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Abstract

Speech and language development are early indicators of overall analytical and

learning ability in children. The preschool classroom is a rich language envi-

ronment for monitoring and ensuring growth in young children by measuring

their vocal interactions with both teachers and classmates. Early childhood re-

searchers recognize the importance in analyzing naturalistic vs. controlled lab

recordings to measure both quality and quantity of child interactions. Recently,

large language model-based speech technologies have performed well on con-

versational speech recognition. In this regard, we assess performance of such

models on the wide dynamic scenario of early childhood classroom settings. This

study investigates an alternate Deep Learning-based Teacher-Student learning

solution for recognizing adult speech within preschool interactions. Our pro-

posed adapted model achieves the best F1-score for recognizing most frequent

400 words on test sets for both classrooms. Additionally, F1-scores for alternate

word groups provides a breakdown of performance across relevant language-
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based word-categories. The study demonstrates the prospects of addressing ed-

ucational assessment needs through communication audio stream analysis, while

maintaining both security and privacy of all children and adults. The resulting

child communication metrics from this study can also be used for broad-based

feedback for teachers.

Keywords: Child-Adult Speech Interactions, Naturalistic Speech Recognition,

End-to-end Speech Recognition, Transformer subword, Teacher-Student

Learning, Preschool Classroom

1. Introduction

The diversity of language background, socio-economic conditions, develop-

ment level, and potential communication disorders represent challenges in as-

sessment of child speech and language skills [1]. The language environment of

young children plays an important role in development of speech, language, vo-5

cabulary and thus, knowledge/learning ability. Taken collectively, these impact

life prospects of the child. The quality and quantity of interaction given a rich

language environment helps meet essential language development outcomes in

early childhood [2]. Thus, early childhood researchers recognize the need for

analyzing classroom interactions of preschool children to monitor and provide10

proactive support.

In classroom settings, teachers prompt interaction by asking questions that

engage child’s curiosity and experimentation, particularly in science-focused

activities[3]. Therefore, tracking sentences with such WH-question words or

WH-words [4, 5] (what, where, when, who, why, how) can help teachers re-15

view their interactions with the children. Furthermore, WH-words represent

the questions, which can be analyzed in terms of frequency of occurrence within

the classroom. Active learning [6] practices for preschool children recommends

learning through direct interaction with practical, everyday objects that can be

handled by the child. Adults are recommended to encourage children to ma-20

nipulate such objects for discovering the relationship among them, by actively
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engaging all senses and muscular utilization. Thus, tracking such object words

from these audio files can help educators asses their interactions with children

during such ’play’ or ’object interaction’ sessions, as well as keeping a record

of objects introduced to the children. Finally, tracking words that promote re-25

sponses from children in the form of ’repetition’ or ’high word-count response’

can help researchers understand qualitative engagement due to ’teaching style’

[7], ’concerned activity’ and/or ’topic of interest’.

For this purpose, the authors have collected multi-session dataset in a real

preschool during their daily activities. A typical preschool is composed of sepa-30

rate areas for specific activities to be conducted during alternate times of the day

as seen in Fig. 1. Due to the massive amounts of daylong audio recordings, it is

not feasible for humans to manually perform analysis. Automatic speech recog-

nition(ASR) offers the prospect of extracting text content from a conversational

speech signal represented as the transcript of the speech. Recently, ASR[8, 9]35

and machine learning [10, 11] techniques have been utilized for automated pro-

cessing and analysis of child-centered data. Previously, diarization[12, 13, 14]

and children’s speech recognition[9] have been explored on such data. Previous

study of adult speech recognition [8] on this dataset focused on limited types

of keywords in location-based fashion. This study will focus on acoustic and40

language analysis as well as automated solutions for word-detection and word-

counting, for adult speech in naturalistic conditions of the preschool classrooms.

There are a range of potential real-time, portable, voice recording platforms

as well as recent algorithms for word-counting [15, 16], speaker diarization,

end-to-end (E2E) small footprint ASR models for word-detection and/or word-45

counting. However, these solutions for classroom conditions have not utilized

state-of-the-art (SoTA) advancements in ASR models. Thus, small-footprint

E2E ASR models with strong performance for word-detection and/or word-

counting in naturalistic preschool classrooms are desired. The contributions

of this study are stated as follows. First, we introduce the speech database50

for child-adult interaction based on a North American preschool classroom

and analyze conversational acoustical variations for multiple classrooms. Next,
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groundtruth transcriptions generated by the CRSS transcription team are uti-

lized for performing classroom-specific qualitative analysis on vocabulary diver-

sity and the language interactions between adults and children. This includes55

distribution word analysis based on parts-of-speech(POS) as well as statistics

of adult words relevant for ’high child engagement’ with teachers.

This study also provides insight on performance of SoTA end-to-end (E2E)

ASR models on out-of-domain data in challenging preschool classroom condi-

tions, as well as Teacher-Student (T/S) learning-based model adaptation to60

improve ASR performance. Classroom speech data is naturalistic, with far-field

adult speech , where performance is measured in terms of Word Error Rate

(WER).

The dataset is a classroom-independent scenario, such that pretrained ASR

models adapted on one classroom condition, are used for testing on speech65

segments from the other classroom. This will be the first effort on this dataset to

explore data splits from alternate classrooms, thus allowing for model adaptation

performance comparison.

2. Outline

The following is an overview of this paper which starts with Section 3. Sec-70

tion 3 reviews the previous work on naturalistic speech recognition using E2E

ASR models. Section 4 provides details of the dataset (including classrooms)

and analysis of the audio (acoustic) and text transcriptions (language). Acous-

tical analysis of audio from alternate classrooms includes Signal-to-Noise Ratio

(SNR) measures. Language analysis of audio transcripts includes word-specific75

child-response statistics in the alternate classrooms. Section 5 explains the pro-

cedure for producing the ASR output from raw audio followed by details of the

ASR model and proposed T/S model adaptation strategy. Section 6 talks about

the experimental design and the metrics used for evaluating the experiments,

while we look and discuss the results in Section 7, followed by conclusions and80

future work in Section 8.
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3. E2E ASR in Naturalistic conditions

E2E models [17] are preferred over traditional hybrid models (comprising of

individual language, acoustic and lexical model components) due to serval ad-

vantages related to implementation, computation and deployment. E2E models85

use a single objective function, while traditional hybrid models optimize in-

dividual components separately, which cannot guarantee global optimization.

Also hybird models are complicated, and require expert knowledge of many

components to design such systems with each component having its own re-

search sub-field. E2E models have been shown to outperform traditional hybrid90

models[18, 19]. E2E models directly output either a character sequence, word

pieces [20] (subwords) or whole words, which greatly simplifies the ASR pipeline.

Also, E2E models can be deployed on devices with high accuracy because a sin-

gle network is used for ASR.

Although ASR performance has surpassed human-level recognition for stan-95

dard speech recognition datasets in both hybrid as well as E2E speech recogni-

tion models, these models do not generalize well to unseen, out-of-domain data.

This is especially, the case for naturalistic, noisy, far-field conditions, which are

challenging for both hybrid and E2E models. Recently, self-supervised speech

representations trained on massive amount, of unlabelled data are finetuned to100

specific data for E2E ASR, providing promising results. As an example, the

Wave2Vec [21] family of models use a task similar to a Masked Language Model

to pre-train a network using unlabelled speech before fine-tuning on the spe-

cific ASR task. This allows the network to learn contextual speech embeddings

that can then be finetuned using parallel speech and transcripts corpora. Simi-105

larly, multi-domain supervised data has also been trained on large deep neural

networks to develop a general model. In transfer learning, such general knowl-

edge is transferred via fine-tuning on a downstream task, which is typically

low resource. Thus, robust ASR in naturalistic conditions such as CHiME-

6 dataset[22], or Fearless Steps Corpus[23] utilize large supervised models[24]110

trained on massive amounts of supervised data or self-supervised models for
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current best performance by fine-tuning on specific dataset.

Recently, OpenAI released pretrained models referred to as ’Whisper’ where

’WSPSR’ acronym stands for Web-scale Supervised Pretraining for Speech Recog-

nition. However, this family of models (of alternate sizes) are the largest su-115

pervised ASR models [25] in terms of training data for English (438k hours) as

well as multilingual (680k hours). The study [25] utilizes ’LibriSpeech’ as the

reference dataset due to its widespread utilization in modern speech recogni-

tion research and the availability of many released models trained on it. This

allows for characterizing robustness behaviors by studying out-of-distribution120

performance on 12 other speech recognition datasets. The Whisper models do

not outperform the SoTA for ASR on the standard book reading ’Librispeech’

dataset. However, even the smallest Whisper model is competitive with the

high-performance SoTA model over ’Librispeech’, on multiple other datasets

including CHiME-6. Thus, Whisper model provides zero-shot competitive per-125

formance without additional finetuning and suggested to provide generalization.

Hence, we utilize Whisper ASR model for zero-shot (i.e. without training) eval-

uation on test set of Kentucky preschool adult speech corpus. However, since

there is significant scope for improvement for Whisper on naturalistic corpora

like CHiME-6 or our Kentucky adult speech corpus (as shown in Results sec-130

tion), we perform adaptation to our naturalistic corpus using novel training

strategies. The improvement gains are suggested to be due to the acoustical

variations of the real classroom conditions, which are unlikely to be present in

massive audio data collected over the internet for Whisper or other traditional

ASR datasets. Apart from classroom acoustics, the novel acoustic variations to135

be learned by the model include ’Child sounds’ during partially audible words

from other children in the classroom or loud noises while the children are play-

ing.
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4. Data specifics

4.1. Data collection140

Dataset used in this study consists of spontaneous conversational speech

recorded with the LENA units attached to subjects in a high quality childcare

learning center in the United States. Daylong audio recordings consist of 54

preschool daylong audio files across 3 days in 7 sessions in 2 classrooms (Class

A or Class B).145

4.2. Classroom details

Data collected using LENA recorders in two classrooms have multiple child

work stations. These learning station activities include reading, blocks, play,

singing, science etc (see Fig. 1). The physical dimensions and layout of the

two classrooms are different, which may affect the recorded audio in terms of150

reverbration and noise.

Classroom A is 24 ft by 24 ft while Classroom B is larger with dimensions

of 24 ft by 40 ft. (e.g. see floor plan in Fig. 1). Algorithm performance will be

explored for alternate classroom scenarios by training on Class A and test on

Class B, and vice versa.155

4.3. Dataset distributions

Adult speech segments are extracted from daylong, naturalistic noisy audio

recordings in preschool classrooms having 3 to 5 year olds accompanied by one or

more adults (e.g. typically teachers). Most children wear LENA devices along

with 1-3 adults in the classroom. Depending on distance of adult from the160

LENA recorder worn by the child, the audio files recorded by the corresponding

LENA recorder can be near or far-field.

Audio files are divided into train, development and test sets following classroom-

based division. Audio data corresponding to either Class A or Class B are used

for training alternate models. Data from the alternate classroom is used for165

model development and test. During model development, a separate hold-out
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development set, is used to find the best operational model during neural net-

work training.

The training set has 11 hours and 32 minutes (21505 utterances) of adult

speech from classroom A and 7 hrs and 20 minutes (14027 utterances) of adult170

speech from classroom B. The test set has 1 hour and 41 minutes (2076 ut-

terances) of adult speech from classroom A and 1 hour and 53 minutes (3340

utterances) of adult speech from classroom B.

4.4. Dataset acoustic variability

To understand the dataset acoustic diversity for both classrooms, we measure175

SNR values of 1-sec segments from the complete audio and plot the probability

density function (pdf) of audio segments Vs. classroom as seen in Fig. 2. It

can be seen that there are a lot more segments with lower SNR in Classroom B

as compared to Classroom A.

4.5. Dataset language variability180

4.5.1. Average child word counts in response to adult words

By analyzing text transcripts, we calculate the number of words spoken by

children in response to a given adult statement. We assign the total child word

count in such responses, to each word in the adult statement. By taking the

sum of child word counts per adult word, across multiple adult-child turns,185

we are able to compile the total and average child word count, in response

to all words spoken by adults. The words from adult statements, followed by

the highest average child word counts per turn, are listed in Tables 1 and 2

for Class A and Class B respectively. It helps us understand adult words that

produce good engagement with children or words that are produced during high190

engagement interactions. These could reflect ’housekeeping’ interaction words

like wear, hold, talk, keep, look, play, find etc., encouragement words such as

awesome, great, friend etc., or topic specific keywords such as rocks, sea, turtles,

christmas, rat, dough etc.
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4.5.2. Average child word counts in child responses with repeated adult words195

In this study, we also analyze average child word counts per turn for child

statements that contain a repeat of an adult word, from the preceding adult

statement. Here, we calculate the total and average child word counts in same

way as Sec. 4.5.1, but require the repetition of an adult word by the child.

Tables 3 and 4 summarize such words in the test set of Class A and Class B200

respectively. These include cardinal digits such as one, two, three, five etc. ,

action words: play, take, go, please, thank, hurray, oustide or topic keywords:

hand, quesadilla, paper, bubble, chain, monster, ketchup, pack, teachers etc.

5. Method

5.1. System pipeline205

Fig. 3 presents the high-level system diagram for end-to-end adult speech

recognition task. It begins with the data collection module using our LENA

device in preschool classroom. Once collected, this data is transcribed by CRSS

transcription team for use in system development for recognizing speech in this

naturalistic learning space. After data segmentations, adult speech segments210

are used to adapt the pretrained SoTA ASR models using the training set from

alternate classrooms. The ASR model adapted on training data for a given class-

room are tested on the development set of the other class. The best performing

epoch is then used for open evaluation using the test set for ASR performance

assessment.215

5.2. Multihead Attention-based Transformer model

The Attention Encoder-Decoder (AED) model was first introduced in [26] for

neural machine translation. Without any conditional independence assumption

as in CTC [27], AED was successfully applied to E2E ASR [28, 29] and has

recently achieved superior performance to conventional hybrid systems [20].220

AED directly models the conditional probability distribution P (Y | X) over

the sequence of output tokens Y = {y1, . . . , yL} given the sequence of input

speech frames X = {x1, . . . ,xN} as:
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adult

word

number

of

inde-

pen-

dent

turns

of

child

re-

sponse

total

re-

sponded

child

words

across

inde-

pen-

dent

turns

avg.

child

words

per

turn

wear 5 32 6.4

words 5 31 6.2

talk 6 36 6.0

thank 21 113 5.4

listening 5 26 5.2

awesome 9 47 5.2

hold 17 81 4.8

great 7 33 4.7

time 9 42 4.7

us 8 37 4.6

friend 11 50 4.5

button 6 27 4.5

Table 1: Classroom A statistics of counts of

words spoken by children, in response to words

spoken by adults within sentences, as tran-

scribed from audio in test set.

adult

word

number

of

inde-

pen-

dent

turns

of

child

re-

sponse

total

re-

sponded

child

words

across

inde-

pen-

dent

turns

avg.

child

words

per

turn

sitting 11 62 5.6

blocks 8 45 5.6

turn 6 33 5.5

keep 6 32 5.3

find 7 37 5.3

christmas 5 26 5.2

rat 5 26 5.2

minutes 5 25 5.0

hold 14 68 4.9

quiet 8 38 4.8

mat 6 29 4.8

dough 5 24 4.8

look 10 47 4.7

think 17 79 4.6

rocks 5 23 4.6

line 12 54 4.5

sea 6 27 4.5

turtles 6 27 4.5

Table 2: Classroom B statistics of counts of

words spoken by children, in response to words

spoken by adults within sentences, as tran-

scribed from audio in test set.
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adult

word re-

peated

by child

number

of

inde-

pen-

dent

turns

of

child

re-

sponse

total

re-

sponded

child

words

across

inde-

pen-

dent

turns

avg.

child

words

per

turn

one 7 26 3.7

going 5 33 6.6

need 5 34 6.8

two 5 13 2.6

play 4 24 6.0

keep 3 21 7.0

got 3 15 5.0

take 3 12 4.0

hand 2 20 10.0

want 2 11 5.5

pack 2 7 3.5

outside 2 10 5.0

go 2 13 6.5

quesadilla 2 15 7.5

five 2 7 3.5

right 2 4 2.0

Table 3: Classroom A statistics of counts of

words repeated by children, in response to

words spoken by adults within sentences, as

transcribed from audio in test set.

adult

word

re-

peated

by child

number

of

inde-

pen-

dent

turns

of

child

re-

sponse

total

re-

sponded

child

words

across

inde-

pen-

dent

turns

avg.

child

words

per

turn

play 5 29 5.8

chocolate 4 5 1.3

please 4 10 2.5

dough 4 22 5.5

high 3 12 4.0

hurray 3 5 1.7

paper 3 15 5.0

rat 3 18 6.0

little 3 13 4.3

line 3 6 2.0

bubble 3 9 3.0

thank 2 4 2.0

morning 2 6 3.0

minutes 2 16 8.0

teachers 2 8 4.0

chain 2 8 4.0

monster 2 10 5.0

ketchup 2 7 3.5

Table 4: Classroom B statistics of counts of

words repeated by children, in response to

words spoken by adults within sentences, as

transcribed from audio in test set.
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P (Y | X) =
L∏
l=1

P (yl | Y0:l−1,X) .

Vaswani et. al. [30] proposed encoder-decoder architectures referred to as

Transformers based solely on attention mechanisms, dispensing with recurrence225

and convolutions entirely. At each step the model is auto-regressive, i.e. it

consumes the previously generated tokens as additional input when generat-

ing the next most likely token. To achieve this, the Transformer follows the

AED architecture using stacked six layers for both encoder and decoder with

each layer having sublayers. The sublayer consists of Multi-Head Self-Attention230

(MHSA) mechanism and position-wise, fully connected feed-forward network.

In addition to the two sub-layers in each encoder layer, the decoder inserts a

third sub-layer, which performs Multi-Head Cross-Attention (MHCA) over the

output of the encoder stack.

The attention mechanism acts as a mapping function to generate the output235

vector which is a weighted sum of the values given a set of query, key and value

vectors. It can be described as mapping a query and a set of key-value pairs to

an output. The weight assigned to each value is computed as a compatibility

function of the query with the corresponding key.

5.3. Whisper acoustic model240

Basic Transformer model was utilized in Whisper to evaluate ASR system

performance, irrespective of model enhancements and only due to availability of

large amount of training data. Unlike other recent speech recognition models,

the Whisper model is completely trained using supervised learning on weakly

labelled data. The resulting network model was constructed based on 680k245

hours of multilingual speech and transcribed data from across 96 languages.

The resulting network is an Encoder-Decoder transformer trained using multi-

task learning with tasks that include transcription, translation and timestamp

prediction. Here, a basic transformer is used to evaluate the ASR system perfor-

mance solely due to availability of this large amount of training data, irrespective250

of model enhancements.
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The ’medium’ (769 M parameters) Whisper model trained on English-only

corpora, has the best performance in terms of WER on the publicly-available

naturalistic ASR corpus of CHiME-6, among the family of Whisper ASR mod-

els. Here we consider the ’small’ (244M parameters) and ’medium’ (769 M255

parameters) size network models trained for English language data to measure

their zero-shot performance on adult speech for our preschool corpus. Both

these models have similar performance with the ’small’ version having 2.3%

higher WER than ’medium’ model. The ’small’ model is approximately 2 GB

in VRAM and is 6 times faster than the ’large’ (1550 M parameters) model260

which needs 10 GB of VRAM. Thus, the ’small’ model is selected based on a

future goal of operation on small portable devices.

5.4. Teacher-Student Learning for adult speech recognition in preschool class-

room

Simply finetuning Whisper models on our Kentucky corpus resulted in worse265

performance than using the models themselves. This was most likely due to

catastrophic forgetting [31, 32] of well-trained transformer models when trained

on comparatively smaller dataset of novel acoustic variations of the preschool

classroom corpus. Functional approaches to catastrophic forgetting add a regu-

larization term [33] to the objective that penalizes changes in the input-output270

function of the neural network. This takes a form of knowledge distillation such

that predictions [34] (or final layer hidden activations [35]) of the previous task’s

neural network are encouraged to be similar to current network when trained on

data from new task. Thus knowledge distillation has been utilized for improving

training performance [36, 37] irrespective of model compression outcomes.275

Knowledge distillation [38, 39] helps the training process of ”student” net-

works by distilling knowledge from one or multiple well-trained ”teacher” net-

works. The key here is to leverage the soft probability outputs, of teacher

networks, where incorrect-class assignments reflect how a teacher network gen-

eralizes from previous training. By mimicking probabilities output, the student280

network is able to incorporate the knowledge that the teacher network discov-
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ered earlier, allowing the performance of the student network to be better than

if it were trained with labels only.

Hinton et al.[38] introduced ”softmax temperature” function στs(·) to pro-

duce a softer probability distribution output when a large temperature τs (usu-

ally greater than 1 ) is picked. Since it takes logits from final layer as input, it

decays to normal softmax function σ(·) when τs equals 1. The function value

for the ith instance from the dataset (X,Y) can be calculated as follows:

στs(xi) =
exp (xi/τs)∑

xj∈X exp (xj/τs)
(1)

Next, we present the formulation of Teacher-Student (T/S) learning for ASR

on the preschool corpus. Given a pre-trained teacher network fθT (·) and a285

student network fθS (·), where θT and θS denote the network parameters, the

goal of knowledge distillation is to force the output probabilities of fθS (·) to

be close to that of fθT (·). Let (xi, yi) denote a training sample in dataset

(X,Y) of sequence of L output tokens and Y containing sequence of N input

speech frames. Pfθ (xi) indicate the logit response of xi from fθ(·). The student290

network fθS can then be learned by the following relation:

minθS
∑

(xi,yi)∈X,Y

α× τ2s ×KL
(
στs

(
PfθT (xi)

)
, στs

(
PfθS (xi)

))
+(1− α)×CE

(
σ
(
PfθS (xi)

)
, yi

)
,

(2)

where KL(·, ·) and CE(·, ·) are the Kullback-Leibler divergence (K-L divergence)

and cross-entropy loss, respectively. Another hyper-parameter α is utilized to

balance the solution between T/S loss and cross entropy loss, which performs

well when the weight for T/S loss is higher.295

6. Experimental Design and Evaluation metrics

Evaluations are performed for both the development and test sets to allow

for a comparison of the models as formulated in Sec. 4.3.
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6.1. Experimental Design

The input to the Whisper models consist of 80-channel log-magnitude Mel-300

spectrogram representation, computed on 25-millisecond windows with a stride

of 10 milliseconds. Prior to the transformer block, 2 convolution layers with a

filter of width 3 are applied followed by GELU activation function and Sinu-

soidal position embeddings. Byte-level Byte Pair Encoding text tokenizer used

in GPT-2 [40] is used as tokenizer for generating token ids from text transcripts305

as well as predicted ASR transcripts.

The ’small’ size model is utilized for both the teacher and student mod-

els to evaluate WER performance as seen in Fig. 4. This is done to evaluate

improvement solely due to adaptation procedure, rather than model size dif-

ferences. Studies[36, 37] have confirmed T/S learning based improvement for310

same size teacher and student models. Such improvements are attributed to

label-smoothing regularization.

In our case, every parameter from the decoder block consisting of MHA

and feedforward network layers are adapted during the training procedure. The

student model is utilized for evaluation on development and test sets and is315

referred to as ’small-adapt.’ for the rest of the paper.

The adaptation procedure is carried our for 12 epochs having batch size 64,

with best performing model on development set utilized for testing on evaluation

set. Based on empirical performance, α value is set to be 0.9 and τs value is set

to be 4.320

Results are reported for both development and test sets for both models

as explained in Sec. 7.1 and 7.2. The results are reported in terms of WER,

F1-score and Root Mean Squared Error (RMSE). These metrics are explained

as follows:

6.1.1. F1-score for word group detection325

To understand word detection capability in topic groupings and diverse

acoustic conditions, the proposed models are evaluated based on classroom

specific test data. Performance ’accuracy’ is defined as the total number of
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occurrences of all the words in a given word group that are predicted correctly.

’Precision’ is the fraction of relevant instances among all detected word oc-

currences. These would be the fraction of word predictions from ASR output

for a given group, that have been predicted correctly on comparing with text

transcripts.

Precisionword−group =
TPword−group

TPword−group + FPword−group
(3)

where TP represents True Positives and FP represents False Positives.

’Recall’ is defined as the fraction of relevant instances that were actually de-

tected. Here, these are the fraction of occurrences of words within a ’word group’

from the text transcript, that were predicted correctly as per ASR predictions.

Recallword−group =
TPword−group

TPword−group + FNword−group
(4)

where TP represents True Positives and FN represents False Negatives.

Next, the F1-score is defined as the harmonic mean of the precision and

recall, and takes both precision and recall into account to provide an overall

balanced score assessment,

F1− scoreword−group =
2× Precisionword−group ×Recallword−group
Precisionword−group +Recallword−group

(5)

6.1.2. Root Mean Squared Error (RMSE) for word group detection

RMSE measures the average difference between values predicted by a model

and the actual values. It provides an estimation of how well a model is able to330

predict the target value. A lower RMSE value indicates a better model. For this

study, RMSE is used to measure the difference between actual and predicted

word counts for the alternate groups of words.

Consider a word group that has ’n’ unique words. Let the actual word

counts as per text transcriptions for the i-th word in the group be ci while let335

the predicted word counts based on ASR predictions be ĉi. Hence, the RMSE
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for the word group can be written as per equation 7 below,

RMSEword−group =

√
1

n
Σni=1

( ||ci − ĉi||
σi

)2
(6)

Adapt on

Train set

of:

Evaluate

on Test

set of:

Model Subs.

Error

Rate

(%)

Ins.

Error

Rate

(%)

Del.

Error

Rate

(%)

WER

(%)

No Room B small 25.4 3.7 17.7 46.8

No Room B medium 22.6 5.3 15.2 43.1

Room A Room B small-adapt 29.2 4.8 9.0 43.0

No Room A small 22.5 4.2 15.2 41.9

No Room A medium 20.1 3.5 13.8 37.4

Room B Room A small-adapt 25.4 4.9 8.8 39.1

Table 5: Word Error Rate results on testing subset recordings of classroom A and classroom

B audio.

7. Results and Discussions

7.1. WER

Table 5 reports the WER of small, medium and small-adapt model while340

applied on test set of adult speech data from both the classrooms. The results

for the small and medium model are utilizing the pretrained models of sizes

’small’ and ’medium’ to test on the test set. Table 5 shows the results in terms

of WER for the alternate classrooms are achieved by the proposed ’small-adapt’

model which is better than both ’small’ and ’medium’ size models. This can345

be analyzed to be due to lowest percentage of errors due to deletions compared

to the pretrained models for both the classrooms. Insertion error rate increases

marginally for models tested on test sets of both classrooms but is lower than

medium-size model for Class A.
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Adapt

on

Train

set of:

Test on

Eval

set of:

Model F1

(400

most

fre-

quent

words)

F1

(WH

words)

F1

(Object

words)

F1

(High

engage-

ment

words)

F1

(Child

Re-

peated

words)

No Room A small

(λA)

57.9% 60.8% 62.3% 57.2% 59.5%

No Room A medium 62.8% 63.8% 67.1% 64.2% 64.4%

Room B Room A small-

ad

(θBA)

60.3% 67.4% 63.2% 60.1% 65.5%

F1-score(θBA) - F1-score(λA): 2.4% 6.6% 0.9% 2.9% 6.0%

Table 6: F1-score results for detecting words in corresponding groups on test set utterances

of classroom A audio.

Adapt

on

Train

set of:

Test on

Eval

set of:

Model RMSE

(400

most

fre-

quent

words)

RMSE

(WH

words)

RMSE

(Object

words)

RMSE

(High

engage-

ment

words)

RMSE

(Child

Re-

peated

words)

No Room A small

(λA)

5.2 12.8 2.4 6.6 16.7

No Room A medium 4.5 9.5 1.9 4.3 14.2

Room B Room A small-

ad

(θBA)

3.6 8.7 2.4 3.4 7.3

RMSE(θBA) - RMSE(λA): -1.6 -0.4 0.0 -3.2 -9.4

Table 7: Root Mean Squared Error (RMSE) results for detecting words in corresponding

groups on test set utterances of classroom A audio.
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Adapt

on

Train

set of:

Test on

Eval

set of:

Model F1

(400

most

fre-

quent

words)

F1

(WH

words)

F1

(Object

words)

F1

(High

engage-

ment

words)

F1

(Child

Re-

peated

words)

No Room B small

(λB)

51.5% 55.7% 43.7% 55.7% 51.3%

No Room B medium 56.1% 60.2% 48.7% 61.6% 55.3%

Room A Room B small-

ad

(θAB)

54.8% 59.8% 50.6% 59.1% 57.0%

F1-score(θAB) - F1-score(λB): 2.0% 4.1% 6.9% 3.4% 5.7%

Table 8: F1-score results for detecting words in corresponding groups on test set utterances

of classroom B audio.

Adapt

on

Train

set of:

Test on

Eval

set of:

Model RMSE

(400

most

fre-

quent

words)

RMSE

(WH

words)

RMSE

(Object

words)

RMSE

(High

engage-

ment

words)

RMSE

(Child

Re-

peated

words)

No Room B small

(λB)

9.2 16.8 6.4 7.5 12.1

No Room B medium 7.5 16.3 5.6 7.3 8.0

Room A Room B small-

ad

(θAB)

7.3 25.3 5.1 9.2 9.4

RMSE(θAB) - RMSE(λB): -1.9 9.0 -1.3 1.7 -3.5

Table 9: Root Mean Squared Error (RMSE) results for detecting words in corresponding

groups on evaluation subset utterances of classroom B audio.
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’Small-adapt’ model improves over the ’small’ model in terms of deletion350

error rate by 6.4% and 8.7% for test set of classrooms A and B respectively.

’Small-adapt’ model improves over the ’small’ model in terms of insertion error

rate by 0.7% for test set of classroom A and increases by 1.1% for test set

of classroom B. Thus, the adapted model is able to recognize the presence of

words in noisy and far-field conditions of the preschool classroom better than355

the original model of same size. However, the substitution error rate for the

adapted model increases by 2.9% over the test set for classroom B and by

3.8% for classroom A, compared to the baseline ’small’ model. Thus, although

the presence of words in possibly far-field, noisy audio segments is detected

accurately, it may detect the complete word or a part of the word (subword)360

inaccurately. Hence, detection of words with relevance in measuring child-adult

interactions, will be of greater importance.

Since the major focus for our task of ASR in challenging preschool class-

room scenario is detection of relevant groups of words as highlighted before, we

aspire for better detection performance for these words, rather than evaluating365

WER performance only. To understand the performance achievements for these

relevant words, we calculate F1-scores for detecting these groups of words and

RMSE scores of the word counts over these groups of words.

7.2. F1-score and RMSE

The alternate word groups to be detected include top 400 most frequently370

occurring words (excluding stop words), WH-Question words, object words,

high engagement words and child-repeated words. Tables 6 and 7 report on the

test data from Class A for ’word detection’ (in terms of F1-score) and word-

counting (in terms of RMSE) respectively, within the alternate word groups .

The ’small-adapt’ model provides improvement over the baseline ’small’ sized375

model for F1-score metrics on all of the word groups. This is demonstrated

by the absolute increase in F1-score values (F1-score(θBA) - F1-score(λA)) in

Table 6, for each of the word groups. A lower RMSE implies lower error between the

predicted word count and the actual word count. Absolute decrease (RMSE(θBA) -

RMSE(λA)) in RMSE values in Table 7 for majority of the word groups indicates380
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performance improvement for word-counting as well. The improvement in F1-scores

for test set of Class A varies from +0.9% to +6.6% and is better than the ’medium’

model for some of word groups as seen in Table 6. Similar improved performance in

terms of ’RMSE’ is observed for majority of the word groups in the test set of Class

A, with error reduction ranging from +0.4% to +9.4% as seen in Table 7.385

Tables 8 and 9 report on the test data from Class B for word-detection (in terms

of F1-score) and word-counting (in terms of RMSE) respectively, within the alternate

word groups. It is seen that the ’small-adapt’ model provides improvement over the

baseline ’small’ model for ’word detection’ on all the word groups. The increase in

’F1-score’ values ((F1-score(θAB) - F1-score(λB))) and decrease in ’RMSE’ values390

((RMSE(θAB) - RMSE(λB)) are seen in Tables 8 and 9 respectively for test set of

Class B. The improvement in F1-scores for test set of Class B varies from +2.0% to

+6.9% and is near or better than the ’medium’ sized model for a majority of the

word groups as seen in Table 8. Similar improved performance observation in terms

of ’RMSE’ is also observed for most word groups (except for WH-words) in the test395

set of Class B, with error reduction ranging from +1.9% to +3.5% as seen in Table 9.

Thus, the adapted version of the ’small’ model i.e. proposed ’small-adapt’ model is

an improved word-counting and relevant word-detection solution with improved scores

for both the tasks, on test data from both the classrooms. The performance of ’small-

adapt’ model is superior to ’medium’ sized model on atleast two word groups for both400

the scores (i.e. F1-score and RMSE) on test data from both the classrooms.

7.3. Parts of Speech Recognition

Percentage distribution of parts of speech (POS) are also reported for the test sets

in both the classrooms as per the transcription and the ASR predictions. Figs. 5

and 6 demonstrate the POS tags for text from Class A as per ground truth and ASR405

prediction respectively. Here, nouns and verbs have error of 2% missing and 2% gain

respectively, while preposition and digits have 1% gain and 1% missing respectively

based on ASR transcript predictions. Figs. 7 and 8 demonstrate the POS tags for

text from classroom B as per ground truth and ASR prediction respectively. Here,

nouns and verbs constitute POS for majority of the words in text. Out of this, the410

maximum error of 4% missing and 3% gained is for nouns and verbs respectively. The

remaining 1% is gained by prepositions. Thus, we can see the text from both the
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classrooms has a near similar distribution of nouns (52%-53%), verbs (24%-27%), ad-

jectives (6%), prepositions (4%), digits (6%-8%) and adverbs (5%). Also the predicted

POS distribution percentages have a maximum error of 4%.415

7.4. Audio tags as observable correlates of error rate improvement

In order to uncover attributes related to improvement in significant error types

(substitutions and deletions) with largest contributions to word error rate, we ex-

tract audio tags for each utterance. In following analyses, references of error rate

are composed of substitution and deletion errors. A deep learning model [41] trained420

on Google’s audioset, is utilized as a tool for predicting the most likely audio tags

out of 527 audio labels. The outputs predict multiple labels with confidence values

(probability) greater than zero.

Relevant labels related to specific aspects of the input audio are style of speech

(conversational, narration), speaker-type (male, female, child), singer-type (male, fe-425

male, child), animal sounds, sources of noise (chatter, crowd, zipper (clothing), writing,

television, music, tools, air conditioning, utensils, animal, bird, radio etc.), environ-

mental attributes (inside small room, inside large room, outside in urban environment,

outside in rural environment etc.) or actions (shuffling cards, chopping food etc.).

Next, audio labels are investigated within speaker-type, environmental-attribute430

and noise-source categories across the utterance segments. Utterances that were im-

proved by the small-adapt. model for substitution and/or deletion errors, showed

higher percentages of utterances (minimum confidence threshold=0.1) of the test set.

The ’high occurring’ audio labels in the improved utterance list along with their

corresponding presence for Class A include ’Inside, small room’ (+56.3%), ’Child435

speech’ (+23.4%), ’Music’ (+8.7%), ’Outside, urban or manmade’ (+16.3%) and ’Chil-

dren playing’ (+14.9%). The improved utterances represent +18.3% (for ’Inside, small

room’ audio label) to +21.1% (for ’Outside, urban or manmade’ audio label) of all

utterances with labels. Thus, assuming a worst case complete overlap of audio label

predictions, +56.3% of utterances with improved error types are indicative of being440

present with label ’Inside, small room’ representing a minimum of +18.3% of the ut-

terances belonging to the corresponding audio labels. Hence, some form of ’Child

sounds’ are present in 15%-23% of the error-improved utterances.

The ’high occurring’ audio labels in the improved utterance list along with re-

spective percentage of presence in test set of Class B includes ’Inside, small room’445
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(+64.9%), ’Inside, large room or hall’ (+34.3%), ’Child speech’ (+42.5%), ’Children

playing’ (+34.7%), ’Outside, urban or manmade’ (+21.2%) and ’Music’ (+81.7%).

The improved utterances included +21.6% (for ’Music’ audio label) to +22.3% (for

’Children Playing’ audio label) of utterances with these labels. Thus, assuming a worst

case complete overlap of these audio label predictions, +64.9% of utterances with these450

audio labels are present in the utterance list, with improved error types and a minimum

of +21.6% of utterances having one of these audio labels show error improvement. So,

some form of ’Child sounds’ are present in 35%-43% of the error-improved utterances.

Also, ’Music’ is detected in 82% of error-improved utterances.

Thus, ’Child sounds’ are present in higher percent of error-improved utterances455

of class B. Also, approximately 22% of utterances having ’Child sounds’ in test set

of Class B show improvement in errors Vs. approximately 20% of utterances having

’Child sounds’ in test set of Class A. Thus, Class B has higher percentage of utterances

with ’Child sounds’ labels that show improvement. This could be due to more noisy

conditions based on activities in Class B. Thus, despite the WER for ’small-adapt’460

model on test set of Class B not showing improvement better than the ’medium’

sized model, the improvements are impactful for the unique acoustic attributes of the

dataset for given classroom conditions.

8. Conclusions and Future work

In this study, a T/S learning strategy for end-to-end speech recognition on adult465

speech segments of preschool classrooms was proposed. Initial data analysis was per-

formed for measuring SNR for audio files from Class A and Class B. The analysis

showed more audio segments from Class B to have lower SNR compared to Class

A. Next, text transcripts of test subsets in both classrooms were analyzed. Words

contributing to child-adult engagement and/or learning were grouped to characterize470

conversational interactions through their statistics of occurrence. Pretrained ’Trans-

former’ models, renowned for state-of-the-art speech recognition performance on out-

of-distribution and noisy data, were employed on evaluation test data from two class-

rooms. T/S learning-based adaptation strategies provided models with improved per-

formance in terms of WER. Recognition of words belonging to distinct categories and475

corresponding word-counts from them, showed improved performance for the adapted

model Vs. pretrained model of the same size, for alternate A Vs. B classroom con-
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ditions. Thus, the improved WER performance in terms of deletions, resulted in

improvement in performance for important groups of words in our analysis, coun-

teracting any loss in performance due to substitution errors. For future work, it is480

suggested to explore further the T/S learning strategy with ’medium’ size models and

perform knowledge distillation to a ’small’ size model to evaluate any further perfor-

mance improvements. Since the scope of this study involved classroom-independent

ASR, future work could also include performance evaluation of a diarization system

along with ASR. While full recognition of adult-child speech within daily naturalistic485

classroom settings has been a major challenge in the field, these advancements have

shown great promise in providing effective quantitative speech and language metrics

for teacher-child conversational engagement. In addition, if there is greater concern

regarding privacy, especially for at-risk children, the category based word-counting can

offer rich feedback for teachers.490
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Figure 2: Probability density function of NIST SNR measured over 1 second segments for all

audio within classrooms A and B.
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Figure 4: Block Diagram for Teacher-Student Learning on Kentucky adult speech corpus using

Whisper small-size models.

Figure 5: Actual distribution of parts of speech from adult talk transcript as represented by

a pie chart for a session in classroom A with a child wearing the LENA device.
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Figure 6: Predicted distribution of parts of speech from adult talk ASR predictions as repre-

sented by a pie chart for a session in classroom A with a child wearing the LENA device.

Figure 7: Actual distribution of parts of speech from adult talk transcript as represented by a

pie chart for a session in classroom B with both children and adults wearing the LENA device.
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Figure 8: Predicted distribution of parts of speech from adult talk ASR predictions as repre-

sented by a pie chart for a session in classroom B with both children and adults wearing the

LENA device.
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