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In Silico Evaluation Results

** The EKF and UKF exhibited significantly superior accuracy to pure prediction in both accuracy and trending ability (Table I).
** The performance of the EKF and UKF were consistent against VP variability: in terms of mean absolute error (MAE), EKF and UKF both had small MAE in most
VPs with only a small number of VPs having large MAE (Figure 3).
** The EKF and UKF achieved tight tracking of CO and TPR in many VPs (Figure 4).
** The EKF and UKF estimated all the state variables with adequate accuracy (Figure 5,6).
** The EKF and UKF both appeared to exhibit CO estimation accuracy and trending ability comparable to the existing AP-based pulse-contour CO(PCCO) monitors.
*** The limit of agreement(LoA) in CO estimation associated with the EKF was -1.3-1.1 Ipm(with UKF was -1.2-1.1 lpm), which was superior to most PCCO
monitors reported in recent articles. Besides, the r value associated with EKF(and UKF) based on the CO tracking was higher on the average than the pooled r
value associated with the PCCO monitors reported(0.71).
¢ The EKF(and UKF) based hemodynamic monitoring has unique practical advantages relative to the PCCO monitors: (i) The EKF(and UKF) based monitoring
employs only mean AP measurement, while PCCO monitors require the entire AP waveform measurement. (ii) The EKF(and UKF) based monitoring allows for
CO and TPR estimation with an explicit account for the IV sedation effect. In contrast, the PCCO monitors are inherently blinded to the influences of sedative
drug.

Virtual Patient Generation for Design and Evaluation

**Using a collective variational inference (C-VI) method we developed
(Figure 2), the virtual patient (VP) generator was derived.

*»» Estimating the latent parameters from given data reduces to inferring the
exact yet intractable posterior density:

p($,0,nlu,y) =p(¢,0,n,u,y)/p(uy)

** Leveraging modern variational inference, we specified an approximate
posterior density q(¢, 0, n|v) and inferred it by minimizing the Kullback-
Leibler divergence Dk (V) :

Dy (v)=Eq [log q(¢, 6, n|v)-log p(¢, 6, n|u,y)]
** We derived an evidence lower bound and estimated v by maximizing:

L(v) =logp(y) — DkL(V)
= Eq4llogp(y|0,n,u) + logp(6|d) + logp(n) + logp($) — logq(e, 6,n|v)]

*»* Fluid resuscitation and intravenous (IV) sedation can interfere with each other
in a conflicting manner, which can possibly drive a patient to a dangerous
physiological state: (i) fluid resuscitation to achieve an arterial blood pressure
(BP) target dilutes the sedative drug in the blood and weakens its intended
effect; (ii) IV sedation interrupts fluid resuscitation by lowering BP.

s* Although closed-loop controlled treatments appear to successfully drive a
patient to desired BP and sedation targets, the patient’s hemodynamics
represented by cardiac output (CO) and total peripheral resistance (TPR) can be
driven to an unacceptably dangerous state.

** However, hemodynamic variables such as CO and TPR cannot be readily
measured in real-world clinical practice.

Table 1. . Cardiac output (CO) and total peripheral resistance (TPR) estimation accuracy associated with EKF, UKF and pure prediction.
ME: mean error. MAE: mean absolute error. SD: standard deviation. IQR: inter-quartile range. *: p<0.05 (paired t-test). t: p<0.05 (Wilcoxon rank-sum test).
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hemorrhage resuscitation and intravenous (IV) sedation. )’Z(tk) — f(_(tk) + K(tk) (y(tk) — y(tk)): K(tk) — ny(tk)Py_yl (tk) correspond to Figure 4(§). Red dashed lines: tru.e §tates. Blue solid lines: EKF-estimated states. correspond to Figure 4(a). Red dashed lines: tru~.9 s_tates. Blue solid lines: UKF-estimated states.
P(tk) _ P_(tk) _ K(tk)P KT(tk) Grey shades: confidence intervals (2 standard deviations). Grey shades: confidence intervals (+2 standard deviations).
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