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When modeling human behavior in multi-player games, it is important to understand het-

erogeneous aspects of player behaviors. By leveraging experimental data and agent-based
simulations, various data-driven modeling methods can be applied. This provides a great

opportunity to quantify and visualize the uncertainty associated with these methods, allowing

for a more comprehensive understanding of the individual and collective behaviors among
players. For networked anagram games, player behaviors can be heterogeneous in terms of the

number of words formed and the amount of cooperation among networked neighbors. Based on

game data, these games can be modeled as discrete dynamical systems characterized by

probabilistic state transitions. In this work, we present both Frequentist and Bayesian
approaches for visualizing uncertainty in networked anagram games. These approaches help to

elaborate how players individually and collectively form words by sharing letters with their

neighbors in a network. Both approaches provide valuable insights into inferring the worst,

average, and best player performance within and between behavioral clusters. Moreover, in-
teresting contrasts between the Frequentist and Bayesian approaches can be observed. The

knowledge and inferences gained from these approaches are incorporated into an agent-based

simulation framework to further demonstrate model uncertainty and players’ heterogeneous
behaviors.

Keywords: Networked anagram game data; discrete dynamical systems; models of heteroge-

neous behaviors; uncertainty visualization; agent-based simulation; interpretable inference.
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1. Introduction

Anagram games have been widely and persistently used for studying human beha-

viors in every decade since the 1960s, e.g. [8, 20, 21, 23, 27, 29, 30, 32–34, 38, 39, 62,

75–77, 79, 82, 86, 87]. One recent study of group anagram games [23] attracted large

attention, where players are connected in an in-person group and cooperate to form

words. The work in [22] considered online group anagram games, which imposes a

network on game players to control their interactions. The experimental networked

group anagram game (NGrAG) setup is shown in Fig. 1(b). In this work, our focus is

to characterize the heterogeneous aspects of player behaviors in the group anagram

games.

1.1. Setup of networked anagram game: Human subjects experiments

Human subjects were recruited using Amazon Mechanical Turk (AMT), where

players agreed to meet at particular dates and times to play a NGrAG. Subjects

played the game on a customized software platform that was designed and con-

structed speci¯cally for this work. This platform recorded all user button clicks (i.e.

user activities) in time during a game. Players (i.e. human subjects) play the game

through web browsers. Here we provide a brief description of the game setup. More

details of this game can be found in [22]. A random regular network (where all nodes

have the same number of neighbors) is prescribed by researchers, where this degree is

changed across games. Players are the nodes in the network and edges represent

communication channels for pairs of players to interact. A game has a 5-min dura-

tion, and each player is provided three initial letters. The players' objective is to form

(a) 4 possible player actions (b) online game con¯guration

Fig. 1. (Color online) (a) Four actions that may be taken by any player, at any time during the 5-min
duration networked group anagram game (NGrAG). Actions can be repeated by a player any number of

times. The action vector a is a ¼ ða1; a2; a3; a4Þ, with ai given in the graphic. (b) Illustrative NGrAG with

four remote players (v1 through v4) and four communication channels (in blue). Players participate

through their web browsers. A player's initially assigned letters are in boxes.

X. Liu et al.
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as many words as possible as a team. Words must be at least three letters. A key

feature in this game is that players can share their initial letters with their distance-1

neighbors: a player requests letters, one at a time, and the receiver of a request

decides whether she will supply the requested letter. When a player vl shares a letter,

she retains a copy of the letter. Such a setting is to motivate (mutual) assistance

among players. Also, once a letter is acquired, there is no mechanism or action by

which a player loses a letter (e.g. a player that uses letters to form one word can use

those letters again to form other words). A player is free to take all of the actions over

time in Fig. 1(a). An illustrative game setup is provided in Fig. 1(b).

Over 240 experiments (i.e. games) were performed using between 4 and 15 players

per game. Game duration of 5 min was initially based on in-person group anagram

game experiments [23]; that study was the inspiration for our online experiment. The

game duration was also evaluated from preliminary experimental data. One concern

was that players would become bored and therefore disengage before the game

ended. Early experiments demonstrated that players were engaged, since they con-

tinued to execute actions during the 300 s. The data also indicated that 300 s was

su±cient to see patterns of human behavior in the data.

1.2. Key contributions

Our ¯rst contribution of this work is to formulate players' behaviors in NGrAGs as

discrete dynamical systems (Sec. 2) and to develop both a Frequentist approach and

a Bayesian approach for visualizing heterogeneous player behavior. The proposed

methods emphasize the visualization of uncertainty in a comprehensive manner using

a two-dimensional bubble plot described in Sec. 3. In such a plot, the location of each

bubble represents the probability of the players' next action and the size of the

bubble allows for easy detection of variability among the players. Therefore, such

plots can re°ect uncertainties of a player’s activeness (i.e. non-idle actions) and

ability to form words (on which game awards are based). Moreover, the plots provide

di®erent types of insights at di®erent scales. For a smaller collection of data, dif-

ferences among data points can be observed, including worst, average, and best

behaviors, and these di®erences can be plotted as a function of modeling inputs. At

larger scales, di®erent collections of data can be compared, e.g. di®erent behavioral

clusters.

Second, the behavior models are used to formulate agent-based models (ABMs);

these ABMs are integrated into a discrete time agent-based simulation (ABS) system

(Sec. 5). We study the variability in replicate simulations; heterogeneous behaviors

across di®erent clusters; di®erences in performance for worst, average, and best

behaviors within clusters; and heterogeneity and variability in words formed by

agents under the Frequentist and Bayesian modeling approaches. For example,

within a behavioral cluster, the percentage di®erence in numbers of words formed

between worst and best behaviors can be 70% to 90%, thus demonstrating the utility

of using uncertainty visualization to identify these di®erent behaviors in clusters.

Uncertainty Visualization
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The ABM results based on Frequentist and Bayesian methods are consistent with

the patterns of the bubble plots described in Sec. 4. We also demonstrate interactions

among agents in a game network by varying the models of the neighbors of an agent

vk (keeping vk's behavior ¯xed), and illustrating that the performance of vk changes.

Our third contribution is to show that the proposed uncertainty visualization

methods greatly enhance the explainability of behaviors and variance in complex

systems, which herein is the NGrAG. By presenting the bubble plots and simulation

results of both Frequentist and Bayesian approaches, we compare the modeling of

NGrAGs between the two methods and gain meaningful insights into the similarities

and di®erences in their uncertainty quanti¯cation. The comparison reveals that the

Frequentist approach is appropriate when the sample size is large, while the Bayesian

approach is more suitable for small sample sizes or when prior information

is available. This is because when the sample size is small, the MLE of the

Frequentist approach may have a large variance, and the parameter may not be

well-approximated by a normal distribution. However, the Bayesian approach

can alleviate the data scarcity issue since it does not rely on asymptotic normal

properties and the memorylessness property of the MCMC sampling technique can

avoid extreme values.

Modeling NGrAGs is valuable because data from anagram games are used for

various purposes. First, anagram games are considered to be complex tasks [20], so

anagram-based studies have been undertaken to understand how people reason

under various constraints. For example, single-word anagram games (where an in-

dividual must form a unique word from a given set of letters) use di®erent amounts of

shu®ling of letters to test how much longer it takes participants to form words with

increased shu®ling [62]. Researchers have used anagram games to study the e®ects of

anxiety on task performance [68]. Other studies have investigated attribution of

performance, ¯nding that people who perform well in anagram games attribute their

success to skill, while those who do not perform well attribute their results to bad

luck, e.g. [79]. Still others have studied individual versus group performance [8].

Group anagram games were studied in [23] as a priming activity to induce collective

identity within a group. (Collective identity is an individual's cognitive, moral, and

emotional connection with a broader community, category, practice, or institu-

tion [70]). Our work was motivated by [23]. It is evident that anagram games are used

to explore wide ranging human behaviors, and these e®orts provide interesting topics

and motivation for modeling.

1.3. Paper organization

The remainder of this paper is organized as follows. In Sec. 2, we present our

modeling of the NGrAG as a discrete dynamical system (DDS), including

Frequentist uncertainty quanti¯cation and an extension to a Bayesian approach.

In Sec. 3, we describe uncertainty visualization methods for both Frequentist and

Bayesian approaches. We then present visualization results and an explanation of

X. Liu et al.
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players' behaviors in Sec. 4. In Sec. 5, we go beyond the conditions for which

experiments were conducted and provide simulations that demonstrate results for

the two approaches. Section 6 contains our literature review, and Sec. 7 summarizes

our work and discusses possible future directions.

This work extends a preliminary version of the work [60] by expanding related

work; extending a Bayesian model of the NGrAG; introducing a Frequentist un-

certainty visualization approach; explaining in more detail the Bayesian uncertainty

visualization method; comparing the Frequentist and Bayesian uncertainty visuali-

zation results; and greatly extending the ABS results to more behavioral groups and

clusters, contrasting worst, average, and best behavior results, and comparing results

from both Frequentist and Bayesian approaches.

2. Discrete Dynamical Systems Model of Individual Player Behavior

in Group Anagram Games

Since the NGrAG action history of a player is complex (multiple repeated actions

over time), there is insu±cient data to generate a model from one player's data,

without su®ering impractically large uncertainties in the model. Therefore, we group

players by their experimental performance in the game along two dimensions: their

propensity to cooperate with other players in the game (a measure of cooperation)

and the number of words formed (which is how team performance is rewarded). Then

we generate a model for each group or cluster of players, resulting in heterogeneous

quanti¯cation of player behaviors.

Our model of the NGrAG is formulated as a discrete dynamical system (DDS)

(see [1, 2, 10, 40, 44, 45, 89] for representative works), and in particular, as a graph

dynamical system (GDS). GDSs are also called Automata Networks [41] and, if nodes

have only two states, Boolean Networks [45]. While GDS has been primarily used for

analysis problems, e.g., [12–15, 74] and proving or discovering features of di®erent

systems, e.g. [3, 5, 6, 31, 55, 72], we use it in Sec. 2.1 as a framework for building

human behavior models.

After specifying the GDS, the equations for the behavior model (i.e. the local

functions for the state transition model of the GDS) are presented. This includes

methods to cluster game player behaviors so that the state transition model can be

tailored to each cluster. A Frequentist method is presented in Sec. 2.2 and a Bayesian

method is described in Sec. 2.3. These topics set the stage for the uncertainty visu-

alization methods in Sec. 3.

2.1. Discrete dynamical system model formulation

The state transition diagram in Fig. 2 captures the permissible states and transitions

of a player in a NGrAG. Given that a player is in some state �‘ð‘ 2 f1; 2; . . . ; qgÞ at
time t, it can transition to another state �mðm 2 f1; 2; . . . ; qgÞ at time ðtþ 1Þ. The
state �‘ ¼ ðai; zÞ is a concatenation of player action ai (i 2 f1; 2; 3; 4g) represented in

Uncertainty Visualization
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Fig. 1(a) and a vector z of counts that will be explained in what follows. Each

transition from �‘ with action ai to �m with action aj is characterized by a proba-

bility �ij. This diagram represents a (probabilistic) DDS. The system is discrete in

time and in state. In particular, since the players and their interactions can be

represented as a network, the DDS can be specialized to a graph dynamical system

(GDS). Since z can take on thousands of values, we show only ai in Fig. 2 to convey

the essential ideas.

A graph dynamical system (GDS) [4, 65], denoted S, is a four-tuple S ¼
ðG;K;F ;W Þ where G is a (social) network GðV ;EÞ with vertex (or node or agent or

player) set V and edge set E, where n ¼ jV j and m ¼ jEj. An undirected edge

between vk 2 V and v‘ 2 V , denoted fvk; v‘g 2 E, means that vk and v‘ interact and

therefore can in°uence each other. The set K of vertex states is the set of admissible

states of a node. The state sk of an agent vk is assigned a value fromK at each time t.

A sequence of local functions F ¼ ðf1; f2; . . . ; fnÞ, with jF j ¼ jV j, contains a local

function fk for each vk 2 V . The local function fk speci¯es how agent vk updates its

state sk, and will be explained below. The update scheme W is the scheme for

the order in which the fk are invoked at each time. For this work, we assume a

synchronous or parallel scheme whereby all agents update their states in parallel (i.e.

simultaneously).

Other update schemes include sequential, where each node updates its state in a

permutation order; block-sequential, which generalizes synchronous and sequential

where each block of nodes invokes their local functions synchronously and blocks are

arranged sequentially; and unfair word orderings, where some nodes do not execute

their local functions as often as other nodes [41, 56, 65].

The system state, s, also called a con¯guration, with s ¼ ðs1; s2; . . . ; snÞ, is the

n-vector of all vertex states. Let Nk be the set of vertices in the closed neighborhood

Fig. 2. Four-node state transition diagram for one player or agent in a NGrAG. Each aiði 2 f1; 2; 3; 4gÞ is
given in Fig. 1(a). In a graph GðV ;EÞ of a NGrAG, a player or agent vk 2 V is always in one of the states

K ¼ f�1; �2; . . . ; �qg, where �‘ ¼ ðai; zÞ. While there are only four ai values, the vector z (see text), which

can take thousands of values, is not displayed in this diagram for clarity. The transition probability �ij
refers to the probability of a player moving from his/her current state �‘ which includes action ai to a new
state �m which includes action aj in the next time step (1 s in our model).

X. Liu et al.
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of vk (that is,Nk is the set containing vk and all of vk's distance-1 neighbors inG). Let

s½vk� be the sequence of states of the vertices in Nk; the sequence is of length

dðvkÞ þ 1, where dðvkÞ is the degree of vk in G. Then the next state s 0k of vk is

computed with the local function fk on the current states of the vertices in its closed

neighborhood, i.e. s 0
k ¼ fkðs½vk�Þ. Introducing time t as a superscript, then the state

s
ðtþ1Þ
k at time tþ 1 is computed by fk from the states st½vk� at time t thusly

s
ðtþ1Þ
k ¼ fkðst½vk�Þ.
In the following development, the vertex state �‘ ¼ ðai; zÞ is explained and the

local function fk for each vk 2 V is developed from NGrAG data and takes the form

of �ij as suggested in Fig. 2.

2.2. Frequentist method of modeling state transition

A Frequentist approach for quantifying uncertainty has been developed in previous

studies [47, 48] to incorporate the diverse behaviors of multiple players into the

model as shown in Fig. 3. They de¯ned two variables xe and xw to quantify each

player’s activity level. Number of engagements xe equals the sum of the number of

requests and the number of replies that a player sends, representing the player's

interactions with neighbors in the game; xw equals the number of words a player

forms in a game, representing the player's ability to form words. According to the

hypothesis testing results of these two variables from the game data, players were

¯rst divided into two groups: group 1 (g ¼ 1) consisted of those with fewer than three

neighbors, while group 2 (g ¼ 2) comprised those with three or more neighbors.

Fig. 3. Flowchart for partitioning NGrAG data to produce state-transition models. A model of the form

of Eq. (2) is generated for each combination ½g; c� of group g and cluster c.

Uncertainty Visualization
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Subsequently, k-means clustering was employed to further classify the players in each

group into four clusters c, with individuals in the same cluster exhibiting similar

levels of activity in the game.

In order to predict a player's next action at time tþ 1, four potential predictors

are identi¯ed:

(1) the count of letter requests that remain unanswered by the player at time t

(ZBðtÞ);
(2) the number of letters available to the player for constructing words at time t

(ZLðtÞ);
(3) the number of valid words that the player has formed up through time t (ZW ðtÞ);
(4) the number of consecutive time steps that the player has repeated an action up

through time t (ZCðtÞ).
Combining these four predictors with a constant, we can de¯ne the predictor

vector zðtÞ ¼ ð1;ZBðtÞ;ZLðtÞ;ZW ðtÞ;ZCðtÞÞT5�1. The dependent variable is the

transition probability

�ij ¼ PrðXtþ1 ¼ ajjXt ¼ ai; zðtÞÞ; ð1Þ
which is the conditional probability of a player selecting action aj at time tþ 1, given

that the player took action ai at time t and has predictor vector zðtÞ.
Then within each cluster, per Fig. 3, for a given action ai at time t, the player's

next action at time tþ 1 is modeled using multinomial logistic regression as follows,

where �i1 is chosen as the reference level for other categories to compare

logð�ij

�i1

Þ ¼ zðtÞT¯ ðiÞ
j ; j ¼ 2; 3; 4; ð2Þ

where ¯
ðiÞ
j ¼ ð� ðiÞ

j1 ; . . . ; �
ðiÞ
j5 ÞT5�1 is the coe±cient parameter vector. The parameters

can be expressed as a matrix BðiÞ ¼ ð¯ ðiÞ
2 ;¯

ðiÞ
3 ;¯

ðiÞ
4 ÞT3�5 for i ¼ 1; . . . ; 4. After de-

termining the group g (g ¼ 1 or 2) and performance cluster c (c ¼ 1, 2, 3, or 4) by the

game network structure and the activity level, respectively, a particular model based

on Eq. (2), with parameter matrix BðiÞ, is assigned to a game player to predict the

probabilities of next actions as illustrated in Fig. 2.

Note that depending on game conditions, the number of words a player has

formed can easily be up to 15 or 20 ðZW Þ, the number of consecutive idle or thinking

times steps can easily be up to 20 (i.e. 20 s) for ZC , the number of letters that a player

has in hand can be from three to seven ðZLÞ, and the number of letter requests

unanswered can be in the range [3, 7] (for ZB). Consequently, the number of values of

z can be roughly 104 ð¼ 20� 20� 5� 5Þ. This is why z was not included in Fig. 2,

focusing instead on the four actions.

2.3. Bayesian modeling method

In our previous work [59], a Bayesian framework of uncertainty quanti¯cation (UQ)

was developed to address some shortcomings of traditional UQ methods [47, 48].

X. Liu et al.
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First, by using k-means clustering, the number of clusters has to be pre-

speci¯ed, which is an issue without a de¯nitive solution. Kulis and Jordan [57]

proposed a Bayesian nonparametric model utilizing a Dirichlet Process (DP) prior,

referred to as DP-means clustering. This approach is based on the Dirichlet Process

Mixture (DPM) model under the Gaussian mixture distribution as shown in Fig. 4.

A Dirichlet Process (DP) generates a probability distribution G given the base

distribution G0 and a scale parameter �. Each �i (i ¼ 1; . . . ;n) is drawn indepen-

dently from G and is taken as the mean of the Gaussian distribution that observa-

tions followed.

Based on this DPM model, Kulis and Jordan [57] developed a DP-means clus-

tering algorithm such that if the shortest distance between a data point xi and at

least one of the existing cluster centers is less than �, then the data point will be

assigned to the closest cluster, which is the same as the conventional k-means clus-

tering method. However, if all the distances are greater than �, the algorithm will

start a new cluster with xi being the ¯rst point, as shown in Fig. 5. As a result, this

approach can automatically partition the data without requiring pre-specifying the

number of clusters, thus mitigating the problems caused by inaccurate pre-speci¯-

cation in k-means clustering. After standardizing the two variables xe and xw and

applying the DP-means clustering with a speci¯c penalty parameter � ¼ 2:5, we

further partitioned the players in the same group into four clusters as in the proce-

dures of Sec. 2.2.

Second, the Frequentist approach to ¯t a multinomial regression uses the maxi-

mum likelihood estimation (MLE) method [35] and relies on the asymptotic prop-

erties of MLE to conduct inferences. However, the asymptotic normal approximation

Fig. 4. DPM model under the Gaussian mixture distribution. The base distribution G0 is assumed to be
zero-mean Gaussian with covariance a diagonal matrix �I, i.e. Nð0; �IÞ. After drawing a distribution G

from DP, �i is drawn independently from G and is taken as the mean of the Gaussian distribution that

observations followed. This construction is an integral part of the DP-means clustering method.

Uncertainty Visualization
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of MLE is not e®ective when the sample size is small [42, 88]. In 1993, Albert and

Chib [7] switched to the Bayesian approach and used Markov Chain Monte Carlo

(MCMC) techniques to obtain exact inferences for the parameters, thus avoiding the

limitations of MLE with small sample sizes.

The fundamental principle underlying Bayesian estimation is that even prior to

examining any data, one already possesses certain prior information regarding the

distribution from which it is derived. According to Bayes' theorem [16], the avail-

ability of a prior distribution of parameter matrix P ðBðiÞÞ allows the computation of

the posterior distribution

P ðBðiÞjy1; . . . ; ynÞ ¼
P ðy1; . . . ; ynjB ðiÞÞ � P ðBðiÞÞ

P ðy1; . . . ; ynÞ
/ P ðy1; . . . ; ynjBðiÞÞ � P ðBðiÞÞ:

In our model, since the available prior information is weak, we choose Je®reys' prior

which is a non-informative prior that is invariant under the transformation of

parameters [49]. This prior assigns equal weight to all possible values of the para-

meters, and therefore, will not bias the posterior estimates towards any particular

value. We then quantify the uncertainty of parameters by conducting posterior

inference. MCMC techniques are frequently employed to derive samples from the

posterior distribution, which can be used for posterior inference, such as parameter

estimation, uncertainty quanti¯cation, and prediction. MCMC methods are par-

ticularly useful when the posterior distribution cannot be computed analytically, or

when the model contains a large number of parameters. The memorylessness

property of MCMC [84] can alleviate the extreme value problem caused by data

scarcity since every sample is only generated based on the previous one. These

considerations and approaches lead to the new uncertainty visualization method

in Sec. 3.

Fig. 5. DP-means clustering. A new cluster is formed whenever a point is further than distance � away

from every existing cluster center. In this example, xi will be the ¯rst point in a new cluster if di > �,

i ¼ 1; 2; 3. In this way, the clustering method determines the number and composition of clusters of
players' behaviors.

X. Liu et al.
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3. Uncertainty Visualization Methods

The proposed methods for uncertainty visualization are described in this section. The

objective is to visualize the uncertainty within and across clusters, and to identify the

diverse (i.e. worst, average, and best) behaviors of players in each cluster.

3.1. Frequentist uncertainty visualization

In the state transition model, if a player's most recent action is ai, then the deter-

mination of his/her next action is performed through the mapping of the parameter

matrix BðiÞ and input vector z onto a probability vector ¼i ¼ ð�i1; �i2; �i3; �i4ÞT ,
following Eq. (2). With the aim of examining the diverse behaviors of players within

the same cluster, we employ the asymptotic normality property of MLE to quantify

the uncertainty for parameter matrix BðiÞ. Through this approach, a range of BðiÞ

matrices can be obtained by sampling from an asymptotic normal distribution,

thereby representing the various behaviors of players. Without loss of generality, we

omit the superscript i in parameter matrix BðiÞ and transform it to the parameter

vector ¯ ¼ ð¯ ðiÞT
2 ;¯

ðiÞT
3 ;¯

ðiÞT
4 ÞT15�1. Action idling a1 is treated as a reference group,

thus ¯
ðiÞ
1 will not be included in the parameter vector. Subsequently, the asymptotic

property of MLE [80] is utilized. This property states that as sample size increases,

the maximum likelihood estimator ^̄MLE of parameter ¯ converges to a multivariate

normal distribution

^̄
MLE !d MNð¯;§ ¼ Ið¯Þ�1=nÞ; ð3Þ

with mean equal to the true parameter value and variance equal to the inverse of the

Fisher information matrix Ið�Þ [35] over the number of observations in the cluster.

The parameter ¯ can be estimated by the MLE ^̄
MLE and covariance matrix § can

be estimated by §̂ ¼ Ið ^̄MLEÞ�1=n. Based on this asymptotic property, one can use

the Wald statistic [85] to construct the con¯dence region S�, which is a region in

parameter space of ¯ that is likely to contain the true value of the parameter with a

speci¯ed level of con¯dence (ð1� �Þ � 100%):

Prð ^̄ 2 S�Þ ¼ ð1� �Þ � 100%; ð4Þ
ð ^̄ � ^̄

MLEÞT �̂�1ð ^̄ � ^̄
MLEÞ < 	2

pð1� �Þ; ð5Þ
where 	2

pð1� �Þ is the ð1� �Þ quantile of the Chi-squared distribution with degree

of freedom p (p ¼ 15 is the dimension of parameter vector ¯) [63]. Given a ^̄ , a

probability vector can be computed for each observation by Eq. (2). By averaging

the probability vectors of all observations possessing the same initial action within a

cluster, we can obtain the mean probability vector and associated standard error for

that sampled ^̄ . By uniformly drawing a sequence of ^̄ from the ð1� �Þ � 100%

con¯dence region, a corresponding sequence of mean probability vectors and their

Uncertainty Visualization
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standard errors can be obtained. To e®ectively visualize the uncertainty among these

mean probability vectors, a bubble plot is created, with the center of each bubble

representing the mean probability vector for a given parameter matrix. The width of

the bubble is de¯ned as 2� SEð�� r
4Þ and the height is de¯ned as 2� SEð�� r

1Þ, where �� r
4

and �� r
1 are de¯ned in Algorithm 1, and SEð�Þ denotes standard error.

A key advantage of this proposed method is that we can visually analyze the

uncertainty among data. In the bubble plot, it is easy to ¯nd the best and the worst

behaviors and view the heterogeneous behaviors within each cluster. The probability

of forming words ð�4Þ in the probability vector represents the player's ability to form

words in the game, while the probability of not being idle ð1� �1Þ represents the

player's activity level. Moreover, the size of the bubble can help us visually detect the

variability among the observations. One can also quantitatively compare the activity

X. Liu et al.
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ranges of clusters with players that have the same number of neighbors to further

discover the di®erences between clusters within the same group (g ¼ 1 or 2). Note

that this visualized uncertainty quanti¯cation was not contained in the previous

work [48].

Algorithm 1 summarizes the proposed Frequentist approach of uncertainty vi-

sualization within a cluster.

3.2. Bayesian uncertainty quanti¯cation

MCMC methods can be employed to conduct sampling from the exact posterior

distribution. The Metropolis–Hastings (MH) [43, 63] and Gibbs sampling [37]

algorithms are the two commonly used MCMC algorithms. By applying the MH

algorithm, a sequence of parameter 
 can be sampled from the target distribution

fð
Þ, in which 
tþ1 is generated by drawing a random variable 
� from a proposal

distribution gð
j
tÞ and accepting 
tþ1 ¼ 
� with probability � ¼ minf1; fð
 �Þ=gð
 �j
tÞ
fð
tÞ=gð
tj
 �Þ g.

For this paper, a Gaussian distribution was selected as the proposal distribution,

resulting in a random walk MH algorithm sinceNð
�j
tÞ ¼ N ð
tj
�Þ. Without loss of

generality, we omit the superscript i in parameter matrix BðiÞ and specify

gðBjBt�1Þ ¼ N ðBt�1; ðB0 þ C�1Þ�1Þ;
where B0 is the prior precision matrix, and C is the sample variance–covariance

matrix of the MLEs. We present the proposed method for visualizing uncertainty

within a cluster in the Bayesian approach using Algorithm 2.

A key advantage of our Bayesian approach is that it alleviates the extreme value

problem caused by data scarcity in the previous model [48]. When the size of the

training data in each category is unbalanced (e.g. 556 observations have ¯nal state

idle while only 4 observations have ¯nal state reply (a2) and 4 observations have ¯nal

state request (a3) in group g ¼ 1 cluster c ¼ 2 with initial state a3), the asymptotic

normal distribution of B would have a very large variance. Thus, the estimated

parameter in B can be unexpectedly large and cause an extreme value in the

probability vector ¼ and an in¯nite loop in state transitions in the ABM. However,

the memorylessness property of MCMC can avoid this problem since every sample is

only generated based on the previous one. For this reason, the Bayesian approach

avoids the extreme scenarios of players' actions.

4. Visualization of Heterogeneous Behaviors

This section investigates variations in behavior across di®erent groups, di®erences in

activity levels between clusters, and uncertainties within clusters, using both game

data and the models presented in Secs. 2 and 3.

Under the Bayesian framework, we utilize the MH algorithm to sample 1000 B

matrices after 1000 burn-in iterations, for each initial state in a cluster. In the

Uncertainty Visualization
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Frequentist approach, we draw 1000 samples uniformly from the 95% con¯dence

region of the parameter matrix. The comparison between the Bayesian approach and

the Frequentist approach is presented in what follows.

Figures 6(a) and 6(b) show the Frequentist and Bayesian bubble plots for group 2

cluster 3 with the initial state being idle (a1), respectively. The ranges of values on

x- and y-axes are di®erent in order to zoom in on the data. Clearly, there exists

uncertainty within the clusters. The samples that generate the best, worst, and average

behaviors have been labeled on the plots. Additionally, the size of a bubble re°ects

the variability in the players and the color indicates the number of replications.

Speci¯cally, the darker bubbles represent a greater number of samples having that

particular transition probability. In the Bayesian plot, samples are more gathered

around the maximize a posteriori (MAP) estimation (the blue bubble), while

X. Liu et al.
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Frequentist approach bubbles are more scattered and have fewer replications. This is

because in the Bayesian method, the MH sampling algorithm uses the previous

sample as the starting point for the next sample. As a result, the samples are cor-

related and tend to be more similar to each other than those from the Frequentist

method, where samples are drawn uniformly and independently.

In the same way, Frequentist and Bayesian bubble plots for group 1 cluster 2 with

the initial state being request (a3) are presented in Figs. 6(c) and 6(d), respectively.

The scales of the y-axis are di®erent in Figs. 6(c) and 6(d). The probability of being

(a) (b)

(c) (d)

Fig. 6. (Color online) (a) Bubble plot of group 2, cluster 3, where the initial state is idle (a1) for the

Frequentist approach. (b) Bubble plot of group 2, cluster 3, where the initial state is idle (a1) for the

Bayesian approach. (c) Bubble plot of group 1, cluster 2, where the initial state is request (a3) for

the Frequentist approach. (d) Bubble plot of group 1, cluster 2, where the initial state is request (a3) for the
Bayesian approach. The probabilities of forming words are 0 for (c) and (d). Note that (a) and (b) have

di®erent y-scales, as do (c) and (d). Each bubble is an ellipse centered at the mean probability ð�� r
4; 1� �� r

1Þ
with width 2� SEð�� r

4Þ and height 2� SEð�� r
1Þ, where SEð�� r

4Þ and SEð�� r
1Þ are standard errors of mean to-

word probability and mean to-idle probability, respectively. The blue bubbles in Bayesian plots are the
maximize a posteriori (MAP) estimations. The bubbles indicating the worst, average, and best perfor-

mance are marked. The value in these plots is that for a given approach (Frequentist, Bayesian) and a

speci¯ed action ai, one sees immediately two of the major performance parameters of the model: proba-
bility of forming words (on which game reward is based) and probability of taking some action, at the next

time step. Also, worst, average, and best behaviors are visually comprehended, and uncertainty is quan-

ti¯ed. Finally, one can compare across approaches and actions.

Uncertainty Visualization
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non-idle ranges from 0.006 to 0.83 in the Frequentist bubble plot, while it only

ranges from 0.01 to 0.022 in the Bayesian bubble plot. This scale issue is unusual

and can be attributed to the small sample size for this initial action in this cluster.

Among 536 observations that have initial action request (a3) in group 1 cluster 2,

530 of them transit to idle (a1), while only three observations choose to reply (a2)

and three choose to request (a4) as the next action. When the sample size is small,

the MLE may have a large variance, and the distribution may not be well ap-

proximated by a normal distribution, which is assumed in many of the asymptotic

results for MLE. However, the Bayesian approach can alleviate this data scarcity

problem since it does not rely on asymptotic properties. The Bayesian approach is

more °exible and can provide more accurate estimates of the parameters even with a

small sample size. Therefore, the Bayesian bubble plot may be more reliable in this

particular case. These data were chosen to highlight di®erences in the two

approaches.

Figure 7 presents bubble plots of all clusters in one group. In the ¯rst row of

plots, where the initial state is idle (a1), Figs. 7(a) and 7(b) show that four clusters

in group 2 are well separated and the activity level is ascending, supporting the

rationality of clustering players by behavior. It is also seen that players in clusters 3

and 4 in the Bayesian framework have higher probabilities of forming words and

being non-idle than those using the Frequentist approach, so they are more active,

indicating a better performance of DP-means clustering than k-means clustering. In

the second row of plots, where the initial state is request (a3) in group 1, all players'

next action is idle (a1) in cluster 1. Therefore, the probability of being non-idle in

this cluster is 0, and it is not shown in the ¯gures. In the other three clusters

(clusters 2, 3, and 4), none of the players' next action is forming words, resulting in

probabilities of forming words being 0. To avoid overlapping, we assign a di®erent

value of probabilities of forming words for bubbles in clusters 3 and 4 and compare

their probabilities of being non-idle. Notably, Figs. 7(c) and 7(d) have di®erent

scales on the y-axis, demonstrating that the Bayesian approach can alleviate

data scarcity problems, as claimed earlier. Similar patterns can be observed in

Figs. 7(e) and 7(f).

5. Agent-Based Simulations of Networked Anagram Games and Results

In this section, we describe ABMs and the simulation process used to model the

NGrAG. The uncertainty deduced in Sec. 4, derived from our experimental data, is

utilized as inputs that guide the dynamic behavior of agents in our ABM simulation

in this section. In this way, the variability obtained from the real-world data can be

incorporated into the ABM simulations, thus ensuring that the behaviors of the

simulated agents can accurately re°ect the observed real-world complexities. For

particular input conditions and models, we provide results for individual agents

(also referred to as nodes or players) as well as all agents, under a wide range of

conditions.

X. Liu et al.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. (a) and (b) Bubble plots of group 2 where initial action is idle (a1) for Frequentist approach and

Bayesian approach, respectively. (c) and (d) Bubble plots of group 1 where initial action is request (a3) for
Frequentist approach and Bayesian approach, respectively. Note that in group 1 cluster 1 where initial action is

request (a3), all the players' next action is idle (a1), so in this cluster, the probability of being non-idle is 0 and is

not shown in the ¯gures. In the other three clusters (clusters 2, 3, and 4), none of the players' next action is

forming words, so the probabilities of forming words are 0. We assign a di®erent value for bubbles in clusters 3
and 4 to avoid overlapping. (e) and (f) Bubble plots of group 2 where initial action is forming words (a4) for

Frequentist approach and Bayesian approach, respectively. While Fig. 6 provided these data for one group and

cluster combination (½g; c�), this plot shows that data across all clusters can be compared.

Uncertainty Visualization
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5.1. Simulation process and computations

First, the initial conditions of a simulation are described, followed by a description of

the simulation steps. Then the models of agent behaviors in the game are presented.

Key parameters are summarized in Table 1.

The network GðV ;EÞ of Fig. 8 represents the possible interactions among the

seven game players. It contains ¯ve players with two neighbors each (degree d ¼ 2)

and two agents with three neighbors each (d ¼ 3). Each player is provided four initial

letters, and the letters are purposely speci¯ed to enable players to form words, e.g.

one player v2 is given letters fi; l;m;ng and neighboring players are given comple-

mentary letters, e.g. v3 is assigned letters fo; p; r; sg. In this way, di®erences in

models are highlighted (e.g. consider the opposite extreme where players are only

given letters like x and z and no vowels��� then agents cannot form words irrespective

Table 1. Summary of parameters and their values used in simulations of NGrAGs.

Parameter Description

Networks GðV ;EÞ. The graph of Fig. 8.

Number nl of owned letters. The number of owned letters initially assigned to a player.

Initial letters L init
k . The set of initial nl letters assigned to a player vk.

Word corpus CW . The corpus of 5000 words available at www.wordfrequency.info.

According to the website, these are the 5000 most frequently

used words in English.

Player actions a. The set A of actions a is given in Fig. 1: think or idle a1, reply to
request with a letter a2, request a letter from a neighbor a3, and

form a word a4.

Duration of NGrAG tg. NGrAG duration is ¯xed at tg ¼ 300 s.

Group, g. There are two groups: g ¼ 1 corresponds to nodes with degree d � 2
in the game network and g ¼ 2 corresponds to nodes with de-

gree d � 3.

Cluster, c. For each group g, there are four clusters (c): c ¼ 1 through 4.

Group-cluster ½g; c�. The group-cluster pair ½g; c� determines the behavior regime for
each node.

Behavior classes B. There are three behavior classes for each ½g; c� pair: the worst class
BW , the mean or average class BA, and the best class BB. These
three categories correspond to the least, average, and greatest

activity in terms of performing actions in a game.

Model approach R. There are two modeling approaches: a Frequentist approach RF

and a Bayesian approach RB. See Sec. 3. Each R has a separate
model for each combination of ½g; c;B�.

Game player behavior models M . Each player in a NGrAG is assigned a behavior model M , which

consists of the quadruple M ¼ ½g; c;B;R�.
Number of iterations niters. Each simulation is composed of niters ¼ 100 individual dynamics

instances, where each instance starts from time t ¼ 0, with

initial conditions reset, and then the dynamics of the system are
executed for tg discrete time steps.

Notes: The ¯rst section contains variables that are physical entities that map directly to a NGrAG. The
second section contains model parameters that prescribe node (i.e. player, agent) behaviors. The third

section contains the simulation parameter. Sections are delineated by three horizontal lines.

X. Liu et al.
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of behavior model so there is no way to contrast model results). Each agent may

request all of its neighbors' initial letters (but not letters that neighbors receive from

other players), as in the experiments.

One simulation is composed of 100 iterations or runs. Each iteration models one

NGrAG, from time t ¼ 0 through t ¼ 300 s, as described in Sec. 1.1 and Fig. 1. An

iteration uses discrete time steps, i.e. t 2 N where t 2 ½0; 300�, and computations are

performed at 1-s steps. Conditions at t ¼ 0 s are the initial conditions above. At each

t 2 ð1; 2; . . . ; 299; 300Þ, each player vk 2 V (simultaneously) computes the probabil-

ity of performing each of the four actions in A. That is, given the last action ai
(i 2 f1; 2; 3; 4g) and z for vk at time t, the four �ij (j 2 f1; 2; 3; 4g) are computed

using Eq. (2). The speci¯c action is chosen based on a Bernoulli trial. If the selected

action (i.e. form word a4, request a letter a3, or reply to a request a2) is not possible,

then the action for that agent and time step is changed to idle a1. This latter

condition can arise in multiple ways, e.g. a player may choose to request a letter from

a neighbor, but all letters have already been requested; a player may choose to reply

to a neighbor's letter request, but may have already replied to all requests made of it

thus far. Our discrete 1-s time step interval is justi¯ed by the fact that players do not

take successive actions among request letter, reply to letter request, and form word

within 1 s in the online experiments. Indeed, actions at time steps are mostly idle or

thinking.

The di®erence among iterations within a simulation is the stochasticity of

choosing an action for each agent at each time step via the Bernoulli trial, which over

time, can lead to di®erent action histories of agents. The initial conditions for each of

the 100 iterations within a simulation are identical. Consequently, when we refer to

\average" results below, we mean time point-wise averages across the 100 iterations,

unless speci¯ed otherwise.

The remaining speci¯cations for a simulation is the behavior model assigned to

each agent. A behavior model M is given by the 4-tuple M ¼ ½g; c;B;R�. The ¯rst

two parameters are the group g and cluster c assigned to an agent; these are described

in Sec. 2. The ¯ve agents with d ¼ 2 in Fig. 8 are in group 1 and the two agents with

d ¼ 3 are in group 2; the game network ¯xes the group of an agent. The cluster is a

free input parameter; there are four clusters per group, and an agent is generally

more active (i.e. forms more words, requests more letters, and replies to more letter

requests) as cluster number increases from 1 to 4 (e.g. see Fig. 7). We examine all

Fig. 8. (Color online) Seven node (agent) game network on which simulations are run. Red (respectively,
brown) nodes are low (respectively, high) degree nodes of degree d ¼ 2 (resp., d ¼ 3). Therefore, red

(respectively, brown) nodes are in group g ¼ 1 (respectively, g ¼ 2).
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combinations ½g; c� in these simulations. For each ½g; c� pair, there are three possible

behavior classes B that are also free parameters: worst, average, and best. These

three classes denote a further partitioning of each cluster into, respectively, a cate-

gory of behavior that is least active BW (in terms of taking actions request letter,

reply to request, and form word), of average activity BA, and most active BB. See

Table 1. We also evaluate all three classes in these simulations. In each simulation

reported on herein, all agents are assigned the same class. Finally, the modeling

approach R is either Bayesian RB or Frequentist RF . Thus, the behavior models of

ABMs are designed and constructed from the models and results of Sec. 2 through 4.

5.2. Simulation results

In the results sections in what follows, several topics are explored: (i) variability

across iterations of one simulation; (ii) variability across heterogeneous modeling

classes worst, average, and best, both for individual iterations and for averages across

all iterations of a simulation; (iii) action probabilities as explanations for actions

taken by agents; (iv) variability in average action histories for agents with nominally

the same behavior models; (v) contrasting the heterogeneity and variability in

numbers of words formed in games generated by the Frequentist and Bayesian

approaches; and (vi) neighbor interaction e®ects. We also demonstrate the utility of

uncertainty visualizations in Sec. 4 for explaining simulation results. In the interest

of space, and because the RF and RB modeling approaches produce qualitatively

similar results, we focus mainly on the Bayesian approach results, i.e. the model

M ¼ ½g; c;B;RB�, although some results are provided for ½g; c;B;RF �.

5.2.1. E®ect of model stochasticity and variability in results

Figure 9 provides three plots of counts of actions for agent 3 in a simulation where

degree-2 and degree-3 agents are assigned, respectively, ½g; c� ¼ ½1; 3� and ½2; 3�. All

(a) ave: agent 3, iter 10 (b) ave: agent 3, iter 30 (c) ave: agent 3, iter 50

Fig. 9. Representative results for the Bayesian RB model of anagram simulations with seven players.

Results are for agent 3. Agents 1 and 3 with d ¼ 3 are in ½g; c� ¼ ½2; 3� and the other agents with d ¼ 2 are in

½g; c� ¼ ½1; 3�. Within these clusters c, each agent is assigned the average behavior BA. The plots are action
counts for agent 3 for three of the 100 iterations or runs: (a) iteration 10, (b) iteration 30, and (c) iteration

50. Numbers of actions change across these three iterations and indeed across all iterations. All

100 iterations use the same initial conditions, so di®erences in results are manifestations of model sto-

chasticity. This stochasticity in the models can be viewed in Figs. 6 and 7.

X. Liu et al.
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agents use BA (the average behavior class) within their respective cluster 3. The

actions are replies received (replRec), a passive action; replies sent (replSent), an

active action a2; requests received (reqRec), a passive action; requests sent (reqSent),

an active action a3; and words formed, an active action a4. All 100 iterations use the

same properties and initial conditions, so that the di®erences in results among the

iterations are solely due to stochasticity. Results from iterations 10, 30, and 50 are

provided.

The most apparent di®erence among the three iterations is that the number of

words formed varies from 7 (iteration 50) to 39 (iteration 10). However, requests sent

(reqSent) also vary, from6 to 10 (with three neighbors and four initial letters per agent,

the maximum number of requests is 12). Iteration 50 has the least requests sent, but

replies to more letter requests from its neighbors. In iteration 30, the number of

requests sent is greater than the number of replies sent, and in iteration 10, they are

equal. These results give a sense of the variability in results, for ¯xed conditions.

5.2.2. Variability across modeling class B for di®erent groups and clusters

Figure 10 contains results for agent 5 of Fig. 8. All agents use the Bayesian RB

approach for modeling, and degree-2 agents use cluster c ¼ 1 while degree-3 agents

use c ¼ 3. Results from multiple simulations are shown, where the classes are, from

left to right BW , BA, and BB (respectively, the worst, average, and best performing

classes for the respective cluster). The ¯rst row of results provides simulation data for

one iteration (iteration 51), while the second row provides time point-wise averages

for the same actions (see legends) over all 100 iterations.

There are several interesting points. First, these are the ¯rst heterogeneous results

because we are contrasting all three behavior classes. Second, the top row demon-

strates that individual iterations for the worst (i.e. least active) class of behavior can

show greater activity than selected iterations for the best (i.e. most active) class

(formation of 10 words in Fig. 10(a), versus one word in Fig. 10(c)). However, the

average results in the second row for the same three classes indicate that the number

of words formed does increase in traversing worst to best classes of behavior, as one

would expect. The increase in average numbers of words from worst to best is from

4.0 to 6.9, a 72% increase.

Figure 11 provides results for agent 3 (a degree-3 agent) for the same simulations

reported for Fig. 10 for a degree-2 node. The collection of plots is also the same as

those in the previous ¯gure. First, a quick comparison of the two ¯gures indicates

that there is much more activity (in terms of numbers of actions) for this degree-3

node. While the degree plays a role (e.g. more neighbors to request letters from and

reply to with requested letters, and more letters to form words), another key dif-

ference is the cluster. The degree-2 agent 5 in Fig. 10 has assigned cluster c ¼ 1 from

group g ¼ 1, whereas here, agent 3 is assigned ½g; c� ¼ ½2; 3�. From Fig. 7, it is ob-

served that cluster 3 is generally much more active than cluster 1. This highlights the

utility of uncertainty visualization to explain simulation results.
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Second, the ¯rst row of plots in Fig. 11 shows again that the number of formed

words (\words" in the legend) does not increase monotonically in going from worst

to best classes, just as in Fig. 10 ��� for these particular iterations. But also, the

character of these curves changes: in Fig. 11(a), agent 3 forms all of its words

between roughly 120 and 180 s; in Fig. 11(c), agent 3 forms most of its words before

100 s and after 200 s; and in Fig. 11(b), words are essentially formed after 100 s. The

requests sent histories (reqSent in legends) are also di®erent, even though the

number of requests is the same over the entire game. In particular, the best class

requests most letters late in the game (Fig. 11(c)), the average class makes requests

comparatively early in the game (Fig. 11(b)), and the worst model makes requests at

a more consistent pace (Fig. 11(a)). While these are individual iterations, the results

do highlight the variability possible in simulation results.

The averaged results over the 100 iterations in Fig. 11(d) through Fig. 11(f) show

the expected trends in numbers of words formed: they increase as the model class

becomes more active. Average numbers of words formed increases, in going from

(a) worst agent 5, one iter (b) ave agent 5, one iter (c) best agent 5, one iter

(d) worst agent 5, ave (e) ave agent 5, ave (f) best agent 5, ave

Fig. 10. Bayesian RB model results of anagram simulations with seven players, focusing on the results for

player 5 (a degree-2 agent). All players have behaviors assigned based on ½1; 1� for degree-2 agents and ½2; 3�
for degree-3 agents (agent 5 is a degree-2 player). Worst performance model BW (left column): (a) worst

action histories for agent 5 in one of 100 iterations, and (d) average of worst action histories for agent 5,
averaged over 100 iterations. Average performance modelBA (middle column): (b) average action histories

for agent 5 in one of 100 iterations, and (e) average of average action histories for agent 5 averaged over 100

iterations. Best performance model BB (right column): (c) best action histories for agent 5 in one of 100

iterations, and (f) average of best action histories for agent 5, averaged over 100 iterations. The main point
is that when averaged over all 100 iterations, player performance (e.g. in terms of numbers of words

formed) increases in going from worst to average to best average behavior. But within each behavior class,

individual iterations can vary: the performance in (a) is better than that in (c).
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worst BW to best BB behavior classes, from 15.7 to 29.9 words, a 90% increase in

forming words. This demonstrates the utility of re¯ning the behavior of ½g; c� ¼ ½2; 3�
into these classes. However, this increase in numbers of words formed is accompa-

nied, for the best class, by a slight decrease in numbers of letters requested.

5.2.3. Probability histories as explanations for action histories

Figure 12 provides average probability histories over the 100 iterations for agents 5

and 3, to help explain the results for agent 5 in Fig. 10(d) through Fig. 10(f), and for

agent 3 in Fig. 11(d) through Fig. 11(f), respectively. Like the previous ¯gures, this

¯gure shows worst, average, and best classes of behavior in moving from left to right.

In all plots, the probabilities of idle (action a1) are greatest. The probabilities of

action forming words (action a4) are most often the second greatest in magnitude,

followed by requests (action a3) and then replies (action a2). Although it is slightly

harder to discern for agent 5, because its cluster c ¼ 1 is generally the least active of

all clusters, the probabilities for forming words �i4, for requesting letters �i3, and for

(a) worst agent 3, one iter (b) ave agent 3, one iter (c) best agent 3, one iter

(d) worst agent 3, ave (e) ave agent 3, ave (f) best agent 3, ave

Fig. 11. Bayesian model results of anagram simulations with seven players, focusing on the results for

player 3. All players have behaviors assigned based on ½1; 1� for degree-2 agents and ½2; 3� for degree-3

agents (agent 3 is a degree-3 player). Worst performance model BW (left column): (a) worst action

histories for agent 3 in one of 100 iterations, and (d) average of worst action histories for agent 3, averaged
over 100 iterations. Average performance model BA (middle column): (b) average action histories for

agent 3 in one of 100 iterations, and (e) average of average action histories for agent 3 averaged over 100

iterations. Best performance model BB (right column): (c) best action histories for agent 3 in one of 100

iterations, and (f) average of best action histories for agent 3, averaged over 100 iterations. A main point is
the same as that in Fig. 10. Moreover, since node 3's behavior is from cluster 3, the counts of activities are

greater than those in the previous ¯gure.
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replying to letter requests �i2 do increase slightly in going from BW to BB. These

trends are easier to see for agent 3 and its c ¼ 3 cluster because this cluster has

greater probabilities of actions (again see Fig. 7). The probabilities for forming

words, in particular, show increasing values with time for ½2; 3�, while those for ½1; 1�
decrease (asymptotically) in time. The increased probability values �i2, �i2, and �i4

for agent 3, compared to those for agent 5, generate more actions for agent 3, as has

been observed.

5.2.4. Heterogeneity of agent action histories for the same behavior models

Figure 13 contains action histories for agents 4 (top row) and 1 (bottom row). The

point is to compare this top row of plots with the second row of plots in Fig. 10, as

both are degree-2 nodes in the same simulations. It is observed that almost all of the

actions for agent 4 are greater than those for node 5, across the three behavior classes

BW , BA, and BB. On the other hand, comparing the bottom row of plots in Fig. 11

with the bottom row of plots in Fig. 13, it is observed that the action histories for

(a) worst agent 5, ave (b) ave agent 5, ave (c) best agent 5, ave

(d) worst agent 3, ave (e) ave agent 3, ave (f) best agent 3, ave

Fig. 12. Bayesian model RB results of anagram simulations with seven players, focusing on the proba-

bility results for agent 5 (top row) and agent 3 (bottom row). All players have behaviors assigned based on

½g; c� ¼ ½1; 1� for degree-2 agents (agent 5 is a degree-2 player) and ½2; 3� for degree-3 agents (agent 3 is a
degree-3 player). All probabilities are the time point-wise averages over the 100 runs of a simulation. Worst

performance model BW (left column): worst probability histories averaged over 100 iterations, (a) for

agent 5, and (d) for agent 3. Average performance model BA (middle column): average probability his-

tories averaged over 100 iterations, (b) for agent 5, and (e) for agent 3. Best performance model BB (right
column): best probability histories averaged over 100 iterations, (c) for agent 5, and (f) for agent 3.

Probabilities are greater for agent 3 (cluster 3) than for agent 5 (cluster 1), per Fig. 7, and these greater

probabilities give rise to greater activity for agent 3 (compare Fig. 11 versus Fig. 10). The uncertainty
visualizations help interpret and explain simulation results.
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nodes 3 and 1 (both degree-3 agents) are quite similar. The conclusion is that nodes

with the same models M may exhibit the same behavior, but they need not.

5.2.5. Heterogeneity of words formed by agents for all group and cluster combinations

Figure 14 uses the same network, the average behavior class BA, and the Bayesian

modeling approach RB, for all combinations of ½g; c�, i.e. models M ¼ ½g; c;BA;RB�.
Since each group g can be assigned one of four clusters c, the result is 16 combinations

of conditions. Each row ¯xes the group g ¼ 2 cluster, and each column ¯xes the g ¼ 1

cluster. In each plot, the number of words each agent generates in a simulation of

100 iterations is given as a box plot.

Data in Fig. 7 illustrate that as cluster number increases, the activity of agents

increases. Hence, we would expect the box plots to move up (in increasing y-axis

value) as we move left-to-right (increasing g ¼ 1 cluster numbers) and as we move

top-to-bottom (increasing g ¼ 2 cluster numbers). This is indeed the case. Also, the

rise in numbers of words formed is much greater for the g ¼ 2 (i.e. degree-3) agents 1

and 3 than for the degree-2 agents.

(a) worst agent 4, ave (b) ave agent 4, ave (c) best agent 4, ave

(d) worst agent 1, ave (e) ave agent 1, ave (f) best agent 1, ave

Fig. 13. Bayesian model RB average results over 100 iterations of anagram simulations with seven

players, focusing on the results for players 4 (degree-2 agent) and 1 (degree-3 player). All players have
behaviors assigned based on ½1; 1� for degree-2 agents and ½2; 3� for degree-3 agents. Agent 4 (top row):

(a) worst BW , (b) average BA, and (c) best BB behavior classes. Agent 1 (bottom row): (d) worst,

(e) average, and (f) best behavior classes. The activity counts for agent 4 are greater than those for agent 5
(both degree-2 agents); compare with Fig. 10. The activity counts for agent 1 are similar to those for

agent 3 (both degree-3 agents); compare with Fig. 11. Results show that agents with the same game player

behavior model M may produce the same action counts, but need not.
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Figure 15 provides analogous data for the Frequentist model

M ¼ ½g; c;BA;RF �. Comparing corresponding plots of the last two ¯gures, it is

observed that the Bayesian approach model produces more words than does the

Frequentist model. This is suggested by Figs. 6(a) and 6(b), where the proba-

bilities on both axes (indicating activity) are greater for the Bayesian approach

(a) ave, [2,1], [1,1] (b) ave, [2,1], [1,2] (c) ave, [2,1], [1,3] (d) ave, [2,1], [1,4]

(e) ave, [2,2], [1,1] (f) ave, [2,2], [1,2] (g) ave, [2,2], [1,3] (h) ave, [2,2], [1,4]

(i) ave, [2,3], [1,1] (j) ave, [2,3], [1,2] (k) ave, [2,3], [1,3] (l) ave, [2,3], [1,4]

(m) ave, [2,4], [1,1] (n) ave, [2,4], [1,2] (o) ave, [2,4], [1,3] (p) ave, [2,4], [1,4]

Fig. 14. Bayesian average class model M ¼ ½g; c;BA;RB� model results over 100 iterations of anagram

simulations with seven players. Each box in each plot represents the ¯nal number of words formed for each

agent at the end of the game (i.e. at t ¼ 300 s). Each plot represents di®erent combinations of cluster (i.e.

behavior) assignment for high and low degree nodes. For the ½g; c� combination under each plot, ½2; c�
represents high degree nodes and ½1; c� represents low degree nodes. For each group, as cluster c increases,

the number of words formed over the entire game generally increases. Changes in word counts across

clusters, per group, are explained by uncertainty visualizations such as those in Fig. 7.
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than are those for the Frequentist model, and by Fig. 7, where in most cases, the

probabilities of activities are greater for the Bayesian approach. This is another

example of the utility of uncertainty visualization in reasoning about simulation

results.

(a) ave, [2,1], [1,1] (b) ave, [2,1], [1,2] (c) ave, [2,1], [1,3] (d) ave, [2,1], [1,4]

(e) ave, [2,2], [1,1] (f) ave, [2,2], [1,2] (g) ave, [2,2], [1,3] (h) ave, [2,2], [1,4]

(i) ave, [2,3], [1,1] (j) ave, [2,3], [1,2] (k) ave, [2,3], [1,3] (l) ave, [2,3], [1,4]

(m) ave, [2,4], [1,1] (n) ave, [2,4], [1,2] (o) ave, [2,4], [1,3] (p) ave, [2,4], [1,4]

Fig. 15. Frequentist average class model M ¼ ½g; c;BA;RF � results over 100 iterations of anagram
simulations with seven players. Each box in each plot represents the ¯nal number of words formed for each

agent at the end of the game (i.e. at t ¼ 300 s). Each plot represents di®erent combinations of cluster (i.e.

behavior) assignment for high and low degree nodes. For the ½g; c� combination under each plot, ½2; c�
represents high degree nodes and ½1; c� represents low degree nodes. For each group, as cluster c increases,
the number of words formed over the entire game generally increases. Comparing the Frequentist and

Bayesian data in Fig. 7 explains why the cluster 4 word counts for the Bayesian model in Fig. 14 are greater

than those in this ¯gure for the Frequentist model.
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5.2.6. Neighborhood e®ects

The edges in a game network represent interactions between pairs of players.

The issue here is whether simulation results produce interaction e®ects. In Fig. 14,

interaction e®ects are observed for the Bayesian approach. In going from Figs. 14(i)

to 14(j), the group 1 cluster for low degree (i.e. degree-2) agents increases from 1 to 2.

The high degree (i.e. degree-3) agent model is constant. Yet, is it observed that the

numbers of words for the g ¼ 2 agents (agents 1 and 3) increase in going from the

¯rst plot to the second one. That is, changes in the models of neighbors of agents 1

and 3 change the behaviors of agents 1 and 3. This same e®ect, but more pronounced,

is observed in Figs. 14(m) and 14(n). Conversely, changing the g ¼ 2 cluster from 1

to 2 (for agents 1 and 3) in Figs. 14(d) and 14(h) causes an increase in numbers of

words formed in g ¼ 1 agents, even though their model is ¯xed in the two simula-

tions. Similar results are obtained from the Frequentist model of Fig. 15. Thus,

changing the behaviors of an agent vk's neighbors, keeping vk's model ¯xed, can

produce changes in the performance of vk, thus demonstrating that agents do in-

teract and a®ect each others' behaviors.

6. Related Work

Modeling of network games and data. Modeling of network games refers to the

use of mathematical models to analyze and understand strategic interactions among

multiple agents in a networked environment. There are multiple works [48, 59, 60]

related to the proposed method. Hu et al. [48] proposed a versatile uncertainty

quanti¯cation framework for modeling behaviors of the networked anagram game

using asymptotic normal distributions for the model parameter. The paper [59]

introduces a Bayesian model for analyzing human behavior in anagram games to

alleviate the data scarcity problem appearing in [48], while [60] (the preliminary

version of this work) proposes a Bayesian approach for visualizing uncertainty and

identifying the best, average, and worst behaviors in a networked anagram game

model. This work involves a comparison of the results obtained from uncertainty

visualization using both Frequentist and Bayesian approaches. The goal of this

comparison is to evaluate the strengths and limitations of each approach and to

determine which approach is best suited for a particular modeling problem or ap-

plication. By comparing the results of the two approaches, we can gain insights into

the underlying assumptions and limitations of each approach and develop a better

understanding of how uncertainty a®ects models and predictions. Other games in-

corporate multiple player actions over time, e.g. [53, 61, 83]. These games, like ours,

use ¯xed networks. Other types of network models, for other phenomena, use

evolving networks, e.g. [26].

Our anagram game ¯ts within the larger context of human subject games. This

research area is vast, and we do not cover it in detail here. Instead, we refer the reader

to two recent large surveys of games [51, 69]. Among the topics covered in [69] are
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di®erent games that investigate behaviors that could be active in NGrAGs,

including tit-for-tat, trust, cooperation, and coordination. Other behaviors, that are

not part of our game, include punishment and tolerance; see [69] for details. In [51],

several subjects, such as tra±c °ow, crime, climate change, and epidemiology are

used as contexts to examine social behaviors. In both works, use of networks is

prominent, since they enable one to control which subjects or entities interact, as is

done here.

Estimating transition probability. A Markov chain is a frequently used math-

ematical model that describes a system that transitions between a ¯nite number of

states over time. In a discrete-time Markov chain (also known as a stochastic pro-

cess), the system evolves in time in a series of discrete steps, and the probability of

transitioning from one state to another depends only on the current state and not on

any previous history. This property is known as the Markov property, and it is the

de¯ning characteristic of a Markov chain [54, 66]. The maximum likelihood esti-

mation of the transition probability is easily derived as the sample proportion of

transitions from each state to all possible states of the system. Serval researchers

have examined in detail the statistical properties of these estimators and developed

tests for a series of hypotheses [9, 17]. Lee et al. [58] suggested a Bayesian estimation

that used multivariate beta distribution as the prior probability density function. If a

system is observed at infrequent time intervals, there may be missing data in the

Markov chains. In such cases, an Expectation–Maximization (EM) algorithm can be

used to estimate the transition probabilities [28, 78, 81]. In our model, we also want

to explore covariates e®ects (e.g. players' activity levels) on transition probabilities,

so the Multinomial logistic model is employed to explore the dynamics in the

NGrAGs.

Uncertainty visualization. Visualization is a powerful tool for exploring and

understanding data, and it is particularly valuable in identifying any sources of

uncertainty or variability that may exist in data [24, 25]. The e®ective visualization

of uncertainty is commonly recognized as a challenging task [50]. Pang et al. [67]

proposed a classi¯cation system for uncertainty visualization techniques and de-

scribed various methods for representing uncertainty. Since their work, signi¯cant

advances have been made in uncertainty visualization, and several research

papers have provided a summary of the state-of-the-art techniques and challenges in

the ¯eld [18, 19, 52, 71]. For the Bayesian approach, Gabry et al. [36] illustrated the

role of visualization in exploratory data analysis in the context of a Bayesian

work°ow. House et al. [46] developed Bayesian visual analytics (BaVA) to justify

Bayesian sequential update of parameters. The objective of our work is to develop

e®ective visualizations that enable accurate identi¯cation of uncertainties present in

the data, as well as the heterogeneous behaviors of players. By visualizing uncer-

tainty, we can facilitate a more thorough understanding of the complexities and

limitations of the data, thus seeking to contribute to the scienti¯c understanding of

complex systems.

Uncertainty Visualization
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7. Discussion and Conclusion

In this paper, we introduce and assess two uncertainty visualization methods for a

complex system, i.e. multi-player games. We demonstrate the e®ectiveness of these

methods through a step-by-step implementation on a networked group anagram

game, where players cooperate to form words by sharing letters. The visualizations

produced by our methods provide a valuable tool for evaluating model uncertainties

and facilitating the interpretation of player behaviors. Additionally, we have de-

veloped software modules based on these models that enable the simulation of game

conditions beyond the scope of the experiments.

The visualization of uncertainty in multi-player game data holds signi¯cant value

in various aspects. On one hand, it enables game designers to gain a better under-

standing of the level of uncertainty present in the game data, aiding in identifying

areas where the game can be improved and input spaces where more (or fewer)

experiments need to be run. On the other hand, it can enhance the performance of

players by providing them with a clearer comprehension of the risks and rewards

associated with di®erent actions, thus enabling them to be more engaged in the game

and make more informed decisions. Overall, uncertainty visualization is an impor-

tant tool for analyzing and understanding multi-player game data. It can help

players make better decisions, enhance player engagement, and aid in game devel-

opment and design.

It is worth to remark that the increase in population size might in°uence the

results. Speci¯cally, a larger population size on data points will alleviate the data

imbalance issue in model estimation. Increasing the number of players in the game,

restricted by experimental budget and experimental setup (e.g. number of neighbors

each player has), could lead to heterogeneity of players' actions and potentially

enhance the e±cacy of uncertainty quanti¯cation. In the ABM simulation, a larger

number of agents often implies more complex networks and could help gain deep and

comprehensive understanding of the NGrAGs.

Further study includes modeling the feature-dependent Markov chains [11] and

higher-order Markov chains [73]. Feature-dependent Markov chains are particularly

useful in situations where the probability of transitioning between states varies

depending on speci¯c conditions or attributes of the complex system. By incorpo-

rating these features into the model, it becomes possible to more accurately predict

the behavior of the complex system and deal with data that has missing values.

Higher-order Markov models are valuable when the accuracy of predictions can be

improved by considering a larger number of past observations.
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