
machine learning & 

knowledge extraction 

 

 

Article 

Statistical Analysis of Imbalanced Classification with Training 
Size Variation and Subsampling on Datasets of Research Papers 
in Biomedical Literature 

Jose Dixon  and Md Rahman *  

 
Computer Science Department, Morgan State University, Baltimore, MD 21251, USA; jodix5@morgan.edu 

* Correspondence: md.rahman@morgan.edu 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Citation: Dixon, J.; Rahman, M. 

Statistical Analysis of Imbalanced 

Classification with Training Size 

Variation and Subsampling on 

Abstract: The overall purpose of this paper is to demonstrate how data preprocessing, training size 

variation, and subsampling can dynamically change the performance metrics of imbalanced text 

classification. The methodology encompasses using two different supervised learning classification 

approaches of feature engineering and data preprocessing with the use of five machine learning 

classifiers, five imbalanced sampling techniques, specified intervals of training and subsampling sizes, 

statistical analysis using R and tidyverse on a dataset of 1000 portable document format files divided 

into five labels from the World Health Organization Coronavirus Research Downloadable Articles of 

COVID-19 papers and PubMed Central databases of non-COVID-19 papers for binary classification 

that affects the performance metrics of precision, recall, receiver operating characteristic area under 

the curve, and accuracy. One approach that involves labeling rows of sentences based on regular 

expressions significantly improved the performance of imbalanced sampling techniques verified by 

performing statistical analysis using a t-test documenting performance metrics of iterations versus 

another approach that automatically labels the sentences based on how the documents are organized 

into positive and negative classes. The study demonstrates the effectiveness of ML classifiers and 

sampling techniques in text classification datasets, with different performance levels and class 

imbalance issues observed in manual and automatic methods of data processing. 
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1. Introduction 

Text or document retrieval involves collecting valuable information from vast quan- 
tities of unstructured text in the most common file formats for human-language data [1]. 
Information retrieval systems often use unstructured raw text as their primary dataset [1]. 
An information retrieval system (IR) filters through unstructured data to find anything 
that may fulfill a user’s information need [2]. It uses classification and filtering to find 
documents, while search decides whether documents fit a specific information need [1]. 
Two key aspects to consider when assessing the performance of an information retrieval 
system are efficiency and effectiveness [2]. 

Document classification is usually a binary classification and supervised learning 
problem. Researchers usually classify text using machine and deep learning algorithms [3]. 
However, unstructured raw text can create an imbalanced sampling problem. Research has 
shown that using cost-sensitive learning or class weights, ensemble learning, or specific 
learning algorithms can help experiments address the issue of class imbalance [4]. 

Researchers can use data preprocessing techniques as an effective method to help 
the classifier improve the effectiveness of performance metrics and to help ensure the 
classifier can process unstructured data. Past studies have shown that subsampling can 
supply effective results even if an experiment does not use it at all and is useful in machine 
learning and deep learning. 
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Analysts can gain deeper insights into the data by performing exploratory data anal- 
ysis, enabling them to find unique trends, patterns, and analyses. More observations 
make it more possible to interpret the differences and supply a more complex view of 
the data. Conversely, fewer observations can reveal more periodic trends, patterns, and 
analyses. However, more observations can make it easier to interpret the differences and 
supply a better and more sufficient view of the data. Exploratory data analysis is essential 
when the data becomes too large to understand and interpret a conclusion based on an 
experiment’s results. 

This paper will first discuss the literature review of the research problem, then present 
the method of machine learning models, followed by the study results, and finally discuss 
the conclusions of the findings. The essential goals of this research are: 

•  To set up an effective system of preprocessing data for document classification that 
would help the classifier supply reasonable performance metrics based on unstruc- 
tured data for statistical analysis. 

• Allow statistical analysis to decide the significance of performance metrics for precision 
and recall scores from classifiers, sampling techniques, and labels. 

• Use five supervised machine learning classifiers with imbalanced sampling techniques 
to show the difference in performance. 

This study used a set of supervised binary classification algorithms to classify five 
labels (Immune, Problems in China, Risk Factors, Testing, and Transmission) on a dataset 
of approximately 1000 portable document format files. The machine learning models 
use training size variation (of five different training sizes) and subsampling (by intervals 
of 5% up to 100%) to supply various unique scores of the dataset. The results will be 
in a comma-separated values (CSV) file, depending on the classifier, sampling method, 
sampling technique, test split size, train split size, and subsampling size. The file will have a 
full array of scores based on precision, recall, area under the curve (AUROC), and accuracy. 
In addition, researchers can perform exploratory data analysis to show performance metrics 
of precision and recall using histograms, bar graphs, line graphs, and box plots. 

A user can categorize PDF documents into five labels, with approximately 25% being 
positive and 75% negative in the first approach. For the training subset, 60% consists of 
the annotated positive documents, 20% of the development subset, and 20% of the testing 
subset in the second approach. These two methods implement binary classification with 
separate approaches. The most important part of this research is the training size variation 
and subsampling; with this, the individual scores of performance metrics would be possible 
to help emphasize the importance of statistical analysis. 

Text classification algorithms may run at four levels: document, paragraph, sentence, 
and sub-sentence [5]. In addition, two methods for classifying documents are manual and 
automatic [6]. Therefore, the method relies on an automated, rule-based classifier and 
human categorization of documents. 

In supervised learning, a computer algorithm trains input data labeled for a specific 
output. As shown in Figure 1, the model is trained until it can detect the underlying 
patterns and relationships between the input data and the output labels, enabling it to yield 
accurate labeling results when presented with never-before-seen data [7]. A user can tag 
new and old data if the model correctly categorizes it [8]. Classification and regression 
problems, especially those involving binary classification, are well-suited to supervised 
learning [8]. 

The typical approach to evaluating an information retrieval system is distinguishing 
pertinent and irrelevant documents. Then, document collection and gathering of relevancy 
scores decide the system’s effectiveness. Although, for example, a researcher may assign 
zero to irrelevant and one to pertinent documents, the collection and feature extraction 
process of the documents can affect the system’s effectiveness. 
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Figure 1. Supervised Learning Process. 

2. Literature Review 

Several papers have proved that data preprocessing can help change performance 
metrics that affect imbalanced classification. Goudjil et al. introduce an innovative active 
learning method for text categorization, aiming to minimize labeling effort while main- 
taining classification accuracy by intelligently selecting appropriate samples [9]. Kadhim’s 
paper evaluates various text preprocessing tools for English text classification, including 
raw text, tokenization, stop words removal, and stemming; results show that preprocessing 
enhances feature extraction methods, especially for small threshold values [10]. Mali et al. 
paper explores the impact of preprocessing steps on text classification, revealing improve- 
ments in accuracy in various classifiers, mainly when applied to unstructured data, despite 
the vast amount of digital information available [11]. 

Likewise, similar works focused on different subsampling strategies and training size 
variations to change performance measures. Imberg et al. propose an active sampling 
strategy that iterates between estimation and data collection with optimal subsamples, 
guided by machine learning predictions on unseen data [12]. Kumar et al. study addresses 
challenges in mental health NLP by using the Anno-MI dataset for counseling quality 
classification. It employs data augmentation to improve reliability, reduce bias, and address 
data scarcity and imbalance [13]. In transmitter classification applications, Oyedare and 
Park explored the relationship between training dataset size and classification accuracy, 
suggesting that users should choose how much training data is required to offer the 
optimum performance metrics [14]. 

Three papers focusing on various text classification methodologies can address various 
classification challenges. First, Li et al. propose a paper that reviews text classification 
approaches from 1961 to 2021, focusing on traditional models and deep learning. It provides 
a taxonomy, technical developments, benchmark datasets, comparisons, evaluation metrics, 
and critical implications [15]. Mubjata et al. review measures the performance of SML 
and rule-based approaches, presenting open research issues and challenges from nine 
types of clinical reports, four data sets, two sampling techniques, and nine pre-processing 
techniques [16]. Finally, Kamath et al. compared the accuracy of four machine learning 
classifiers and one convolutional neural network on raw and cleaned datasets [17]. 

Some research articles have proven inefficient and practical approaches to analyz- 
ing imbalanced sample difficulties. Kim & Hwang et al. evaluated a combination of 
seven sample strategies and eight machine learning classifiers on 31 datasets with varying 
degrees of imbalance and discovered that some sampling procedures could have been 
more efficient and helped classifier performance. In contrast, others were more success- 
ful [18]. Agarwal et al. developed a novel sampling strategy to increase classification task 
performance and a custom-based sampling method to determine which methods affect 
the performance [19]. Gaudreault et al. research investigates performance assessment and 
predictive modeling in machine learning applications dealing with imbalanced domains. It 
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explores metrics and implementations for class-specific performance, aiming to provide 
recommendations for optimal performance [20]. 

Researchers conduct trials using various statistical methodologies to aid in evaluating 
performance measurements. Mishra et al. show Student’s t-test, ANOVA, and ANOVA 
are statistical methods used to compare means between groups, with ANOVA showing 
significant differences using multiple comparisons. These methods are crucial for small 
sample sizes due to outliers [21]. To better display data, Nordmann et al. advocate em- 
ploying exploratory data analysis techniques such as bar charts, histograms, converting or 
aggregating data, density plots, and box plots [22]. Aust et al. explores how to translate 
default priors from linear mixed models to corresponding aggregate analyses in repeated 
measures ANOVA and paired t-tests [23]. Moscarelli’s paper examines exploratory data 
analysis (EDA) to describe a comprehensive procedure, including the importation, cleans- 
ing, potential transformation, analysis, and subsequent visualization of data to enhance 
comprehension of its underlying characteristics [24]. Future research may reimplement 
similar ideas or introduce new methods from this paper. The results demonstrate the 
efficacy of machine and deep learning algorithms in evaluating various training sizes. 

3. Methodology 

The dataset is a total of 1000 PDF documents. Five machine learning labels exist 
(Immune, Problems in China, Risk Factors, Transmission, and Testing). Furthermore, 25% 
of the PDF documents are open-access COVID-19 research papers from the World Health 
Organization COVID-19 Downloadable Articles Database to have a positive class [25]. 
The WHO COVID-19 Downloadable Articles Database supplies free access to open-access 
documents and includes a bibliography of documents in CSV format. 

A user can manually download a specific kind of PDF document from the COVID-19 
research database to help serve as a dataset for the positive class. The other 75% of PDF 
documents are non-related COVID-19 research papers from the PubMed Central database 
to have a negative class [26]. Both the positive and negative class has papers relevant 
to biomedical literature. The documents in the positive class are particularly related to 
COVID-19; however, the negative class includes papers relevant to any medical subject, 
excluding COVID-19. A user can obtain the PDF documents from PubMed Central using 
the PubMed Central Open Access Subset, which maintains a repository of open-access 
paper archives suitable for reproducing research [27]. One user creates the dataset used for 
the experiment. 

Both approaches require using the Python libraries Scikit-learn, NumPy, and Pandas 
to perform feature engineering, imbalanced classification, and text classification on raw 
text data [28]. R script and Xpdf command line tools convert all portable document format 
(PDF) documents into text files in a directory. The goal of combining the text files is to make 
the classifier’s processing easier. The first approach uses the text files in the MEDFULL 
folder as the first dataset. The combining process creates two combined text files (such as 
Immune-pos.txt and Immune-neg.txt) for both positive and negative classes based on a 
single label. Even though each label has the same number of document or text files, the 
class has different samples and file sizes. 

The methodology’s second approach requires a user to convert the individual raw text 
files for each labeled in the MedText folder to a CSV file so that the sentences can have the 
source code automatically annotate keywords based on regular expressions. The keywords are 
terms based on the data origin close to COVID-19 (such as clinical, isolation, respiratory, dis- 
ease, spread, PMC, symptomatic, epidemic, endemic, outbreak, quarantine, and others) [29]. 
The metacharacters and characters associated with regular expressions are best associated 
with an example like “(?i)(?i:C|c)lincial|(?i:I|i)nfectious|(?i:C|c)ornavirus|(?i:D|d)isease 
|(?i:C|c|o|O|v|V|i|I|D)|(?i:p|P)ositive|(?i:C|c)ommunity|(?i:C|c)ase(?i:N|n)egative 
|(?i:A|a)rea|(?i:e|E)pidemic|(?i:E|e)ndemic|(?i:O|o)utbreak|(?i:I|i)solation|(?i:R|r) 
espiratory|(?i:S|s)pread|PMC|(?i:S|s)ymptomatic”. This regular expression matches 
characters being words in either all lowercase, all uppercase, or title case format. The 
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regular expression matches terms like disease, Disease, Respiratory, respiratory, COVID-19. 
The matched terms supplied the label. Next, a script transfers the converted CSV files of 
each label and positive class to a COVID_ANN folder following the illustration in Figure 2. 
In the second approach, which entails automatically labeling documents based on regular 
expressions, we exclude the negative text files depicted in Figure 2 for each label. The No 
symbol in Figure 2 indicates that files from the negative class are not processed further. 
This implies that only positive documents undergo consideration for automatic labeling. 
Below, references to the COVID_ANN dataset refer to a complete collection of the CSV 
annotated files of the converted raw text documents. First, combine and merge all an- 
notated CSV files from the Immune, Problems in China, and Risk Factors labels to form 
‘COVID_Train_Set.csv,’ the Train Subset. Next, users combine and merge all annotated 
CSV files from the Testing label to create a file called ‘COVID_Dev_Set.csv,’ the Dev Subset. 
Finally, connect and merge all annotated CSV files from the Transmission label to make the 
Test Subset file ‘COVID_Test_Set.csv.’ These three subsets or CSV files form ‘Subset Data,’ 
the second dataset. 

 

Figure 2. Converting Text to Annotated CSV. Positive class is only considered. No symbol shows that 

the negative text is ignored. 

3.1. Preprocessing and Labeling 

In the first approach of the experiment, a Python script conducts data preprocessing in 
two phases: noise removal and normalization. Noise removal removes unwanted content 
from the unstructured text by using the various functions from the NLTK library, such as 
stopwords, wordnet, WordNetLemmatizer, and word_tokenize. After removing the added 
noise, normalization helps process the data. A script can concatenate the two negative and 
positive text files of each label as sentences in a Pandas data frame and then combine them. 
The Pandas data frame has six columns, excluding the index column, proving the data 
preprocessing step process. The first step is relevant to extracting raw sentence data. In 
the second step, the script labels documents with 1s and 0s. The third step removes any 
punctuation. The fourth step involves tokenizing the sentences. The fifth step involves 
removing stopwords. The last step involves lemmatizing the words accordingly. All the 
sentences undergo a noise removal process for better-improved data reading [26]. 

The string.punctuation module removes all punctuation before tokenization to pre- 
vent tokenizing unwanted elements. The word_tokenize function from the NLTK library 
tokenizes the sentences as a data point. The stopwords module removes stopwords from 
the tokenized text. Finally, for machine learning models to preprocess unique data, lemma- 
tization (using the WordNetLemmatizer and WordNet modules) must decide the base 
words of all dataset words and execute them in the machine learning model before the 
feature extraction process. 

Table 1 shows the number of samples relevant to each label. The number of rows 
corresponds to the number of sentences or samples after converting the text files from 
MedText data to a Pandas data frame and CSV file for each label. For example, combining 
[label]-neg.csv and [label]-pos.csv results in a [label].csv. The machine learning model pro- 
cesses each label with a unique CSV file with different sentences as rows. The experiment’s 
first approach may have affected each classifier’s performance and imbalanced sampling 
technique from their intended purposes. 
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Table 1. Number of Samples for Each Label After Data Conversion. 
 

Label Number of Rows or Sentences in CSV File 

Immune 46,727 

Problems in China 47,154 

Risk Factors 23,666 

Testing 99,367 

Transmission 43,952 

 
After processing text files for each specific label from the MEDFULL data, the 

method displays three different subsets in separate CSV files named COVID_Train_Set.csv, 
COVID_Dev_Set.csv, and COVID_Test_Set.csv. Table 2 displays the number of samples or 
sentences from rows of CSV files relevant to each subset. After converting the text files to 
a Pandas data frame or a CSV file, the method considers the sentences or samples as the 
number of remaining rows. Each subset has a different CSV file with different sentences 
and rows. 

Table 2. Number of Samples for Each Subset After Data Conversion. 
 

Subset Number of Samples or Sentences in CSV File 

Train Set 50,427 

Dev Set 14,327 

Test Set 16,256 

 
The second approach of the experiment does not perform data preprocessing by using 

the NLTK library on the sentences. The CSV file has a ‘sentence’ column with the raw text by 
each sentence line, as shown in Table 3. A user annotates the positive documents from each 
of the five labels. The CSV files automatically annotate the documents using regular expres- 
sions. First, annotate the documents by using regular expressions. Suppose a sentence in the 
sentence column has data that matches the regular expression pattern. In that case, the user 
can assign the number one in the ‘label’ column, showing it is positive, as shown in Table 4. 
If the sentence in the sentence column has data that does not match the regular expression 
“(?i)(?i:C|c)lincial|(?i:I|i)nfectious|(?i:C|c)ornavirus|(?i:D|d)isease|(?i:C|c|o|O|v|V|i 
|I|D)|(?i:p|P)ositive|(?i:C|c)ommunity|(?i:C|c)ase(?i:N|n)egative|(?i:A|a)rea|(?i:e|E) 
pidemic|(?i:E|e)ndemic|(?i:O|o)utbreak|(?i:I|i)solation|(?i:R|r)espiratory|(?i:S|s)pread 
|PMC|(?i:S|s)ymptomatic” of the example, as shown in Table 4, the user assigns it with 
zero. Regular expressions extract specific keywords from each sentence’s ‘Data’ column. 
The ‘Regex’ column shows a Boolean expression if the regular expression matches the 
sentence column of a particular row, as shown in Table 4 [26]. The second approach of 
the experiment supplies a more authentic performance that shows imbalanced sampling 
techniques and classifiers work effectively. 

3.2. Subsampling and Training Size Variation 

Subsampling the number of samples or sentences would affect the classifier’s per- 
formance. Therefore, the subsampling intends to use only a certain number of sentences 
based on an interval. Subsampling requires dividing the samples or sentences of positive 
and negative data frames by 5% and 10% intervals. Depending on the interval percentage, 
the Python script selects a specific number of samples from the positive and negative data 
frames and labels columns to subsample the data. The selection of samples starts from 
zero to a specific number of samples based on percentage or interval. Finally, the script 
combines positive and negative data frames based on intervals for the machine learning 
model to perform subsampling. 
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Table 3. Labeling using Keyword Matching via Regular Expressions. 
 

Sentence Label Data Regex 

0 Research Letters 0 N/A False 

Table 1. Clinical characteristics of 604 patients with 
1 systemic lupus erythematosus with and without 

 
1 

 
Clinical 

 
True 

COVID-19 a Mean (standard deviation).    

SLE patients with COVID-19 reported a lower 
frequency of social isolation. 

Secondary AA can be caused by infections, drugs, or 
various diseases. 

1 COVID-19 True 

 
1 Disease True 

 
 

 

Table 4. Number of Samples for Each Label Based on Subsampling. 
 

Label Percentage Iteration Number of Samples 

Immune 5% 1 2336 

Problems in China 10% 2 4715 

Risk Factors 40% 8 9466 

Testing 95% 19 94,398 

Transmission 20% 4 17,580 

Immune 25% 5 11,681 

Transmission 30% 6 39,556 

 
Mathematical functions calculate the number of samples based on the iterations or 

subsample size used by the machine learning model after processing the combined CSV 
files or data frames for each label’s positive and negative classes, as detailed in Table 4. 
Again, the original MEDFULL data is necessary for this computation. The subsample size 
ranges from 5% to 100%, with intervals of 10%, 15%, 20%, and others, as shown in Table 3 
for the first approach [26]. 

Table 5 shows the sample sizes based on the number of iterations or subsample sizes; 
the machine learning model calculates after processing the combined CSV files or data 
frames for each subset’s positive and negative classes. It displays the intervals used in the 
second approach, ranging from 10% to 100%, including 20%, 30%, 40%, and others. The 
first approach uses 20 subsample iterations, while the second uses 10. 

 
Table 5. Number of Samples for Each Subset Based on Subsampling. 

 

Subset Percentage Iteration Number of Samples 

Train Set 10% 1 5042 

Test Set 20% 2 3251 

Dev Set 30% 3 4876 

Dev Set 40% 4 6502 

Train Set 90% 9 45,384 

Dev Set 70% 7 10,028 

Train Set 60% 6 30,256 

 
Each classifier has specific parameters to execute during each iteration and subsam- 

pling size. The machine learning model sequentially adjusts the train split size to 17%, 33%, 
50%, 67%, and 83% for each iteration, with the test split size being the remaining 100% 
minus the train split size for the first approach. The second approach uses a constant 50% 
training and testing size relevant to every iteration. 

2 

3 
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When subsampling occurs on the data from the first approach, iterations 1 to 13 or 
a subsample size initially beginning 5% to 65% increases or decreases the performance 
variation for all classifiers and imbalanced sampling techniques. Once iteration 13 is 
reached, the machine learning models provide the best or worst performance depending on 
each imbalanced sampling technique and classifiers. When the second approach involves 
subsampling, increasing the subsampling size from 10% to approximately 90% or 100% 
significantly improves the performance of all imbalanced sampling techniques and classi- 
fiers. The subsampling size of 50% did supply the worst performance for all imbalanced 
sampling techniques and classifiers. 

3.3. Classification Tasks 

The method uses five machine learning classifiers: Random Forest, Naïve Bayes, 
Support Vector Machine, XGBoost, and Decision Tree [18–20]. The machine learning 
classifiers, including the Naive Bayes module, the linear model module, the tree module, 
and the ensemble module, require modules from the Scikit-learn library and the XGBoost 
library to run. The linear model module in Scikit-learn executes classifiers that evaluate 
variables that show a linear relationship. XGBoost is a machine-learning library that uses 
gradient-based optimization, regularization methods, and weighted quantile sketch to 
manage massive datasets effectively. The tree module in Scikit-learn supplies tree-based 
models, a machine learning model that evaluates variables that show a decision-based 
arrangement. The Scikit-learn library’s ensemble module combines various base models 
of the Random Forest classifier for more efficiency. Finally, the Naïve Bayes module runs 
three kinds of machine learning classifiers of Naïve Bayes classifiers [26]. 

When there is a distortion from the allocation of classes in training data toward one 
class, the Imbalanced-learn library in Python can help solve imbalanced classification 
problems. This library has both Oversampling and Undersampling modules, with the 
Oversampling module supplying the SMOTE and RandomOverSampler methods and 
the Undersampling module featuring RandomUnderSampler, TomekLinks, and NearMiss 
functions. The RandomOverSampler method has settings with a random state of 42. At the 
same time, the parameters of the RandomUnderSampler are an arbitrary state of 42 and 
true replacement. 

Feature Extraction involves using the TfidfVectorizer, a Scikit-learn feature extraction 
method that converts raw text into TF-IDF features to decide the relevance of words in 
a document or corpus and perform feature engineering and data preprocessing tasks. 
The TfidfVectorizer has an n-gram range of (1, 2) for all machine learning models. It 
shows that when deconstructing raw sentence data, it will include single and two-grams 
(pairs of consecutive words) depending on the label. In addition, the TfidfVectorizer uses 
lemmatized or raw sentence data from all sentences to create matrices for each classifier 
and sampling technique, which can either negate or promote an imbalance issue. 

When subsampling is applied, it progressively enhances classifier performance until a 
specific subset is reached, achieving optimal performance metrics such as precision, recall, 
AUROC, and accuracy, after which further increases may lead to a decline. Applying varia- 
tion in training size can lead to sporadic results in precision and recall. For instance, if the 
training size is 67% with a testing size of 33% from a subsampling size of 5%, the precision 
would be above 90% and recall between 35% to 45%. Now, if the training size is 33% and the 
testing size is 67% from the subsampling size, the precision would be around 30% to 35%, 
and recall between 90% to 100%. However, the expected performance for each classifier 
would remain the same even if it had a different subsampling technique. This means that 
Logistic Regression could have a lower precision score of 31% or a higher precision score of 
94% depending on the training size, which would be lower than other classifiers. 

3.4. Machine Learning Classifiers 

The types of models used in this experiment are statistical (Logistic Regression), tree- 
liked (Decision Tree and Random Forest), ensemble learning (XGBoost and Random Forest), 
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and probabilistic model (Naïve Bayes). Logistic Regression is a classifier that decides the 
likelihood of predicting that an instance belongs to a certain class as its main objective. 
Logistic regression models the likelihood of an output in terms of input characteristics, 
as opposed to linear regression, which predicts continuous values [30]. While it does not 
perform direct statistical classification, selecting a cutoff value can be employed to construct 
a classifier. This method commonly assigns inputs with probabilities above the cutoff to 
one class and those below the cutoff to the other in creating binary classifiers [30]. 

Predicting the category or class of a given instance is the aim of the probabilistic 
machine learning method Multinomial Naïve Bayes classifier based on Bayes’ theorem. It 
works well with data with characteristics that indicate discrete frequencies or counts of 
occurrences in various natural language processing (NLP) applications because it can com- 
pute the probability distribution of text data [31]. XGBoost is a machine learning algorithm 
that harnesses the predictions of weak models, typically decision trees, to construct a robust 
predictive model. Regression, classification, and ranking issues are among its common 
applications. Constructing a powerful classifier from a set of feeble classifiers is the aim. 
GPU support, a specialized data structure, goals, loss functions, cross-validation support, 
and APIs are all features of XGBoost [32]. The Random Forest classifier is a meta-estimating 
classifier that uses averaging to enhance prediction accuracy and address over-fitting. To 
accomplish this, the algorithm fits several decision tree classifiers on various subsamples 
of the dataset. It constructs these trees by randomly training them on different subsets. 
Subsequently, these trees participate in a “voting” process to determine the final prediction, 
with most trees determining the outcome. Random Forests mitigate overfitting and en- 
hance forecast accuracy by aggregating the information of several trees [33]. Decision Tree 
classifier builds a flowchart-like tree structure where each internal node denotes a test on an 
attribute, each branch represents an outcome of the test, and each leaf node (terminal node) 
holds a class label [34]. Decision trees have a hierarchical structure of root nodes, branches, 
leaf nodes, and internal nodes. Decision trees are considered non-parametric; they make 
no spatial distribution or classifier structure assumptions and can handle numerical and 
categorical variables [35]. 

The features encompass sentences that undergo preprocessed or non-preprocessed 
treatment to eliminate and filter out undesired elements using conventional preprocessing 
techniques. We alternated these features to assess their impact on the performance of each 
classifier and imbalanced sampling technique. Additionally, it is necessary to vectorize 
these features for use by any machine learning classifier in the methodology. The labels 
consist of positives (1 s) and negatives (0 s) for each respective class of the dataset. The clas- 
sifiers and imbalanced sampling techniques are all implemented similarly. The only factors 
that change the performance of each classifier are vectorization, training or testing size, and 
subsampling size. Before running the machine learning model, balance the sampling of 
classifiers and imbalanced sampling techniques. When employing an imbalanced sampling 
technique, the features undergo resampling based on the majority class (negative) and the 
minority class (positive). The machine learning models execute XGBoost, Naïve Bayes, 
and Decision Tree classifiers with default parameters. However, the machine learning 
models have changed parameters for Random Forest and Logistic Regression to optimize 
performance, considering the small size of the dataset. Logistic Regression is potentially 
biased to undersampling techniques used in this experiment that could have contributed 
to improved performance than other classifiers [36]. 

XGBoost has the fastest execution as an ensembling learning classifier, enabling it 
to supply the highest performance shown in this study. Random Forest classifier uses 
ensemble learning but takes the longest to execute and to supply a different performance 
result from other classifiers that are faster in execution. For detecting discrete features 
in text classification, it is suitable to use Multinomial Naïve Bayes. Logistic Regression 
classifier depends on binary variables that make it suitable for any binary classification 
problem. This study uses binary classification instead of multiclass classification, making 
the Logistic Regression classifier suitable for the hypothesis associated with this experiment. 
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The Decision Tree Classifier promotes swift execution, considering its efficacy for binary 
and multiclass tasks. The Decision Tree classifier is the primary classifier evaluated in the 
machine learning model. 

3.5. Statistical Analysis 

For statistical analysis, the R programming language requires the following packages: 
the tidyverse package collection, modelr package, rstatix package, ggpubr package, hexbin 
package, stats package, and reshape package. Based on the concepts of tidy data, the 
Tidyverse collection has specific packages such as dplyr, ggplot2, tidyr, readr, purrr, tibble, 
and more to visualize and preprocess data [24]. 

A statistician can use the tidyverse collection for exploratory data analysis, notably 
tibble and ggplot2. In keeping columns, rows, and variable types, a tibble differs from 
a conventional data frame in a more readable way. The ggplot2 package uses graphics 
grammar to map visual components to variables and arrange them on a plot to create a 
wide range of visualizations [26]. 

The tibble package has the as_tibble function, the stats package has the pairwise_t_test 
function, and the rstatix package has functions such as get summary stats, anova_test, 
stat_pvalue_manual, and ggboxplot for hypothesis testing. The as_tibble function changes 
data frames to the tibble format. The pairwise_t_test function uses a paired t-test to assess 
the differences between two groups to evaluate a hypothesis. The get_summary_stats 
function produces summary statistics for a dataset, such as the central tendency, disper- 
sion, quartiles, and interquartile ranges. Finally, the ANOVA function uses analysis of 
variance (ANOVA) to decide whether a statistically significant difference exists between 
groups [22,37]. 

In contrast, the F-value evaluates the variation within and between populations. This 
function handles showing the degrees of freedom represented by the numerator and 
denominator for ANOVA to compute a F-value of the Regression Mean Square divided by 
Mean Squared Error [38]. Bonferroni correction mitigates the possibility of bias introduced 
by concurrently conducting too many comparisons. The R function stat_pvalue_manual 
computes and shows the p-value for a hypothesis test based on two groups or conditions 
from a T-test, ANOVA, and Bonferroni correction [39]. Finally, the ggboxplot function 
generates box plot graphs that supply a visual depiction from rstatix package functions. 

4. Experiment and Results 

The machine learning models evaluate performance metrics from five labels specified 
in Section 3.1, using the Train, Dev, and Test Subsets. In the first approach, a script orga- 

nizes the COVID_Iterations.csv file with specific columns, including “Label”, “Sampling”, 
“Technique”, “Classifier”, “Test Split Size”, “Train Split Size”, “Iteration”, “Subsampling 
Size”, “Precision”, “Recall”, “AUROC”, and “Accuracy”. The Label column specifies the 

five categories: Immune, Risk Factors, Problems in China, Testing, and Transmission. The 
Sampling column finds three types of sampling: Imbalanced, Oversampling, or Undersam- 
pling [39,40]. The Technique column specifies five sampling methods: Synthetic Minority 
Oversampling Technique (SMOTE), Random Undersampling (RUS), Random Oversam- 
pling (ROS), TomekLinks, and NearMiss [18,39]. SMOTE [40] uses a fake point to create 
a vector between an existing data source and one of its peers, avoiding overfitting. RUS 
technique replaces specific data from the majority class to create an even or compacted 

distribution. In contrast, ROS substitutes random samples from minority classes to create a 
more evenly distributed training set [41].TomekLinks are pairs of events that occur near 
one another but take different routes, amplifying the two groups by removing dominant 

members, and NearMiss is a controlled under-sampling technique that replaces members 
of the dominant class with negative samples to improve space and reduces data loss [42]. 

Then, the Python script stores the scores in the CSV files with the designated columns 
based on the output formatting, where the Scikit-learn library’s metrics module supplies 
four specific scores for classifiers: precision, recall, AUROC, and accuracy. The script catego- 
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rizes scores without a sampling technique and method as ‘Imbalanced’ in the Sampling and 
Technique columns. The Classifier column can specify five classifiers: Logistic Regression, 
XGBoost, Decision Tree, Naïve Bayes, and Random Forest. Subtracting one from The Train 
Split Size column is 100% remaining from the Test Split Size. The Iteration and Subsample 
columns can range from 1 to 20 intervals by 5% up to 100% for the first approach or 1 to 
10 intervals by 10% up to 100% for the second approach. Precision, Recall, AUROC, and 
Accuracy columns can range from 0% to 100% in decimal values [26]. 

The script stores the scores in NumPy arrays each time a classifier executes, depending 
on the sampling method, sampling technique, test split size, train split size, subsampling 
iteration, and subsample size. After running the classifiers based on one set of train and test 
split sizes, the Python script appends the scores to the earlier score in each NumPy array. 

Similarly, the COVID_Subset_Iterations.csv file of the second approach defines columns 
such as “Subset”, “Other Subset”, “Sampling”, “Technique”, “Classifier”, “Iteration”, “Pre- 

cision”, “Recall”, “AUROC”, and “Accuracy”. These files record the evaluation metrics 
for each model, sampling method, and iteration, enabling analysis and comparison of 

the results. 
Each classifier has specific parameters to execute during each iteration and subsam- 

pling size. The machine learning model sequentially adjusts the train split size to 17%, 33%, 
50%, 67%, and 83% for each iteration, with the test split size being the remaining 100% 
minus the train split size. The first approach employs five different training and testing 
split sizes, while the second uses a fixed training and testing size of 50%. 

The train test split module from the Scikit-learn library performs training size variation. 
The Scikit-learn model selection function is a set of tools used for feature engineering on 
models. The train test split module, included in the Scikit-learn package, is valuable for 
splitting a dataset into two or more pieces for training and testing machine learning models. 
When conducting the train test split module during each subsampling iteration of the 
classifier, a user can specify the number of samples from each label to decide how closely 
the positive and negative classes match. 

4.1. Results from MEDFULL Data 

The MEDFULL data collection involves five labels (Immune, Problems in China, Risk 
Factors, Testing, and Transmission). This first approach uses data preprocessing techniques 
and manually assigns the document based on the content to positive and negative classes 
in our experiment and has shown not to have an imbalanced class issue [26]. 

Table 6 shows the highest precision at 100% from an iteration of 13 or 65% subsampling 
size. The precision scores are between 99.6% to 100%. The recall scores are around 55% up 
to 85%. It shows that the best subsample size at 65%, or iteration 13 when the test split size 
is at 67% or 83%, and the train split size is at 17% to 33%, provides only sufficient data to 
get the highest performance from the classifiers and imbalanced sampling techniques. 

 
Table 6. Highest Performance Metrics from COVID Iterations. 

 

 
 
 
 

in China 

 

 
Factors 

 

in China  

1 The technique used is only relevant to Undersampling techniques. Full words for abbreviations: NM—NearMiss, 
LR—Logistic Regression, RF—Random Forest, NB—Naïve Bayes, XG—XGBoost, DT—Decision Tree. 

Label Technique 1
 Classifier 1 

Test Split 
Size 

Train Split 
Size 

Iteration Precision Recall AUROC Accuracy 

Immune NM LR 0.67 0.33 13 1 0.557233 0.778617 0.602797 

Problems NM 
RF 0.67 0.33 13 1 0.618273 0.809136 0.691296 

Immune NM NB 0.67 0.33 13 0.999266 0.584622 0.791048 0.64464 

Risk NM 
XG 0.67 0.33 13 0.998252 0.620652 0.808094 0.69405 

Problems NM 
DT 0.67 0.33 13 0.996917 0.578932 0.78391 0.635826 
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Table 7 shows the lowest precision and recall scores found from an iteration of 13 or 
65% subsampling size when the test and train split sizes are 50%. The results demonstrate 
that iteration 13 has sporadic results. 

 
Table 7. Lowest Performance Metrics from COVID Iterations. 

 
 

Label Technique 1
 Classifier 1 

Test Split 
Size 

Train Split 
Size 

Iteration Precision Recall AUROC Accuracy 

Testing NM LR 0.5 0.5 13 0.093478 0.014517 0.436867 0.436867 

Testing NM XG 0.5 0.5 13 0.120879 0.00945 0.470361 0.470361 

Testing NM NB 0.5 0.5 13 0.139394 0.013046 0.466251 0.466251 

Transmission NM DT 0.5 0.5 13 0.188406 0.02054 0.466834 0.466834 

Testing NM RF 0.5 0.5 13 0.142857 0.01 0.47495 0.474562 

1 The technique used is only relevant to Undersampling techniques. Full words for abbreviations: NM—NearMiss, 
LR—Logistic Regression, RF—Random Forest, NB—Naïve Bayes, XG—XGBoost, DT—Decision Tree. 

 
Table 8 summarizes the label’s average scores regardless of sampling method and 

technique, classifier, train split size, test split size, iteration, and subsampling size. Again, 
Risk Factors supply the best scores, while the Testing label provides the worst scores. 

 
Table 8. Average Performance Metrics Based on Label for MEDFULL Data. 

 

Label Precision Recall AUROC Accuracy 

Immune 0.73670 0.70131 0.67559 0.66176 

Problems in China 0.66540 0.63147 0.67900 0.66442 

Risk Factors 0.73396 0.72982 0.68216 0.67627 

Testing 0.72046 0.68546 0.67397 0.65945 

Transmission 0.75239 0.69499 0.67528 0.66179 

 
Table 9 summarizes each classifier’s average precision, recall, AUROC, and accuracy 

scores regardless of sampling method, sampling technique, label, train split size, test split 
size, iteration, and subsampling size. Again, the XGBoost classifier supplies the best scores, 
while the Logistic Regression classifier supplies the worst. 

 
Table 9. Average Performance Metrics Based on Classifier for MEDFULL Data. 

 

Classifier Precision Recall AUROC Accuracy 

Logistic Regression 0.69871 0.65753 0.64769 0.63780 

Decision Tree 0.71524 0.68682 0.67128 0.65943 

Naïve Bayes 0.72550 0.69172 0.68216 0.66924 

XGBoost 0.73302 0.70026 0.68971 0.67609 

Random Forest 0.73641 0.70673 0.69517 0.68113 

 
Table 10 summarizes the sampling method’s average precision, recall, AUROC, and 

accuracy scores regardless of classifier, sampling technique, label, train split size, test split 
size, iteration, and subsampling size. Again, the scores from imbalanced data outperform 
the other types of sampling methods (Oversampling and Undersampling). 

Table 11 summarizes the average sampling technique’s precision, recall, AUROC, and 
accuracy scores regardless of sampling method, label, classifier, train split size, test split 
size, iteration, and subsampling size. When the machine learning models use imbalanced 
sampling techniques, they have shown slight effectiveness than simply running machine 
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learning models on the imbalanced dataset. TomekLinks has the best scores in comparison 
to other imbalanced sampling techniques. NearMiss has the worst scores. 

 
Table 10. Average Performance Metrics Based on Sampling for MEDFULL Data. 

 

Sampling Precision Recall AUROC Accuracy 

Imbalanced 0.73295 0.69637 0.66433 0.66619 

Oversampling 0.71301 0.68496 0.68092 0.66251 

Undersampling 0.68846 0.68846 0.67902 0.66574 

 
Table 11. Average Performance Metrics Based on Technique for MEDFULL Data. 

Technique Precision Recall AUROC Accuracy 

Imbalanced 0.73295 0.69636 0.66432 0.66618 

NearMiss 0.71225 0.68521 0.67541 0.65667 

ROS 0.71283 0.68693 0.68151 0.66313 

RUS 0.72433 0.68984 0.68834 0.66945 

SMOTE 0.71319 0.68299 0.68026 0.66189 

TomekLinks 0.73521 0.69033 0.67333 0.67109 

 
Table 12 displays the ANOVA t-test results for classifiers based on precision. The p- 

values represent the statistical significance of the variations in accuracy between algorithm 
pairings. Significant variations (****) in accuracy between Decision Tree and Naive Bayes, 
Decision Tree and Random Forest, Decision Tree and Random Forest, Logistic Regression 
and XGBoost, and Logistic Regression and XGBoost are among the noteworthy results. 
The adjusted p-values show that these significant differences hold even after correcting for 
multiple comparisons. On the other hand, several comparisons, such as Random Forest 
with XGBoost, Naive Bayes with Random Forest, and Random Forest with XGBoost, have 
p-values over the standard cutoff of 0.05 and do not demonstrate any discernible changes. 

 
Table 12. t-test Statistics of Precision Based on Classifiers for MEDFULL Data. 

 

Metric Group 1 1 Group 2 1 p p.signif 1 p.adj 1 p.adj.signif 1 

Precision DT LR 1.09 × 10−3 ** 1.09 × 10−2 * 

Precision DT NB 4.26 × 10−2 * 4.26 × 10−1 ns 

Precision LR NB 1.21 × 10−7 **** 1.21 × 10−6 **** 

Precision DT RF 2.89 × 10−5 **** 2.89 × 10−4 *** 

Precision LR RF 9.85 × 10−14 **** 9.85 × 10−13 **** 

Precision NB RF 3.11 × 10−2 * 3.11 × 10−1 ns 

Precision DT XG 4.44 × 10−4 *** 4.44 × 10−3 ** 

Precision LR XG 1.25 × 10−11 **** 1.25 × 10−10 **** 

Precision NB XG 0.137 ns 1.00 ns 

Precision RF XG 0.503 ns 1.00 ns 

1 The classifiers are compared based on 3000 observations. Full words for abbreviations: LR—Logistic Regression, 
RF—Random Forest, NB—Naïve Bayes, XG—XGBoost, DT—Decision Tree, ns—non-significance level. ns means 
p > 0.05, * means p ≤ 0.05, ** means p ≤ 0.01, *** means p ≤ 0.001, and **** means p ≤ 0.0001. p.signf means the 
significance level of p-values, p.adj means adjusted p-value, and p.adj.signif means the significance level of the 
adjusted p-value. 

 
The ANOVA t-test of classifiers based on recall is shown in Table 13. The p-values 

reflect the statistical significance of differences in recall between the algorithm pairs. Several 
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noteworthy findings emerge vital statistical significance (****) is observed in the compar- 
isons between Decision Tree and Logistic Regression, Decision Tree and Naive Bayes, 
Logistic Regression and Random Forest, Decision Tree and Random Forest, Logistic Regres- 
sion and XGBoost, and Logistic Regression and XGBoost. These results remain significant 
even after adjusting for multiple comparisons, indicated by the adjusted p-values. Con- 
versely, some comparisons, such as Naive Bayes with Random Forest and Naive Bayes with 
XGBoost, show no significant differences, as evidenced by p-values above the conventional 
threshold of 0.05. 

Table 13. t-test Statistics of Recall Based on Classifiers for MEDFULL Data. 
 

Metric Group 1 1 Group 2 1 p p.signif 1 p.adj 1 p.adj.signif 1 

Recall DT LR 6.33 × 10−8 **** 6.33 × 10−7 **** 

Recall DT NB 3.65 × 10−1 ns 1.00 ns 

Recall LR NB 2.72 × 10−10 **** 2.72 × 10−9 **** 

Recall DT RF 2.32 × 10−4 *** 2.32 × 10−3 ** 

Recall LR RF 1.08 × 10−19 **** 1.08 × 10−18 **** 

Recall NB RF 5.52 × 10−3 ** 5.52 × 10−2 ns 

Recall DT XG 1.30 × 10−2 * 1.30 × 10−1 ns 

Recall LR XG 3.06 × 10−15 **** 3.06 × 10−14 **** 

Recall NB XG 1.14 × 10−1 ns 1.00 ns 

Recall RF XG 2.31 × 10−1 ns 1.00 ns 

1 The classifiers are compared based on 3000 observations. Full words for abbreviations: LR—Logistic Regression, 
XG—XGBoost, DT—Decision Tree, RF—Random Forest, ns—non-significance level. ns means p > 0.05, * means 
p ≤ 0.05, ** means p ≤ 0.01, *** means p ≤ 0.001, and **** means p ≤ 0.0001. p.signf means the significance level of 
p-values, p.adj means adjusted p-value, and p.adj.signif means the significance level of the adjusted p-value. 

 
The graph in Figure 3, titled ‘MEDFULL—Precision & Classifier’, shows an F-value 

of 18.14 with an overall p-value less than 0.0001, meaning a slight variation of sample 
means between the two groups. Logistic Regression has lower values and the lowest outlier 
distinctively from other classifiers in this box plot. The Logistic Regression classifier has 
a significant value, given that it has lower importance than other classifiers of precision 
scores. XGBoost has two non-significant values meaning the performance of the XGBoost 
classifier is closely like different classifiers (particularly Naive Bayes and XGBoost). Logistic 
Regression has a significant level than other classifiers. 

The ‘MEDFULL—Recall & Classifier’ graph shows an F-value of 24.64, which offers a 
slight variation of sample means based on all classifiers. Again, the recall scores differed 
more considerably than the same precision (categorical variable). Furthermore, in this case, 
Logistic Regression has shown lower values in the boxplot to justify its p-value significance, 
like precision scores. In this figure, Naïve Bayes has the most closely non-significant papers 
in various groups of classifiers. Again, Logistic Regression has the lowest p-values that 
show a highly significant level in the p-value column. 

The ‘MEDFULL—Precision & Sampling’ graph displays slight variations in all box 
plots between the two groups, with an F-value of 27.64 and an overall p-value less than 
0.0001. In this figure, they are all significant when comparing each sampling method, and 
Oversampling supplies a higher significance level than other methods. 

The graph titled ‘MEDFULL—Recall & Sampling’ shows an exceptionally low F-value 
of 2.46, which proves poor variation between the groups. The overall p-value of 0.086, 
meaning there is little or no significance when comparing two groups against each other. 
This figure provided Imbalanced when compared with Oversampling supply, a significantly 
low level of 0.0268 that cannot deny a null hypothesis. Other comparisons are insignificant, 
meaning the groups have little or non-existent difference. 



Mach. Learn. Knowl. Extr. 2023, 5 1967 
 

 

 

 

Figure 3. ANOVA t-tests Plots for MEDFULL Data. 
 

The ‘MEDFULL—Precision & Technique’ graph shows an F-value score of 7.19 and 
an overall p-value less than 0.0001, meaning all sampling techniques and Imbalanced data 
will partially have differences in performance metrics compared to other groups. However, 
every sampling technique supplies non-significant and significant results compared to 
other groups. 

The ‘MEDFULL—Recall & Technique’ graph shows an F-value of 1.25 and a p-value 
of 0.28, meaning there is no or slight variation among the sample means for recall scores. 
The only comparison of a sampling technique is significant with Imbalanced and SMOTE 
at p-value at 0.0245. Other comparisons are insignificant. 

The ROC curves shown in Figure 4 show the performance of different classifiers 
depending on the training size, as depicted in Figure 4. The Naïve Bayes has the highest 
AUC values in all the graphs, from 0.74 to 0.78. Logistic Regression and Random Forest 
have the second highest values between 0.72 to 0.77. Decision Tree and XGBoost performed 
similarly at 0.66 and 0.70 when the training size was 16% and 33%. Decision Tree has the 
second lowest performance of 0.72 and XGBoost has the most inferior performance of 0.71. 



Mach. Learn. Knowl. Extr. 2023, 5 1968 
 

 

 

 
 

Figure 4. ROC Curves Based on NearMiss Iteration 13 for MEDFULL Data. 
 

Figure 5 shows precision and recall in different facets that compare each sampling 
technique for MEDFULL data. These facets show that all imbalanced sampling pro- 
cesses and imbalanced data have a similar performance, which does not address the 
imbalanced problem. 

 

Figure 5. Facets of Recall and Precision Based on Technique for MEDFULL Data. 
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Figure 6 shows a scatter plot of precision and recall in a two-dimensional graph 
comparing the MEDFULL data sampling technique. The MEDFULL data has more observa- 
tions for analysis of the performance metrics from CSV rather than Subset data. However, 
the scatter plot shows that the Imbalanced data performs similarly to other imbalanced 
sampling techniques. 

 

Figure 6. Scatter Plot of Precision and Recall Based on Technique for MEDFULL Data. 

Figure 7 shows a heatmap of precision and recall for MEDFULL data. Again, the 
MEDFULL data shows much variability due to more scores and observations. In this 
heatmap, the highest values are when the recall and precision are around 60%. In this 
heatmap, even with imbalanced sampling techniques, the classifiers supply the lowest 
recall and precision scores compared to the Subset data. 

 

 
Figure 7. Heatmap of Precision and Recall for MEDFULL Data. 

4.2. Results from Subset Data 

The Subset data collection involves three subsets (Train Set, Dev Set, and Test Set). 
This second approach uses regular expressions to decide whether a sentence matches a 
keyword and label it positive or negative. The Subset data collection has addressed the 
imbalanced issue [26]. 

Table 14 shows that the highest scores can be possible when the iteration is 9 or 10, or 
the subsample size is 90% or 100%. Therefore, the machine learning models obtain the best 
scores from Subset data by utilizing 90% and 100% of the dataset. 
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Table 14. Highest Performance Metrics from Subset Iterations. 
 

Subset Other Set Technique 1 Classifier 1 Iteration Precision Recall AUROC Accuracy 

Train_Set Test_Set ROS XG 9 0.991202 0.936199 0.961843 0.961836 

Train_Set Test_Set ROS RF 9 0.991104 0.939023 0.963742 0.963584 

Train_Set Test_Set ROS LR 10 0.99074 0.935225 0.96111 0.961088 

Train_Set Test_Set ROS NB 10 0.990414 0.93441 0.960697 0.96059 

Train Set Test Set ROS DT 10 0.990303 0.9352 0.96712 0.96181 

1 This table only shows statistics related to Random Over Sampling.  Abbreviations for Full terms: 
NM—NearMiss, XG—XGBoost, RF—Random Forest, LR—Logistic Regression, NB—Naïve Bayes, DT—Decision 
Tree, ROS—Random Over Sampling. 

 
Table 15 shows that the lowest scores are possible when the dataset has a 50% and 60% 

subsampling size or iterations of 5 and 6. The results show that only half of the samples 
from the Train Set, Dev Set, and Test Set can obtain the lowest scores from the dataset. 

 
Table 15. Lowest Performance Metrics from Subset Iterations. 

 

Subset Other Set Technique 1 Classifier 1 Iteration Precision Recall AUROC Accuracy 

Train_Set Test_Set NM LR 5 0.541509 0.988519 0.597201 0.58692 

Train_Set Test_Set NM DT 5 0.578896 0.989391 0.647256 0.641251 

Train_Set Test_Set NM XG 5 0.594941 0.993838 0.665787 0.662264 

Train Set Test Set NM RF 5 0.598006 0.982636 0.66621 0.663715 

Train Set Test Set RUS NB 6 0.676887 0.989792 0.762975 0.760883 

1 This table only shows statistics related to undersampling techniques. Abbreviations for Full terms: 
NM—NearMiss, LR—Logistic Regression, DT—Decision Tree, XG—XGBoost. RF—Random Forest, and 
NB—Naïve Bayes, RUS—Random Under Sampling. 

 
Table 16 shows the average scores from the Test Set supply better in the precision, recall, 

and AUROC columns. However, Dev Set was only superior in the accuracy scores column. 

 
Table 16. Average Performance Metrics Based on Label for Subset Data. 

 

Other Set Precision Recall AUROC Accuracy 

Dev Set 0.87700 0.89124 0.90969 0.93094 

Test Set 0.88963 0.92072 0.91150 0.92239 

 
Table 17 summarizes each classifier’s average precision, recall, AUROC, and accuracy 

scores regardless of other categories. Again, Logistic Regression has the worst performance 
as a classifier, while Random Forest has the best performance. 

 
Table 17. Average Performance Metrics Based on Classifier for Subset Data. 

 

Classifier Precision Recall AUROC Accuracy 

Logistic Regression 0.87255 0.90081 0.90472 0.92019 

Decision Tree 0.87802 0.89721 0.90504 0.92357 

Naïve Bayes 0.88158 0.90666 0.91178 0.92795 

XGBoost 0.88811 0.90934 0.91281 0.92854 

Random Forest 0.89632 0.91591 0.91861 0.93306 
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Table 18 summarizes the average precision, recall, AUROC, and accuracy scores for 
each type of sampling regardless of other categories. Again, the Oversampling methods 
outperform the imbalanced data and Undersampling methods. 

 
Table 18. Average Performance Metrics Based on Sampling for Subset Data. 

 

Sampling Precision Recall AUROC Accuracy 

Imbalanced 0.84944 0.85076 0.89556 0.93002 

Oversampling 0.92292 0.96919 0.93650 0.93646 

Undersampling 0.89270 0.92173 0.91198 0.92116 

 
All imbalanced sampling techniques perform more effectively than imbalanced data 

in three types of metrics (precision, recall, and AUROC), excluding accuracy, as shown 
in Table 19. The second approach of the method using regular expressions that match 
keywords to label documents in values of one and zero has helped address the imbalanced 
class problem from the average performance metrics provided. 

 
Table 19. Average Performance Metrics Based on Technique for Subset Data. 

 

Technique Precision Recall AUROC Accuracy 

Imbalanced 0.84944 0.85076 0.89556 0.93002 

NearMiss 0.88845 0.93946 0.89687 0.89649 

ROS 0.92292 0.96919 0.93650 0.93646 

RUS 0.89881 0.94409 0.90935 0.90915 

SMOTE 0.92631 0.97026 0.93950 0.93950 

TomekLinks 0.87189 0.86592 0.90840 0.93632 

 
Table 20 shows the Logistic Regression and Random Forest comparison in Group 1 and 

Group 2 yields a p-value of 0.0414, marked with an asterisk (*) showing significance at the 
0.05 level. However, this significance disappears after adjusting for multiple comparisons 
(p.adj), suggesting that the observed difference may be due to chance. The results show no 
statistically significant differences in precision between Group 1 and Group 2. 

 
Table 20. t-test Statistics of Precision Based on Classifiers for Subset Data. 

 

Metric Group 1 1 Group 2 1 p p.signif 1 p.adj 1 p.adj.signif 1 

Precision DT LR 0.6380 ns 1.000 ns 

Precision DT NB 0.7600 ns 1.000 ns 

Precision LR NB 0.4380 ns 1.000 ns 

Precision DT RF 0.1160 ns 1.000 ns 

Precision LR RF 0.0414 * 0.414 ns 

Precision NB RF 0.2050 ns 1.000 ns 

Precision DT XG 0.3860 ns 1.000 ns 

Precision LR XG 0.1810 ns 1.000 ns 

Precision NB XG 0.5740 ns 1.000 ns 

Precision RF XG 0.4810 ns 1.000 ns 
1 The classifiers are compared based on 120 observations. Full words for abbreviations: LR—Logistic Regression, 
XG—XGBoost, DT—Decision Tree, RF—Random Forest, ns—non-significance level. ns means p > 0.05, * means 
p ≤ 0.05, ** means p ≤ 0.01, *** means p ≤ 0.001, and **** means p ≤ 0.0001. p.signf means the significance level of 
p-values, p.adj means adjusted p-value, and p.adj.signif means the significance level of the adjusted p-value. 
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Table 21 shows that all the p-values, though, are higher than the usual significance 
level of 0.05. In this case, the recall measure does not show statistically significant changes 
between Group 1 and Group 2 for any classifiers provided, such as Decision Tree, Logistic 
Regression, Naive Bayes, Random Forest, and XGBoost. Even after considering multiple 
comparisons, the p.adj values indicate no significant changes. Based on the recall measure, 
the study shows that there needs to be a clear difference between how well the machine 
learning methods in Group 1 and Group 2 did with the given dataset. 

 
Table 21. t-test Statistics of Recall Based on Classifiers for Subset Data. 

 

Metric Group 1 1 Group 2 1 p p.signif 1 p.adj 1 p.adj.signif 1 

Recall DT LR 0.7320 ns 1.000 ns 

Recall DT NB 0.3700 ns 1.000 ns 

Recall LR NB 0.5790 ns 1.000 ns 

Recall DT RF 0.0765 ns 0.765 ns 

Recall LR RF 0.1530 ns 1.000 ns 

Recall NB RF 0.3800 ns 1.000 ns 

Recall DT XG 0.2500 ns 1.000 ns 

Recall LR XG 0.4190 ns 1.000 ns 

Recall NB XG 0.8000 ns 1.000 ns 

Recall RF XG 0.5330 ns 1.000 ns 
1 The classifiers are compared based on 120 observations. Full words for abbreviations: LR—Logistic Regression, 
XG—XGBoost, DT—Decision Tree, RF—Random Forest, ns—non—non-significance level. ns means p > 0.05, 
* means p ≤ 0.05, ** means p ≤ 0.01, *** means p ≤ 0.001, **** means p ≤ 0.0001. p.signf means the significance level 
of p-values, p.adj means adjusted p-value, and p.adj.signif means the significance level of the adjusted p-value. 

 
The graph titled ‘Subset—Precision & Classifier’ from Figure 8 shows an F-value of 

1.25, and a p-value of 0.29 shows similar scores regardless of the classifier, specifying that all 
classifiers from subset data are insignificant. There is barely any variation. All the classifiers 
only perform similarly better than each other. 

The graph titled ‘Subset—Recall & Classifier’ has an F-value of 0.96 and a p-value of 
0.43, showing that all comparisons from classifiers from subset data for recall are insignifi- 
cant, worse than precision for the same case. There is variation, but it is closely non-existent. 
All classifiers have similar scores for recall and precision. 

The graph titled ‘Subset—Precision & Sampling shows that all sampling methods with 
precision scores have shown to be significant, with an F-value of 27.64, and all comparisons 
are less than the p-value of 0.0001. Oversampling offers the best performance among all the 
sampling methods, while Imbalanced and Undersampling perform similarly. There is a 
noticeable difference in scores among all the sampling methods. 

The graph titled ‘Subset—Recall & Sampling’ shows that all sampling methods with 
recall scores have shown to be significant, with an F-value of 111.1, and all comparisons 
have a p-value of less than 0.0001. However, the recall scores have a more noticeable 
difference than the precision scores. 

The graph titled ‘Subset—Precision & Technique’, for the sampling techniques, an 
F-value of 14.11 and a p-value less than 0.0001 show slight performance variation from all 
sampling techniques and Imbalanced data. Imbalanced data is significant compared to 
other techniques. Imbalanced data has a difference in scores compared to NearMiss, ROS, 
RUS, and SMOTE. The four sampling techniques have similar scores to TomekLinks and 
Imbalanced data. This similarity shows that four sampling techniques (NearMiss, ROS, 
RUS, and SMOTE) can address the imbalanced dataset problem. 
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Figure 8. ANOVA t-tests Plots for Subset Data. 
 

The graph titled ‘Subset—Recall & Technique’ shows an F-value of 77.72 and a p-value 
less than 0.0001 for the sampling techniques. The Imbalanced label (being imbalanced data) 
and TomekLinks perform similarly to the other sampling techniques (NearMiss, ROS, RUS, 
and SMOTE). 

The ROC Curves in Figure 9 are the highest and lowest performances possible for 
Subset data. The performance is closely similar for all classifiers from Iterations 5 and 10. 
Iteration 10 shows a slight decrease in performance from Iteration 5. The highest perfor- 
mance was from Iteration 5 of Random Oversampling. Iteration 10 of NearMiss records the 
lowest performance found in Iteration 10. Random Forest and XGBoost classifiers have the 
highest performance, averaging 0.99, and Naive Bayes has the most inferior performance 
of all classifiers. 
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Figure 9. ROC Curves Based on NearMiss and ROS Iteration 5 and 10 for Subset Data. 
 

Figure 10 presents precision and recall scores for different facets, comparing each sam- 
pling technique for subset data. Based on these facets, ROS, RUS, SMOTE, and NearMiss 
have data points in similar locations compared to the Imbalanced data and TomekLinks 
technique. By visualizing the different facets, it becomes clear that these four imbalanced 
sampling techniques were more effective in addressing our class’s imbalanced problem 
than other techniques. 

Figure 11 shows a scatter plot of precision and recall in a two-dimensional graph that 
compares imbalanced sampling techniques for Subset data. Fewer observations from the 
Subset data supply fewer plots from the MEDFULL data. TomekLinks and Imbalanced 
have similar patterns where precision and recall are between 69% to 98%. ROS and SMOTE 
show identical ways of having high recall and precision compared to other techniques, 
including Imbalanced data. 

Figure 12 shows a heatmap of precision and recall in a two-dimensional graph for 
Subset data. There is a low amount of variability due to the number of observations. The 
lighter the color, the higher the number of values occupying a particular graph area. The 
highest scores for precision and recall are easier to find based on the heatmap. 
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Figure 10. Facets of Precision and Recall Based on Technique for Subset Data. 
 

Figure 11. Scatter Plot of Precision and Recall Based on Technique for Subset Data. 
 

Figure 12. Heatmap of Precision and Recall for Subset Data. 
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4.3. Model Execution 

The four Scikit-learn modules and the XGBoost library assist in executing the five 
classifiers. The machine learning models use no additional parameters to run the Decision 
Tree, XGBoost, and Nave Bayes classifiers. Multinomial Naive Bayes is the specific type 
of Nave Bayes classifier used. The Logistic Regression classifier runs with the following 
parameters: an l2 penalty, a random state of zero, the lbfgs solver, automatic multi-class, 
and a maximum of 500 iterations. The Random Forest Classifier runs with the following 
settings: 1000 estimators and a random state of zero. 

To run the experiments, we used multiple workstations in a lab, each with at least 16 GB 
to 32 GB of RAM. The lab environment has central processing units from 2.5 gigahertz to 
5 GHz. Depending on the RAM, each computer runs three to six machine-learning models 
simultaneously. 

However, a Linux cluster with 200 to 800 gigabytes of random-access memory is the 
recommended environment for executing machine-learning models efficiently. This cluster 
should be capable of running up to 75 models concurrently in a Unix terminal. 

5. Conclusions and Discussion 

This work presents robust statistical and exploratory analysis to demonstrate the 
effects of the performance of ML classifiers and sampling techniques in document datasets; 

when training on the Subset data, classifiers without sampling techniques achieved an 
average accuracy of 84.945% and recall of 85.076%. Classifiers trained with sampling 
techniques achieved an average precision of 90.002% and recall of 93.335%. Without 
sampling techniques, classifiers on the MEDFULL data achieved an average precision 

of 73.296% and a recall of 69.636%. Classifiers using sampling techniques achieved an 
average precision of 71.954% and a recall of 68.706%. The manual document classification 

approach for MEDFULL data collection has shown not to have a class imbalance issue, 
and the automatic document classification approach for Subset Data collection has a class 
imbalance issue. There are fewer observations, patterns, trends, and anomalies in the 
Subset data. However, it has more variation or effectiveness in performance as measured 
by ANOVA scores compared to the MEDFULL data while doing exploratory data analysis. 

Studies have shown that imbalanced classifiers could perform better on unstructured 
text data. However, using imbalanced sampling techniques can address the imbalanced 
dataset problem. However, varying the training, testing sizes, and subsampling data 
can unpredictably change the performance metrics. In addition, automatic and manual 
document classification and feature engineering methods can create unexpected results for 
performance metrics. By using training size variation and subsampling, this paper intends 
to address the shortcomings of machine learning classification from previous literature 
regarding performance metrics and exploratory data analysis. 

Our future work involves using Deep Learning (DL) algorithms with language mod- 
els with Bidirectional Encoder Representations from Transformers (BERT) and PyTorch. 
Adjustments are necessary for finetuning these models and require using a larger dataset 
that will provide more data to train with to get superior performance from deep learning 
algorithms. When executing the deep learning models, a researcher can apply similar 
subsampling, training size variation methods, and other feature engineering techniques. 
Also, a researcher can use statistical analysis to evaluate the performance of the different 
deep learning algorithms. 

 
Author Contributions: Conceptualization, J.D.; Methodology, J.D.; Software, J.D. and M.R.; Valida- 

tion, J.D. and M.R.; Formal Analysis, J.D.; Investigation, M.R.; Resources, J.D.; Data Curation, J.D.; 

Writing—Original Draft Preparation, J.D.; Writing—Review & Editing, J.D. and M.R.; Visualization, 

J.D.; Supervision, M.R.; Project Administration, M.R.; Funding Acquisition, M.R. All authors have 

read and agreed to the published version of the manuscript. 

Funding: This work is supported by the National Science Foundation (NSF) grant (ID#2131307) 

under the CISE-MSI program. 



Mach. Learn. Knowl. Extr. 2023, 5 1977 
 

 

 
Data Availability Statement: The code and datasets can be downloaded from https://github.com 

/JDixonCS/Document-Classification (accessed on 30 November 2023). Dataset is accessible from 

https://github.com/JDixonCS/Document-Classification/tree/main/classifier/MEDTEXT (accessed 

on 30 November 2023). Results are accessible from https://github.com/JDixonCS/Document-Class 

ification/tree/main/classifier/Results (accessed on 30 November 2023). 

Acknowledgments: The authors want to thank Ian Soboroff for his expertise, wisdom, phenomenal 

knowledge, technical guidance, and mentorship and for providing someone with the opportunity 

to intern for the Retrieval Group at the National Institute of Standards and Technology, all of 

which contributed to the completion of this research project. Ian Soboroff has consented to the 

acknowledgement of this paper. 

Conflicts of Interest: The authors declare no conflict of interest. 
 

References 

1. Büttcher, S.; Clarke, C.; Cormack, G.V. Information Retrieval: Implementing and Evaluating Search Engines; The MIT Press: Cambridge, 

MA, USA, 2010. 

2. Belkin, N.J.; Croft, W.B. Information Filtering and Information Retrieval: Two Sides of the Same Coin? Commun. ACM 1992, 35, 

29–38. [CrossRef] 

3. Kowsari, K.; Meimandi, K.J.; Heidarysafa, M.; Mendu, S.; Barnes, L.E.; Brown, D.E. Text Classification Algorithms: A Survey. 
Information 2019, 10, 150. [CrossRef] 

4.  Zhou, Z.-H.; Liu, X.-Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. 

Knowl. Data Eng. 2006, 18, 63–77. [CrossRef] 

5. Zhang, Z.; Jasaitis, T.; Freeman, R.; Alfrjani, R.; Funk, A. Mining Healthcare Procurement Data Using Text Mining and Natural 

Language Processing—Reflection from an Industrial Project. arXiv 2023, arXiv:2301.03458. [CrossRef] 

6. Borko, H.; Bernick, M. Automatic Document Classification Part II. Additional Experiments. J. ACM 1964, 11, 138–151. [CrossRef] 
7. Shakarami, A.; Ghobaei-Arani, M.; Shahidinejad, A. A Survey on the Computation Offloading Approaches in Mobile Edge 

Computing: A Machine Learning-based Perspective. Comput. Netw. 2020, 182, 107496. [CrossRef] 

8. Akritidis, L.; Bozanis, P. A Supervised Machine Learning Classification Algorithm for Research Articles. In Proceedings of 

the 28th Annual ACM Symposium on Applied Computing (SAC’ 13), Coimbra, Portugal, 18–22 March 2013; Association for 

Computing Machinery: New York, NY, USA, 2013; pp. 115–120. [CrossRef] 

9.  Goudjil, M.; Koudil, M.; Bedda, M.; Ghoggali, N. A Novel Active Learning Method Using SVM for Text Classification. Int. J. 

Autom. Comput. 2018, 15, 290–298. [CrossRef] 

10. Kadhim, A.I. An evaluation of preprocessing techniques for text classification. Int. J. Comput. Sci. Inf. Secur. 2018, 16, 22–32. 
11. Mali, M.; Atique, M. The Relevance of Preprocessing in Text Classification. In Integrated Intelligence Enable Networks and Computing; 

Mer, K.K.S., Semwal, V.B., Bijalwan, V., Crespo, R.G., Eds.; Springer: Singapore, 2021; pp. 553–559. 

12. Imberg, H.; Yang, X.; Flannagan, C.; Bärgman, J. Active sampling: A machine-learning-assisted framework for finite population 

inference with optimal subsamples. arXiv 2022, arXiv:2212.10024. 

13. Kumar, V.; Balloccu, S.; Wu, Z.; Reiter, E.; Helaoui, R.; Recupero, D.R.; Riboni, D. Data Augmentation for Reliability and 

Fairness in Counselling Quality Classification. In Proceedings of the 1st Workshop on Scarce Data in Artificial Intelligence for 

Healthcare-SDAIH, INSTICC, Vienna, Austria, 23 July 2022; SciTePress: Setúbal, Portugal, 2023; pp. 23–28. 

14.  Oyedare, T.; Park, M.J. Estimating the Required Training Dataset Size for Transmitter Classification Using Deep Learning. In 

Proceedings of the 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Newark, NJ, USA, 

11–14 November 2019; pp. 1–10. [CrossRef] 

15. Li, Q.; Peng, H.; Li, J.; Xia, C.; Yang, R.; Sun, L.; Yu, P.S.; He, L. A Survey on Text Classification: From Traditional to Deep Learning. 
ACM Trans. Intell. Syst. Technol. 2022, 13, 1–41. [CrossRef] 

16. Mujtaba, G.; Shuib, L.; Idris, N.; Hoo, W.L.; Raj, R.G.; Khowaja, K.; Shaikh, K.; Nweke, H.F. Clinical text classification research 

trends: Systematic literature review and open issues. Expert Syst. Appl. 2019, 116, 494–520. [CrossRef] 

17.  Kamath, C.N.; Bukhari, S.S.; Dengel, A. Comparative Study between Traditional Machine Learning and Deep Learning Ap- 

proaches for Text Classification. In Proceedings of the ACM Symposium on Document Engineering 2018 (DocEng’18), Halifax, 

NS, Canada, 28–31 August 2018; Association for Computing Machinery: New York, NY, USA, 2018. [CrossRef] 

18. Kim, M.; Hwang, K.-B. An empirical evaluation of sampling methods for the classification of imbalanced data. PLoS ONE 2022, 
17, e0271260. [CrossRef] [PubMed] 

19.  Agarwal, B.; Mittal, N. Text Classification Using Machine Learning Methods—A Survey. In Proceedings of the Second Interna- 

tional Conference on Soft Computing for Problem Solving (SocProS 2012), Jaipur, India, 28–30 December 2012; Babu, B.V., Nagar, 

A., Deep, K., Pant, M., Bansal, J.C., Ray, K., Gupta, U., Eds.; Springer: New Delhi, India, 2014; pp. 701–709. [CrossRef] 

20. Gaudreault, J.-G.; Branco, P.; Gama, J. An Analysis of Performance Metrics for Imbalanced Classification. In Discovery Science; 

Soares, C., Torgo, L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 67–77. 

21.  Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple 

preprocessing techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [CrossRef] 

https://github.com/JDixonCS/Document-Classification
https://github.com/JDixonCS/Document-Classification
https://github.com/JDixonCS/Document-Classification/tree/main/classifier/MEDTEXT
https://github.com/JDixonCS/Document-Classification/tree/main/classifier/Results
https://github.com/JDixonCS/Document-Classification/tree/main/classifier/Results
https://doi.org/10.1145/138859.138861
https://doi.org/10.3390/info10040150
https://doi.org/10.1109/TKDE.2006.17
https://doi.org/10.48550/arXiv.2301.03458
https://doi.org/10.1145/321217.321219
https://doi.org/10.1016/j.comnet.2020.107496
https://doi.org/10.1145/2480362.2480388
https://doi.org/10.1007/s11633-015-0912-z
https://doi.org/10.1109/DySPAN.2019.8935823
https://doi.org/10.1145/3495162
https://doi.org/10.1016/j.eswa.2018.09.034
https://doi.org/10.1145/3209280.3209526
https://doi.org/10.1371/journal.pone.0271260
https://www.ncbi.nlm.nih.gov/pubmed/35901023
https://doi.org/10.1007/978-81-322-1602-5_75
https://doi.org/10.1016/j.trac.2020.116045


Mach. Learn. Knowl. Extr. 2023, 5 1978 
 

 

 
22. Nordmann, E.; McAleer, P.; Toivo, W.; Paterson, H.; DeBruine, L.M. Data Visualization Using R for Researchers Who Do Not Use 

R. Adv. Methods Pract. Psychol. Sci. 2022, 5, 25152459221074656. [CrossRef] 

23. Aust, F.; van Doorn, J.; Haaf, J.M. Translating default priors from linear mixed models to repeated-measures ANOVA and paired 

t-tests. Transl. Priors 2022. [CrossRef] 

24. Moscarelli, M. Exploratory Data Analysis in ‘R’. In Biostatistics with “R”: A Guide for Medical Doctors; Springer International 

Publishing: Cham, Switzerland, 2023; pp. 23–40. [CrossRef] 

25. COVID-19 Research Articles Downloadable Database; Center of Disease Control and Prevention: Atlanta, GA, USA, 2020. Available 

online: https://www.cdc.gov/library/researchguides/2019novelcoronavirus/researcharticles.html (accessed on 9 October 2020). 

26. Rahman, M.M.; Dixon, J. Machine Learning for Detecting Trends and Topics from Research Papers and Proceedings in Biomedical 

Literature. Research Square. Available online: https://www.researchsquare.com (accessed on 3 November 2023). 

27.  PMC Open Access Subset-PMC. PubMed Central. 2003. Available online: https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/ 

(accessed on 1 December 2023). 

28. Paper, D. TensorFlow 2.x in the Colaboratory Cloud; Apress: Berkeley, CA, USA, 2021. Available online: https://link.springer.com/ 

book/10.1007/978-1-4842-6649-6 (accessed on 1 December 2023). 

29. COVID-19: A Glossary of Key Terms; Henry Ford Hospital: Detroit, MI, USA, 2020. Available online: https://www.henryford.com/ 

blog/2020/04/covid19-key-terms-to-know (accessed on 22 April 2020). 

30. Subasi, C. Logistic Regression Classifier. Available online: https://towardsdatascience.com/logistic-regression-classifier-8583e0 

c3cf9 (accessed on 2 April 2019). 

31. Roy, R. The Naive Bayes Classifier. Available online: https://towardsdatascience.com/the-naive-bayes-classifier-how-it-works 
-e229e7970b84 (accessed on 28 April 2022). 

32. What is XGBoost? Available online: https://www.nvidia.com/en-us/glossary/data-science/xgboost/ (accessed on 1 Decem- 

ber 2023). 

33. sklearn.ensemble.RandomForestClassifier. Available online: https://scikit-learn/stable/modules/generated/sklearn.ensemb 

le.RandomForestClassifier.html (accessed on 1 December 2023). 

34. sklearn.tree.DecisionTreeClassifier. Available online: https://scikit-learn/stable/modules/generated/sklearn.tree.DecisionT 

reeClassifier.html (accessed on 1 December 2023). 

35.  Bento, C. Decision Tree Classifier Explained in Real-Life: Picking a Vacation Destination. Available online: https://toward 

sdatascience.com/decision-tree-classifier-explained-in-real-life-picking-a-vacation-destination-6226b2b60575 (accessed on 18 

July 2021). 

36.  Cartus, A.R.; Bodnar, L.M.; Naimi, A.I. The Impact of Undersampling on the Predictive Performance of Logistic Regression and 

Machine Learning Algorithms: A Simulation Study. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC78712 

13/ (accessed on 1 December 2023). 

37. Park, H.M. Comparing Group Means: T-Tests and One-Way ANOVA Using Stata, SAS, R, and SPSS. Available online: https: 
//scholarworks.iu.edu/dspace/handle/2022/19735 (accessed on 1 January 2009). 

38. Çetinkaya-Rundel, M.; Grolemund, G.; Wickham, H. R for Data Science (2e). Hadley Wickman, December 2016. Available online: 

https://r4ds.hadley.nz/ (accessed on 1 December 2023). 

39. Agarwal, I.; Rana, D.; Jariwala, A.; Bondre, S. A Novel Stance based Sampling for Imbalanced Data. Int. J. Adv. Comput. Sci. Appl. 
2022, 13, 461–467. [CrossRef] 

40.  Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. 

Res. 2002, 16, 321–357. [CrossRef] 

41. Brownlee, J. Random Oversampling and Undersampling. Machine Learning Mastery. Available online: https://machinelearnin 

gmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/ (accessed on 1 December 2023). 

42. Tanimoto, A.; Yamada, S.; Takenouchi, T.; Sugiyama, M.; Kashima, H. Improving imbalanced classification using near-miss 

instances. Expert Syst. Appl. 2022, 201, 117130. [CrossRef] 

 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 

https://doi.org/10.1177/25152459221074654
https://doi.org/10.31234/osf.io/by2d9
https://doi.org/10.1007/978-3-031-33073-5_3
https://www.cdc.gov/library/researchguides/2019novelcoronavirus/researcharticles.html
https://www.researchsquare.com/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://link.springer.com/book/10.1007/978-1-4842-6649-6
https://link.springer.com/book/10.1007/978-1-4842-6649-6
https://www.henryford.com/blog/2020/04/covid19-key-terms-to-know
https://www.henryford.com/blog/2020/04/covid19-key-terms-to-know
https://towardsdatascience.com/logistic-regression-classifier-8583e0c3cf9
https://towardsdatascience.com/logistic-regression-classifier-8583e0c3cf9
https://towardsdatascience.com/the-naive-bayes-classifier-how-it-works-e229e7970b84
https://towardsdatascience.com/the-naive-bayes-classifier-how-it-works-e229e7970b84
https://www.nvidia.com/en-us/glossary/data-science/xgboost/
https://scikit-learn/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://towardsdatascience.com/decision-tree-classifier-explained-in-real-life-picking-a-vacation-destination-6226b2b60575
https://towardsdatascience.com/decision-tree-classifier-explained-in-real-life-picking-a-vacation-destination-6226b2b60575
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7871213/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7871213/
https://scholarworks.iu.edu/dspace/handle/2022/19735
https://scholarworks.iu.edu/dspace/handle/2022/19735
https://r4ds.hadley.nz/
https://doi.org/10.14569/IJACSA.2022.0130157
https://doi.org/10.1613/jair.953
https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/
https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/
https://doi.org/10.1016/j.eswa.2022.117130

