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Abstract

Speech and language development are early indicators of overall analytical and
learning ability in children. The preschool classroom is a rich language envi-
ronment for monitoring and ensuring growth in young children by measuring
their vocal interactions with both teachers and classmates. Early childhood re-
searchers recognize the importance in analyzing naturalistic vs. controlled lab
recordings to measure both quality and quantity of child interactions. Recently,
large language model-based speech technologies have performed well on con-
versational speech recognition. In this regard, we assess performance of such
models on the wide dynamic scenario of early childhood classroom settings. This
study investigates an alternate Deep Learning-based Teacher-Student learning
solution for recognizing adult speech within preschool interactions. Our pro-
posed adapted model achieves the best F1l-score for recognizing most frequent
400 words on test sets for both classrooms. Additionally, F1-scores for alternate

word groups provides a breakdown of performance across relevant language-
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based word-categories. The study demonstrates the prospects of addressing ed-
ucational assessment needs through communication audio stream analysis, while
maintaining both security and privacy of all children and adults. The resulting
child communication metrics from this study can also be used for broad-based
feedback for teachers.

Keywords: Child-Adult Speech Interactions, Naturalistic Speech Recognition,
End-to-end Speech Recognition, Transformer subword, Teacher-Student

Learning, Preschool Classroom

1. Introduction

The diversity of language background, socio-economic conditions, develop-
ment level, and potential communication disorders represent challenges in as-
sessment of child speech and language skills [1]. The language environment of
young children plays an important role in development of speech, language, vo-
cabulary and thus, knowledge/learning ability. Taken collectively, these impact
life prospects of the child. The quality and quantity of interaction given a rich
language environment helps meet essential language development outcomes in
early childhood [2]. Thus, early childhood researchers recognize the need for
analyzing classroom interactions of preschool children to monitor and provide
proactive support.

In classroom settings, teachers prompt interaction by asking questions that
engage child’s curiosity and experimentation, particularly in science-focused
activities[3]. Therefore, tracking sentences with such WH-question words or
WH-words [4, 5] (what, where, when, who, why, how) can help teachers re-
view their interactions with the children. Furthermore, WH-words represent
the questions, which can be analyzed in terms of frequency of occurrence within
the classroom. Active learning [6] practices for preschool children recommends
learning through direct interaction with practical, everyday objects that can be
handled by the child. Adults are recommended to encourage children to ma-

nipulate such objects for discovering the relationship among them, by actively
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engaging all senses and muscular utilization. Thus, tracking such object words
from these audio files can help educators asses their interactions with children
during such ’play’ or ’object interaction’ sessions, as well as keeping a record
of objects introduced to the children. Finally, tracking words that promote re-
sponses from children in the form of 'repetition’ or ’high word-count response’
can help researchers understand qualitative engagement due to ’teaching style’
[7], ’concerned activity’ and/or ’topic of interest’.

For this purpose, the authors have collected multi-session dataset in a real
preschool during their daily activities. A typical preschool is composed of sepa-
rate areas for specific activities to be conducted during alternate times of the day
as seen in Fig. 1. Due to the massive amounts of daylong audio recordings, it is
not feasible for humans to manually perform analysis. Automatic speech recog-
nition(ASR) offers the prospect of extracting text content from a conversational
speech signal represented as the transcript of the speech. Recently, ASR[8, 9]
and machine learning [10, 11] techniques have been utilized for automated pro-
cessing and analysis of child-centered data. Previously, diarization[12, 13, 14]
and children’s speech recognition[9] have been explored on such data. Previous
study of adult speech recognition [8] on this dataset focused on limited types
of keywords in location-based fashion. This study will focus on acoustic and
language analysis as well as automated solutions for word-detection and word-
counting, for adult speech in naturalistic conditions of the preschool classrooms.

There are a range of potential real-time, portable, voice recording platforms
as well as recent algorithms for word-counting [15, 16], speaker diarization,
end-to-end (E2E) small footprint ASR models for word-detection and /or word-
counting. However, these solutions for classroom conditions have not utilized
state-of-the-art (SoTA) advancements in ASR models. Thus, small-footprint
E2E ASR models with strong performance for word-detection and/or word-
counting in naturalistic preschool classrooms are desired. The contributions
of this study are stated as follows. First, we introduce the speech database
for child-adult interaction based on a North American preschool classroom

and analyze conversational acoustical variations for multiple classrooms. Next,
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groundtruth transcriptions generated by the CRSS transcription team are uti-
lized for performing classroom-specific qualitative analysis on vocabulary diver-
sity and the language interactions between adults and children. This includes
distribution word analysis based on parts-of-speech(POS) as well as statistics
of adult words relevant for "high child engagement’ with teachers.

This study also provides insight on performance of SoTA end-to-end (E2E)
ASR models on out-of-domain data in challenging preschool classroom condi-
tions, as well as Teacher-Student (T/S) learning-based model adaptation to
improve ASR performance. Classroom speech data is naturalistic, with far-field
adult speech , where performance is measured in terms of Word Error Rate
(WER).

The dataset is a classroom-independent scenario, such that pretrained ASR
models adapted on one classroom condition, are used for testing on speech
segments from the other classroom. This will be the first effort on this dataset to
explore data splits from alternate classrooms, thus allowing for model adaptation

performance comparison.

2. Outline

The following is an overview of this paper which starts with Section 3. Sec-
tion 3 reviews the previous work on naturalistic speech recognition using E2E
ASR models. Section 4 provides details of the dataset (including classrooms)
and analysis of the audio (acoustic) and text transcriptions (language). Acous-
tical analysis of audio from alternate classrooms includes Signal-to-Noise Ratio
(SNR) measures. Language analysis of audio transcripts includes word-specific
child-response statistics in the alternate classrooms. Section 5 explains the pro-
cedure for producing the ASR output from raw audio followed by details of the
ASR model and proposed T/S model adaptation strategy. Section 6 talks about
the experimental design and the metrics used for evaluating the experiments,
while we look and discuss the results in Section 7, followed by conclusions and

future work in Section 8.
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3. E2E ASR in Naturalistic conditions

E2E models [17] are preferred over traditional hybrid models (comprising of
individual language, acoustic and lexical model components) due to serval ad-
vantages related to implementation, computation and deployment. E2E models
use a single objective function, while traditional hybrid models optimize in-
dividual components separately, which cannot guarantee global optimization.
Also hybird models are complicated, and require expert knowledge of many
components to design such systems with each component having its own re-
search sub-field. E2E models have been shown to outperform traditional hybrid
models[18, 19]. E2E models directly output either a character sequence, word
pieces [20] (subwords) or whole words, which greatly simplifies the ASR pipeline.
Also, E2E models can be deployed on devices with high accuracy because a sin-
gle network is used for ASR.

Although ASR performance has surpassed human-level recognition for stan-
dard speech recognition datasets in both hybrid as well as E2E speech recogni-
tion models, these models do not generalize well to unseen, out-of-domain data.
This is especially, the case for naturalistic, noisy, far-field conditions, which are
challenging for both hybrid and E2E models. Recently, self-supervised speech
representations trained on massive amount, of unlabelled data are finetuned to
specific data for E2E ASR, providing promising results. As an example, the
Wave2Vec [21] family of models use a task similar to a Masked Language Model
to pre-train a network using unlabelled speech before fine-tuning on the spe-
cific ASR task. This allows the network to learn contextual speech embeddings
that can then be finetuned using parallel speech and transcripts corpora. Simi-
larly, multi-domain supervised data has also been trained on large deep neural
networks to develop a general model. In transfer learning, such general knowl-
edge is transferred via fine-tuning on a downstream task, which is typically
low resource. Thus, robust ASR in naturalistic conditions such as CHiME-
6 dataset[22], or Fearless Steps Corpus[23] utilize large supervised models[24]

trained on massive amounts of supervised data or self-supervised models for
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current best performance by fine-tuning on specific dataset.

Recently, OpenAl released pretrained models referred to as "Whisper’ where
"WSPSR’ acronym stands for Web-scale Supervised Pretraining for Speech Recog-
nition. However, this family of models (of alternate sizes) are the largest su-
pervised ASR models [25] in terms of training data for English (438k hours) as
well as multilingual (680k hours). The study [25] utilizes 'LibriSpeech’ as the
reference dataset due to its widespread utilization in modern speech recogni-
tion research and the availability of many released models trained on it. This
allows for characterizing robustness behaviors by studying out-of-distribution
performance on 12 other speech recognition datasets. The Whisper models do
not outperform the SoTA for ASR on the standard book reading ’Librispeech’
dataset. However, even the smallest Whisper model is competitive with the
high-performance SoTA model over ’Librispeech’, on multiple other datasets
including CHiME-6. Thus, Whisper model provides zero-shot competitive per-
formance without additional finetuning and suggested to provide generalization.
Hence, we utilize Whisper ASR model for zero-shot (i.e. without training) eval-
uation on test set of Kentucky preschool adult speech corpus. However, since
there is significant scope for improvement for Whisper on naturalistic corpora
like CHIME-6 or our Kentucky adult speech corpus (as shown in Results sec-
tion), we perform adaptation to our naturalistic corpus using novel training
strategies. The improvement gains are suggested to be due to the acoustical
variations of the real classroom conditions, which are unlikely to be present in
massive audio data collected over the internet for Whisper or other traditional
ASR datasets. Apart from classroom acoustics, the novel acoustic variations to
be learned by the model include ’Child sounds’ during partially audible words
from other children in the classroom or loud noises while the children are play-

ing.



4. Data specifics

w 4.1. Data collection

Dataset used in this study consists of spontaneous conversational speech
recorded with the LENA units attached to subjects in a high quality childcare
learning center in the United States. Daylong audio recordings consist of 54
preschool daylong audio files across 3 days in 7 sessions in 2 classrooms (Class

us A or Class B).

4.2. Classroom details

Data collected using LENA recorders in two classrooms have multiple child
work stations. These learning station activities include reading, blocks, play,
singing, science etc (see Fig. 1). The physical dimensions and layout of the

10 two classrooms are different, which may affect the recorded audio in terms of
reverbration and noise.

Classroom A is 24 ft by 24 ft while Classroom B is larger with dimensions
of 24 ft by 40 ft. (e.g. see floor plan in Fig. 1). Algorithm performance will be
explored for alternate classroom scenarios by training on Class A and test on

155 Class B, and vice versa.

4.3. Dataset distributions

Adult speech segments are extracted from daylong, naturalistic noisy audio
recordings in preschool classrooms having 3 to 5 year olds accompanied by one or
more adults (e.g. typically teachers). Most children wear LENA devices along

1o with 1-3 adults in the classroom. Depending on distance of adult from the
LENA recorder worn by the child, the audio files recorded by the corresponding
LENA recorder can be near or far-field.

Audio files are divided into train, development and test sets following classroom-

based division. Audio data corresponding to either Class A or Class B are used
165 for training alternate models. Data from the alternate classroom is used for

model development and test. During model development, a separate hold-out
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development set, is used to find the best operational model during neural net-
work training.

The training set has 11 hours and 32 minutes (21505 utterances) of adult
speech from classroom A and 7 hrs and 20 minutes (14027 utterances) of adult
speech from classroom B. The test set has 1 hour and 41 minutes (2076 ut-
terances) of adult speech from classroom A and 1 hour and 53 minutes (3340

utterances) of adult speech from classroom B.

4.4. Dataset acoustic variability

To understand the dataset acoustic diversity for both classrooms, we measure
SNR values of 1-sec segments from the complete audio and plot the probability
density function (pdf) of audio segments Vs. classroom as seen in Fig. 2. It
can be seen that there are a lot more segments with lower SNR in Classroom B

as compared to Classroom A.

4.5. Dataset language variability

4.5.1. Average child word counts in response to adult words

By analyzing text transcripts, we calculate the number of words spoken by
children in response to a given adult statement. We assign the total child word
count in such responses, to each word in the adult statement. By taking the
sum of child word counts per adult word, across multiple adult-child turns,
we are able to compile the total and average child word count, in response
to all words spoken by adults. The words from adult statements, followed by
the highest average child word counts per turn, are listed in Tables 1 and 2
for Class A and Class B respectively. It helps us understand adult words that
produce good engagement with children or words that are produced during high
engagement interactions. These could reflect ’housekeeping’ interaction words
like wear, hold, talk, keep, look, play, find etc., encouragement words such as
awesome, great, friend etc., or topic specific keywords such as rocks, sea, turtles,

christmas, rat, dough etc.
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4.5.2. Average child word counts in child responses with repeated adult words
In this study, we also analyze average child word counts per turn for child
statements that contain a repeat of an adult word, from the preceding adult
statement. Here, we calculate the total and average child word counts in same
way as Sec. 4.5.1, but require the repetition of an adult word by the child.
Tables 3 and 4 summarize such words in the test set of Class A and Class B
respectively. These include cardinal digits such as one, two, three, five etc. |,
action words: play, take, go, please, thank, hurray, oustide or topic keywords:

hand, quesadilla, paper, bubble, chain, monster, ketchup, pack, teachers etc.

5. Method

5.1. System pipeline

Fig. 3 presents the high-level system diagram for end-to-end adult speech
recognition task. It begins with the data collection module using our LENA
device in preschool classroom. Once collected, this data is transcribed by CRSS
transcription team for use in system development for recognizing speech in this
naturalistic learning space. After data segmentations, adult speech segments
are used to adapt the pretrained SOTA ASR models using the training set from
alternate classrooms. The ASR model adapted on training data for a given class-
room are tested on the development set of the other class. The best performing
epoch is then used for open evaluation using the test set for ASR performance

assessment.

5.2. Multihead Attention-based Transformer model
The Attention Encoder-Decoder (AED) model was first introduced in [26] for
neural machine translation. Without any conditional independence assumption
as in CTC [27], AED was successfully applied to E2E ASR [28, 29] and has
recently achieved superior performance to conventional hybrid systems [20].
AED directly models the conditional probability distribution P(Y | X) over
the sequence of output tokens Y = {y1,...,yr} given the sequence of input

speech frames X = {x3,...,xn} as:



adult number| total avg.
word of re- child

inde- sponded| words

pen- child per

dent words turn

turns across

of inde-

child pen-

re- dent

sponse | turns
wear 5 32 6.4
words ) 31 6.2
talk 6 36 6.0
thank 21 113 5.4
listening | 5 26 5.2
awesome | 9 47 5.2
hold 17 81 4.8
great 7 33 4.7
time 9 42 4.7
us 8 37 4.6
friend 11 50 4.5
button 6 27 4.5

Table 1: Classroom A statistics of counts of

words spoken by children, in response to words

spoken by adults within sentences, as tran-

scribed from audio in test set.

adult number| total avg.
word of re- child

inde- sponded| words

pen- child per

dent words turn

turns across

of inde-

child pen-

re- dent

sponse | turns
sitting 11 62 5.6
blocks 8 45 5.6
turn 6 33 5.5
keep 6 32 5.3
find 7 37 5.3
christmag 5 26 5.2
rat 5 26 5.2
minutes | 5 25 5.0
hold 14 68 4.9
quiet 8 38 4.8
mat 6 29 4.8
dough 5 24 4.8
look 10 47 4.7
think 17 79 4.6
rocks 5 23 4.6
line 12 54 4.5
sea 6 27 4.5
turtles | 6 27 4.5

Table 2: Classroom B statistics of counts of

words spoken by children, in response to words

spoken by adults within sentences, as tran-

scribed from audio in test set.

10



adult number| total avg.

adult number| total avg. word of re- child
word re- | of re- child re- inde- sponded| words
peated inde- sponded| words| | peated pen- child per
by child | pen- child per by child | dent words turn

dent words turn turns across

turns | across of inde-

of inde- child pen-

child pen- re- dent

re- dent sponse | turns

sponse | turns play 5 29 5.8
one 7 26 3.7 chocolate 4 5 1.3
going 5 33 6.6 please 4 10 2.5
need 5 34 6.8 dough 4 22 5.5
two 5 13 2.6 high 3 12 4.0
play 4 24 6.0 hurray 3 5 1.7
keep 3 21 7.0 paper 3 15 5.0
got 3 15 5.0 rat 3 18 6.0
take 3 12 4.0 little 3 13 4.3
hand 2 20 10.0 line 3 6 2.0
want 2 11 5.5 bubble | 3 9 3.0
pack 2 7 3.5 thank 2 4 2.0
outside 2 10 5.0 morning | 2 6 3.0
go 2 13 6.5 minutes | 2 16 8.0
quesadillal 2 15 7.5 teachers | 2 8 4.0
five 2 7 3.5 chain 2 8 4.0
right 2 4 2.0 monster | 2 10 5.0

Table 3: Classroom A statistics of counts of| <CtCHUP | 2 7 35

words repeated by children, in response to Table 4: Classroom B statistics of counts of

words spoken by adults within sentences, as words repeated by children, in response to

transcribed from audio in test set. words spoken by adults within sentences, as
transcribed from audio in test set.

11
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Vaswani et. al. [30] proposed encoder-decoder architectures referred to as

Transformers based solely on attention mechanisms, dispensing with recurrence
and convolutions entirely. At each step the model is auto-regressive, i.e. it
consumes the previously generated tokens as additional input when generat-
ing the next most likely token. To achieve this, the Transformer follows the
AED architecture using stacked six layers for both encoder and decoder with
each layer having sublayers. The sublayer consists of Multi-Head Self-Attention
(MHSA) mechanism and position-wise, fully connected feed-forward network.
In addition to the two sub-layers in each encoder layer, the decoder inserts a
third sub-layer, which performs Multi-Head Cross-Attention (MHCA) over the
output of the encoder stack.

The attention mechanism acts as a mapping function to generate the output
vector which is a weighted sum of the values given a set of query, key and value
vectors. It can be described as mapping a query and a set of key-value pairs to
an output. The weight assigned to each value is computed as a compatibility

function of the query with the corresponding key.

5.3. Whisper acoustic model

Basic Transformer model was utilized in Whisper to evaluate ASR system
performance, irrespective of model enhancements and only due to availability of
large amount of training data. Unlike other recent speech recognition models,
the Whisper model is completely trained using supervised learning on weakly
labelled data. The resulting network model was constructed based on 680k
hours of multilingual speech and transcribed data from across 96 languages.
The resulting network is an Encoder-Decoder transformer trained using multi-
task learning with tasks that include transcription, translation and timestamp
prediction. Here, a basic transformer is used to evaluate the ASR system perfor-
mance solely due to availability of this large amount of training data, irrespective

of model enhancements.

12
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The 'medium’ (769 M parameters) Whisper model trained on English-only
corpora, has the best performance in terms of WER on the publicly-available
naturalistic ASR corpus of CHiME-6, among the family of Whisper ASR mod-
els. Here we consider the ’small’ (244M parameters) and ’medium’ (769 M
parameters) size network models trained for English language data to measure
their zero-shot performance on adult speech for our preschool corpus. Both
these models have similar performance with the ’small’ version having 2.3%
higher WER than 'medium’ model. The ’small’ model is approximately 2 GB
in VRAM and is 6 times faster than the ’large’ (1550 M parameters) model
which needs 10 GB of VRAM. Thus, the ’small’ model is selected based on a

future goal of operation on small portable devices.

5.4. Teacher-Student Learning for adult speech recognition in preschool class-

room

Simply finetuning Whisper models on our Kentucky corpus resulted in worse
performance than using the models themselves. This was most likely due to
catastrophic forgetting [31, 32] of well-trained transformer models when trained
on comparatively smaller dataset of novel acoustic variations of the preschool
classroom corpus. Functional approaches to catastrophic forgetting add a regu-
larization term [33] to the objective that penalizes changes in the input-output
function of the neural network. This takes a form of knowledge distillation such
that predictions [34] (or final layer hidden activations [35]) of the previous task’s
neural network are encouraged to be similar to current network when trained on
data from new task. Thus knowledge distillation has been utilized for improving
training performance [36, 37] irrespective of model compression outcomes.

Knowledge distillation [38, 39] helps the training process of ”student” net-
works by distilling knowledge from one or multiple well-trained ”teacher” net-
works. The key here is to leverage the soft probability outputs, of teacher
networks, where incorrect-class assignments reflect how a teacher network gen-
eralizes from previous training. By mimicking probabilities output, the student

network is able to incorporate the knowledge that the teacher network discov-

13
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ered earlier, allowing the performance of the student network to be better than
if it were trained with labels only.

Hinton et al.[38] introduced ”softmax temperature” function o, () to pro-
duce a softer probability distribution output when a large temperature 75 (usu-
ally greater than 1) is picked. Since it takes logits from final layer as input, it
decays to normal softmax function o(-) when 75 equals 1. The function value

for the i*" instance from the dataset (X,Y) can be calculated as follows:

exp (/)
7 ) = e (1) W
Next, we present the formulation of Teacher-Student (T/S) learning for ASR
on the preschool corpus. Given a pre-trained teacher network fy,.(-) and a
student network fy,(-), where 07 and 65 denote the network parameters, the
goal of knowledge distillation is to force the output probabilities of fy.(:) to
be close to that of fo,.(). Let (x;,y;) denote a training sample in dataset
(X,Y) of sequence of L output tokens and Y containing sequence of N input

speech frames. Py, (z;) indicate the logit response of x; from fg(-). The student

network fp, can then be learned by the following relation:

mingg Z ax 72 x KL (075 (PfeT (xl)) O, (Pfss (%)))

(z4,y:)€X,Y (2)
+(1—-a) x CE (O’ (Pfes (xl)> 7yi) )

where KL(-, -) and CE(-, -) are the Kullback-Leibler divergence (K-L divergence)
and cross-entropy loss, respectively. Another hyper-parameter « is utilized to
balance the solution between T/S loss and cross entropy loss, which performs

well when the weight for T/S loss is higher.

6. Experimental Design and Evaluation metrics

Evaluations are performed for both the development and test sets to allow

for a comparison of the models as formulated in Sec. 4.3.

14
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6.1. Experimental Design

The input to the Whisper models consist of 80-channel log-magnitude Mel-
spectrogram representation, computed on 25-millisecond windows with a stride
of 10 milliseconds. Prior to the transformer block, 2 convolution layers with a
filter of width 3 are applied followed by GELU activation function and Sinu-
soidal position embeddings. Byte-level Byte Pair Encoding text tokenizer used
in GPT-2 [40] is used as tokenizer for generating token ids from text transcripts
as well as predicted ASR transcripts.

The ’small’ size model is utilized for both the teacher and student mod-
els to evaluate WER performance as seen in Fig. 4. This is done to evaluate
improvement solely due to adaptation procedure, rather than model size dif-
ferences. Studies[36, 37] have confirmed T/S learning based improvement for
same size teacher and student models. Such improvements are attributed to
label-smoothing regularization.

In our case, every parameter from the decoder block consisting of MHA
and feedforward network layers are adapted during the training procedure. The
student model is utilized for evaluation on development and test sets and is
referred to as ’small-adapt.” for the rest of the paper.

The adaptation procedure is carried our for 12 epochs having batch size 64,
with best performing model on development set utilized for testing on evaluation
set. Based on empirical performance, o value is set to be 0.9 and 7, value is set
to be 4.

Results are reported for both development and test sets for both models
as explained in Sec. 7.1 and 7.2. The results are reported in terms of WER,
F1-score and Root Mean Squared Error (RMSE). These metrics are explained

as follows:

6.1.1. F1-score for word group detection
To understand word detection capability in topic groupings and diverse
acoustic conditions, the proposed models are evaluated based on classroom

specific test data. Performance ’accuracy’ is defined as the total number of

15
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occurrences of all the words in a given word group that are predicted correctly.
"Precision’ is the fraction of relevant instances among all detected word oc-
currences. These would be the fraction of word predictions from ASR output
for a given group, that have been predicted correctly on comparing with text
transcripts.

TPwordfgroup (3)
TPword—group + FPword—g'r'oup

Precisionyord—group =

where TP represents True Positives and F'P represents False Positives.
'Recall’ is defined as the fraction of relevant instances that were actually de-
tected. Here, these are the fraction of occurrences of words within a "'word group’

from the text transcript, that were predicted correctly as per ASR predictions.

TPwordfgroup (4)

Recallyord—group =
- P
g THuord—group + FNword—group

where T P represents True Positives and F'N represents False Negatives.
Next, the Fl-score is defined as the harmonic mean of the precision and
recall, and takes both precision and recall into account to provide an overall

balanced score assessment,

2 X Precisionyord—group X fecallyord—group

(5)

F1 — scoreword—group =
group Precisionyord—group + Reca”word—group

6.1.2. Root Mean Squared Error (RMSE) for word group detection

RMSE measures the average difference between values predicted by a model
and the actual values. It provides an estimation of how well a model is able to
predict the target value. A lower RMSE value indicates a better model. For this
study, RMSE is used to measure the difference between actual and predicted
word counts for the alternate groups of words.

Consider a word group that has 'n’ unique words. Let the actual word
counts as per text transcriptions for the i-th word in the group be ¢; while let

the predicted word counts based on ASR predictions be ¢;. Hence, the RMSE

16



340

345

for the word group can be written as per equation 7 below,

1
RMSEwo’rdfgroup = \/nzy_l(

||Ci—5z‘||)2

g

Adapt on | Evaluate Model Subs. Ins. Del. WER
Train set | on Test Error Error | Error | (%)
of: set of: Rate Rate Rate
() (%) (%)

No Room B small 25.4 3.7 17.7 46.8
No Room B medium 22.6 5.3 15.2 43.1
Room A Room B small-adapt | 29.2 4.8 9.0 43.0
No Room A small 22.5 4.2 15.2 41.9
No Room A medium 20.1 3.5 13.8 37.4
Room B Room A small-adapt | 25.4 4.9 8.8 39.1

Table 5: Word Error Rate results on testing subset recordings of classroom A and classroom

B audio.

7. Results and Discussions

7.1. WER

Table 5 reports the WER of small, medium and small-adapt model while
applied on test set of adult speech data from both the classrooms. The results
for the small and medium model are utilizing the pretrained models of sizes
small’ and 'medium’ to test on the test set. Table 5 shows the results in terms
of WER for the alternate classrooms are achieved by the proposed ’small-adapt’
model which is better than both ’small’ and 'medium’ size models. This can
be analyzed to be due to lowest percentage of errors due to deletions compared
to the pretrained models for both the classrooms. Insertion error rate increases

marginally for models tested on test sets of both classrooms but is lower than

medium-size model for Class A.

17



Adapt Test on | Model | F1 F1 F1 F1 F1
on Eval (400 (WH (Object | (High (Child
Train set of: most words) words) engage- | Re-
set of: fre- ment peated
quent words) | words)
words)
No Room A | small 57.9% | 60.8% | 62.3% | 57.2% | 59.5%
(Aa)
No Room A | medium | 62.8% | 63.8% | 67.1% | 64.2% | 64.4%
Room B | Room A | small- | 60.3% | 67.4% | 63.2% | 60.1% | 65.5%
ad
(0B4)
Fl-score(fpa) - Fl-score(Aa): 2.4% 6.6% 0.9% 2.9% 6.0%

Table 6: Fl-score results for detecting words in corresponding groups on test set utterances

of classroom A audio.

Adapt Test on | Model | RMSE| RMSE| RMSE| RMSE| RMSE
on Eval (400 (WH (Object | (High (Child
Train set of: most words) words) engage- | Re-
set of: fre- ment peated
quent words) | words)
words)
No Room A | small 5.2 12.8 2.4 6.6 16.7
(Aa)
No Room A | medium | 4.5 9.5 1.9 4.3 14.2
Room B | Room A | small- 3.6 8.7 2.4 3.4 7.3
ad
(054)
RMSE(0pa) - RMSE(Ma): -1.6 -04 0.0 -3.2 -94

Table 7: Root Mean Squared Error (RMSE) results for detecting words in corresponding

groups on test set utterances of classroom A audio.
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Adapt Test on | Model | F1 F1 F1 F1 F1
on Eval (400 (WH (Object | (High (Child
Train set of: most words) words) engage- | Re-
set of: fre- ment peated
quent words) | words)
words)
No Room B | small 51.5% | 55.7% | 43.7% | 55.7% | 51.3%
(AB)
No Room B | medium | 56.1% | 60.2% | 48.7% | 61.6% | 55.3%
Room A | Room B | small- 54.8% | 59.8% | 50.6% | 59.1% | 57.0%
ad
(0aB)
Fl-score(0ag) - Fl-score(Ag): 2.0% 4.1% 6.9% 3.4% 5.7%

Table 8: Fl-score results for detecting words in corresponding groups on test set utterances

of classroom B audio.

Adapt Test on | Model | RMSE| RMSE| RMSE| RMSE| RMSE
on Eval (400 (WH (Object | (High (Child
Train set of: most words) words) engage- | Re-
set of: fre- ment peated
quent words) | words)
words)
No Room B | small 9.2 16.8 6.4 7.5 12.1
(AB)
No Room B | medium | 7.5 16.3 5.6 7.3 8.0
Room A | Room B | small- 7.3 25.3 5.1 9.2 9.4
ad
(0am)
RMSE(0ap) - RMSE(Ap): -1.9 9.0 -1.3 1.7 -3.5

Table 9: Root Mean Squared Error (RMSE) results for detecting words in corresponding

groups on evaluation subset utterances of classroom B audio.
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"Small-adapt’ model improves over the ’small’ model in terms of deletion
error rate by 6.4% and 8.7% for test set of classrooms A and B respectively.
"Small-adapt’ model improves over the ’small’ model in terms of insertion error
rate by 0.7% for test set of classroom A and increases by 1.1% for test set
of classroom B. Thus, the adapted model is able to recognize the presence of
words in noisy and far-field conditions of the preschool classroom better than
the original model of same size. However, the substitution error rate for the
adapted model increases by 2.9% over the test set for classroom B and by
3.8% for classroom A, compared to the baseline ’small’ model. Thus, although
the presence of words in possibly far-field, noisy audio segments is detected
accurately, it may detect the complete word or a part of the word (subword)
inaccurately. Hence, detection of words with relevance in measuring child-adult
interactions, will be of greater importance.

Since the major focus for our task of ASR in challenging preschool class-
room scenario is detection of relevant groups of words as highlighted before, we
aspire for better detection performance for these words, rather than evaluating
WER performance only. To understand the performance achievements for these
relevant words, we calculate Fl-scores for detecting these groups of words and

RMSE scores of the word counts over these groups of words.

7.2. F1-score and RMSE

The alternate word groups to be detected include top 400 most frequently
occurring words (excluding stop words), WH-Question words, object words,
high engagement words and child-repeated words. Tables 6 and 7 report on the
test data from Class A for 'word detection’ (in terms of Fl-score) and word-
counting (in terms of RMSE) respectively, within the alternate word groups .
The ’small-adapt’ model provides improvement over the baseline 'small’ sized
model for Fl-score metrics on all of the word groups. This is demonstrated
by the absolute increase in Fl-score values (F'l-score(0pa) - Fl-score(Aa)) in
Table 6, for each of the word groups. A lower RMSE implies lower error between the
predicted word count and the actual word count. Absolute decrease (RMSE(0pa) -
RMSE(X4)) in RMSE values in Table 7 for majority of the word groups indicates
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performance improvement for word-counting as well. The improvement in F1-scores
for test set of Class A varies from +0.9% to +6.6% and is better than the 'medium’
model for some of word groups as seen in Table 6. Similar improved performance in
terms of 'RMSE’ is observed for majority of the word groups in the test set of Class
A, with error reduction ranging from +0.4% to +9.4% as seen in Table 7.

Tables 8 and 9 report on the test data from Class B for word-detection (in terms
of Fl-score) and word-counting (in terms of RMSE) respectively, within the alternate
word groups. It is seen that the ’small-adapt’ model provides improvement over the
baseline ’small’ model for 'word detection’ on all the word groups. The increase in
"Fl-score’ values ((F'l-score(fap) - Fl-score(Ap))) and decrease in 'RMSE’ values
((RMSE(0aB) - RMSE(\B)) are seen in Tables 8 and 9 respectively for test set of
Class B. The improvement in Fl-scores for test set of Class B varies from +2.0% to
+6.9% and is near or better than the 'medium’ sized model for a majority of the
word groups as seen in Table 8. Similar improved performance observation in terms
of 'RMSE’ is also observed for most word groups (except for WH-words) in the test
set of Class B, with error reduction ranging from +1.9% to +3.5% as seen in Table 9.

Thus, the adapted version of the ’small’ model i.e. proposed ’small-adapt’ model is
an improved word-counting and relevant word-detection solution with improved scores
for both the tasks, on test data from both the classrooms. The performance of ’small-
adapt’ model is superior to 'medium’ sized model on atleast two word groups for both

the scores (i.e. Fl-score and RMSE) on test data from both the classrooms.

7.3. Parts of Speech Recognition

Percentage distribution of parts of speech (POS) are also reported for the test sets
in both the classrooms as per the transcription and the ASR predictions. Figs. 5
and 6 demonstrate the POS tags for text from Class A as per ground truth and ASR
prediction respectively. Here, nouns and verbs have error of 2% missing and 2% gain
respectively, while preposition and digits have 1% gain and 1% missing respectively
based on ASR transcript predictions. Figs. 7 and 8 demonstrate the POS tags for
text from classroom B as per ground truth and ASR prediction respectively. Here,
nouns and verbs constitute POS for majority of the words in text. Out of this, the
maximum error of 4% missing and 3% gained is for nouns and verbs respectively. The

remaining 1% is gained by prepositions. Thus, we can see the text from both the
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classrooms has a near similar distribution of nouns (52%-53%), verbs (24%-27%), ad-
jectives (6%), prepositions (4%), digits (6%-8%) and adverbs (5%). Also the predicted

POS distribution percentages have a maximum error of 4%.

7.4. Audio tags as observable correlates of error rate improvement

In order to uncover attributes related to improvement in significant error types
(substitutions and deletions) with largest contributions to word error rate, we ex-
tract audio tags for each utterance. In following analyses, references of error rate
are composed of substitution and deletion errors. A deep learning model [41] trained
on Google’s audioset, is utilized as a tool for predicting the most likely audio tags
out of 527 audio labels. The outputs predict multiple labels with confidence values
(probability) greater than zero.

Relevant labels related to specific aspects of the input audio are style of speech
(conversational, narration), speaker-type (male, female, child), singer-type (male, fe-
male, child), animal sounds, sources of noise (chatter, crowd, zipper (clothing), writing,
television, music, tools, air conditioning, utensils, animal, bird, radio etc.), environ-
mental attributes (inside small room, inside large room, outside in urban environment,
outside in rural environment etc.) or actions (shuffling cards, chopping food etc.).

Next, audio labels are investigated within speaker-type, environmental-attribute
and noise-source categories across the utterance segments. Utterances that were im-
proved by the small-adapt. model for substitution and/or deletion errors, showed
higher percentages of utterances (minimum confidence threshold=0.1) of the test set.

The ’high occurring’ audio labels in the improved utterance list along with their
corresponding presence for Class A include ’Inside, small room’ (+56.3%), 'Child
speech’ (+23.4%), "Music’ (+8.7%), ’Outside, urban or manmade’ (+16.3%) and *Chil-
dren playing’ (+14.9%). The improved utterances represent +18.3% (for 'Inside, small
room’ audio label) to +21.1% (for ’Outside, urban or manmade’ audio label) of all
utterances with labels. Thus, assuming a worst case complete overlap of audio label
predictions, +56.3% of utterances with improved error types are indicative of being
present with label 'Inside, small room’ representing a minimum of +18.3% of the ut-
terances belonging to the corresponding audio labels. Hence, some form of ’Child
sounds’ are present in 15%-23% of the error-improved utterances.

The ’high occurring’ audio labels in the improved utterance list along with re-

spective percentage of presence in test set of Class B includes ’Inside, small room’
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(4+64.9%), ’Inside, large room or hall’ (+34.3%), 'Child speech’ (+42.5%), *Children
playing’ (4+34.7%), 'Outside, urban or manmade’ (+21.2%) and "Music’ (+81.7%).
The improved utterances included +21.6% (for "Music’ audio label) to +22.3% (for
"Children Playing’ audio label) of utterances with these labels. Thus, assuming a worst
case complete overlap of these audio label predictions, +64.9% of utterances with these
audio labels are present in the utterance list, with improved error types and a minimum
of +21.6% of utterances having one of these audio labels show error improvement. So,
some form of ’Child sounds’ are present in 35%-43% of the error-improved utterances.
Also, "Music’ is detected in 82% of error-improved utterances.

Thus, ’Child sounds’ are present in higher percent of error-improved utterances
of class B. Also, approximately 22% of utterances having ’Child sounds’ in test set
of Class B show improvement in errors Vs. approximately 20% of utterances having
"Child sounds’ in test set of Class A. Thus, Class B has higher percentage of utterances
with ’Child sounds’ labels that show improvement. This could be due to more noisy
conditions based on activities in Class B. Thus, despite the WER for ’small-adapt’
model on test set of Class B not showing improvement better than the 'medium’
sized model, the improvements are impactful for the unique acoustic attributes of the

dataset for given classroom conditions.

8. Conclusions and Future work

In this study, a T/S learning strategy for end-to-end speech recognition on adult
speech segments of preschool classrooms was proposed. Initial data analysis was per-
formed for measuring SNR for audio files from Class A and Class B. The analysis
showed more audio segments from Class B to have lower SNR compared to Class
A. Next, text transcripts of test subsets in both classrooms were analyzed. Words
contributing to child-adult engagement and/or learning were grouped to characterize
conversational interactions through their statistics of occurrence. Pretrained ’Trans-
former’ models, renowned for state-of-the-art speech recognition performance on out-
of-distribution and noisy data, were employed on evaluation test data from two class-
rooms. T/S learning-based adaptation strategies provided models with improved per-
formance in terms of WER. Recognition of words belonging to distinct categories and
corresponding word-counts from them, showed improved performance for the adapted

model Vs. pretrained model of the same size, for alternate A Vs. B classroom con-
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ditions. Thus, the improved WER performance in terms of deletions, resulted in
improvement in performance for important groups of words in our analysis, coun-
teracting any loss in performance due to substitution errors. For future work, it is
suggested to explore further the T/S learning strategy with 'medium’ size models and
perform knowledge distillation to a ’small’ size model to evaluate any further perfor-
mance improvements. Since the scope of this study involved classroom-independent
ASR, future work could also include performance evaluation of a diarization system
along with ASR. While full recognition of adult-child speech within daily naturalistic
classroom settings has been a major challenge in the field, these advancements have
shown great promise in providing effective quantitative speech and language metrics
for teacher-child conversational engagement. In addition, if there is greater concern
regarding privacy, especially for at-risk children, the category based word-counting can

offer rich feedback for teachers.
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Figure 1: Illustrative example of floor plan for child learning spaces within preschool classrooms. (i.e. learning stations: Books/Reading, Science etc.
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Distribution of estimated NIST SNR for complete audio data
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Figure 2: Probability density function of NIST SNR measured over 1 second segments for all

audio within classrooms A and B.
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on test set based on model selection on development set.

31



Kentucky Adult
Speech Data

Figure 4: Block Diagram for Teacher-Student Learning on Kentucky adult speech corpus using

Whisper small-size models.

ACTUAL WORD POS TAGS FROM TEST SET OF CLASS A
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53%

Figure 5: Actual distribution of parts of speech from adult talk transcript as represented by

a pie chart for a session in classroom A with a child wearing the LENA device.
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Figure 6: Predicted distribution of parts of speech from adult talk ASR predictions as repre-

sented by a pie chart for a session in classroom A with a child wearing the LENA device.
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Figure 7: Actual distribution of parts of speech from adult talk transcript as represented by a

pie chart for a session in classroom B with both children and adults wearing the LENA device.
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PREDICTED WORD POS TAGS FROM TEST SET OF CLASS B

adjective

preposition

Figure 8: Predicted distribution of parts of speech from adult talk ASR predictions as repre-
sented by a pie chart for a session in classroom B with both children and adults wearing the

LENA device.
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