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ABSTRACT  8 

Speech and language development are early indicators of overall analytical and learning ability in 9 

children. The preschool classroom is a rich language environment for monitoring and ensuring 10 

growth in young children by measuring their vocal interactions with teachers and classmates. 11 

Early childhood researchers are naturally interested in analyzing naturalistic vs. controlled lab 12 

recordings to measure both quality and quantity of such interactions. Unfortunately, present-day 13 

speech technologies are not capable of addressing the wide dynamic scenario of early childhood 14 

classroom settings. Due to the diversity of acoustic events/conditions in such daylong audio 15 

streams, automated speaker diarization technology would need to be advanced to address this 16 

challenging domain for segmenting audio as well as information extraction. This study 17 

investigates an alternate Deep Learning-based diarization solution for segmenting classroom 18 

interactions of 3-5 year old children with teachers. In this context, the focus on speech-type 19 

diarization which classifies speech segments as being either from adults or children partitioned 20 

across multiple classrooms. Our proposed ResNet model achieves a best F1-score of ∼78.0% 21 

on data from two classrooms, based on dev and test sets of each classroom. It is utilized with 22 

Automatic Speech Recognition-based resegmentation modules to perform child-adult diarization. 23 

Additionally, F1-scores are obtained for individual segments with corresponding speaker tags 24 

(e.g., adult vs. child), which provide knowledge for educators on child engagement through 25 

naturalistic communications. The study demonstrates the prospects of addressing educational 26 

assessment needs through communication audio stream analysis, while maintaining both security 27 

and privacy of all children and adults. The resulting child communication metrics have been used 28 

for broad-based feedback for teachers with the help of visualizations. 29 

KEYWORDS: Child-Adult Speech, Speech-type Diarization, End-to-end Diarization, ResNet-18, 30 

Multiclass classification, location-independent modeling. 31 

PACS: 43.72.-p Speech processing and communication systems  32 
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I. Introduction 33 

The diversity of language background, socio-economic conditions, development level, or 34 

potential communication disorders represents a challenge in assessment of child speech and 35 

language skills (Rosenbaum and Simon, 2016). The language environment of young children 36 

plays an important role in the development of speech, language, vocabulary and thus, 37 

knowledge/learning ability. Taken collectively, these impact the life prospects of the child. The 38 

quality and quantity of interaction in a rich language environment helps to meet essential language 39 

development outcomes in early childhood (Hart and Risley, 1995). Thus, early childhood 40 

researchers are interested in analyzing classroom interactions of preschool children to monitor 41 

and provide proactive support. As daylong recordings are collected on a regular basis, the amount 42 

of data to be analyzed keeps increasing at much a faster pace than what is practically feasible to 43 

review manually. Automated speech processing would be of great value for understanding and 44 

assessing the vast amounts of data in this early childhood domain. The preliminary task of 45 

analyzing such data environments involves Speaker Diarization (i.e., segmenting and tagging 46 

’who spoke when’) followed by Speech Recognition, Keyword Spotting, etc. In this study, Speaker 47 

group (or type) Diarization is performed on child-adult and child-child interactions of preschool 48 

children in naturalistic active learning environments. The audio data in this study was collected 49 

using LENA devices (LENA; Ziaei et al., 2013) worn by children in different classrooms at 50 

different days and times. The recordings continue while subjects move around during a typical 51 

school day and are paused only during nap time. 52 

The contributions of this study are stated as follows. Firstly, we introduce the child-adult 53 

speech/speaker-type classification framework explained later for designing the scope of the 54 

speech-segment classification task. Next, standard Deep Neural Network (DNN) architectures 55 

are explored for this challenging task of distinguishing children’s speech from adult speech and 56 

non-speech. Additionally, we analyze classifications of speech segments into alternate speech 57 

types in terms of F1-score. The speech/speaker-type detector is integrated with an Automatic 58 
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Speech Recognition (ASR) resegmentation module and provides diarized outputs based on 59 

different system configurations. Thus, the Diarization Error Rate (DER) is also provided, which 60 

helps in understanding the performance achieved by the different speech-type modeling 61 

techniques and system configurations. This study would be one of the first efforts for child-adult 62 

speech/speaker-type Diarization on a large North American English dataset of child-adult 63 

naturalistic recordings in diverse classroom conditions. Previous studies have considered the 64 

application of alternate Deep Neural Network architecture embeddings for Child vs. Adult speech-65 

type classification. Deep Neural Network multi-label classification (Lavechin et al., 2020) has 66 

achieved segment-level classification of child or adult speech detection for diarization which 67 

included fine-grained labels like ’key child’, ’other child’ and generic labels like ’speech’ for 68 

multitask learning as a general audio-tagging task. A single label for an audio segment can be 69 

useful for downstream speech tasks. Moreover, as we are testing on the segment-level audio, the 70 

output speech-type classification and ASR resegmentation can be performed in an online fashion 71 

(Xue et al., 2021) (i.e., every segment can be processed as it is recorded). This has advantages 72 

in classroom settings where immediate feedback for teachers/adults can be provided. For offline 73 

processing, the entire recording would need to be provided to generate any final output estimated 74 

knowledge of the speech segment type. 75 

Additionally, we also divide the dataset in a classroom-independent scenario, such that 76 

models trained on one classroom condition are available for testing on audio from another 77 

classroom condition. This will be the first effort on this dataset to look at data splits with audio 78 

data from alternate classrooms, thus allowing for a statement on model generalization capability. 79 

Finally, we introduce a novel visualization diagram referred to as donut diagram which provides 80 

speech segment classifications over a period of time, as a feedback mechanism and practical 81 

evaluation of our proposed classification models.    82 
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II. Outline  83 

The following is an overview of this paper which starts with Sec III mentions the 84 

Background including speaker characteristics and child-adult speech diarization. Sec IV 85 

introduces our framework for end-to-end child-adult speech/speaker-type classification which 86 

includes the assumptions and scope of our problem formulation. Sec V provides details of the 87 

dataset. Sec VI explains the procedure for producing the classification from raw audio including 88 

steps displayed in Fig 2. Within Sec VI of the method, Sec VI. A provides details on the system 89 

diagram based on Fig 2, Sec VI. B introduces data preprocessing which includes segment 90 

generation and labeling, Sec VI. C provides details about the Deep Learning architectures of 91 

Emphasized Channel Attention and Propagation -Time Delay Neural Network (ECAPA-TDNN 92 

(Desplanques et al., 2020)) and ResNet18 (He et al., 2016) used for segment classification. Sec 93 

VII talks about the experimental design and the metrics used for evaluating the experiments, while 94 

we look and discuss the results in Sec VIII, followed by conclusions and future work in Sec IX.  95 

III. Background 96 

A. Modeling speaker characteristics  97 

For speaker modeling and recognition, i-Vectors (Dehak et al., 2010; Hansen and Hasan, 98 

2015) are fixed length vectors that characterize speaker identity from arbitrary length sequential 99 

data (i.e., speech samples) and are traditional features for speaker recognition (Dehak et al., 100 

2010). They have also been used for language recognition (Dehak et al., 2011), accent 101 

recognition (Bahari et al., 2013), emotion recognition (Xia and Liu, 2012), etc. Alternatively, 102 

DNNs (McLaren et al., 2015; Snyder et al., 2018b, 2016) can be used to directly capture 103 

language or speaker characteristics. They achieve improved results over i-Vectors using Mel-104 

Frequency Cepstral Coefficients or Filterbank Coefficients as features. 105 

The current standard framework consists of a discriminatively trained DNN that maps 106 

variable-length speech segments to embeddings called x-Vectors (Snyder et al., 2018b). x-107 

Vectors are deep speaker embeddings based on a Time-Delay Neural Network (TDNN) 108 
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architecture. This approach has achieved excellent results for speaker recognition (Snyder et al., 109 

2018b), diarization (Sell et al., 2018) and language recognition (Snyder et al., 2018a) with further 110 

advancements being actively researched. ECAPA-TDNN (Dawalatabad et al., 2021) were 111 

recently introduced and provide enhancements over TDNN (Snyder et al., 2018b) by introducing 112 

channel and context-dependent attention mechanism.    113 

B. Child-Adult Speech Diarization  114 

Previous work on child speech have utilized i-Vectors (Kothalkar et al., 2019; Najafian 115 

et al., 2016) and x-Vectors (Xie et al., 2019a) as features for speaker classification. The SincNet-116 

based speaker identification model have been used in university classroom setting (Dubey et al., 117 

2019) with effective results. Previous work on this dataset (Najafian et al., 2016) used much 118 

lesser data and fixed segments of length 1.5 seconds with a Support Vector Machine (SVM) 119 

backend for classification. A recent study (Kothalkar et al., 2019) with more data transcribed for 120 

the dataset, used DNN modeling with i-Vectors as features, and provided promising results. 121 

Since, we aim to perform classification for real-time application in an end-to-end diarization 122 

scenario, multiple pipelines of DNN models for speech activity detection (SAD) or voice activity 123 

detection (VAD), speech/speaker-type classification and ASR are combined for their strong 124 

performance in related studies (Silero Team, 2021; Kim et al., 2021; Bredin et al., 2021; Ozturk 125 

et al., 2022; Radford et al., 2022; Bain et al., 2023) and possible End-to-End classification 126 

approach.  127 

C. End-to-end Child-Adult Speech Diarization 128 

Recently studies have considered neural network-based classification systems trained for 129 

classifying child or adult speech/speaker-type. These utilize some form of fixed length embedding 130 

as input for another neural network for final classification of child or adult based on class posterior 131 

values (Kolluguri et al., 2021; Kumar et al., 2020) or traditional speaker clustering 132 

(Krishnamachari et al., 2020). Alternately, such embeddings have also been utilized for child-133 

adult speech/speaker-type diarization, where neural network training is formulated as a sequence 134 
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classification problem with output belonging to one of three classes: child speech, adult speech 135 

or silence. These solutions are effective in moderate noise conditions such as home environments 136 

with limited number of children and/or adults. 137 

(Lavechin et al., 2020) formulated the child-adult Diarization task as a multi-label 138 

classification task using SincNet followed by Long-Short-Term-Memory (LSTM) layers for 139 

activating multiple voice types present in 2s audio segments. This implied each segment could 140 

be reported as multiple voice-types resulting in multiple classes for downstream processing tasks 141 

like Automatic Speech Recognition (ASR) or Keyword Spotting (KWS). Speech-type specific ASR 142 

models could be utilized for downstream recognition and analysis tasks, if such specific 143 

information can be extracted. Thus, multiple segment labels may not be optimal for extremely 144 

noisy data/scenarios with audible/intelligible speech from single unique speech/speaker-type. 145 

Speech activity detection (SAD) and audio classification are similarly aligned tasks as our 146 

speech/speaker-type diarization and have achieved effective performance using single DNN 147 

multitask classification. A single DNN with multi-class classification has performed effectively for 148 

short duration audio on tasks such as SAD or audio classification. (Hebbar et al., 2019) utilized 149 

standard deep learning architectures for image classification tasks with ResNet for segment-150 

based robust speech activity detection (clean, music, noise classes) with impressive performance. 151 

Apart from Convolutional Recurrent Neural Networks, Time Delay Neural Networks (TDNNs) 152 

(Snyder et al., 2018b) have been utilized to model long-term dependencies while performing 153 

SAD with advantage of overall lower computational costs. 154 

D. ASR word alignments to refine Diarization results 155 

In early works, ASR has been utilized in the context of diarization for resegmenting the initial 156 

speech segments generated from speech activity detection outputs. The IBM system (Huang, 157 

2007) for RT07 evaluation incorporates word alignments from the speaker independent ASR 158 

system to refine the SAD outputs and reduce false alarms, thus resulting in better segment 159 

clustering output. 160 



8 
 

IV. FRAMEWORK FOR CHILD-ADULT SPEECH/SPEAKER TYPE CLASSIFICATION 161 

The TDNN (Snyder et al., 2018b) architecture embeddings have been utilized for 162 

detection of speech (Bai et al., 2019b; Ogura and Haynes, 2021), language (Garcia-Romero 163 

and McCree, 2016), acoustic scene (Bai et al., 2019a), Parkinson’s (Wodzinski et al., 2019), 164 

audio Session (Raj et al., 2019), gender (Raj et al., 2019), speaking rate (Raj et al., 2019), words 165 

(Raj et al., 2019), phoneme (Raj et al., 2019), utterance length (Raj et al., 2019) etc. Recently, 166 

ECAPA-TDNN (Dawalatabad et al., 2021) embeddings have provided state-of-the-art results for 167 

speaker recognition (Chung et al., 2018) and speaker diarization (Dawalatabad et al., 2021) 168 

tasks in noisy audio. 169 

The posterior probabilities from the TDNN (Snyder et al., 2018b) and/or ResNet (He 170 

et al., 2016) architectures have also been utilized for detection of speech (Bai et al., 2019b; 171 

Horiguchi et al., 2021; Kwon et al., 2021; Lin et al., 2020a; Villalba et al., 2019), speaker (Xie 172 

et al., 2019b), music (Lee et al., 2006), stuttering (Sheikh et al., 2021, 2022), Parkinson’s 173 

(Wodzinski et al., 2019), spoken term (Ram et al., 2019), dysarthria (Gupta et al., 2021), 174 

intoxication (Wang et al., 2019) etc. 175 

Based on the effectiveness in these studies, we pose the child-adult speech/speaker-type 176 

detection problem as a multi-class classification task using modern DNN architectures. Thus, we 177 

propose to experimentally verify the detection of child and adult speech from non-speech in 178 

naturalistic audio using a single deep neural network like ECAPA-TDNN (Desplanques et al., 179 

2020) for 1D input raw audio feature and a deep neural network like ResNet for 2D input feature. 180 

Here, non-speech comprises silence, inaudible speech within crowd noise by adults or children, 181 

background music including vocals or electronic devices. Child-specific non-speech comprises 182 

laughs, cries, screams, breathing, burping, babbling, growling, squealing etc. Due to the 183 

pervasiveness of such noisy non-speech along with speech, for long periods of interaction in the 184 

preschool classroom, we prioritize capturing speech-types in clean as well as extremely noisy 185 
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conditions, by training a single model for distinguishing clean/noisy child-adult speech from non-186 

speech. 187 

To capture the minor variation in perceptual differences between intelligible speech from 188 

children and adults, in the presence of near-identical unintelligible adult noise or child non-speech 189 

sounds, we formulate it as a multiclass classification task, for a single neural network with 190 

logMelSpectrogram input features. The hypothesis is that regions of child/adult speech in the mel-191 

spectrograms would be distinguishable by a DNN compared to regions of non-speech in both 192 

clean and noisy conditions. 193 

V. DATA SPECIFICS 194 

A. Data collection 195 

The dataset in this study consists of spontaneous conversational speech recorded with 196 

the help of LENA units attached to subjects in a high-quality childcare learning center in the United 197 

States. Daylong audio recordings consist of 54 preschool daylong audio files across 3 days in 7 198 

sessions in 2 classrooms (A or B). 199 

B. Classroom details 200 

Data collected using LENA recorders in two classrooms have multiple working stations. 201 

These learning station activities such as reading, blocks, play, singing, science etc. (see Fig 1). 202 

The dimensions of the two classrooms are different, which may affect the recorded audio in terms 203 

of reverberation. Classroom A is 24 ft. by 24 ft. in dimension. Classroom B is much larger with 204 

dimensions of 24 ft. by 40 ft. An illustration of a floor plan in a preschool classroom is shown in 205 

Fig 1. Thus, to understand the performance of our algorithms in diverse environmental conditions, 206 

it would be useful to have data from these classrooms in different sets for model training and test. 207 

C. Dataset distributions 208 

Audio for this study have children who are 3 to 5 years along with one or more adults 209 

(e.g., typically, teachers). Most children wear LENA devices as well as accompanying 1-3 adults 210 

are also wearing them.  211 
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 The total audio from classroom A is of duration 61 hours and 18 minutes and from 212 

classroom B is 63 hours and 57 minutes. Thus, around 60 hours of audio or approximately 213 

230,000 segments of 1 second duration are used for training the classroom-specific models. For 214 

this dataset, an organized set of 38.6 hrs of speech from classroom B and similar amount of 215 

speech from classroom B are established. 216 

The audio segment files are divided into training, development and test sets following the 217 

classroom-based division such that there is no overlap of data between the sets. The audio data 218 

corresponding to classrooms A and B are used for training alternate models. Data from the other 219 

classroom is used for model development and testing. During model development, a separate 220 

hold-out set known as development data, is used in order to find the best performing model (based 221 

on training epoch) during neural network training. 222 

For example, a model trained on data from classroom A, is used for model development 223 

on data from a given timepoint in classroom B, and tested on remaining timepoints from the same 224 

classroom B. Similarly, a model trained on classroom B, is used for model development on data 225 

from given timepoint in classroom A and tested on data from remaining timepoints in classroom 226 

A. Thus, training set is from alternate classroom compared to development and test sets. This 227 

provides an opportunity for a model developed on data from one classroom, to be evaluated on 228 

two subsets of data from other classrooms. Also, such a data split has practical application for 229 

new classroom scenarios where smaller, transcribed pilot data from new classroom can be used 230 

for model epoch selection and rest of the untranscribed data for testing. Even if transcription for 231 

new classroom data is not feasible, the current data split provides generalized models for testing 232 

based on train-development split. 233 

VI. METHOD 234 

A. System pipeline 235 

1. Speech/Speaker-type Classification 236 
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Fig 2 explains the high-level system diagram for child-adult speech-type classification 237 

task. It starts with data collection using our LENA device in preschool classroom. This data is 238 

transcribed by the CRSS transcription team for recognizing the speech in this naturalistic audio. 239 

After data preprocessing steps, the modified data is used to train Deep Learning models using 240 

the training set. The best model on the training set is evaluated on the development set for model 241 

selection. The best performing model on the development set is finally evaluated on the test set 242 

for final speech/speaker-type classification. 243 

2. ASR resegmentation for child-adult Speech/Speaker Diarization 244 

The ASR resegmentation module consists of an end-to-end (E2E) ASR system for 245 

recognizing the text in the audio segment followed by another E2E ASR system for recognizing 246 

the timestamps as shown in Fig. 3. We utilize Whisper for recognizing the text in the speech 247 

segment due to its high-quality transcription performance in naturalistic conditions. This is 248 

followed by the forced alignment using another E2E ASR model known as Wav2Vec2. This 249 

combined system for forced alignment is implemented in the tool WhisperX (Bain et al., 2023). 250 

For a given system alternate model variations of the two E2E ASR systems were utilized. For 251 

Whisper its medium and large models for English language were considered. For Wav2Vec2 ASR 252 

system, two variations of XLSR-53 large model (trained for speech recognition) were considered. 253 

The variations were based on the datasets utilized to finetune the base Wav2Vec2 model. The 254 

alternate configurations of the Speech-type classification and ASR resegmentation modules are 255 

displayed in Fig. 3 and explained as follows: 256 

a. System S1     257 

System S1 consists of an industry-strength SAD system Silero (Silero team, 2021) 258 

followed by an ASR-based resegmentation module to mark the start and end times of the 259 

speech within the daylong audio files. The Silero SAD system consists of Convolutional Neural 260 

Network and Tranformer-based architectures. Finally, if child speech-type is detected by the 261 
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speech-type detector ResNet module the presence of child speech is marked within the 262 

segment.  263 

b. System S2 264 

System S2 consists of speech-type detector ResNet module followed by ASR-based 265 

resegmentation module. Here, our speech-type detection module acts as an implicit speech 266 

activity detector with an additional class for detecting child speech. The ASR resegmentation 267 

module performs the task of marking the timestamps of the recognized speech-types.                                                                                                                        268 

c. System S1 + S2 269 

In the combination system, we combine the final outputs from systems S1 and S2. 270 

Irrespective of the segment speech-type, for overlapping output segments from systems S1 and 271 

S2, the segments from the two systems are merged using following segment merging 272 

strategies:  273 

1. If one segment completely bounds the other segment on the time axis, the smaller 274 

segment is removed. 275 

2. For a given segment from System S1/S2, if it overlaps a segment from System S2/S1 to 276 

its right along the time axis, the segment from System S1/S2 is truncated to start of 277 

segment from System S2/S1.  278 

B. Data Preprocessing 279 

Audio recordings from both classroom A and B are divided into audio segments using a 280 

sliding window of 1000ms duration with no overlap. Based on text transcripts from the data, 281 

ground-truth speaker-types are assigned as “adult” or “child” speech on the basis of greater talk 282 

time by either the adult or child speaker over each 1000ms audio segment respectively. This 283 

approach was motivated by an earlier study that also considered a different challenging 284 

diarization scenario (Lin et al., 2020b). For segments with speech tags that occupy less than 285 

12.5% of the total segment duration, these are marked as non-speech. The ability to set a 286 
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speech/silence threshold balance, achieving overall effective diarization robustness, has also 287 

been explored in other studies (Hebbar et al., 2019). 288 

 289 

C. Deep Learning Model Architectures 290 

End-to-end deep learning systems for speech classification tasks consist of the following 291 

steps: i) frame-level feature extraction using DNNs, ii) temporal aggregation of frame-level 292 

features, and iii) optimization of classification loss. Most speaker verification/recognition systems 293 

have a base DNN architecture such as a 2D CNN with convolutions in both time and frequency 294 

domains such as ResNet (He et al., 2016) or a 1D CNN with convolutions only in the time domain 295 

such as ECAPA-TDNN (Desplanques et al., 2020). Here the focus is to evaluate these for 296 

speaker/speech-type classification. Thus, looking at both 1D and 2D CNN architectures will help 297 

to evaluate features and architectures for systems that can perform well on child or adult 298 

speaker/speech-type detection from non-speech. The ECAPA-TDNN (Desplanques et al., 2020) 299 

performs better than the ResNet architecture for speaker recognition tasks, due to its ability to 300 

learn complex patterns that occur in any frequency region since 1D convolutions cover the 301 

complete frequency range of the input features. However, this leads to hardcoding (Thienpondt 302 

et al., 2020) of absolute frequency position of each input feature. Our hypothesis is that this may 303 

not translate to appropriate generic speech/speaker-type classifications due to differences in 304 

frequency variability within adult/child speakers. ResNet models are expected to benefit due to 305 

2D convolutions with small receptive fields by exploiting the local speech-type frequency patterns 306 

that repeat for small frequency shifts, thus providing generality for modeling speakers within 307 

child/adult groups.  308 

1. ECAPA-TDNN model  309 

TDNN (Snyder et al., 2018b) model differs from a conventional DNN by introducing a 310 

multi-splicing concept that enables an efficient way of modelling the large temporal context. Multi-311 
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splicing implies that feature frames and intermediate DNN-layer outputs are time delayed and 312 

stacked to form an input to an upstream neural network layer.  313 

ECAPA-TDNN (Desplanques et al., 2020) is an enhanced version of the TDNN (Snyder 314 

et al., 2018b) model using novel blocks and modules for robust speaker embeddings. The pooling 315 

layer uses a channel and a context-dependent attention mechanism, which allows the network to 316 

’attend’ to different frames per channel. Here, the 1-dimensional Squeeze-Excitation (SE) blocks 317 

rescale the channels of intermediate frame-level feature maps to insert a global context 318 

information into the locally operating convolutional blocks. Also, 1-D Res2 blocks and Multi-layer 319 

Feature Aggregation (MFA) improves performance by using grouped convolutions and merging 320 

the complementary information respectively. MFA provides complementary information for 321 

statistics pooling by concatenating the final frame-level features with intermediate features of 322 

previous layers. 323 

2. Input representation for ECAPA-TDNN 324 

Here, 80-dim. log-Mel-Spectrograms are extracted over 25ms window lengths with 10ms 325 

skip rate from 1000ms audio segments as input features. Stacked frame blocks of 1000ms 326 

duration (100 frames) are used to generate the serialized input 2D features for the task of 327 

speech/speaker-type classification. 328 

 329 

3. ResNet18 model 330 

The ResNet model is used for training very deep networks with the help of residual 331 

learning which involves skip connections to help overcome the problem of vanishing gradient due 332 

to increase in depth. Configuration details for the ResNet18 (He et al., 2016) model is presented 333 

in Table I. ResNet is a block-based model which includes identity block and convolution block. 334 

Here identity block passes the original input to the output of the convolution block by skipping 335 

intermediate convolutional layers within the block. For convolutional block, the original input is 336 

passed through another convolutional layer to match the output dimensions of the convolutional 337 
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block during summation. This creates an alternate path for the vanishing gradient to pass through 338 

from deeper layers. This approach will allow the model to learn an identity function, which allows 339 

the higher layer in the model to perform as effectively as the lower layer. After initial convolution 340 

(Layer 0) and batch normalization and ReLU operations, there are always 4 blocks (Layer 1-Layer 341 

4) with each block containing multiple convolutions, batch normalization and ReLU operations. 342 

Layer 0 represents the input layer and layers 1-4 are the residual blocks in the ResNet architecture 343 

with skip connections as summarized in Table I. The architecture finishes with a convolutional 344 

layer, flatten operation, average pool operation and output layers. 345 

 346 

Name 

Output 

size 

I.C. size, 

O.C. size 

Kernel size, 

Stride size 

Layer0 

99 × 

80 3,64 7, 2 

Layer1 

50 × 

40 

64,64 3, 1 

  64,64 3, 1 

Layer2 

25 × 

20 

64,128 3, 2 

  128,128 3, 1 

Layer3 

13 × 

10 

128,256 3, 2 

  256,256 3, 1 

Layer4 7 × 5 

256,512 3, 2 

  512,512 3, 1 
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Avg. Pool 4 × 3 512,3 1, 1 

Embedding 1 × 1 - 1, 1 

Softmax 1 × 1 
  

TABLE I. Configurations of all operators in ResNet-18 where I.C. represents Input Channel and 347 

O.C. represents Output Channel. 348 

4. Input representation for ResNet18 349 

For this system, 80-dimensional log-Mel-Spectrograms are extracted over 25ms windows 350 

with 10ms skip rate as input features. Stacked frame blocks of 1000ms duration (100 frames) are 351 

used to generate serialized input 2D features for the task of speaker/speech-type classification. 352 

 353 

VII. EXPERIMENTAL DESIGN AND METRICS 354 

A. Experimental Design 355 

For uniformity in system evaluation, both ECAPA-TDNN (Desplanques et al., 2020) and 356 

ResNet18 (He et al., 2016) models are trained with an Additive Margin-Softmax loss with 357 

margin=0.15 on input features for 40 epochs using the RMSprop algorithm with a learning rate 358 

of 0.001, α = 0.95 and 𝜀 = 1 ⨉ 10−8. Each epoch consists of 800 batches of randomly selected 359 

segments of batch size 32. Figs. 4 and 5 highlight the block diagram for ECAPA-TDNN 360 

(Desplanques et al., 2020) model and ResNet18 (He et al., 2016) models respectively. Results 361 

are reported for both development and test sets for both models as explained in Sec V. C.  362 

B. F1-score for speech type detection by model on testing dataset 363 

To understand the child-adult speaker/speech-type detection, we test our models on 364 

classroom specific test data. Different metrics can assess model performance in terms of their 365 

ability to recall as well as precision of detection. ’Accuracy’ is defined as the total number of 366 

samples that are predicted correctly. ’Precision’ is the fraction of relevant instances among all 367 
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the detected instances. These would be the fraction of actual segments of speech/speaker type 368 

or non-speech type, among all such detected segments. 369 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (2) 370 

where TP represents True Positives and FP represents False Positives. 371 

’Recall’ is defined as the fraction of the relevant instances that were actually detected. In 372 

our case, these would be the fraction of segments of particular speech/speaker or non-speech 373 

type that were predicted correctly. 374 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (3) 375 

 376 

where TP represents True Positives and FN represents False Negatives. 377 

F1-score is defined as harmonic mean of the precision and recall, and takes both precision 378 

and recall into account for providing an overall balanced assessment. 379 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 𝑋 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (4) 380 

 381 

 382 

C. Diarization Error Rate 383 

Diarization error rate (DER) can be defined as the sum of errors due to an incorrect 384 

speaker (𝐸𝑠𝑝𝑘𝑟), missed speech (𝐸𝑚𝑖𝑠𝑠), false alarm speech (𝐸𝐹𝐴) and overlapping speakers 385 

(𝐸𝑜𝑣𝑙) based on the predictions of the Diarization system. 𝐸𝑜𝑣𝑙 and  are not considered in this 386 

evaluation. 387 

𝐷𝐸𝑅 = 𝐸𝑠𝑝𝑘𝑟 + 𝐸𝑚𝑖𝑠𝑠 + 𝐸𝐹𝐴   (1) 388 

In the literature, Speaker Confusion Error for audio streams is mostly reported as DER. 389 

However, we have reported DER comprised of speaker confusion error, false alarm error and 390 
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missed speech error. Missed speech error (Kumar et al., 2020), are most important for follow-391 

on downstream tasks of both speech analysis and ASR. 392 

VIII. RESULTS AND DISCUSSIONS 393 

A. F1-score and DER 394 

Table II reports corresponding F1-scores for each of the speaker/speech types and non-sp. 395 

audio where non-sp. represents non-speech. Table III reports diarization error rate on the test 396 

subsets for classrooms A and B.  397 

 398 

Train on 
Train set 
of: 

Test on 
Test set 
of: 

Model F1child 

(%) 

F1adult 

(%) 

F1non-sp. 

(%) 

F1overall 

(%) 

Room A Room B 

ECAPA-

TDNN 
71.0% 68.5% 74.3% 71.5% 

  ResNet18 79.0% 74.4% 79.8% 77.9% 

Room B Room A 

ECAPA-

TDNN 
69.0% 73.4% 75.7% 72.7% 

  ResNet18 77.4% 82.1% 84.3% 81.3% 

TABLE II. F1-score results on testing subset recordings of classroom A and classroom B audio 399 

where non-sp. represents non-speech. 400 

 401 

 402 

Train on 
Train set 
of: 

Test on 
Test set 
of: 

System 
combination 
with Resnet 

model 

 
 
Espkr 

(%) 
EFA 

(%) 
EMISS 

(%) 
DER 
(%) 

Room A Room B System S1  6.2 55.4 76.7 
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15.1 
 

  System S2 
 
System 
S1+S2 

3.7 
 

 
12.1 

1.2 
 
 

7.3 

54.2 
 
 

31.4 

59.1 
 
 

50.8 

Room B Room A 
System S1 

 
16.8 3.1 48.0 

 
67.9 

 

  System S2 
 
System 
S1+S2 

4.2 
 
 
13.5 
 

1.2 
 
 

4.3 

54.3 
 
 

28.1 

59.7 
 
 

45.9 

TABLE III. Diarization Error Rate results on testing subset recordings of classroom A and 403 

classroom B audio. 404 

The largest improvement by ResNet model is for segments containing child speech in 405 

terms of the F1-score as seen in Table II for test subset. Specifically, F1-score for child speech 406 

provides absolute improvement of +8.4% for test data from classroom A, and absolute 407 

improvement of +8.0% for test data from classroom B. For all results in Table II, the best F1-408 

scores are for non-speech segments, for test sets of both classrooms A and B. We hypothesize 409 

the lower F1-scores for all the speech-types in test subset of classroom B to be due to the more 410 

challenging environmental noise conditions of classroom B Vs. classroom A. The highest F1-411 

scores across all models and classrooms for non-speech type audio can be attributed to the 412 

disproportionate amount of non-speech present in these audio files, and therefore the distribution 413 

in the test segments. 414 

As can be seen from Table III, System S2 outperforms System S1 significantly for speaker 415 

confusion error rate, false alarm error rate, and overall DER on the test set for both classrooms A 416 

and B. However, the best overall DER on the test set for both classrooms A and B is by System 417 

S1+S2. The relative improvements by System S1+S2 Vs. System S1 on classroom A test audio 418 

data are +19.6% for speaker confusion error rate, 41.5% for missed speech error rate, and 419 
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+32.4% for overall DER. Relative improvements by System S1+S2 Vs. System S1 on classroom 420 

B test audio data are +19.9% for speaker confusion error rate, 43.3% for missed speech error 421 

rate, and +33.8% for overall DER.  422 

Thus, System S1+S2 provides improvement in overall DER Vs. Systems S1 due to 423 

relatively improved error rate for missed speech by 42-43% on test set for both classrooms A and 424 

B. System S1+S2 also provides improvement in overall DER Vs. System S2 due to relatively 425 

improved error rate for missed speech by 41-42% on test set for both classrooms A and B. It can 426 

be observed from Table III that the false alarm error rate and speaker confusion rate for both the 427 

models on test sets of both the classrooms increase for System S1+S2 Vs. System S2. This can 428 

be attributed to the drastic drop in missed speech rate for system S1+S2 on test subsets of both 429 

the classrooms. Detecting more speech segments while improving the DER is more important 430 

than a lower false alarm rate for this dataset in order to perform analytics on the recognized 431 

conversational speech. 432 

Thus, our speech/speaker-type classifier trained on classroom domain-specific data in 433 

conjunction with ASR models trained on massive amounts of audio data can match performance 434 

with Silero VAD and ASR models- both trained on massive amounts of audio data. In combination 435 

with Silero VAD our ResNet-based speech/speaker-type classifier can improve the missed 436 

speech error rate and thus, the overall child-adult diarization performance.  437 

Although ECAPA-TDNN model performs better than a ResNet variant for speaker 438 

recognition (Desplanques et al., 2020) and diarization (Dawalatabad et al., 2021) tasks, certain 439 

ResNet variants perform better than ECAPA-TDNN for short-duration utterance speaker 440 

verification (Thienpondt et al., 2020). Also, some ResNet variants perform better than TDNN 441 

variants for far-field speaker recognition (Gusev et al., 2020) using short duration test utterances. 442 

Thus, our results presented here, are along the line of results (of ResNet variant being better than 443 

ECAPA-TDNN) achieved for similar short-duration, noisy and near as well as far-field audio for 444 

speaker recognition/ verification. 445 
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B. Visualization of speech-type density and turn-taking using donut diagrams 446 

Also, we present the speaker/speech-type density and turn-taking with a visualization tool 447 

known as ”donut diagram” that reflects the speech density per speaker over different times of a 448 

session. It begins in the east-most section of the donut and displays times along an anti-clockwise 449 

direction until time is complete, reaching the same point 360 degrees later. 450 

Figs. 6 and 7 represent the actual and predicted (using ResNet (He et al., 2016) model) 451 

talktimes for a session in classroom A with a child wearing the LENA device. We see the 452 

percentage difference between predicted and actual talktimes differ between 2.6% (child) and 453 

3.1% (adult). Although child and adult speech is predicted more than in reality, the density of 454 

speech-type and change in speech-types in alternate sections are captured well and offers an 455 

excellent high-level assessment of child-adult conversational engagement. For example, the left 456 

half of the diagram with multiple interactions between children and adults is useful for further 457 

analysis. The mapping between dense regions of child speech (thick segments of pink) and adult 458 

speech (thick segments of green) are also matched closely between Figs. 6 and 7, where thick 459 

segments would have speech for a single type for significant duration. 460 

For example, certain thick green segments are matched at 85 degrees and between 150 461 

and 210 degrees. Similar, thick pink segments are between 180 and 210 degrees. Figs. 8 and 9 462 

represent the actual and predicted (using ResNet model) talktimes for a session in classroom B 463 

with a child wearing the LENA, resulting in much more recorded adult speech. Approximately, 464 

10% of child speech is missed in this predicted donut diagram, and approximately a similar 465 

amount of non-speech is misclassified. However, regions with significant child or adult 466 

communication-as represented by thick segment of single color (green or pink) - interspersed with 467 

the speech type are present and well matched in both figures. For example, presence of thick 468 

green segments between approximately 260-300 degrees-representing significant adult talk 469 

during that time of the session, along with child speech in between in classroom A with a child 470 

wearing the LENA device. 471 
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 472 

IX. CONCLUSIONS AND FUTURE WORK 473 

In this study, a child-adult speech-type diarization system for recognizing speech/speaker 474 

type from day long audio recordings was developed. State-of-the-art Deep Learning models 475 

renowned for speaker recognition were utilized for predicting speech-type activity. Specifically, 476 

ECAPA-TDNN models provided good and consistent results in terms of F1-scores for all speech 477 

activity types recognized based on the posterior probabilities. However, ResNet model with 80-478 

dim. Log-Mel-spectrogram inputs have outperformed ECAPA-TDNN model in terms of F1-scores 479 

of all speech activity types as well as DER. These models were trained on audio data from one 480 

classroom and tested on audio data from a separate classroom, which proves the generalization 481 

of our models for alternate classroom conditions. The predicted segments of fixed duration 1s, 482 

were visualized with novel visualizations referred to here as donut diagrams. These were shown 483 

to be an effective method for detecting continuous child and/or adult speech segments over a 484 

period of time, providing visual feedback of child-adult interactions. Thus, the diagrams can 485 

provide feedback to teachers/adults on their communication metrics with children during different 486 

times of the session. The child-adult speech-type predicted outputs are combined with an ASR 487 

resegmentation module in various configurations to provide multiple child-adult diarization 488 

systems. A combination of two such child-adult diarization systems provides the best performance 489 

in terms of diarization error rate.      For future work, we suggest training and testing multi-class 490 

classification tasks for attention-based ResNet models for smaller duration segments. Also we 491 

would like to utilize more advanced ASR resegmentation modules that have been customized to 492 

speech data from preschool classroom domain. Since the scope of this work involved classroom-493 

independent diarization evaluation, future work could also include performance evaluation of the 494 

proposed diarization system for downstream speech technology tasks including ASR and 495 

Keyword Spotting. 496 

 497 
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FIGURE CAPTIONS 682 

Figure 1: Illustrative example of floor plan for child learning spaces within preschool classrooms. 683 

(i.e., learning stations: Books/Reading, Science etc.) 684 

Figure 2: System diagram for child-adult speech-type Classification system. 685 

Figure 3: System configurations for child-adult Diarization using ASR-based resegmentation. 686 

Figure 4: Block diagram for End-to-End ECAPA-TDNN model. 687 

Figure 5: Block diagram for End-to-End ResNet18 model. 688 

Figure 6: Actual talktime for child and adult speech as represented by a donut diagram for a 689 

session in classroom A with a child wearing the LENA device. 690 

Figure 7: Predicted talktime for child and adult speech as represented by a donut diagram for a 691 

session in classroom A with a child wearing the LENA device. 692 

Figure 8: Actual talktime for child and adult speech as represented by a donut diagram for a 693 

session in classroom B with a child wearing the LENA device. 694 

Figure 9: Predicted talktime for child and adult speech as represented by a donut diagram for a 695 

session in classroom B with a child wearing the LENA device.  696 


