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Hemodynamic Monitoring via Sequential Inference for Safety Assurance of Physiological Closed-Loop Controllers: Fluid Resuscitation and Sedation Case Study

Motivation

❖Fluid resuscitation and intravenous (IV) sedation can interfere with each other
in a conflicting manner, which can possibly drive a patient to a dangerous
physiological state: (i) fluid resuscitation to achieve an arterial blood pressure
(BP) target dilutes the sedative drug in the blood and weakens its intended
effect; (ii) IV sedation interrupts fluid resuscitation by lowering BP.

❖Although closed-loop controlled treatments appear to successfully drive a
patient to desired BP and sedation targets, the patient’s hemodynamics
represented by cardiac output (CO) and total peripheral resistance (TPR) can be
driven to an unacceptably dangerous state.

❖However, hemodynamic variables such as CO and TPR cannot be readily
measured in real-world clinical practice.

Research Goal and Novelty

❖Objective: To demonstrate the potential of model-based sequential inference
approach to hemodynamic monitoring in patients receiving fluid resuscitation
and IV sedation, using extended Kalman filter (EKF) and unscented Kalman filter
(UKF) as illustrative examples.

❖Novelty: This work is perhaps the first endeavor to leverage closed-loop state
estimation in hemodynamic monitoring problems.

Mathematical Model

❖Blood volume(BV) kinetics in the arterial and venous circulations.
❖Capillary-tissue fluid exchange.
❖Autonomic regulation of CO, TPR and unstressed venous BV.
❖Sedative pharmacology.

Figure 1. A mathematical model to replicate the combined physiological effects of
hemorrhage resuscitation and intravenous (IV) sedation.

Virtual Patient Generation for Design and Evaluation

❖Using a collective variational inference (C-VI) method we developed
(Figure 2), the virtual patient (VP) generator was derived.

❖Estimating the latent parameters from given data reduces to inferring the
exact yet intractable posterior density:

❖Leveraging modern variational inference, we specified an approximate
posterior density q ϕ, 𝛉, 𝐧|𝐯 and inferred it by minimizing the Kullback-
Leibler divergence DKL 𝐯 :

❖We derived an evidence lower bound and estimated 𝐯 by maximizing:

Figure 2. A probabilistic graphical model that structurizes the hierarchical relationship
between a cohort and subjects therein into a VP generator.

L 𝐯 = log p 𝐲 − DKL 𝐯
= 𝔼q log p 𝐲|𝛉, 𝐧, 𝐮 + log p 𝛉|ϕ + log p 𝐧 + log p ϕ − log q ϕ, 𝛉, 𝐧|𝐯

p ϕ, 𝛉, 𝐧|𝐮, 𝐲 = Τp ϕ, 𝛉, 𝐧, 𝐮, 𝐲 p 𝐮, 𝐲

DKL(𝐯)=𝔼q [log q ϕ, 𝛉, 𝐧|𝐯 −log p ϕ, 𝛉, 𝐧|𝐮, 𝐲 ]

Hemodynamic Monitoring

❑Extended Kalman Filter
❖Reformulate the mathematical model into a state space representation:

❖Noting that the most prominent source of process noise is the
parametric uncertainty, we defined w t and its covariance matrix as:

❖Construct the EKF using the most likely model parameters and their
covariances associated with the VP generator.

❖Derive the most likely CO and TPR estimates and their respective
confidence intervals from the state and its covariance estimates.
❖In the prediction step, we solved the state equation and its

corresponding covariance equation between the measurement
time instants :

❖ In the update step, we corrected the state estimate and its
covariance using the sensor measurements:

❑ Unscented Kalman Filter
❖ Similar to EKF, we defined process noise w t and its covariance

estimates based on parametric uncertainty.
❖ In the prediction step, we predicted states and its corresponding

covariance using sigma points:

❖ In the update step, we corrected the state estimate and its covariance
using the sensor measurements:
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❖ The EKF and UKF exhibited significantly superior accuracy to pure prediction in both accuracy and trending ability (Table I).
❖ The performance of the EKF and UKF were consistent against VP variability: in terms of mean absolute error (MAE), EKF and UKF both had small MAE in most

VPs with only a small number of VPs having large MAE (Figure 3).
❖ The EKF and UKF achieved tight tracking of CO and TPR in many VPs (Figure 4).
❖ The EKF and UKF estimated all the state variables with adequate accuracy (Figure 5,6).
❖ The EKF and UKF both appeared to exhibit CO estimation accuracy and trending ability comparable to the existing AP-based pulse-contour CO(PCCO) monitors.
❖ The limit of agreement(LoA) in CO estimation associated with the EKF was -1.3-1.1 lpm(with UKF was -1.2-1.1 lpm), which was superior to most PCCO

monitors reported in recent articles. Besides, the r value associated with EKF(and UKF) based on the CO tracking was higher on the average than the pooled r
value associated with the PCCO monitors reported(0.71).

❖ The EKF(and UKF) based hemodynamic monitoring has unique practical advantages relative to the PCCO monitors: (i) The EKF(and UKF) based monitoring
employs only mean AP measurement, while PCCO monitors require the entire AP waveform measurement. (ii) The EKF(and UKF) based monitoring allows for
CO and TPR estimation with an explicit account for the IV sedation effect. In contrast, the PCCO monitors are inherently blinded to the influences of sedative
drug.

In Silico Evaluation Results

Table 1. . Cardiac output (CO) and total peripheral resistance (TPR) estimation accuracy associated with EKF, UKF and pure prediction.
ME: mean error.  MAE: mean absolute error.  SD: standard deviation. IQR: inter-quartile range.  *: p<0.05 (paired t-test).  †: p<0.05 (Wilcoxon rank-sum test).

EKF UKF Pure Prediction

ME
(Mean±SD)

MAE
(Median(IQR))

r
(Mean±SD)

ME
(Mean±SD)

MAE
(Median(IQR))

r
(Mean±SD)

ME
(Mean±SD)

MAE
(Median(IQR))

r
(Mean±SD)

CO[lpm]
-0.12±0.60*

(-1.03±9.40%)*

0.38 (0.19-0.51)†
(5.38% (2.42%-

8.34%))†
0.98±0.03*

-0.11±0.52*
(-0.73±8.37%)*

0.32 (0.15-0.50)†
(5.22% (2.31%-

8.27%))†
0.99±0.02*

-0.2±1.7
(-2.0±16.0%)

0.6 (0.3-0.9)
(7.2% (4.2%-

13.6%))
0.82±0.04

TPR[mmHg/lpm]
0.13±1.34*

(1.49±8.24%)*

0.82 (0.43-1.52) †
(4.92% (2.72%-

9.13%))†
0.99±0.00*

0.14±1.13*
(1.54±8.04%)*

0.80 (0.41-1.30) †
(4.63% (2.55%-8.

.75%))†
0.98±0.01*

0.6±2.2
(8.3±20.0%)

1.2(0.7-2.3)
(8.3% (5.5%-

17.5%))
0.80±0.01

This material is based on work supported by the U.S. Office of Navel Research (N00014-19-1-2402) and the U.S. National Science Foundation CAREER Award (CNS-1748762).

Learning Objectives

❖Understand that closed-loop controlled critical care treatments administered to
a patient can interfere and conflict with each other, which can drive a patient
receiving the treatments to dangerous physiological states.

❖Understand that patient safety during closed-loop controlled critical care
treatments may only be recognized via hemodynamic monitoring capable of
inferring internal hemodynamics state of the patients.

❖Understand that mathematical patient models and modern sequential
inference methods can be combined to furnish hemodynamic monitoring
capabilities required for safe closed-loop controlled critical care treatments.

γi(t) = f χi , ොx(t) = σi=0
2n Wi

mγi(t)

P(t) = σi=0
2n Wi

c γi t − ොx(t) γi t − ොx t
T
+ Qw(t)

ξi(tk) = h χi , ොy(tk) = σi=0
2n Wi

mξi(tk)

Pyy(tk) = σi=0
2n Wi

c ξi tk − ොy(tk) ξi tk − ොy tk
T
+ QR

Pxy tk = σi=0
2n Wi

c 𝛾i tk − ොx(tk) ξi tk − ොy tk
T

ොx tk = ොx− tk + K tk y tk − ොy(tk) , K tk = Pxy tk Pyy
−1(tk)

P tk = P− tk − K tk PyyK
T(tk)

Figure 3. Cumulative distribution of MAE associated with CO and TPR pertaining to the EKF (blue solid line),
UKF (light blue dashed-dot line) and open-loop pure prediction (red dashed line).

Figure 5. A representative example of true versus EKF-estimated states. These state estimates
correspond to Figure 4(a). Red dashed lines: true states. Blue solid lines: EKF-estimated states.
Grey shades: confidence intervals (±2 standard deviations).

Figure 6. A representative example of true versus UKF-estimated states. These state estimates
correspond to Figure 4(a). Red dashed lines: true states. Blue solid lines: UKF-estimated states.
Grey shades: confidence intervals (±2 standard deviations).

Figure 4. Representative examples of (i) successful, (ii) typical, and (iii) less successful estimation of CO
and TPR based on the (a) EKF and (b) UKF.


