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ABSTRACT

Speech and language development are early indicators of overall analytical and learning ability in
children. The preschool classroom is a rich language environment for monitoring and ensuring
growth in young children by measuring their vocal interactions with teachers and classmates.
Early childhood researchers are naturally interested in analyzing naturalistic vs. controlled lab
recordings to measure both quality and quantity of such interactions. Unfortunately, present-day
speech technologies are not capable of addressing the wide dynamic scenario of early childhood
classroom settings. Due to the diversity of acoustic events/conditions in such daylong audio
streams, automated speaker diarization technology would need to be advanced to address this
challenging domain for segmenting audio as well as information extraction. This study
investigates an alternate Deep Learning-based diarization solution for segmenting classroom
interactions of 3-5 year old children with teachers. In this context, the focus on speech-type
diarization which classifies speech segments as being either from adults or children partitioned
across multiple classrooms. Our proposed ResNet model achieves a best F1-score of ~78.0%
on data from two classrooms, based on dev and test sets of each classroom. It is utilized with
Automatic Speech Recognition-based resegmentation modules to perform child-adult diarization.
Additionally, F1-scores are obtained for individual segments with corresponding speaker tags
(e.g., adult vs. child), which provide knowledge for educators on child engagement through
naturalistic communications. The study demonstrates the prospects of addressing educational
assessment needs through communication audio stream analysis, while maintaining both security
and privacy of all children and adults. The resulting child communication metrics have been used
for broad-based feedback for teachers with the help of visualizations.

KEYWORDS: Child-Adult Speech, Speech-type Diarization, End-to-end Diarization, ResNet-18,
Multiclass classification, location-independent modeling.

PACS: 43.72.-p Speech processing and communication systems
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l. Introduction

The diversity of language background, socio-economic conditions, development level, or
potential communication disorders represents a challenge in assessment of child speech and
language skills (Rosenbaum and Simon, 2016). The language environment of young children
plays an important role in the development of speech, language, vocabulary and thus,
knowledge/learning ability. Taken collectively, these impact the life prospects of the child. The
quality and quantity of interaction in a rich language environment helps to meet essential language
development outcomes in early childhood (Hart and Risley, 1995). Thus, early childhood
researchers are interested in analyzing classroom interactions of preschool children to monitor
and provide proactive support. As daylong recordings are collected on a regular basis, the amount
of data to be analyzed keeps increasing at much a faster pace than what is practically feasible to
review manually. Automated speech processing would be of great value for understanding and
assessing the vast amounts of data in this early childhood domain. The preliminary task of
analyzing such data environments involves Speaker Diarization (i.e., segmenting and tagging
'who spoke when’) followed by Speech Recognition, Keyword Spotting, etc. In this study, Speaker
group (or type) Diarization is performed on child-adult and child-child interactions of preschool
children in naturalistic active learning environments. The audio data in this study was collected
using LENA devices (LENA; Ziaei et al., 2013) worn by children in different classrooms at
different days and times. The recordings continue while subjects move around during a typical
school day and are paused only during nap time.

The contributions of this study are stated as follows. Firstly, we introduce the child-adult
speech/speaker-type classification framework explained later for designing the scope of the
speech-segment classification task. Next, standard Deep Neural Network (DNN) architectures
are explored for this challenging task of distinguishing children’s speech from adult speech and
non-speech. Additionally, we analyze classifications of speech segments into alternate speech

types in terms of F1-score. The speech/speaker-type detector is integrated with an Automatic
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Speech Recognition (ASR) resegmentation module and provides diarized outputs based on
different system configurations. Thus, the Diarization Error Rate (DER) is also provided, which
helps in understanding the performance achieved by the different speech-type modeling
techniques and system configurations. This study would be one of the first efforts for child-adult
speech/speaker-type Diarization on a large North American English dataset of child-adult
naturalistic recordings in diverse classroom conditions. Previous studies have considered the
application of alternate Deep Neural Network architecture embeddings for Child vs. Adult speech-
type classification. Deep Neural Network multi-label classification (Lavechin et al., 2020) has
achieved segment-level classification of child or adult speech detection for diarization which
included fine-grained labels like ’key child’, ’other child’ and generic labels like 'speech’ for
multitask learning as a general audio-tagging task. A single label for an audio segment can be
useful for downstream speech tasks. Moreover, as we are testing on the segment-level audio, the
output speech-type classification and ASR resegmentation can be performed in an online fashion
(Xue et al., 2021) (i.e., every segment can be processed as it is recorded). This has advantages
in classroom settings where immediate feedback for teachers/adults can be provided. For offline
processing, the entire recording would need to be provided to generate any final output estimated
knowledge of the speech segment type.

Additionally, we also divide the dataset in a classroom-independent scenario, such that
models trained on one classroom condition are available for testing on audio from another
classroom condition. This will be the first effort on this dataset to look at data splits with audio
data from alternate classrooms, thus allowing for a statement on model generalization capability.
Finally, we introduce a novel visualization diagram referred to as donut diagram which provides
speech segment classifications over a period of time, as a feedback mechanism and practical

evaluation of our proposed classification models.
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Il. Outline

The following is an overview of this paper which starts with Sec Ill mentions the
Background including speaker characteristics and child-adult speech diarization. Sec IV
introduces our framework for end-to-end child-adult speech/speaker-type classification which
includes the assumptions and scope of our problem formulation. Sec V provides details of the
dataset. Sec VI explains the procedure for producing the classification from raw audio including
steps displayed in Fig 2. Within Sec VI of the method, Sec VI. A provides details on the system
diagram based on Fig 2, Sec VI. B introduces data preprocessing which includes segment
generation and labeling, Sec VI. C provides details about the Deep Learning architectures of
Emphasized Channel Attention and Propagation -Time Delay Neural Network (ECAPA-TDNN
(Desplanques et al., 2020)) and ResNet18 (He et al., 2016) used for segment classification. Sec
VIl talks about the experimental design and the metrics used for evaluating the experiments, while
we look and discuss the results in Sec VI, followed by conclusions and future work in Sec IX.
lll. Background
A. Modeling speaker characteristics

For speaker modeling and recognition, i-Vectors (Dehak et al., 2010; Hansen and Hasan,
2015) are fixed length vectors that characterize speaker identity from arbitrary length sequential
data (i.e., speech samples) and are traditional features for speaker recognition (Dehak et al.,
2010). They have also been used for language recognition (Dehak et al., 2011), accent
recognition (Bahari et al., 2013), emotion recognition (Xia and Liu, 2012), etc. Alternatively,
DNNs (McLaren et al., 2015; Snyder et al., 2018b, 2016) can be used to directly capture
language or speaker characteristics. They achieve improved results over i-Vectors using Mel-
Frequency Cepstral Coefficients or Filterbank Coefficients as features.

The current standard framework consists of a discriminatively trained DNN that maps
variable-length speech segments to embeddings called x-Vectors (Snyder et al., 2018b). x-

Vectors are deep speaker embeddings based on a Time-Delay Neural Network (TDNN)
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architecture. This approach has achieved excellent results for speaker recognition (Snyder et al.,
2018b), diarization (Sell et al., 2018) and language recognition (Snyder et al., 2018a) with further
advancements being actively researched. ECAPA-TDNN (Dawalatabad et al., 2021) were
recently introduced and provide enhancements over TDNN (Snyder et al., 2018b) by introducing
channel and context-dependent attention mechanism.
B. Child-Adult Speech Diarization

Previous work on child speech have utilized i-Vectors (Kothalkar et al., 2019; Najafian
et al., 2016) and x-Vectors (Xie et al., 2019a) as features for speaker classification. The SincNet-
based speaker identification model have been used in university classroom setting (Dubey et al.,
2019) with effective results. Previous work on this dataset (Najafian et al., 2016) used much
lesser data and fixed segments of length 1.5 seconds with a Support Vector Machine (SVM)
backend for classification. A recent study (Kothalkar et al., 2019) with more data transcribed for
the dataset, used DNN modeling with i-Vectors as features, and provided promising results.
Since, we aim to perform classification for real-time application in an end-to-end diarization
scenario, multiple pipelines of DNN models for speech activity detection (SAD) or voice activity
detection (VAD), speech/speaker-type classification and ASR are combined for their strong
performance in related studies (Silero Team, 2021; Kim et al., 2021; Bredin et al., 2021; Ozturk
et al., 2022; Radford et al., 2022; Bain et al., 2023) and possible End-to-End classification
approach.
C. End-to-end Child-Adult Speech Diarization

Recently studies have considered neural network-based classification systems trained for
classifying child or adult speech/speaker-type. These utilize some form of fixed length embedding
as input for another neural network for final classification of child or adult based on class posterior
values (Kolluguri et al., 2021; Kumar et al., 2020) or traditional speaker clustering
(Krishnamachari et al., 2020). Alternately, such embeddings have also been utilized for child-

adult speech/speaker-type diarization, where neural network training is formulated as a sequence
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classification problem with output belonging to one of three classes: child speech, adult speech
or silence. These solutions are effective in moderate noise conditions such as home environments
with limited number of children and/or adults.

(Lavechin et al., 2020) formulated the child-adult Diarization task as a multi-label
classification task using SincNet followed by Long-Short-Term-Memory (LSTM) layers for
activating multiple voice types present in 2s audio segments. This implied each segment could
be reported as multiple voice-types resulting in multiple classes for downstream processing tasks
like Automatic Speech Recognition (ASR) or Keyword Spotting (KWS). Speech-type specific ASR
models could be utilized for downstream recognition and analysis tasks, if such specific
information can be extracted. Thus, multiple segment labels may not be optimal for extremely
noisy data/scenarios with audible/intelligible speech from single unique speech/speaker-type.

Speech activity detection (SAD) and audio classification are similarly aligned tasks as our
speech/speaker-type diarization and have achieved effective performance using single DNN
multitask classification. A single DNN with multi-class classification has performed effectively for
short duration audio on tasks such as SAD or audio classification. (Hebbar et al., 2019) utilized
standard deep learning architectures for image classification tasks with ResNet for segment-
based robust speech activity detection (clean, music, noise classes) with impressive performance.
Apart from Convolutional Recurrent Neural Networks, Time Delay Neural Networks (TDNNSs)
(Snyder et al., 2018b) have been utilized to model long-term dependencies while performing
SAD with advantage of overall lower computational costs.

D. ASR word alignments to refine Diarization results

In early works, ASR has been utilized in the context of diarization for resegmenting the initial
speech segments generated from speech activity detection outputs. The IBM system (Huang,
2007) for RTO7 evaluation incorporates word alignments from the speaker independent ASR
system to refine the SAD outputs and reduce false alarms, thus resulting in better segment

clustering output.
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IV. FRAMEWORK FOR CHILD-ADULT SPEECH/SPEAKER TYPE CLASSIFICATION

The TDNN (Snyder et al., 2018b) architecture embeddings have been utilized for
detection of speech (Bai et al., 2019b; Ogura and Haynes, 2021), language (Garcia-Romero
and McCree, 2016), acoustic scene (Bai et al., 2019a), Parkinson’s (Wodzinski et al., 2019),
audio Session (Raj et al., 2019), gender (Raj et al., 2019), speaking rate (Raj et al., 2019), words
(Raj et al., 2019), phoneme (Raj et al., 2019), utterance length (Raj et al., 2019) etc. Recently,
ECAPA-TDNN (Dawalatabad et al., 2021) embeddings have provided state-of-the-art results for
speaker recognition (Chung et al., 2018) and speaker diarization (Dawalatabad et al., 2021)
tasks in noisy audio.

The posterior probabilities from the TDNN (Snyder et al., 2018b) and/or ResNet (He
et al., 2016) architectures have also been utilized for detection of speech (Bai et al., 2019b;
Horiguchi et al., 2021; Kwon et al., 2021; Lin et al., 2020a; Villalba et al., 2019), speaker (Xie
et al.,, 2019b), music (Lee et al., 2006), stuttering (Sheikh et al., 2021, 2022), Parkinson’s
(Wodzinski et al., 2019), spoken term (Ram et al., 2019), dysarthria (Gupta et al., 2021),
intoxication (Wang et al., 2019) etc.

Based on the effectiveness in these studies, we pose the child-adult speech/speaker-type
detection problem as a multi-class classification task using modern DNN architectures. Thus, we
propose to experimentally verify the detection of child and adult speech from non-speech in
naturalistic audio using a single deep neural network like ECAPA-TDNN (Desplanques et al.,
2020) for 1D input raw audio feature and a deep neural network like ResNet for 2D input feature.
Here, non-speech comprises silence, inaudible speech within crowd noise by adults or children,
background music including vocals or electronic devices. Child-specific non-speech comprises
laughs, cries, screams, breathing, burping, babbling, growling, squealing etc. Due to the
pervasiveness of such noisy non-speech along with speech, for long periods of interaction in the

preschool classroom, we prioritize capturing speech-types in clean as well as extremely noisy
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conditions, by training a single model for distinguishing clean/noisy child-adult speech from non-
speech.

To capture the minor variation in perceptual differences between intelligible speech from
children and adults, in the presence of near-identical unintelligible adult noise or child non-speech
sounds, we formulate it as a multiclass classification task, for a single neural network with
logMelSpectrogram input features. The hypothesis is that regions of child/adult speech in the mel-
spectrograms would be distinguishable by a DNN compared to regions of non-speech in both
clean and noisy conditions.

V. DATA SPECIFICS
A. Data collection

The dataset in this study consists of spontaneous conversational speech recorded with
the help of LENA units attached to subjects in a high-quality childcare learning center in the United
States. Daylong audio recordings consist of 54 preschool daylong audio files across 3 days in 7
sessions in 2 classrooms (A or B).

B. Classroom details

Data collected using LENA recorders in two classrooms have multiple working stations.
These learning station activities such as reading, blocks, play, singing, science etc. (see Fig 1).
The dimensions of the two classrooms are different, which may affect the recorded audio in terms
of reverberation. Classroom A is 24 ft. by 24 ft. in dimension. Classroom B is much larger with
dimensions of 24 ft. by 40 ft. An illustration of a floor plan in a preschool classroom is shown in
Fig 1. Thus, to understand the performance of our algorithms in diverse environmental conditions,
it would be useful to have data from these classrooms in different sets for model training and test.
C. Dataset distributions

Audio for this study have children who are 3 to 5 years along with one or more adults
(e.g., typically, teachers). Most children wear LENA devices as well as accompanying 1-3 adults

are also wearing them.
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The total audio from classroom A is of duration 61 hours and 18 minutes and from
classroom B is 63 hours and 57 minutes. Thus, around 60 hours of audio or approximately
230,000 segments of 1 second duration are used for training the classroom-specific models. For
this dataset, an organized set of 38.6 hrs of speech from classroom B and similar amount of
speech from classroom B are established.

The audio segment files are divided into training, development and test sets following the
classroom-based division such that there is no overlap of data between the sets. The audio data
corresponding to classrooms A and B are used for training alternate models. Data from the other
classroom is used for model development and testing. During model development, a separate
hold-out set known as development data, is used in order to find the best performing model (based
on training epoch) during neural network training.

For example, a model trained on data from classroom A, is used for model development
on data from a given timepoint in classroom B, and tested on remaining timepoints from the same
classroom B. Similarly, a model trained on classroom B, is used for model development on data
from given timepoint in classroom A and tested on data from remaining timepoints in classroom
A. Thus, training set is from alternate classroom compared to development and test sets. This
provides an opportunity for a model developed on data from one classroom, to be evaluated on
two subsets of data from other classrooms. Also, such a data split has practical application for
new classroom scenarios where smaller, transcribed pilot data from new classroom can be used
for model epoch selection and rest of the untranscribed data for testing. Even if transcription for
new classroom data is not feasible, the current data split provides generalized models for testing
based on train-development split.

VL. METHOD
A. System pipeline

1. Speech/Speaker-type Classification
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Fig 2 explains the high-level system diagram for child-adult speech-type classification
task. It starts with data collection using our LENA device in preschool classroom. This data is
transcribed by the CRSS transcription team for recognizing the speech in this naturalistic audio.
After data preprocessing steps, the modified data is used to train Deep Learning models using
the training set. The best model on the training set is evaluated on the development set for model
selection. The best performing model on the development set is finally evaluated on the test set
for final speech/speaker-type classification.

2. ASR resegmentation for child-adult Speech/Speaker Diarization

The ASR resegmentation module consists of an end-to-end (E2E) ASR system for
recognizing the text in the audio segment followed by another E2E ASR system for recognizing
the timestamps as shown in Fig. 3. We utilize Whisper for recognizing the text in the speech
segment due to its high-quality transcription performance in naturalistic conditions. This is
followed by the forced alignment using another E2E ASR model known as Wav2Vec2. This
combined system for forced alignment is implemented in the tool WhisperX (Bain et al., 2023).
For a given system alternate model variations of the two E2E ASR systems were utilized. For
Whisper its medium and large models for English language were considered. For Wav2Vec2 ASR
system, two variations of XLSR-53 large model (trained for speech recognition) were considered.
The variations were based on the datasets utilized to finetune the base Wav2Vec2 model. The
alternate configurations of the Speech-type classification and ASR resegmentation modules are
displayed in Fig. 3 and explained as follows:

a. System S$1

System S1 consists of an industry-strength SAD system Silero (Silero team, 2021)
followed by an ASR-based resegmentation module to mark the start and end times of the
speech within the daylong audio files. The Silero SAD system consists of Convolutional Neural

Network and Tranformer-based architectures. Finally, if child speech-type is detected by the
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speech-type detector ResNet module the presence of child speech is marked within the
segment.

b. System S2

System S2 consists of speech-type detector ResNet module followed by ASR-based
resegmentation module. Here, our speech-type detection module acts as an implicit speech
activity detector with an additional class for detecting child speech. The ASR resegmentation
module performs the task of marking the timestamps of the recognized speech-types.

c. System S1 + S2

In the combination system, we combine the final outputs from systems S1 and S2.
Irrespective of the segment speech-type, for overlapping output segments from systems S1 and
S2, the segments from the two systems are merged using following segment merging
strategies:
1. If one segment completely bounds the other segment on the time axis, the smaller
segment is removed.
2. For a given segment from System S1/S2, if it overlaps a segment from System S2/S1 to
its right along the time axis, the segment from System S1/S2 is truncated to start of
segment from System S2/S1.
B. Data Preprocessing

Audio recordings from both classroom A and B are divided into audio segments using a
sliding window of 1000ms duration with no overlap. Based on text transcripts from the data,
ground-truth speaker-types are assigned as “adult” or “child” speech on the basis of greater talk
time by either the adult or child speaker over each 1000ms audio segment respectively. This
approach was motivated by an earlier study that also considered a different challenging
diarization scenario (Lin et al., 2020b). For segments with speech tags that occupy less than

12.5% of the total segment duration, these are marked as non-speech. The ability to set a
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speech/silence threshold balance, achieving overall effective diarization robustness, has also

been explored in other studies (Hebbar et al., 2019).

C. Deep Learning Model Architectures

End-to-end deep learning systems for speech classification tasks consist of the following
steps: i) frame-level feature extraction using DNNs, ii) temporal aggregation of frame-level
features, and iii) optimization of classification loss. Most speaker verification/recognition systems
have a base DNN architecture such as a 2D CNN with convolutions in both time and frequency
domains such as ResNet (He et al., 2016) or a 1D CNN with convolutions only in the time domain
such as ECAPA-TDNN (Desplanques et al., 2020). Here the focus is to evaluate these for
speaker/speech-type classification. Thus, looking at both 1D and 2D CNN architectures will help
to evaluate features and architectures for systems that can perform well on child or adult
speaker/speech-type detection from non-speech. The ECAPA-TDNN (Desplanques et al., 2020)
performs better than the ResNet architecture for speaker recognition tasks, due to its ability to
learn complex patterns that occur in any frequency region since 1D convolutions cover the
complete frequency range of the input features. However, this leads to hardcoding (Thienpondt
et al., 2020) of absolute frequency position of each input feature. Our hypothesis is that this may
not translate to appropriate generic speech/speaker-type classifications due to differences in
frequency variability within adult/child speakers. ResNet models are expected to benefit due to
2D convolutions with small receptive fields by exploiting the local speech-type frequency patterns
that repeat for small frequency shifts, thus providing generality for modeling speakers within
child/adult groups.
1. ECAPA-TDNN model

TDNN (Snyder et al., 2018b) model differs from a conventional DNN by introducing a

multi-splicing concept that enables an efficient way of modelling the large temporal context. Multi-
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splicing implies that feature frames and intermediate DNN-layer outputs are time delayed and
stacked to form an input to an upstream neural network layer.

ECAPA-TDNN (Desplanques et al., 2020) is an enhanced version of the TDNN (Snyder
et al., 2018b) model using novel blocks and modules for robust speaker embeddings. The pooling
layer uses a channel and a context-dependent attention mechanism, which allows the network to
‘attend’ to different frames per channel. Here, the 1-dimensional Squeeze-Excitation (SE) blocks
rescale the channels of intermediate frame-level feature maps to insert a global context
information into the locally operating convolutional blocks. Also, 1-D Res2 blocks and Multi-layer
Feature Aggregation (MFA) improves performance by using grouped convolutions and merging
the complementary information respectively. MFA provides complementary information for
statistics pooling by concatenating the final frame-level features with intermediate features of
previous layers.

2. Input representation for ECAPA-TDNN

Here, 80-dim. log-Mel-Spectrograms are extracted over 25ms window lengths with 10ms
skip rate from 1000ms audio segments as input features. Stacked frame blocks of 1000ms
duration (100 frames) are used to generate the serialized input 2D features for the task of

speech/speaker-type classification.

3. ResNet18 model

The ResNet model is used for training very deep networks with the help of residual
learning which involves skip connections to help overcome the problem of vanishing gradient due
to increase in depth. Configuration details for the ResNet18 (He et al., 2016) model is presented
in Table I. ResNet is a block-based model which includes identity block and convolution block.
Here identity block passes the original input to the output of the convolution block by skipping
intermediate convolutional layers within the block. For convolutional block, the original input is

passed through another convolutional layer to match the output dimensions of the convolutional
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block during summation. This creates an alternate path for the vanishing gradient to pass through
from deeper layers. This approach will allow the model to learn an identity function, which allows
the higher layer in the model to perform as effectively as the lower layer. After initial convolution
(Layer 0) and batch normalization and ReLU operations, there are always 4 blocks (Layer 1-Layer
4) with each block containing multiple convolutions, batch normalization and ReLU operations.
Layer 0 represents the input layer and layers 1-4 are the residual blocks in the ResNet architecture
with skip connections as summarized in Table I. The architecture finishes with a convolutional

layer, flatten operation, average pool operation and output layers.

Output |.C. size, Kernel size,
Name size O.C. size Stride size
99 x
LayerO 80 3,64 7,2
50 x 64,64 3,1
Layer1 40
64,64 3,1
25 x 64,128 3,2
Layer2 20
128,128 3,1
13 x 128,256 3,2
Layer3 10
256,256 3,1
256,512 3,2
Layer4 7x5
512,512 3,1
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Avg. Pool 4x3 512,3 1,1
Embedding 1x1 - 1, 1
Softmax 1x1

TABLE |. Configurations of all operators in ResNet-18 where I.C. represents Input Channel and
O.C. represents Output Channel.
4. Input representation for ResNet18

For this system, 80-dimensional log-Mel-Spectrograms are extracted over 25ms windows
with 10ms skip rate as input features. Stacked frame blocks of 1000ms duration (100 frames) are

used to generate serialized input 2D features for the task of speaker/speech-type classification.

VIl. EXPERIMENTAL DESIGN AND METRICS
A. Experimental Design

For uniformity in system evaluation, both ECAPA-TDNN (Desplanques et al., 2020) and
ResNet18 (He et al., 2016) models are trained with an Additive Margin-Softmax loss with
margin=0.15 on input features for 40 epochs using the RMSprop algorithm with a learning rate
of 0.001, a = 0.95 and ¢ = 1 X 10~8. Each epoch consists of 800 batches of randomly selected
segments of batch size 32. Figs. 4 and 5 highlight the block diagram for ECAPA-TDNN
(Desplanques et al., 2020) model and ResNet18 (He et al., 2016) models respectively. Results
are reported for both development and test sets for both models as explained in Sec V. C.
B. F1-score for speech type detection by model on testing dataset

To understand the child-adult speaker/speech-type detection, we test our models on
classroom specific test data. Different metrics can assess model performance in terms of their
ability to recall as well as precision of detection. ’Accuracy’ is defined as the total number of

samples that are predicted correctly. 'Precision’ is the fraction of relevant instances among all
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the detected instances. These would be the fraction of actual segments of speech/speaker type

or non-speech type, among all such detected segments.

TP
TP+FP

Precision =

(2)
where TP represents True Positives and FP represents False Positives.

'Recall’ is defined as the fraction of the relevant instances that were actually detected. In
our case, these would be the fraction of segments of particular speech/speaker or non-speech

type that were predicted correctly.

TP
TP+FN

Recall =

3)

where TP represents True Positives and FN represents False Negatives.
F1-score is defined as harmonic mean of the precision and recall, and takes both precision

and recall into account for providing an overall balanced assessment.

2 X Precision X Recall (4)

F1 — score = —
Precision+Recall

C. Diarization Error Rate
Diarization error rate (DER) can be defined as the sum of errors due to an incorrect
speaker (Egpyr), missed speech (Ey,; ), false alarm speech (Er,) and overlapping speakers
(E,y;) based on the predictions of the Diarization system. E,,,; and are not considered in this
evaluation.
DER = Egpiy + Emiss + Epa (1)

In the literature, Speaker Confusion Error for audio streams is mostly reported as DER.

However, we have reported DER comprised of speaker confusion error, false alarm error and
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missed speech error. Missed speech error (Kumar et al., 2020), are most important for follow-

Table Il reports corresponding F1-scores for each of the speaker/speech types and non-sp.

audio where non-sp. represents non-speech. Table Il reports diarization error rate on the test

subsets for classrooms A and B.

Model F1 child F1 adult F1 non-sp- F1 overall

Train on Test on (%) (%) (%) (%)
Train set Test set
of: of:

ESQZA' 71.0% 68.5% 74.3% 71.5%
Room A Room B

ResNet18 79.0% 74.4% 79.8% 77.9%

ESQEA' 69.0% 73.4% 75.7% 72.7%
Room B Room A

ResNet18 77.4% 82.1% 84.3% 81.3%

where non-sp. represents non-speech.

TABLE II. F1-score results on testing subset recordings of classroom A and classroom B audio

System
Train on Test on combination
Train set Test set with Resnet Espkr EFa Emiss DER
of: of: model (%) (%) (%) (%)
Room A Room B System S1 6.2 55.4 76.7
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15.1
System S2 3.7 1.2 54.2 59.1
System
S1+S2 121 7.3 31.4 50.8
System S1 16.8 3.1 48.0 67.9
Room B Room A
System S2 4.2 1.2 54.3 59.7
System
S1+S2 13.5 4.3 28.1 45.9

TABLE lIl. Diarization Error Rate results on testing subset recordings of classroom A and
classroom B audio.

The largest improvement by ResNet model is for segments containing child speech in
terms of the F1-score as seen in Table Il for test subset. Specifically, F1-score for child speech
provides absolute improvement of +8.4% for test data from classroom A, and absolute
improvement of +8.0% for test data from classroom B. For all results in Table Il, the best F1-
scores are for non-speech segments, for test sets of both classrooms A and B. We hypothesize
the lower F1-scores for all the speech-types in test subset of classroom B to be due to the more
challenging environmental noise conditions of classroom B Vs. classroom A. The highest F1-
scores across all models and classrooms for non-speech type audio can be attributed to the
disproportionate amount of non-speech present in these audio files, and therefore the distribution
in the test segments.

As can be seen from Table Ill, System S2 outperforms System S1 significantly for speaker
confusion error rate, false alarm error rate, and overall DER on the test set for both classrooms A
and B. However, the best overall DER on the test set for both classrooms A and B is by System
S1+S2. The relative improvements by System S1+S2 Vs. System S1 on classroom A test audio

data are +19.6% for speaker confusion error rate, 41.5% for missed speech error rate, and
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+32.4% for overall DER. Relative improvements by System S1+S2 Vs. System S1 on classroom
B test audio data are +19.9% for speaker confusion error rate, 43.3% for missed speech error
rate, and +33.8% for overall DER.

Thus, System S1+S2 provides improvement in overall DER Vs. Systems S1 due to
relatively improved error rate for missed speech by 42-43% on test set for both classrooms A and
B. System S1+S2 also provides improvement in overall DER Vs. System S2 due to relatively
improved error rate for missed speech by 41-42% on test set for both classrooms A and B. It can
be observed from Table Il that the false alarm error rate and speaker confusion rate for both the
models on test sets of both the classrooms increase for System S1+S2 Vs. System S2. This can
be attributed to the drastic drop in missed speech rate for system S1+S2 on test subsets of both
the classrooms. Detecting more speech segments while improving the DER is more important
than a lower false alarm rate for this dataset in order to perform analytics on the recognized
conversational speech.

Thus, our speech/speaker-type classifier trained on classroom domain-specific data in
conjunction with ASR models trained on massive amounts of audio data can match performance
with Silero VAD and ASR models- both trained on massive amounts of audio data. In combination
with Silero VAD our ResNet-based speech/speaker-type classifier can improve the missed
speech error rate and thus, the overall child-adult diarization performance.

Although ECAPA-TDNN model performs better than a ResNet variant for speaker
recognition (Desplanques et al., 2020) and diarization (Dawalatabad et al., 2021) tasks, certain
ResNet variants perform better than ECAPA-TDNN for short-duration utterance speaker
verification (Thienpondt et al., 2020). Also, some ResNet variants perform better than TDNN
variants for far-field speaker recognition (Gusev et al., 2020) using short duration test utterances.
Thus, our results presented here, are along the line of results (of ResNet variant being better than
ECAPA-TDNN) achieved for similar short-duration, noisy and near as well as far-field audio for

speaker recognition/ verification.
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B. Visualization of speech-type density and turn-taking using donut diagrams

Also, we present the speaker/speech-type density and turn-taking with a visualization tool
known as "donut diagram” that reflects the speech density per speaker over different times of a
session. It begins in the east-most section of the donut and displays times along an anti-clockwise
direction until time is complete, reaching the same point 360 degrees later.

Figs. 6 and 7 represent the actual and predicted (using ResNet (He et al., 2016) model)
talktimes for a session in classroom A with a child wearing the LENA device. We see the
percentage difference between predicted and actual talktimes differ between 2.6% (child) and
3.1% (adult). Although child and adult speech is predicted more than in reality, the density of
speech-type and change in speech-types in alternate sections are captured well and offers an
excellent high-level assessment of child-adult conversational engagement. For example, the left
half of the diagram with multiple interactions between children and adults is useful for further
analysis. The mapping between dense regions of child speech (thick segments of pink) and adult
speech (thick segments of green) are also matched closely between Figs. 6 and 7, where thick
segments would have speech for a single type for significant duration.

For example, certain thick green segments are matched at 85 degrees and between 150
and 210 degrees. Similar, thick pink segments are between 180 and 210 degrees. Figs. 8 and 9
represent the actual and predicted (using ResNet model) talktimes for a session in classroom B
with a child wearing the LENA, resulting in much more recorded adult speech. Approximately,
10% of child speech is missed in this predicted donut diagram, and approximately a similar
amount of non-speech is misclassified. However, regions with significant child or adult
communication-as represented by thick segment of single color (green or pink) - interspersed with
the speech type are present and well matched in both figures. For example, presence of thick
green segments between approximately 260-300 degrees-representing significant adult talk
during that time of the session, along with child speech in between in classroom A with a child

wearing the LENA device.
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IX. CONCLUSIONS AND FUTURE WORK

In this study, a child-adult speech-type diarization system for recognizing speech/speaker
type from day long audio recordings was developed. State-of-the-art Deep Learning models
renowned for speaker recognition were utilized for predicting speech-type activity. Specifically,
ECAPA-TDNN models provided good and consistent results in terms of F1-scores for all speech
activity types recognized based on the posterior probabilities. However, ResNet model with 80-
dim. Log-Mel-spectrogram inputs have outperformed ECAPA-TDNN model in terms of F1-scores
of all speech activity types as well as DER. These models were trained on audio data from one
classroom and tested on audio data from a separate classroom, which proves the generalization
of our models for alternate classroom conditions. The predicted segments of fixed duration 1s,
were visualized with novel visualizations referred to here as donut diagrams. These were shown
to be an effective method for detecting continuous child and/or adult speech segments over a
period of time, providing visual feedback of child-adult interactions. Thus, the diagrams can
provide feedback to teachers/adults on their communication metrics with children during different
times of the session. The child-adult speech-type predicted outputs are combined with an ASR
resegmentation module in various configurations to provide multiple child-adult diarization
systems. A combination of two such child-adult diarization systems provides the best performance
in terms of diarization error rate. For future work, we suggest training and testing multi-class
classification tasks for attention-based ResNet models for smaller duration segments. Also we
would like to utilize more advanced ASR resegmentation modules that have been customized to
speech data from preschool classroom domain. Since the scope of this work involved classroom-
independent diarization evaluation, future work could also include performance evaluation of the
proposed diarization system for downstream speech technology tasks including ASR and

Keyword Spotting.
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1 second sepments displayed owver
tirne in anticlockwise direction

Starttme: 0 s
End time: 113848 seconds
Oerall Duration~ 3 hours 10 minutes

3329 saconds 2788 seconds 5278 seconds
(29.2% of total time) (24.5% of total time) {46.3% of total time)

BN Adult BB Child 8 Non Speech
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Session in Classroom B
Actual Groundtruth Diarization

1 second segmenis displaysd over
time in antickeckwise dirsction

Start time: 0 s
End tims: 10722 seconds
Owerall Duration~ 3 hours

2808 seconds 4590 seconds 3331 seconds
(26.2% of total time) (42.8% of total time) (31.0% of total time)

B Adult W Child @0 Non Speech
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Session in Classroom B
Predicted ResNet18 Diarization

1 second segments displaysd over
time in antichockwise direction

Starttime: 0 5
End time: 10722 seconds
Crverall Duration~ 3 howrs

2877 seconds 3521 seconds 4331 seconds
(26.8% of total time) (32.8% of total time) (40.4% of total time)

BN Adult BB Child =@ Non Speech
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FIGURE CAPTIONS

Figure 1: lllustrative example of floor plan for child learning spaces within preschool classrooms.
(i.e., learning stations: Books/Reading, Science etc.)

Figure 2: System diagram for child-adult speech-type Classification system.

Figure 3: System configurations for child-adult Diarization using ASR-based resegmentation.
Figure 4: Block diagram for End-to-End ECAPA-TDNN model.

Figure 5: Block diagram for End-to-End ResNet18 model.

Figure 6: Actual talktime for child and adult speech as represented by a donut diagram for a
session in classroom A with a child wearing the LENA device.

Figure 7: Predicted talktime for child and adult speech as represented by a donut diagram for a
session in classroom A with a child wearing the LENA device.

Figure 8: Actual talktime for child and adult speech as represented by a donut diagram for a
session in classroom B with a child wearing the LENA device.

Figure 9: Predicted talktime for child and adult speech as represented by a donut diagram for a

session in classroom B with a child wearing the LENA device.



