
COMMUN. MATH. SCI. © 2023 International Press

Vol. 21, No. 5, pp. 1447–1453

FAST COMMUNICATION

GEOMETRY OF BACKFLOW TRANSFORMATION ANSATZE FOR

QUANTUM MANY-BODY FERMIONIC WAVEFUNCTIONS
⇤

HANG HUANG† , JOSEPH M. LANDSBERG‡ , AND JIANFENG LU§

Abstract. Wave function ansatze based on the backflow transformation are widely used to
parametrize anti-symmetric multivariable functions for many-body quantum problems. We study the
geometric aspects of such ansatze, in particular we show that in general totally antisymmetric polyno-
mials cannot be e�ciently represented by backflow transformation ansatze at least in the category of
polynomials. In fact, if there are N particles in the system, one needs a linear combination of at least
O(N3N�3) determinants to represent a generic totally antisymmetric polynomial. Our proof is based
on bounding the dimension of the source of the ansatze from above and bounding the dimension of the
target from below.

Keywords. Backflow transformation; fermionic wavefunction; anti-symmetry; secant variety.
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1. Introduction

Finding e�cient numerical methods for quantum many-body systems has been a
long-standing challenge, due to the notorious curse of dimensionality and the Fermionic
sign problems. Many approaches have been proposed over the years; a popular class of
methods is known as the variational quantum Monte Carlo methods. The basic idea is
as follows: Let H denote the Hamiltonian operator of a quantum system, choose a class
of functions F as a variational ansatz and solve

EF := inf
 2F

h |H| i
h | i (1.1)

for  and EF . For Fermionic systems, due to the Pauli exclusion principle, the wave
function has to be totally antisymmetric. Thus, for a system with N particles one takes
F ⇢

VN L2(R3), so that the above EF gives a variational upper bound for the true

ground state energy. Here
VN L2(R3) denotes the anti-symmetric tensor product of n

copies of L2(R3); the single particle Hilbert space is L2(R3), i.e., we assume that each
particle lives in R3 and have neglected the spin degree of freedom for simplicity.

The question now becomes the choice of F . The most straightforward approach
is to take F =

VN L2(R3), or more precisely, for numerical purposes, one chooses a

finite dimensional subspace V ⇢L2(R3) and takes F =
VN V , in the spirit of Galerkin’s

method in numerical analysis. This is however not practical for actual computations as
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the dimension of F grows exponentially with N , known as the curse of dimensionality.
Therefore, a smaller class of functions needs to be fixed for the variational search.

The most well-known choice of F , which is essentially the starting point of quantum
chemistry, is the collection of Slater determinants, i.e.,

F =
�
'1^'2^ · · ·^'N |'i2L2(R3),h'i,'jiL2(R3)= �ij ,i,j=1, · · · ,n

 
. (1.2)

This leads to the celebrated Hartree-Fock method. In practice one also uses a finite
dimensional approximation to L2(R3). While useful as a first approximation, the class
of Slater determinants is often too small to capture a good approximation to the ground
state energy. The di↵erence between the result of the Hartree-Fock method and the
true ground state energy is called the correlation energy; more complicated variational
ansatze have been proposed to reduce the error.

One of the first approaches to go beyond the Hartree-Fock ansatz is known as the
Slater-Jastrow wave function, for which one considers the product of a Slater determi-
nant with a totally symmetric function g and hence the product is anti-symmetric. The
function g is often parametrized as

g(x1, · · · ,xN )=exp
⇣X

ij

U(|xi�xj |)
⌘
, (1.3)

where U is some function on R. The g given above is obviously totally symmetric, while
more general ansatze for g have also been proposed and studied. Unlike the Hartree-
Fock method, it is no longer possible to explicitly evaluate the Rayleigh quotient, and
thus the ansatz is optimized by Monte Carlo approaches in practice, i.e., variational
quantum Monte Carlo methods. One generalization uses linear combinations of Slater-
Jastrow wave functions, which is often referred to as the multi-configurational approach
in the variational quantum Monte Carlo methods literature.

Another direction is to change the Slater determinants to some other anti-symmetric
functions; for example, Pfa�ans (when N is even), Vandemonde determinants, and
determinants with backflow transformations as defined below. This has become a very
active field in recent years thanks to the rise of neural networks as a versatile ansatz for
high dimensional functions, after the influential work [2] of parameterizing many-body
wave functions using neural networks. Several variational classes have been proposed
by replacing components in the anti-symmetric function ansatz by neural networks, see
e.g., [1, 3, 6–11, 13]. While the details of these ansatze di↵er, the general framework is
based on the backflow transformation originally proposed by Feynman and Cohen [4].
To introduce the ansatz, define the function class

S=
�
'2L2

�
R3⇥(R3⌦RN�1)

�
|'(x;y)='(x;�y), 8�2SN�1

 
.

Thus, functions in S are totally symmetric with respect to the second argument in
R3⌦RN�1 (the permutation group SN�1 acts on RN�1). It is easy to check then for
'i2S, i=1, · · · ,N , the following function on R3⌦RN is totally anti-symmetric:

�BF['1, . . . ,'N ](x1, · · · ,xN )=det

0

B@
'1(x1;x�1) · · · 'N (x1;x�1)

...
. . .

...
'1(xN ;x�N ) · · · 'N (xN ;x�N )

1

CA

where x�i := (x1, · · · ,xi�1,xi+1, · · · ,xN ). This generalizes the Slater determinants, which
correspond to the case that 'i only depends on the first variable, the Slater-Jastrow wave
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functions, which correspond to absorbing a g1/N factor into 'i’s, and the Vandermonde
determinants. We call �BF the ansatz map.

In this work, we focus on the study of the ansatz given by the backflow transfor-
mation:

FN
BF=

�
�BF['1, . . . ,'N ] |'i2S,i=1, . . . ,N

 
.

We are interested in the representation power of the class of functions FN
BF. In particular,

we ask for a given totally antisymmetric function  :R3⌦RN !R, whether it belongs
to FN

BF, i.e., whether it is possible to find {'i}, such that  =�BF['1, . . . ,'N ]. This
question may be asked in several di↵erent flavors, depending on the assumed function
classes of  and the {'i}. In this work, we approach the question from the perspective
of algebra. Thus, we consider  and hence the {'i} to be polynomials.

Let S�R3⇤ denote the space of homogeneous degree � polynomials on R3. Consider

N̂

(L2(R3))alg :=
N̂

(
1M

�=0

S�R3⇤),

where for any given element of L2(R3)alg, we only allow a finite number of � to be used.

Fix a total degree D and consider
VN (L2(R3))alg\R3⇤⌦D

and call this the (N,D)-
space. Taking the ratio of the estimates in Sections 3 and 4 we will see that for a given
N , one must have D at least on the order of N

4
3 .

Our main result states that in general totally antisymmetric polynomials do not
belong to FN

BF. We stratify the subset FN
BF,poly of FN

BF consisting of polynomials by

total degree D and write FN
BF,poly =

L
DFD,N

BF . Then FD,N
BF is a semi-algebraic subset

of the (N,D)-space
VN (L2(R3))alg\R3⇤⌦D

. Note that the elements mapping to FD,N
BF

are the ('1, . . . ,'N ) such that
PN

j=1deg('j)=D and each 'j is homogeneous.

Theorem 1.1. For each fixed N , for all D su�ciently large, the algebraic ansatz map

is not surjective. The dimension of the target is at least O(N3N�3) times larger than

the dimension of the source.

In particular, when D is su�ciently large, for all r<N3N�3
, the set of sums of

r elements of FD,N
BF still lies in a proper subvariety of

VN (L2(R3))alg\R3⇤⌦D
. In

particular, it is a set of measure zero.

Theorem 1.1 will follow immediately from the upper bound on the dimension of the
source in §4 and the lower bound on the dimension of the target in §3.

Remark 1.1. Our estimates are coarse, but they only assume D>N3. The map will
still fail to be surjective for smaller D for all but very few admissible values of D.

Remark 1.2. The ansatz map has positive dimensional fibers. It would be interesting
to determine their dimensions.

Remark 1.3. The closure of the image of the ansatz map is some variety invariant
under the action of GL3. It would be interesting to obtain geometric information about
this variety.

Our theorem, to some extent, is a negative result for the representation power of
the backflow transformation ansatz, at least in the category of polynomials, since the
number of elements needed grows exponentially in N . Note that any analytic function
is a limit of a sequence of polynomials. Restriction to homogeneous polynomials is not
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a restriction as we may always project to homogeneous components, which will be the
images of homogeneous �i.

We remark that recent work [8] argues that any totally anti-symmetric function
can be represented by the backflow ansatz (see [8, Theorem 7]), however the 'i used
in the construction involve a sorting of coordinates xi in “lexicographical” order, and
are hence discontinuous and also impractical for actual computations. The work [5]
establishes universal approximation of totally anti-symmetric funciton using backflow
ansatz, however the approximation requires exponential number of degrees of freedom.
The e�cient approximation of totally anti-symmetric functions remains a challenging
question.

Organization. In §2 we review standard results needed for the proof. In §3 we
bound the dimension of the target from below and in §4 we bound the dimension of the
source from above. The two estimates together prove Theorem 1.1. We conclude in §5
with geometric remarks.

2. Preliminaries

Let pk(m) denote the number of partitions of m with at most k parts. The following
estimates are standard. We include proofs for the convenience of the reader.

Proposition 2.1. pk(m)= 1
k!(k�1)!m

k�1+O(mk�2).

Proof. Recall Faulhaber’s formula: 1k+2k+ · · ·+mk= mk+1

k+1 +O(mk).
We have the induction formula

pk(m)=

bm
k cX

i=0

pk�1(m� ik).

When k=1, we have pk(m)=1. Assume by induction that pu(m)= cumu�1+O(mu�2)
for all u<k. We prove it holds for k and cu=

1
u!(u�1)! .

pk(m)=

bm
k cX

i=0

pk�1(m� ik)

=

bm
k cX

i=0

ck�1(m� ik)k�2+O((m� ik)k�3)

=kk�2ck�1

bm
k cX

i=0

(
m

k
� i)k�2+O((m� ik)k�3)

=kk�2ck�1
1

k�1
(
m

k
)k�1+O(mk�2)

=
1

k(k�1)
ck�1m

k�1+O(mk�2).

We conclude by induction.

Proposition 2.2. Let qk(m) denote the number of partitions of m with either k or

k�1 parts that are strictly decreasing. Then qk(m+
�k
2

�
)=pk(m).

Proof. Given a partition of m with at most k parts, we may obtain a new partition
that is strictly decreasing by adding one to the (k�1)-st part, two to the (k�2)-nd, up
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to (k�1) to the first. Moreover all strictly decreasing partitions with k or k�1 parts
arise in this way so we have established a bijection.

Recall from Stirling’s formula that n!=
p
2⇡n(ne )

n(1+O( 1n )) so in particular n!(n�
1)!=2⇡e�2n+1n2n(1+O( 1n )).

In what follows we will be concerned with estimates so we suppress round ups and
round downs to integers from the notation.

The dimension of an algebraic variety is the dimension of the largest irreducible
component, see, e.g., [12, §I.6.1]. A map between algebraic varieties given by polyno-
mials will be surjective if and only if the restriction to some irreducible component of
the source is surjective. Thus a necessary condition for surjectivity of a map is that the
source contains a component of dimension at least that of the target. Because of this
we may restrict to homogeneous polynomials and a single source.

3. Target space

We fix a total degree D, set W =R3, and lower bound the dimension of
M

0p1p2···pN
p1+···+pN=D

Sp1W ⇤⌦ · · ·⌦SpNW ⇤.

We only consider terms where p1�D/2N and p1<p2< · · ·<pN . The sum becomes
X

q1+···+qN=D/2
q1<q2<···<qN

Sq1+ D
2N W ⇤⌦ · · ·⌦SqN+ D

2N W ⇤.

Recall that dimSdW ⇤=
�d+2

2

�
. The smallest term in the summation is when qj = j�1

for j <N and qN = D
2 �

�N�1
2

�
. This is because for integers a1<a2< · · ·<aN with a1+

· · ·+aN fixed, the product a21 · · ·a2N is minimized when all factors but the last are as
small as possible. Assume D>N3. This term has dimension

✓N+1
2N D�

�N�1
2

�
+2

2

◆N�2Y

j=0

✓
j+ D

2N +2

2

◆
=

D2N

23NN2(N�1)
+O(D2N�1).

Here O(D2N�1) is considered as a function of N .
The number of terms is

qN (
D

2
)=

1

N !(N�1)!
(
D

2
�N(N�1)

2
)N�1+O((

D

2
�N(N�1)

2
))N�2

=
DN�1e2N�1

⇡2NN2N
+O(DN�2).

Thus the dimension of the target is bounded below by


DN�1e2N�1

⇡2NN2N
+O(DN�2)

�
D2N

23NN2(N�1)
+O(D2N�1)

�
=

D3N�1e2N�1

⇡24NN4N�2
+O(D3N�2).

4. Source space

Let dj =deg'j , then FD,N
BF is the union of the images of the ansatz maps over all

('1, . . . ,'N ) with d1 · · ·dN and
P

dj =D. By the discussion regarding dimension in
algebraic geometry mentioned above, the ansatz is dominant onto the (N,D) space if
and only if one of the (d1, . . . ,dN )-ansatz maps is dominant.
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Fix d=dj and suppress the j index. Write

'='(x1;x�1)=
dX

z=0

X

�2+···+�N=d�z
0�2�3···�N

fz,�
z (x1)

X

�2SN�1

hz,�
2 (x�(2)) · · ·hz,�

N (x�(N)).

Here �=(�2, . . . ,�N ), fz,�
z has degree z, and hz,�

j has degree �j . We are assuming without
loss of generality that the h’s are non-decreasing in degree with j because they appear
symmetrically. On the other hand, we have to allow the degree of the f ’s to be any
value from 0 to d.

The dimension of the source space of '='j with j fixed and d=dj is thus

dX

z=0

X

�2+···+�N=d�z
0�2�3···�N

✓
z+2

2

◆✓
�2+2

2

◆
· · ·
✓
�N +2

2

◆�

where
�z+2

2

�
is the dimension of the space of fz’s of degree z and

��j+2
2

�
is the dimension

of the space of h�j ’s of degree �j .

The largest component of the source will be when dj =
D
N =:d for all j. This is be-

cause for integers a1, . . . ,aN , with a1+ · · ·+aN fixed, the product a21 · · ·a2N is maximized
when all factors but the last are equal. We have the following upper bound for the
dimension of the source:

N
dX

z=0

X

�2+···+�N=d�z
0�2�3···�N

✓
z+2

2

◆✓
�2+2

2

◆
· · ·
✓
�N +2

2

◆�

<N
dX

z=0

✓
z+2

2

◆✓ d�z
N�1 +2

2

◆N�1

pN�1(d�z)

<Nd

✓ d
N +2

2

◆N

pN�1(d)

=Nd
d2N

2NN2N

dN�2e2N�3

2⇡N2N�2
+O(d3N�2)

=
D3N�1e2N�3

N7N�42N+1⇡
+O(D3N�2).

The second line holds because the product of the binomial coe�cients with the �i’s
is largest when they are all equal. The third holds because the largest term in the
second line occurs when z= d

N , and the last by using approximations to the terms.

5. Geometric discussion

Although we did not make use of geometry in our proofs, our intuition was developed
by computing small D examples explicitly with the aid of algebraic geometry. We also
believe such geometry will be useful in further study of ansatze along the lines of this
paper so we provide a brief discussion here.

Given a vector space V and an algebraic subset X⇢V , one can define the variety
of points on r-secant planes of X:

Secr(X) :={v2V |9x1, . . . ,xr 2X,v2 span{x1, . . . ,xr}}.
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For any X, a näıve dimension count gives

dimSecr(X) rdim(X)+r, (5.1)

as one chooses r points on X and a point in their span. These secant varieties (or more
precisely, their cousins in projective space) are intensely studied in algebraic geometry.

In our case a natural question is to take X to be the image of an ansatz map and
to ask when its secant varieties fill the ambient space.
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