filament to evolve for a longer time.

Figure 2, part (a) shows that it is not only the initial filament height that matters, but also the width. The
main reason for this is that more energy is absorbed for wider filaments; in addition, once the filament melts,
it contracts into a structure resembling part of a cylinder. Wider filaments will lead to larger cylinders,
increasing the energy absorption even further. This is also reflected in Figure 2, part (b), which shows the
maximum temperature of the filaments from part (a).

4. CONCLUSIONS

In this paper, we have illustrated a simple but powerful method that allows for coupling of fluid dynamics
and heat transport for metal filaments deposited on thermally conductive substrates. Our approach is fully
self-consistent, with fluid dynamics both influencing and being influenced by the heat flow. This coupling
occurs through temperature dependence of material parameters, in particular metal viscosity and surface
tension, which influence the fluid thickness, which in turn influences the amount of heating absorbed. In
the present work, we apply this method to metal filaments; however in principle the model can be used for
any material and any initial material geometry exposed to volumetric heating. In the context of metals, our
results open the door to various directed- and self-assembly approaches, since it is possible to control the
dynamics by specifying desired initial geometries.

ACKNOWLEDGMENT

This research was supported by NSF DMS-1815613 and by an NJIT seed funding grant (2022).

NOMENCLATURE

Table 1 provides the values of the dimensional parameters used, and Table 2 the derived dimensionless
quantities.



(1]
(2]

(3]
[4]
(5]

Parameter Notation Value Unit
Viscosity at Tipelt Umelt 43x1073 Pas
Surface tension at Tyl Ymelt 1.303 Jm~2
Wavelength of maximum growth | Ap, 180.84 nm
Vertical length scale H 10 nm
Horizontal length scale L=An/@2m) 28.78 nm
Time scale sl = 3LUmelt/ (€3Yme1t) 6.79 ns
Melting Temperature melt 1358 K
Film density Pmelt 8000 kgm™3
SiO, density Os 2200 kgm3
Film specific heat capacity Crmelt 495 Jkg 1K1
SiO, specific heat capacity Cs 937 Jkg 1K!
Film heat conductivity Kmelt 340 Wm'K!
Si0, heat conductivity ks 14 Wm1K!
Film absorption length af‘l H 11.09 nm
Temp. Coeff. of Surf. Tens. YT -0.23x1073 | Jm2K!
Hamaker constant A 3.49x107Y | ]
Reflective coefficient o 0.3655 1
Film reflective length a;'H 12.0 nm
Laser energy density Ey 760 Jm™?
Gaussian pulse peak time Iplscl 12 ns
Equilibrium film thickness h.H 1 nm
Mean filament thickness hoH 7-20 nm
Filament widths wH 5-50 nm
SiO; thickness HH 15 nm
Room temperature Ta Tinelt 300 K
Si0, Heat Transfer Coefficient a 0 Wm2K™!
Activation Energy E 30.5 kJmol ™!
Table 1 Parameters used for simulations. Taken from [9].

Dimensionless Numbers Notation | Value Expression

Aspect Ratio € 0.347 H/L

Film Peclet Number Pe 1.42x 1073 | (0C) meltYmelt€> H/ (3 tmelt kmelt)

Biot Number Bi 0 asH/ ks

Thermal Conductivity Ratio H 0.034 k! (€% kmelt)

Range of Dimensionless Viscosity | .4 0.028 -1 B hmelt

Marangoni Number Ma 0.35 3YT Tmelt/ Y melt)

Table 2 Dimensionless parameters based on material parameters in Table 1.
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