Published as a conference paper at ICLR 2023

EDGEFORMERS: GRAPH-EMPOWERED TRANSFORM-
ERS FOR REPRESENTATION LEARNING ON TEXTUAL-
EDGE NETWORKS

Bowen Jin, Yu Zhang, Yu Meng, Jiawei Han
Department of Computer Science, University of Illinois at Urbana-Champaign
{bowenj4,yuz9, yumeng5,hanj}@illinois.edu

ABSTRACT

Edges in many real-world social/information networks are associated with rich text
information (e.g., user-user communications or user-product reviews). However,
mainstream network representation learning models focus on propagating and
aggregating node attributes, lacking specific designs to utilize text semantics on
edges. While there exist edge-aware graph neural networks, they directly initialize
edge attributes as a feature vector, which cannot fully capture the contextualized
text semantics of edges. In this paper, we propose Edgeformers!, a framework
built upon graph-enhanced Transformers, to perform edge and node representation
learning by modeling texts on edges in a contextualized way. Specifically, in edge
representation learning, we inject network information into each Transformer layer
when encoding edge texts; in node representation learning, we aggregate edge
representations through an attention mechanism within each node’s ego-graph.
On five public datasets from three different domains, Edgeformers consistently
outperform state-of-the-art baselines in edge classification and link prediction,
demonstrating the efficacy in learning edge and node representations, respectively.

1 INTRODUCTION

Networks are ubiquitous and are widely used to model interrelated data in the real world, such as
user-user and user-item interactions on social media (Kwak et al., 2010; Leskovec et al., 2010) and
recommender systems (Wang et al., 2019; Jin et al., 2020). In recent years, graph neural networks
(GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017; Velickovic et al., 2018; Xu et al., 2019) have
demonstrated their power in network representation learning. However, a vast majority of GNN
models leverage node attributes only and lack specific designs to capture information on edges. (We
refer to these models as node-centric GNNs.) Yet, in many scenarios, there is rich information
associated with edges in a network. For example, when a person replies to another on social media,
there will be a directed edge between them accompanied by the response texts; when a user comments
on an item, the user’s review will be naturally associated with the user-item edge.

To utilize edge information during network representation learning, some edge-aware GNNs (Gong &
Cheng, 2019; Jiang et al., 2019; Yang & Li, 2020; Jo et al., 2021) have been proposed. Nevertheless,
these studies assume the information carried by edges can be directly described as an attribute vector.
This assumption holds well when edge features are categorical (e.g., bond features in molecular
graphs (Hu et al., 2020) and relation features in knowledge graphs (Schlichtkrull et al., 2018)).
However, effectively modeling free-text edge information in edge-aware GNNs has remained elusive,
mainly because bag-of-words and context-free embeddings (Mikolov et al., 2013) used in previous
edge-aware GNNs cannot fully capture contextualized text semantics. For example, “Byzantine” in
history book reviews and “Byzantine” in distributed system papers should have different meanings
given their context, but they correspond to the same entry in a bag-of-words vector and have the same
context-free embedding.

To accurately capture contextualized semantics, a straightforward idea is to integrate pretrained
language models (PLMs) (Devlin et al., 2019; Liu et al., 2019; Clark et al., 2020) with GNNs. In
node-centric GNN studies, this idea has been instantiated by a PLM-GNN cascaded architecture
(Fang et al., 2020; Li et al., 2021; Zhu et al., 2021), where text information is first encoded by a PLM
and then aggregated by a GNN. However, such architectures process text and graph signals one after

!Code can be found at https://github.com/PeterGriffinJin/Edgeformers.

https://github.com/PeterGriffinJin/Edgeformers

Published as a conference paper at ICLR 2023

the other, and fail to simultaneously model the deep interactions between both types of information.
This could be a loss to the text encoder because network signals are often strong indicators to text
semantics. For example, a brief political tweet may become more comprehensible if the stands of the
two communicators are known. To deeply couple PLMs and GNNs, the recent GraphFormers model
(Yang et al., 2021) proposes a GNN-nested PLM architecture to inject network information into the
text encoding process. They introduce GNNs nested in between Transformer layers so that the center
node encoding not only leverages its own textual information, but also aggregates the signals from its
neighbors. Nevertheless, they assume that only nodes are associated with textual information and
cannot be easily adapted to handle text-rich edges.

To effectively model the textual and network structure information via a unified encoder architecture,
in this paper, we propose a novel network representation learning framework, Edgeformers, that
leverage graph-enhanced Transformers to model edge texts in a contextualized way. Edgeformers
include two architectures, Edgeformer-E and Edgeformer-N, for edge and node representation
learning, respectively. In Edgeformer-E, we add virtual node tokens to each Transformer layer
inside the PLM when encoding edge texts. Such an architecture goes beyond the PLM-GNN
cascaded architecture and enables deep, layer-wise interactions between network and text signals
to produce edge representations. In Edgeformer-N, we aggregate the network-and-text-aware edge
representations to obtain node representations through an attention mechanism within each node’s
ego-graph. The two architectures can be trained via edge classification (which relies on good edge
representations) and link prediction (which relies on good node representations) tasks, respectively.
To summarize, our main contributions are as follows:

* Conceptually, we identify the importance of modeling text information on network edges and
formulate the problem of representation learning on textual-edge networks.

* Methodologically, we propose Edgeformers (i.e., Edgeformer-E and Edgeformer-N), two graph-
enhanced Transformer architectures, to deeply couple network and text information in a contextual-
ized way for edge and node representation learning.

» Empirically, we conduct experiments on five public datasets from different domains and demonstrate
the superiority of Edgeformers over various baselines, including node-centric GNNs, edge-aware
GNNs, and PLM-GNN cascaded architectures.

2 PRELIMINARIES
2.1 TEXTUAL-EDGE NETWORKS

In a textual-edge network, each edge is associated with texts. We view the texts on each edge as a
document, and all such documents constitute a corpus D. Since the major goal of this work is to
explore the effect of textual information on edges, we assume there is no auxiliary information (e.g.,
categorical or textual attributes) associated with nodes in the network.

Definition 1 (Textual-Edge Networks) A textual-edge network is defined as G = (V, €, D), where V,
E, D represent the sets of nodes, edges, and documents, respectively. Each edge e;; € £ is associated
with a document d;; € D.

To give an example of textual-edge networks, consider a review network (e.g., Amazon (He &
McAuley, 2016)) where nodes are users and items. If a user v; writes a review about an item v;, there
will be an edge e;; connecting them, and the review text will be the associated document d;;.

2.2 TRANSFORMER

Many PLMs (e.g., BERT (Devlin et al., 2019)) adopt a multi-layer Transformer architecture (Vaswani
etal., 2017) to encode texts. Each Transformer layer utilizes a multi-head self-attention mechanism to

obtain a contextualized representation of each text token. Specifically, let H") = [hgl), hg), ey hﬁf)]

denote the output sequence of the [-th Transformer layer, where hl(-l) € R%is the hidden representation
of the text token at position ¢. Then, in the (I + 1)-th Transformer layer, the multi-head self-attention
(MHA) is calculated as .

MHA(H®) = |

t=

head! (H") ()
1

K QY

head' (H") = VU . softmax(—t—%t_ 2
=) -V, o) @
0l —wi . KO —wihED. VO - wiE, o

Published as a conference paper at ICLR 2023

Node Representation . .
P B 0 O O Virtual Node Token Hidden States

Edge Representation I Local Network Hidden State
[] [] []

o \Local Network Aggregation

> o mmm
W A)
[b
ety R R

2

o)
i NE e
Ego-Graph

e Bo
(a) Edgeformer-E (b) Edgeformer-N

Figure 1: Model Framework Overview. (a) An illustration of Edgeformer-E for edge representation
learning, where virtual node token hidden states are concatenated to the edge text original token
hidden states to inject network signal into edge text encoding. (b) An illustration of Edgeformer-N
for node representation learning, where Edgeformer-E is enhanced by local network structure virtual
token hidden state and edge representations are aggregated to obtain node representation.

where Wg 1, Wi 1, Wy 4 are query, key, and value matrices to be learned by the model, % is the
number of attention head and | is the concatenate operation.

2.3 PROBLEM DEFINITIONS

Our general goal is to learn meaningful edge and node embeddings in textual-edge networks so as
to benefit downstream tasks. To be specific, we consider the following two tasks focusing on edge
representation learning and node representation learning, respectively.

The first task is edge classification, which relies on learning a good representation h. of an edge
e € £. We assume each edge e;; belongs to a category y €). The category can be indicated by
its associated text d;; and/or the nodes v; and v;. For example, in the Amazon review network,
Y = {l-star, 2-star, ..., 5-star}. The category of e;; reflects how the user v; is satisfied with the item
v;, which may be expressed by the sentiment of d;; and/or implied by v;’s preference and v;’s quality.
Given a review, the task is to predict its category based on review text and user/item information.

Definition 2 (Edge Classification) In a textual-edge network G = (V,E,D), we can observe the
category of some edges Eirqin, < E. Given an edge e;j € E\Eirqin, predict its category y €) based
ond;; € D and v;,vj € V.

The second task is link prediction, which relies on learning an accurate representation h,,; of a node
v; € V. Given two nodes v; and v;, the task is to predict whether there is an edge between them. Note
that, unlike edge classification, we no longer have the text information d;; (because we even do not
know whether e;; exists). Instead, we need to exploit other edges (local network structure) involving
v; or v; as well as their text to learn node representations k., and h.,;. For example, in the Amazon
review network, we aim to predict whether a user will be satisfied with a product according to the
user’s reviews towards other products and the item’s reviews from other users.

Definition 3 (Link Prediction) In a textual-edge network G = (V, £, D), we can observe some edges
Etrain S € and their associated text. Given v;,v; € V where e;5 ¢ Eirqin, predict whether e;; € £.

3 PROPOSED METHOD

In this section, we present our Edgeformers framework. Based on the two tasks mentioned in Section
2.3, we first introduce how we conduct edge representation learning by jointly considering text and
network information via a Transformer-based architecture (Edgeformer-E). Then, we illustrate how
to perform node representation learning using the edge representation learning module as building
blocks (Edgeformer-N). The overview of Edgeformers is shown in Figure 1.

Published as a conference paper at ICLR 2023

3.1 EDGE REPRESENTATION LEARNING (EDGEFORMER-E)

Network-aware Edge Text Encoding with Virtual Node Tokens. Encoding d;; in a textual-edge
network is different from encoding plain text, mainly because edge texts are naturally accompanied
by network structure information, which can provide auxiliary signals. Given that text semantics
can be well captured by a multi-layer Transformer architecture (Devlin et al., 2019), we propose a
simple and effective way to inject network signals into the Transformer encoding process. The key
idea is to introduce virtual node tokens. Given an edge e;; = (v;, v;) and its associated texts d;;, let

H 6(2 e R¥*™ denote the output representations of all text tokens in d;; after the I-th model layer
(I = 1). In each layer, we introduce two virtual node tokens to represent v; and v;, respectively. Their

embeddings are denoted as zﬁ) and zz(,? € R®, which are concatenated to the text token sequence

hidden states as follows:

T l I I

H{) ==z =) |H). @
After the concatenation, H. 8(13 contains information from both e;;’s associated text d;; and its
involving nodes v; and v;. To let text token representations carry node signals, we adopt a multi-head
attention mechanism:

~ k ~
MHA(HS), H)) = | head"(Hep, HoJo), 5)
l l l l) 75l l) 75 (1
QY =wiHD, KY=-wlHD, v-wiH], ©)

In Eq. (5), the multi-head attention is asymmetric (i.e., the keys K and values V' are augmented
with virtual node embeddings but queries @ are not) to avoid network information being overwritten
by text signals. This design has been used in existing studies Yang et al. (2021), and offers better
effectiveness than the original self-attention mechanism according to our experiments in Section 4.2.
The output of MHA includes updated node-aware representations of text tokens. Then, following
the Transformer architecture (Vaswani et al., 2017), the updated representations will go through a
feed-forward network (FFN) to finish our (I + 1)-th model layer encoding. Formally,

H"'" = Normalize(H{") + MHA(H), H()), 7

ij 7T ey

HTD = Normalize(H(l,)_/ + FFN(IJG‘(Z)/))7 (®)
3 ij 1]

e e

where Normalize(+) is the layer normalization function. After L model layers, the final representation
of the [CLS] token will be used as the edge representation of e;;, i.e., he,; = H. (L) [CLS].

€ij
Representation of Virtual Node Tokens. The virtual node representation zl(,i) used in Eq.(4) is

obtained by a layer-specific mapping of the initial node embedding zf,?). Formally,

2 =w ", ©)

where W,E” e R s the mapping matrix for the [-th layer. The large population of nodes
will introduce a large number of parameters to our framework, which may finally lead to model
underfitting. As a result, in Edgeformers, we set the initial node embedding to be low-dimensional
(e.g., z{Y) € R%%) and project it to the high-dimensional token representation space (e.g., 25 € R76%).
Note that it is possible to go beyond the linear mapping in Eq. (9) and use structure-aware encoders

such as GNNs to obtain zq(,li), and we leave such extensions for future studies.

3.2 TEXT-AWARE NODE REPRESENTATION LEARNING (EDGEFORMER-N)

In this section, we first discuss how to perform text-aware node representation learning by taking the
aforementioned edge representation learning module (i.e., Edgeformer-E) as building blocks. Then,
we propose to enhance the edge representation learning module with the target node’s additional local
network structure.

Aggregating Edge Representations. Since the edge representations learned by Edgeformer-E
capture both text semantics and network structure information, a straightforward way to obtain a
node representation is to aggregate the representations of all edges involving the node. Given a node
v;, its representation h,,; is given by

ho, = AGG({he,,|ei; € No(v)}), (10)

Published as a conference paper at ICLR 2023

where N. (v;) is the set of edges containing v;. AGG(+) can be any permutation invariant function
such as mean(-) or max(-). Here, we instantiate AGG(+) with an attention-based aggregation:

Qv = softmax(hzm Wszf)?)), h,, = Z Qe v he,; (11)
ei]-e./\/'e(vi)

where W, € R%*? is a learnable scoring matrix.

Enhancing Edge Representations with the Node’s Local Network Structure. Since we are
aggregating information from multiple edges, it is intuitive that they can mutually improve each
other’s representation by providing auxiliary semantic signals. For example, given a conversation
about “Transformers” and their participants’ other conversations centered around “machine learning”,
it is more likely that the term “Transformers” refers to a deep learning architecture rather than a
character in the movie. To implement this intuition in the edge representation learning module, we

introduce the third virtual token hidden state }_lilv)v Ios during edge encoding:
=13 Vi

HY =010 80 |HY, (12)

eijlvi eijlvi

where I_zg), ». 18 the contextualized reprlesentation of e;; given target node v;’s local network structure.
Cij |Vi = . . .
Now we introduce how to calculate hg _), Jos by aggregating information from A, (v;).
iglvi

Representation of ﬁig o For each edge e;5 € N, (v;) (including e;;), we treat the hidden state of
its [CLS] token after the [-th layer as its representation (i.e., h((fl = H(Efz [CLS]). To obtain Bgv).w-’
we adopt MHA to let all edges in NV, (v;) interact with each other.

[AOREN A0] — MHA ([D ... hO]) (13)

> eqjlvi? T egs|vg 7T e T T s

In the equation above, [, héi)], e hgi)] contains the [-th layer representations of all edges
O]

involving v;. Therefore, after MHA, the edge representation ﬁe o

_essentially aggregates information
from v;’s local network structure NV, (v;).

Connection between Edgeformer-N and GNNs. According to Figure 1, Edgeformer-N adopts a
Transformer-based architecture. Meanwhile, it can also be viewed as a GNN model. Indeed, GNN
models (Wu et al., 2020; Yang et al., 2020) mainly adopt a propagation-aggregation paradigm to
obtain node representations:

ij

al~" = pROP® (hg“lhhg.“”) (Vi eN()); b =AGGY (h,ﬁ’*”, {all=V|j ej\/'(i)}) . (14)

Analogously, in Edgeformer-N, Eq. (13) can be treated as the propagation function PROP", and
the aggregation step AGGW is the combination of Egs. (12), (7), (8), and (10).

3.3 TRAINING

As mentioned in Section 2.3, we consider edge classification and link prediction as two tasks to train
Edgeformer-E and Edgeformer-N, respectively.

Edge Classification. For Edgeformer-E (i.e., edge representation learning), we adopt supervised
training, the objective function of which is as follows.

Ee = _Zy;jloggew + (1 - yeij>—r10g<1 - Qeij>7 (]5)

where §.,, = f(h
Link Prediction. For Edgeformer-N (i.e., node representation learning), we conduct unsupervised
training, where the objective function is as follows.

exp(h, h.)
L, = —log v) (16)
; ue%;(v) exp(h] hy) + >, exp(h] h.)

e;;) is the predicted category distribution of e;; and f(-) is a learnable classifier.

Here, N,,(v) is the set of v’s node neighbors and v’ denotes a random negative sample. In our
implementation, we utilize “in-batch negative samples” (Karpukhin et al., 2020) to reduce encoding
and training costs.

Published as a conference paper at ICLR 2023

Table 1: Edge classification performance on Amazon-Movie, Amazon-App, Goodreads-Crime, and
Goodreads-Children.

Amazon-Movie Amazon-Apps Goodreads-Crime Goodreads-Children
Model Macro-F1 Micro-F1 Macro-F1 ~ Micro-FI ~ Macro-F1 ~ Micro-F1 ~ Macro-F1 ~ Micro-F1
TF-IDF 50.01 64.22 48.30 62.88 43.07 51.72 39.42 49.90
TF-IDF+nodes 53.59 66.34 50.56 65.08 49.35 57.50 47.32 56.78
BERT 61.38 71.36 59.11 69.27 56.41 61.29 51.57 57.72
BERT+nodes 63.00 72.45 59.72 70.82 58.64 65.02 54.42 60.46
Edgeformer-E 64.18 73.59 60.67 71.28 61.03 65.86 57.45 61.71

Overall Algorithm. The workflow of our edge representation learning (Edgeformer-E) and node
representation learning (Edgeformer-N) algorithms can be found in Alg. 1 and Alg. 2, respectively.

Complexity Analysis. Given a node involved in N edges, and each edge has P text tokens,
the time complexity of edge encoding for each Edgeformer-E layer is O(P?) (the same as one
vanilla Transformer layer). The time complexity of node encoding for each Edgeformer-N layer is
O(NP? + N?). For most nodes in the network, we can assume N2 « NP2, so the complexity is
roughly O(N P?) (the same as one PLM-GNN cascaded layer). For more discussions about time
complexity, please refer to Section 4.5.

4 EXPERIMENTS

In this section, we first introduce five datasets. Then, we demonstrate the effectiveness of Edgeformers
on both edge-level (e.g., edge classification) and node-level (e.g., link prediction) tasks. Finally, we
conduct visualization and efficiency analysis to further understand Edgeformers.

4.1 DATASETS

We run experiments on three real-world networks: Amazon (He & McAuley, 2016), Goodreads (Wan
et al., 2019), and StackOverflow?. Amazon is a user-item interaction network, where reviews are
treated as text on edges; Goodreads is a reader-book network, where readers’ comments are used as
edge text information; StackOverflow is an expert-question network, and there will an edge when
an expert posts an answer to a question. Since Amazon and Goodreads both have multiple domains,
we select two domains for each of them. In total, there are five datasets used in evaluation (i.e.,
Amazon-Movie, Amazon-Apps, Goodreads-Crime, Goodreads-Children, StackOverflow). Dataset
statistics can be found in Appendix A.1.

4.2 TASK FOR EDGE REPRESENTATION LEARNING

Baselines. We compare our Edgeformer-E model with a bag-of-words method (TF-IDF (Robertson
& Walker, 1994)) and a pretrained language model (BERT (Devlin et al., 2019)). Both baselines
are further enhanced with network information by concatenating the node embedding z; with the
bag-of-words vector (TF-IDF+nodes) or appending it to the input token sequence (BERT+nodes).

Edge Classification. The model is asked to predict the category of each edge based on its associated
text and local network structure. There are 5 categories for edges in Amazon (i.e., 1-star, ..., 5-star)
and 6 categories for edges in Goodreads (i.e., O-star, ..., 5-star).

For TF-IDF methods, the dimension of the bag-of-words vector is 2000. BERT-involved models
and Edgeformer-E have the same model size (L = 12,d = 768) and are initialized by the same
checkpoint®. The dimension of initial node embeddings d’ is set to be 64. We use AdamW as the
optimizer with (¢, 81, B82) = (1e-8,0.9,0.999). The learning rate is le-5. The early stopping patience
is 3 epochs. The batch size is 25. Macro-F1 and Micro-F1 are used as evaluation metrics. For
BERT-involved models, parameters in BERT are trainable.

Table 1 summarizes the performance comparison on the five datasets. From the table, we can observe
that: (a) our Edgeformer-E consistently outperforms all the baseline methods; (b) PLM-based methods
(i.e., BERT, BERT+nodes, and Edgeformer-E) can have more promising results than bag-of-words
methods (i.e., TF-IDF and TF-IDF+nodes); (c) injecting node information can significantly improve
performance if we compare TF-IDF with TF-IDF+nodes or compare BERT with BERT+nodes; (d)
the performance of Edgeformer-E is better than that of directly appending node embeddings to the

https://www.kaggle.com/datasets/stackoverflow/stackoverflow
Shttps://huggingface.co/bert-base-uncased

https://www.kaggle.com/datasets/stackoverflow/stackoverflow
https://huggingface.co/bert-base-uncased

Published as a conference paper at ICLR 2023

Table 2: Link prediction performance (on the testing set) on Amazon-Movie, Amazon-Apps,
Goodreads-Crime, Goodreads-Children, and StackOverflow. A denotes the relative improvement of
our model comparing with the best baseline.

Amazon-Movie Amazon-Apps Goodreads-Crime ~ Goodreads-Children StackOverflow

Model MRR NDCG MRR NDCG MRR NDCG MRR NDCG MRR NDCG
MF 0.2032 0.3546 0.1482 0.3052 0.1923 0.3443 0.1137 0.2716 0.1040 0.2642
MeanSAGE 0.2138 0.3657 0.1766 0.3343 0.1832 0.3368 0.1066 0.2647 0.1174 0.2768
MaxSAGE 0.2178 03694 0.1674 0.3258 0.1846 0.3387 0.1066 0.2647 0.1173 0.2769
GIN 0.2140 0.3648 0.1797 0.3362 0.1846 0.3374 0.1128 0.2700 0.1189 0.2778
CensNet 0.2048 0.3568 0.1894 0.3457 0.1880 0.3398 0.1157 0.2726 0.1235 0.2806
NENN 0.2565 0.4032 0.1996 0.3552 0.2173 0.3670 0.1297 0.2854 0.1257 0.2854
BERT 0.2391 0.3864 0.1790 0.3350 0.1986 0.3498 0.1274 0.2836 0.1666 0.3252

BERT+MaxSAGE 0.2780 0.4224 0.2055 0.3602 0.2193 0.3694 0.1312 0.2872 0.1681 0.3264
BERT+MeanSAGE 0.2491 0.3972 0.1983 0.3540 0.1952 0.3477 0.1223 0.2791 0.1678 0.3264

BERT+GIN 0.2573 0.4037 0.2000 0.3552 0.2007 0.3522 0.1238 0.2801 0.1708 0.3279
GraphFormers 0.2756 0.4198 0.2066 0.3607 0.2176 0.3684 0.1323 0.2887 0.1693 0.3278
BERT+CensNet 0.1919 0.3462 0.1544 0.3132 0.1437 0.3000 0.0847 0.2436 0.1173 0.2789
BERT+NENN 0.2821 0.4256 0.2127 0.3666 0.2262 0.3756 0.1365 0.2925 0.1619 0.3215
Edgeformer-N 0.2919 0.4344 0.2239 0.3771 0.2395 0.3875 0.1446 0.3000 0.1754 0.3339
T+A% T 35% 21% 53% 29% 59% 32% 59% @ 2.6% < 27% 18%

input token sequence (i.e., BERT+nodes), possibly because network information is overwritten by
text signals in BERT+nodes’ deeper layers.

4.3 TASKS FOR NODE REPRESENTATION LEARNING

Baselines. We compare Edgeformer-N with several vanilla GNN models and PLM-integrated
GNN models. Vanilla GNN models include node-centric GNNs such as MeanSAGE (Hamilton
et al., 2017), MaxSAGE (Hamilton et al., 2017) and GIN (Xu et al., 2019), and edge-aware GNNs
such as CensNet (Jiang et al., 2019) and NENN (Yang & Li, 2020). All vanilla edge-aware GNNs
models use bag-of-words as initial edge feature representations. PLM-integrated GNN models
utilize a PLM (Devlin et al., 2019) to obtain text representations on edges and adopt a GNN to obtain
node representations by aggregating edge representations. Baselines include BERT+MeanSAGE
(Hamilton et al., 2017), BERT+MaxSAGE (Hamilton et al., 2017), BERT+GIN (Xu et al., 2019),
BERT+CensNet (Jiang et al., 2019), BERT+NENN (Yang & Li, 2020), and GraphFormers (Yang
et al., 2021). To verify the importance of both text and network information in text-rich networks, we
also include matrix factorization (MF) (Qiu et al., 2018) and vanilla BERT (Devlin et al., 2019) in the
comparison.

Link Prediction. The task is to predict whether there will be an edge between two target nodes,
given their local network structures. Specifically, in the Amazon and Goodreads datasets, given the
target user’s reviews to other items/books and the target item/book’s reviews from other users, we
aim to predict whether there will be a 5-star link between the target user and the target item/book.
In the StackOverflow dataset, we aim to predict whether the target expert can give an answer to the
target question. We use MRR and NDCG as evaluation metrics.

For vanilla GNN models, we find that adopting MF node embeddings as initial node embeddings can
help them obtain better performance (Lv et al., 2021). For edge-aware GNNs, bag-of-words vectors
are used as edge features, the size of which is set as 2000. For BERT-involved models, the training
parameters are the same as 4.2. During the testing stage, all methods are evaluated with samples in
the batch for efficiency, i.e., each query node is provided with one positive key node and 99 randomly
sampled negative key nodes. More details can be found in Appendix A.8.

Table 2 shows the performance comparison. From the table, we can find that: (a) Edgeformer-N out-
performs all the baseline methods consistently; (b) BERT-based methods can have significantly better
performance than bag-of-words GNN methods, which demonstrates the importance of contextualized
text semantics encoding; (c) edge-aware methods can have better performance, but it depends on
how the edge information contributes to node representation learning; (d) our Edgeformer-N is the
best since it takes edge text into consideration and deeply integrates text encoding and local network
structure encoding.

Ablation Study. We further conduct an ablation study to validate the effectiveness of all the three
virtual tokens on node representation learning. The three virtual token hidden states are deleted
respectively from the whole model and the results are shown in Table 3. From the table, we can find
that Edgeformer-N generally outperforms all the model variants on all the datasets, except for that

Published as a conference paper at ICLR 2023

Table 3: Ablation study of link prediction performance (on the testing set) on Amazon-Movie,
Amazon-Apps, Goodreads-Crime, Goodreads-Children, and StackOverflow. (-) means removing the
corresponding virtual tokens.
Amazon-Movie Amazon-Apps Goodreads-Crime Goodreads-Children StackOverflow
Model MRR NDCG MRR NDCG MRR NDCG MRR NDCG MRR NDCG
Edgeformer-N 0.2919 0.4344 0.2239 03771 0.2395 0.3875 0.1446 0.3000 0.1754 0.3339

- center node token 0.2899 0.4325 0.2178 03717 0.2361 0.3847 0.1407 0.2964 0.1702 0.3291
- neighbor node token 0.2880 0.4306 0.2115 0.3656 0.2322 0.3807 0.1411 0.2963 0.1730 0.3310
- neighbor text token ~ 0.2895 0.4321 0.2260 0.3789 0.2386 0.3867 0.1442 0.2998 0.1734 0.3314

Table 4: Node classification performance on Amazon-Movie and Amazon-App.

Amazon-Movie Amazon-Apps
Model Macro-F1 Micro-F1 PREC Macro-F1 Micro-F1 PREC
MF 0.7566+0.0017 0.8234+0.0013 0.8241+£0.0013 0.4647+0.0151 0.8393+0.0012 0.8462+0.0006
CensNet 0.8528+0.0010 0.8839+0.0008 0.8845+0.0007 0.2782+0.0168 0.8279+0.0006 0.8331+0.0005
NENN 0.9186+0.0008 0.9341+0.0008 0.9347+0.0007 0.3408+0.0082 0.8789+0.0019 0.8819+0.0017
BERT 0.9209+£0.0005 0.9361+0.0003 0.9367+0.0003 0.7608+0.0175 0.9283+0.0015 0.9337+0.0015

BERT+CensNet 0.9032+0.0006 0.9221+0.0004 0.9227+0.0004 0.5750+0.0277 0.8692+0.0034 0.8731+0.0028
BERT+NENN 0.9247+0.0005 0.9387£0.0004 0.9393+0.0005 0.7556x0.0092 0.9306+0.0008 0.9382+0.0006

Edgeformer-N 0.9276+0.0007 0.9411£0.0006 0.9417+0.0005 0.7758+0.0100 0.9339+0.0007 0.9431+0.0005

without neighbor edge information virtual token in Amazon-Apps, which indicates the importance of
all three virtual token hidden states.

Node Classification with unsupervised node embedding. To further evaluate the quality of the
unsupervised learned node embeddings, we fix the node embeddings obtained from link prediction
and train a logistic regression classifier to predict nodes’ categories. This is a multi-class multi-label
classification task, where there are 2 classes for Amazon-Movie and 26 classes for Amazon-Apps.
Table 4 summarizes the performance comparison between several edge-aware methods. We can
find that: (a) Edgeformer-N can outperform all the baselines significantly and consistently, which
indicates that Edgeformer-N can learn more effective node representations; (b) edge-aware models
can have better performance, but it depends on how the edge text information is employed.

4.4 EMBEDDING VISUALIZATION

To reveal the relation between edge embeddings and node embeddings learned by our model, we
apply t-SNE (Van der Maaten & Hinton, 2008) to visualize them in Figure 2. Node embeddings (i.e.,
{hy|v € V}) are denoted as stars, while edge embeddings (i.e., {h.|e € £}) are denoted as points
with the same color as the node they link to. From the figure, we observe that: (1) node embeddings
tend to be closer to each other in the embedding space compared with edge embeddings; (2) the
embeddings of edges linked to the same node are in the vicinity of each other.

4.5 EFFICIENCY ANALYSIS

We now compare the efficiency of BERT+GIN (a node-centric GNN), BERT+NENN (an edge-aware
GNN), GraphFormers (a PLM-GNN nested architecture), and our Edgeformer-N. All models are
run on one NVIDIA A6000. The mini-batch size is 25; each sample contains one center node and
|V (v)| neighbor edges; the maximum text length is 64 tokens. The running time (per mini-batch) of
compared models is reported in Table 5, where we have the following findings: (a) the time cost of
training Edgeformer-N is quite close to that of BERT+GIN, BERT+NENN, and GraphFormers; (b)
PLM-GNN nested architectures (i.e., GraphFormers and Edgeformer-N) require slightly longer time
during training than PLM-GNN cascaded architectures (i.e., BERT+GIN and BERT+NENN); (c) the
time cost of Edgeformer-N increases linearly with the neighbor size |V, (v)|, which is consistent with
our analysis in Section 3.3 that the time complexity of Edgeformer-N is O(N P% + N?2) ~ O(N P?)
when N « P.

5 RELATED WORK

5.1 PRETRAINED LANGUAGE MODELS

PLMs are proposed to learn universal language representations from large-scale text corpora. Early
studies such as word2vec (Mikolov et al., 2013), fastText (Bojanowski et al., 2017), and GloVe
(Pennington et al., 2014) aim to learn a set of context-independent word embeddings to capture
word semantics. However, many NLP tasks are beyond word-level, so it is beneficial to derive word
representations based on specific contexts. Contextualized language models are extensively studied

Published as a conference paper at ICLR 2023

o0 L R 60 ﬁ***

40 - 20

20 : ..0 L - 2 g * i} *

0 i}{*ﬁ; 0 . ®
o] . * " ®oe o
—60 .‘. ‘ ‘. o

(a) Apps (b) Children

Figure 2: Embedding visualization. Node embeddings are denoted as stars, and the embeddings of
edges are denoted as points with the same color if they are linked to the same node.

Table 5: Time cost (ms) per mini-batch for BERT+GIN, BERT+NENN, GraphFormers, and
Edgeformer-N, with neighbor size |V, (v)| increasing from 2 to 5 on Amazon-Apps, Goodreads-
Children, and StackOverflow. Edgeformer-N achieves similar efficiency with the baselines.
Amazon-Apps Goodreads-Children StackOverflow
Model 2 3 4 5 2 3 4 5 2 3 4 5

BERT+GIN 1553 2144 2569 31.19 1544 2138 2588 31.02 1529 2141 2558 31.05
BERT+NENN 1570 21.71 26.03 31.50 15.78 21.86 26.15 3146 1574 2197 26.09 31.46
GraphFormers 17.21 23.56 2829 3443 17.08 23.76 2843 3438 17.13 23.65 28.60 34.45
Edgeformer-N 18.68 2539 30.45 36.57 18.74 25.17 3042 3642 1857 2532 3046 36.32

recently to achieve this goal. For example, GPT (Peters et al., 2018; Radford et al., 2019) adopts
auto-regressive language modeling to predict a token given all previous tokens; BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) are trained via masked language modeling to recover randomly
masked tokens; XLNet (Yang et al., 2019) proposes permutation language modeling; ELECTRA
(Clark et al., 2020) uses an auxiliary Transformer to replace some tokens and pretrains the main
Transformer to detect the replaced tokens. For more related studies, one can refer to a recent survey
(Qiu et al., 2020). To jointly leverage text and graph information, previous studies (Zhang et al.,
2019; Fang et al., 2020; Li et al., 2021; Zhu et al., 2021) propose a PLM-GNN cascaded architecture,
where the text information of each node is first encoded via PLMs, then the node representations
are aggregated via GNNs. (Bi et al., 2022) proposes a triple2seq operation to linearize subgraphs
and a “mask prediction” paradigm to conduct inference. Recently, GraphFormers (Yang et al.,
2021) introduces a GNN-nested Transformer to stack GNN layers and Transformer layers alternately.
However, these works mainly consider textual-node networks, thus their focus is orthogonal to ours
on textual-edge networks.

5.2 EDGE-AWARE GRAPH NEURAL NETWORKS

A vast majority of GNN models (Kipf & Welling, 2017; Hamilton et al., 2017; Velickovic et al.,
2018; Xu et al., 2019) leverage node attributes only and lack specific designs to utilize edge features.
Heterogeneous GNNs (Schlichtkrull et al., 2018; Yang et al., 2020) assume each edge has a pre-
defined type and take such types into consideration during aggregation. However, they still cannot
deal with more complicated features (e.g., text) associated with the edges. EGNN (Gong & Cheng,
2019) introduces an attention mechanism to inject edge features into node representations; CensNet
(Jiang et al., 2019) alternately updates node embeddings and edge embeddings in convolution layers;
NENN (Yang & Li, 2020) aggregates the representation of each node/edge from both its node
and edge neighbors via a GAT-like attention mechanism. EHGNN (Jo et al., 2021) proposes the
dual hypergraph transformation and conducts graph convolutions for edges. Nevertheless, these
models do not collaborate PLMs and GNNss to specifically deal with text features on edges, thus they
underperform our Edgeformers model, even stacked with a BERT encoder.

6 CONCLUSIONS

We tackle the problem of representation learning on textual-edge networks. To this end, we propose a
novel graph-empowered Transformer framework, which integrates local network structure information
into each Transformer layer text encoding for edge representation learning and aggregates edge
representation fused by network and text signals for node representation. Comprehensive experiments
on five real-world datasets from different domains demonstrate the effectiveness of Edgeformers on
both edge-level and node-level tasks. Interesting future directions include (1) exploring other variants
of introducing network signals into Transformer text encoding and (2) applying the framework to
more network-related tasks such as recommendation and text-rich social network analysis.

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

We thank anonymous reviewers for their valuable and insightful feedback. Research was sup-
ported in part by US DARPA KAIROS Program No. FA8750-19-2-1004 and INCAS Program No.
HRO001121C0165, National Science Foundation IIS-19-56151, 1IS-17-41317, and IIS 17-04532, and
the Molecule Maker Lab Institute: An Al Research Institutes program supported by NSF under
Award No. 2019897, and the Institute for Geospatial Understanding through an Integrative Discovery
Environment (I-GUIDE) by NSF under Award No. 2118329. Any opinions, findings, and conclusions
or recommendations expressed herein are those of the authors and do not necessarily represent the
views, either expressed or implied, of DARPA or the U.S. Government.

REFERENCES

Abubakar Abid, Maheen Farooqi, and James Zou. Persistent anti-muslim bias in large language
models. In AIES, pp. 298-306, 2021.

Zhen Bi, Siyuan Cheng, Ningyu Zhang, Xiaozhuan Liang, Feiyu Xiong, and Huajun Chen.
Relphormer: Relational graph transformer for knowledge graph representation. arXiv preprint
arXiv:2205.10852, 2022.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with
subword information. TACL, 5:135-146, 2017.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. Electra: Pre-training
text encoders as discriminators rather than generators. In /CLR, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, pp. 4171-4186, 2019.

Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuohang Wang, and Jingjing Liu. Hierarchical graph
network for multi-hop question answering. In EMNLP, pp. 8823-8838, 2020.

Liyu Gong and Qiang Cheng. Exploiting edge features for graph neural networks. In CVPR, pp.
9211-9219, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NIPS, pp. 1024-1034, 2017.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering. In WWW, pp. 507-517, 2016.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS,
pp. 22118-22133, 2020.

Xiaodong Jiang, Pengsheng Ji, and Sheng Li. Censnet: Convolution with edge-node switching in
graph neural networks. In IJCAI pp. 2656-2662, 2019.

Bowen Jin, Chen Gao, Xiangnan He, Depeng Jin, and Yong Li. Multi-behavior recommendation with
graph convolutional networks. In SIGIR, pp. 659-668, 2020.

Jaehyeong Jo, Jinheon Baek, Seul Lee, Dongki Kim, Minki Kang, and Sung Ju Hwang. Edge
representation learning with hypergraphs. In NeurIPS, pp. 7534-7546, 2021.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2004.04906, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In /CLR, 2015.
Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.

In ICLR, 2017.

10

Published as a conference paper at ICLR 2023

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a social network or a
news media? In WWW, pp. 591-600, 2010.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and negative links in
online social networks. In WWW, pp. 641-650, 2010.

Chaozhuo Li, Bochen Pang, Yuming Liu, Hao Sun, Zheng Liu, Xing Xie, Tiangi Yang, Yanling
Cui, Liangjie Zhang, and Qi Zhang. Adsgnn: Behavior-graph augmented relevance modeling in
sponsored search. In SIGIR, pp. 223-232, 2021.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and Ruslan Salakhutdinov. Towards understand-
ing and mitigating social biases in language models. In ICML, pp. 6565-6576, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv:1907.11692, 2019.

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou,
Jianguo Jiang, Yuxiao Dong, and Jie Tang. Are we really making much progress? revisiting,
benchmarking and refining heterogeneous graph neural networks. In KDD, pp. 1150-1160, 2021.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In NIPS, pp. 3111-3119, 2013.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In EMNLP, pp. 1532-1543, 2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In NAACL-HLT, pp. 2227-2237,
2018.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In WSDM, pp. 459-467, 2018.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained
models for natural language processing: A survey. Science China Technological Sciences, 63(10):
1872-1897, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Stephen E Robertson and Steve Walker. Some simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In SIGIR, pp. 232-241, 1994.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In ESWC, pp. 593-607,
2018.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998-6008, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In /CLR, 2018.

Mengting Wan, Rishabh Misra, Ndapandula Nakashole, and Julian McAuley. Fine-grained spoiler
detection from large-scale review corpora. In ACL, pp. 2605-2610, 2019.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
filtering. In SIGIR, pp. 165-174, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE TKDE, 32(1):4-24, 2020.

11

Published as a conference paper at ICLR 2023

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heterogeneous network representa-
tion learning: A unified framework with survey and benchmark. /EEE TKDE, 2020.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
learning on textual graph. In NeurIPS, 2021.

Yulei Yang and Dongsheng Li. Nenn: Incorporate node and edge features in graph neural networks.
In ACML, pp. 593-608, 2020.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In NeurIPS, pp.
5754-5764, 2019.

Chuxu Zhang, Ananthram Swami, and Nitesh V Chawla. Shne: Representation learning for semantic-
associated heterogeneous networks. In WSDM, pp. 690-698, 2019.

Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Tianqgi Yang, Liangjie Zhang,
Ruofei Zhang, and Huasha Zhao. Textgnn: Improving text encoder via graph neural network in
sponsored search. In WWW, pp. 2848-2857, 2021.

12

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 DATASETS

The statistics of the five datasets can be found in Table 6.

Table 6: Dataset Statistics

Dataset # Node # Edge
Amazon-Movie 173,986 1,697,533
Amazon-Apps 100,468 752,937

Goodreads-Crime 385,203 1,849,236
Goodreads-Children 192,036 734,640
StackOverflow 129,322 281,657

A.2 SUMMARY OF EDGEFORMERS’ ENCODING PROCEDURE

Algorithm 1: Edge Representation Learning Procedure of Edgeformer-E
Input :The edge e, its associated text d;;, and its involved nodes v; and v;.

The initial token embeddings H é?z of the document d;;.
Output : The embedding h.,; of the edge e;;.
begin
// obtain layer-1 representation of text tokens
HY Normalize(He(Q? + MHA(0>(Hé?3)) ;

€ij ij
H!) — Normalize(H?) + FFNO(H)));
// obtain the base embedding of wv; and vj
zé?) < Embedding(v;) ;
sz;) «— Embedding(v;) ;
forl=1,...,Ldo
/ obtain layer-l representation of virtual node tokens
zy) « wV2{)
25? «— Wé”ziﬁ? ;
// obtain layer—(l+ 1) representation of text tokens
oY — Zq(,li) I Zglj) I oY .

eij eij >
HY Normalize(H(Z) + MHA,(JQIV,(H(Q)7 , If\fe(g)) ;

€ij €ij

HHD Normalize(He(Z, " FFN(l)(Héi;’)) ;

eij

end
return b, «— HEY[CLS]

€ij

end

A.3 EDGE CLASSIFICATION

We also compare our method with the state-of-the-art edge representation learning method EHGNN
(Jo et al., 2021) and two node-centric PLM-GNN methods BERT+MaxSAGE (Hamilton et al., 2017)
and GraphFormers (Yang et al., 2021). The experimental results can be found in Table 7. From the
results, we can find that Edgeformer-E consistently outperforms all the baseline methods, including
EHGNN, BERT+EHGNN, BERT+MaxSAGE and GraphFormers.

EHGNN cannot obtain promising results because of two reasons: 1) edge-edge propagation: EHGNN
proposes to transform edge to node and node to edge in the original network, followed by graph
convolutions on the new hypernetwork. This results in edge-edge information propagation when
conducting edge representation learning. However, edge-edge information propagation has the
underlying edge-edge homophily assumption which is not always true in textual-edge networks. For
example, when predicting the rate of a review text e;j given by u to ¢, it is not straightforward to
make the judgment based on reviews for ¢ written by other users (neighbor edges); 2) The integration

13

Published as a conference paper at ICLR 2023

Algorithm 2: Node Representation Learning Procedure of Edgeformer-N.

Input :The center node v;, its edge neighbors Ne(v;), and its node neighbors N, (v;).
The initial token embedding H ¢i) of each document d;; associated with e;; € No(v;).

Output : The embedding h.,; of the center node v;.

begin
// obtain layer-1 representation of text tokens
for e;; € N.(v;) do

H) — Normalize(H'?) + MHA® (H))) ;

Hé; — Normahze(H(0> + FFN(O)(H 0)
end
// obtain the base embedding of each node
for u € N, (v;) U {v;} do
| 2" « Embedding(u) ;
end
forl=1,...,Ldo
// obtain layer-l representation of virtual node tokens
for u € Ny, (v;) U {v;} do
20 0 ,0),
u n u £
end
// obtain layer-l representation of virtual neighbor aggregation
tokens
for e” e Ne(v;) do
rt) — HY[CLS];

;O (l) O] O] (ONRW

[h U SO] < MHA! ([h]h]) :

// obtain layer—(l+1) representation of text tokens
for e;; € Nc(v;) do

€ij

! 1 ! l
HE), <=z |20 | RS 1 HE)
Héf; « Normalize(He,; M 4 MHAY (Hg)?,He(fi)) ;
Héi;rl) — Normahze(H(lz + FFN(l)(Hég)
end
end

// obtain the edge representation
for €ij € Ne (Uz) do
L+1

he, o, = HEGT Vil
end
// obtain the node representation
hv,i = AGG({heij\vi|€ij € Ne(Ui)}) 5
return h.,;

end

14

Published as a conference paper at ICLR 2023

of text and network signals are loose for BERT+EHGNN, since such architectures process text and
graph signals one after the other, and fail to simultaneously model the deep interactions between
both types of information. However, our Edgeformer-E is designed following the more reasonable
node-edge homophily hypothesis and deeply integrating text & network signals by introducing virtual
node tokens in Transformer encoding.

Note that both PLM+GNN and Edgeformer-E require textual information on ALL nodes in the
network. However, this assumption does not hold in many textual-edge networks. Therefore, we
propose a way around to concatenate the text on the edges linked to the given node together to make
up node text. However, such a strategy does not lead to competitive performance of PLM+MaxSAGE
and GraphFormers according to our experimental results. Therefore, to make our model generalizable
to the case of missing node text, the proposed Edgeformers can be a better solution.

Table 7: Edge classification performance on Amazon-Movie, Amazon-App, Goodreads-Crime, and
Goodreads-Children.

Amazon-Movie Amazon-Apps Goodreads-Crime Goodreads-Children
Model Macro-F1 ~ Micro-F1 Macro-F1 Micro-F1 ~ Macro-F1 ~ Micro-F1 ~ Macro-F1 ~ Micro-F1
TF-IDF 50.01 64.22 48.30 62.88 43.07 51.72 39.42 49.90
TF-IDF+nodes 53.59 66.34 50.56 65.08 49.35 57.50 47.32 56.78
EHGNN 49.90 64.04 48.20 63.63 44.49 52.30 40.01 50.23
BERT 61.38 71.36 59.11 69.27 56.41 61.29 51.57 57.72
BERT+nodes 63.00 72.45 59.72 70.82 58.64 65.02 54.42 60.46
BERT+EHGNN 61.45 70.73 58.86 70.79 56.92 61.66 52.46 57.97
BERT+MaxSAGE 61.57 70.79 58.95 70.45 57.20 61.98 52.75 58.53
GraphFormers 61.73 71.52 59.67 70.19 57.49 62.37 52.93 58.34
Edgeformer-E 64.18 73.59 60.67 71.28 61.03 65.86 57.45 61.71

A.4 LINK PREDICTION

We further report the link prediction performance of compared models on the validation set in Table
8.

Table 8: Link prediction performance (on the validation set) on Amazon-Movie, Amazon-Apps,
Goodreads-Crime, Goodreads-Children, and StackOverflow. A denotes the relative improvement of
our model comparing with the best baseline.

Amazon-Movie Amazon-Apps Goodreads-Crime Goodreads-Children StackOverflow

Model MRR NDCG MRR NDCG MRR NDCG MRR NDCG MRR NDCG
MF 0.2178 0.3666 0.1523 0.3086 0.2492 03966 0.1470 0.3042 0.1104 0.2702
MeanSAGE 0.2280 0.3775 0.1804 0.3375 0.2286 03792 0.1348 0.2927 0.1258 0.2846
MaxSAGE 0.2321 0.3812 0.1708 0.3288 0.2299 0.3812 0.1339 0.2919 0.1257 0.2848
GIN 02287 0.3769 0.1846 0.3402 0.2306 0.3802 0.1420 0.2989 0.1275 0.2860
CensNet 0.2186 0.3682 0.1953 0.3504 0.2399 0.3875 0.1501 0.3059 0.1338 0.2900
NENN 0.2776 0.4204 0.2068 0.3610 0.2777 0.4224 0.1658 0.3207 0.1361 0.2948
BERT 02582 0.4017 0.1863 0.3407 0.2540 0.4001 0.1608 0.3156 0.1798 0.3371

BERT+MaxSAGE 0.3028 0.4424 0.2128 0.3661 0.2859 0.4299 0.1687 0.3236 0.1828 0.3399
BERT+MeanSAGE 0.2705 0.4145 0.2024 0.3572 0.2527 0.4004 0.1572 0.3129 0.1849 0.3418

BERT+GIN 0.2790 0.4212 0.2040 0.3583 0.2613 0.4073 0.1611 0.3158 0.1858 0.3413
GraphFormers 02998 0.4393 0.2111 03642 0.2852 0.4294 0.1671 0.3220 0.1833 0.3405
BERT+CensNet 0.2025 0.3552 0.1577 03163 0.1822 0.3361 0.1007 0.2603 0.1232 0.2845
BERT+NENN 0.3087 0.4470 0.2193 03719 0.2956 0.4382 0.1737 0.3280 0.1759 0.3341
Edgeformer-N 0.3206 0.4574 0.2320 0.3838 0.3106 0.4514 0.1849 0.3385 0.1944 0.3508
TYA% T 39% 23% 58% 32% 51% 3.0% 64% 32% 46% 2.6%

A.5 NODE CLASSIFICATION

The 26 classes of Amazon-Apps nodes are: “Books & Comics”, “Communication”, “Cooking”,
“Education”, “Entertainment”, “Finance”, “Games”, “Health & Fitness”, “Kids”, “Lifestyle”, “Music”,

“Navigation”, “News & Magazines”, “Novelty”, “Photography”, “Podcasts”, “Productivity”, “Refer-

ence”, “Ringtones”, “Shopping”, “Social Networking”, “Sports”, “Themes”, “Travel”, “Utilities”,
and ‘“Weather”.

15

Published as a conference paper at ICLR 2023

The 2 classes of Amazon-Movie nodes are: “Movies” and “TV”.

A.6 HYPER-PARAMETER STUDY

0.23

0.38

0.15
0.145

0.31
0.305

0.34

0.335

0.225 0.375 ".‘.‘/ 0.175
0.22 037 0.14 03 ¢ [}
[+4 o Q
£ 0215 /__/ 0365 8 035 02058 £ 07 033 g
0.21 —wrr 038 Z 0.13 ~wrr %20 z 0.165 ~MRR 0325
0.205 NDCG 0355 0.125 NDCG 0285 NDCG
0.2 0.35 0.12 0.28 0.16 0.32
4 8 16 32 64 4 8 16 32 64 4 8 16 32 64
12| 12| 120
(a) Amazon-Apps (b) Goodreads-Children (c) StackOverflow
Figure 3: Effect of the dimension of initial node embeddings.
0.15 0.31
024 0.39 0.22 0.36
0.22 0.14 0.3 0.21 0.35
0.37 ® 0.2 034
g 02 I % 013 / 0.29 9 & 019 st 9
S 018 0359 2012 0282 S 018 pog=
“MRR .o on1 ~MRR 017 —-—MRR 032
016 NDCG ’ NDCG 0.16 NDCG 031
0.14 0.31 0.1 0.26 0.15 0.3
2 3 4 5 2 3 4 5 2 3 4 5
INe(@)] INe(w)] INe()]

(a) Amazon-Apps (b) Goodreads-Children (c) StackOverflow

Figure 4: Effect of the sampled neighbor size (i.e., | N (v)|).

Node Dimension. We conduct experiments on Amazon-Apps, Goodreads-Children, and Stack-
Overflow to understand the effect of the initial node embedding dimension in Eq.(9). We test the
performance of Edgeformer-N on the link prediction task with the initial node embedding dimension
varying in 4, 8, 16, 32, and 64. The results are shown in Figure 3, where we can find that the
performance of Edgeformer-N generally increases as the initial node embedding dimension increases.
This finding is straightforward since the more parameters an initial node embedding has before
overfitting, the more information it can represent.

Sampled Neighbor Size. We further analyze the impact of sampled neighbor size for node rep-
resentation learning on Amazon-Apps, Goodreads-Children, and StackOverflow, with a fraction of
edges randomly sampled for the center node. The result can be found in Figure 4. We can find that the
performance increases progressively as sampled neighbor size | N, (v)| increases. It is intuitive since
the more neighbors we have, the more information can contribute to center node learning. Meantime,
the increase rate decreases as | N, (v)| increases linearly because the information between neighbors
can have information overlap.

A.7 SELF-ATTENTION MAP STUDY

In order to study how the virtual node token will benifit the encoding of Edgeformer-E, we plot the
self-attention probability map for a random sample in Figure 5. We random pick up a token from this
sample and plot the self-attention probability of how different tokens (x-axis), including virtual node
tokens and the first twenty original text tokens, will contribute to the encoding of this random token
in different layers (y-axis). From the figure, we can find that: In higher layers (e.g., Layers 10-11),
the attention weights of virtual node tokens are significantly larger than those of original node tokens.
Since virtual node token hidden states are of R%*? and the original text token hidden states are of
R¥! (1 is text sequence length), the ratio of network tokens to text tokens is 2 : [in H, éla (Eq.4),
where [is the text sequence length. However, the self-attention mechanism can automatically learn
to balance the two types of information by assigning higher weights to the corresponding virtual
node tokens, so a larger number of tokens representing textual information will not cause network
information to be overwhelmed.

A.8 REPRODUCIBILITY SETTINGS

For a fair comparison, the training objectives of Edgeformer-N and all PLM-involved baselines are
the same. The hyper-parameter configuration for obtaining the results in Tables 1 and 2 can be found

16

Published as a conference paper at ICLR 2023

Layer-wise Attention Map

—
—
o -0.5
—
5@
> -0.4
Faleel
—l
o~
g@ 0.3
—
S
U o 0.2
o
ke
o ™M
H N 0.1
—
o -0.0
AN A NMmMYNON®D®DO ANMYETINON~N® OO
| Y A K A R AN E A B e B T S T TR B e S B = (= B o |
v O ¢ ¢ ¢ ¢ c Cc Cc < < | | I 0 1 Ut _° _° 1 1 _
382998898998 5558555586865¢8
Cc € O 0O 0O 0O O 0O 0O 0 0 ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ M X
—_ o B E B e s PP O 0O OO 0o o oo o o o
EEEEEEEEEEE
Tokens

Figure 5: Self-attention probability map of Edgeformer-E for a random sample. The x-axis corre-
sponds to different key/value tokens and the y-axis corresponds to different Edgeformer-E layers. In
higher layers (e.g., layers 10-11), the attention weights of virtual node tokens are significantly larger

than those of original node tokens. The ratio of network tokens to text tokens is 2 : [in H, éfg (Eq.4),
where [is the text sequence length. However, the self-attention mechanism can automatically learn
to balance the two types of information by assigning higher weights to the corresponding virtual
node tokens, so a larger number of tokens representing textual information will not cause network
information to be overwhelmed.

in Table 9, where “sampled neighbor size” stands for the number of neighbors sampled for each
type of the center node during node representation learning. This hyper-parameter is determined
according to the average node degree of the corresponding node type. The edge classification and link
prediction experiments are conducted on one NVIDIA V100 and one NVIDIA A6000, respectively.

In Section 4.3, we adopt logistic regression as our classifier. We employ the Adam optimizer (Kingma
& Ba, 2015) with the early-stopping patience as 10 to train our classifier. The learning rate is set as
0.001.

A.9 LIMITATIONS

In this work, we mainly focus on modeling homogeneous textual-edge networks and solving funda-
mental tasks in graph learning such as node/edge classification and link prediction. Interesting future
studies include designing models to characterize network heterogeneity and applying our proposed
model to real-world applications such as recommendation.

17

Published as a conference paper at ICLR 2023

Table 9: Hyper-parameter configuration.

Parameter Amazon-Movie Amazon-Apps Goodreads-Crime Goodreads-Children ~ StackOverflow
optimizer Adam
learning rate le-5
weight decay le-3
Adam € le-8
early-stopping patience 3
training batch size 30
testing batch size 100
node embedding dim 64
chunk k& 12
max sequence length 64
backbone PLM BERT-base-uncased
sampled neighbor size user:8 user:3 reader:8 reader:6 expert:2
P & item:10 item:5 book:10 book:4 question:5

A.10 ETHICAL CONSIDERATIONS

While it has been demonstrated that PLMs are powerful in language understanding (Devlin et al.,
2019; Liu et al., 2019; Clark et al., 2020), there are studies pointing out their drawbacks such as
containing social bias (Liang et al., 2021) and misinformation (Abid et al., 2021). In our work, we
focus on enriching PLMs’ text encoding process with the associated network structure information,
which could be a way to mitigate the bias and wipe out the contained misinformation.

18

	Introduction
	Preliminaries
	Textual-Edge Networks
	Transformer
	Problem Definitions

	Proposed Method
	Edge Representation Learning (Edgeformer-E)
	Text-Aware Node Representation Learning (Edgeformer-N)
	Training

	Experiments
	Datasets
	Task for Edge Representation Learning
	Tasks for Node Representation Learning
	Embedding Visualization
	Efficiency Analysis

	Related Work
	Pretrained Language Models
	Edge-Aware Graph Neural Networks

	Conclusions
	Appendix
	Datasets
	Summary of Edgeformers' Encoding Procedure
	Edge Classification
	Link Prediction
	Node Classification
	Hyper-parameter Study
	Self-attention Map Study
	Reproducibility Settings
	Limitations
	Ethical Considerations

