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When modeling human behavior in multi-player games, it is important to understand het-
erogeneous aspects of player behaviors. By leveraging experimental data and agent-based
simulations, various data-driven modeling methods can be applied. This provides a great
opportunity to quantify and visualize the uncertainty associated with these methods, allowing
for a more comprehensive understanding of the individual and collective behaviors among
players. For networked anagram games, player behaviors can be heterogeneous in terms of the
number of words formed and the amount of cooperation among networked neighbors. Based on
game data, these games can be modeled as discrete dynamical systems characterized by
probabilistic state transitions. In this work, we present both Frequentist and Bayesian
approaches for visualizing uncertainty in networked anagram games. These approaches help to
elaborate how players individually and collectively form words by sharing letters with their
neighbors in a network. Both approaches provide valuable insights into inferring the worst,
average, and best player performance within and between behavioral clusters. Moreover, in-
teresting contrasts between the Frequentist and Bayesian approaches can be observed. The
knowledge and inferences gained from these approaches are incorporated into an agent-based
simulation framework to further demonstrate model uncertainty and players’ heterogeneous
behaviors.

Keywords: Networked anagram game data; discrete dynamical systems; models of heteroge-
neous behaviors; uncertainty visualization; agent-based simulation; interpretable inference.
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1. Introduction

Anagram games have been widely and persistently used for studying human beha-
viors in every decade since the 1960s, e.g. [8, 20, 21, 23, 27, 29, 30, 32-34, 38, 39, 62,
75-77,79, 82, 86, 87]. One recent study of group anagram games [23] attracted large
attention, where players are connected in an in-person group and cooperate to form
words. The work in [22] considered online group anagram games, which imposes a
network on game players to control their interactions. The experimental networked
group anagram game (NGrAG) setup is shown in Fig. 1(b). In this work, our focus is
to characterize the heterogeneous aspects of player behaviors in the group anagram
games.

1.1. Setup of networked anagram game: Human subjects erperiments

Human subjects were recruited using Amazon Mechanical Turk (AMT), where
players agreed to meet at particular dates and times to play a NGrAG. Subjects
played the game on a customized software platform that was designed and con-
structed specifically for this work. This platform recorded all user button clicks (i.e.
user activities) in time during a game. Players (i.e. human subjects) play the game
through web browsers. Here we provide a brief description of the game setup. More
details of this game can be found in [22]. A random regular network (where all nodes
have the same number of neighbors) is prescribed by researchers, where this degree is
changed across games. Players are the nodes in the network and edges represent
communication channels for pairs of players to interact. A game has a 5-min dura-
tion, and each player is provided three initial letters. The players’ objective is to form
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Fig. 1. (Color online) (a) Four actions that may be taken by any player, at any time during the 5-min
duration networked group anagram game (NGrAG). Actions can be repeated by a player any number of
times. The action vector a is a = (ay, as, a3, ay), with a; given in the graphic. (b) Illustrative NGrAG with
four remote players (v, through v;) and four communication channels (in blue). Players participate
through their web browsers. A player’s initially assigned letters are in boxes.
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as many words as possible as a team. Words must be at least three letters. A key
feature in this game is that players can share their initial letters with their distance-1
neighbors: a player requests letters, one at a time, and the receiver of a request
decides whether she will supply the requested letter. When a player v; shares a letter,
she retains a copy of the letter. Such a setting is to motivate (mutual) assistance
among players. Also, once a letter is acquired, there is no mechanism or action by
which a player loses a letter (e.g. a player that uses letters to form one word can use
those letters again to form other words). A player is free to take all of the actions over
time in Fig. 1(a). An illustrative game setup is provided in Fig. 1(b).

Over 240 experiments (i.e. games) were performed using between 4 and 15 players
per game. Game duration of 5 min was initially based on in-person group anagram
game experiments [23]; that study was the inspiration for our online experiment. The
game duration was also evaluated from preliminary experimental data. One concern
was that players would become bored and therefore disengage before the game
ended. Early experiments demonstrated that players were engaged, since they con-
tinued to execute actions during the 300 s. The data also indicated that 300 s was
sufficient to see patterns of human behavior in the data.

1.2. Key contributions

Our first contribution of this work is to formulate players’ behaviors in NGrAGs as
discrete dynamical systems (Sec. 2) and to develop both a Frequentist approach and
a Bayesian approach for visualizing heterogeneous player behavior. The proposed
methods emphasize the visualization of uncertainty in a comprehensive manner using
a two-dimensional bubble plot described in Sec. 3. In such a plot, the location of each
bubble represents the probability of the players’ next action and the size of the
bubble allows for easy detection of variability among the players. Therefore, such
plots can reflect uncertainties of a player’s activeness (i.e. non-idle actions) and
ability to form words (on which game awards are based). Moreover, the plots provide
different types of insights at different scales. For a smaller collection of data, dif-
ferences among data points can be observed, including worst, average, and best
behaviors, and these differences can be plotted as a function of modeling inputs. At
larger scales, different collections of data can be compared, e.g. different behavioral
clusters.

Second, the behavior models are used to formulate agent-based models (ABMs);
these ABMs are integrated into a discrete time agent-based simulation (ABS) system
(Sec. 5). We study the variability in replicate simulations; heterogeneous behaviors
across different clusters; differences in performance for worst, average, and best
behaviors within clusters; and heterogeneity and variability in words formed by
agents under the Frequentist and Bayesian modeling approaches. For example,
within a behavioral cluster, the percentage difference in numbers of words formed
between worst and best behaviors can be 70% to 90%, thus demonstrating the utility
of using uncertainty visualization to identify these different behaviors in clusters.

2340001-3



Advs. Complex Syst. Downloaded from www.worldscientific.com
by chris kuhlman on 11/01/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

X. Liu et al.

The ABM results based on Frequentist and Bayesian methods are consistent with
the patterns of the bubble plots described in Sec. 4. We also demonstrate interactions
among agents in a game network by varying the models of the neighbors of an agent
vy, (keeping v;,’s behavior fixed), and illustrating that the performance of v, changes.

Our third contribution is to show that the proposed uncertainty visualization
methods greatly enhance the explainability of behaviors and variance in complex
systems, which herein is the NGrAG. By presenting the bubble plots and simulation
results of both Frequentist and Bayesian approaches, we compare the modeling of
NGrAGs between the two methods and gain meaningful insights into the similarities
and differences in their uncertainty quantification. The comparison reveals that the
Frequentist approach is appropriate when the sample size is large, while the Bayesian
approach is more suitable for small sample sizes or when prior information
is available. This is because when the sample size is small, the MLE of the
Frequentist approach may have a large variance, and the parameter may not be
well-approximated by a normal distribution. However, the Bayesian approach
can alleviate the data scarcity issue since it does not rely on asymptotic normal
properties and the memorylessness property of the MCMC sampling technique can
avoid extreme values.

Modeling NGrAGs is valuable because data from anagram games are used for
various purposes. First, anagram games are considered to be complex tasks [20], so
anagram-based studies have been undertaken to understand how people reason
under various constraints. For example, single-word anagram games (where an in-
dividual must form a unique word from a given set of letters) use different amounts of
shuffling of letters to test how much longer it takes participants to form words with
increased shuffling [62]. Researchers have used anagram games to study the effects of
anxiety on task performance [68]. Other studies have investigated attribution of
performance, finding that people who perform well in anagram games attribute their
success to skill, while those who do not perform well attribute their results to bad
luck, e.g. [79]. Still others have studied individual versus group performance [8].
Group anagram games were studied in [23] as a priming activity to induce collective
identity within a group. (Collective identity is an individual’s cognitive, moral, and
emotional connection with a broader community, category, practice, or institu-
tion [70]). Our work was motivated by [23]. It is evident that anagram games are used
to explore wide ranging human behaviors, and these efforts provide interesting topics
and motivation for modeling.

1.3. Paper organization

The remainder of this paper is organized as follows. In Sec. 2, we present our
modeling of the NGrAG as a discrete dynamical system (DDS), including
Frequentist uncertainty quantification and an extension to a Bayesian approach.
In Sec. 3, we describe uncertainty visualization methods for both Frequentist and
Bayesian approaches. We then present visualization results and an explanation of
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players’ behaviors in Sec. 4. In Sec. 5, we go beyond the conditions for which
experiments were conducted and provide simulations that demonstrate results for
the two approaches. Section 6 contains our literature review, and Sec. 7 summarizes
our work and discusses possible future directions.

This work extends a preliminary version of the work [60] by expanding related
work; extending a Bayesian model of the NGrAG; introducing a Frequentist un-
certainty visualization approach; explaining in more detail the Bayesian uncertainty
visualization method; comparing the Frequentist and Bayesian uncertainty visuali-
zation results; and greatly extending the ABS results to more behavioral groups and
clusters, contrasting worst, average, and best behavior results, and comparing results
from both Frequentist and Bayesian approaches.

2. Discrete Dynamical Systems Model of Individual Player Behavior
in Group Anagram Games

Since the NGrAG action history of a player is complex (multiple repeated actions
over time), there is insufficient data to generate a model from one player’s data,
without suffering impractically large uncertainties in the model. Therefore, we group
players by their experimental performance in the game along two dimensions: their
propensity to cooperate with other players in the game (a measure of cooperation)
and the number of words formed (which is how team performance is rewarded). Then
we generate a model for each group or cluster of players, resulting in heterogeneous
quantification of player behaviors.

Our model of the NGrAG is formulated as a discrete dynamical system (DDS)
(see [1, 2, 10, 40, 44, 45, 89] for representative works), and in particular, as a graph
dynamical system (GDS). GDSs are also called Automata Networks [41] and, if nodes
have only two states, Boolean Networks [45]. While GDS has been primarily used for
analysis problems, e.g., [12-15, 74] and proving or discovering features of different
systems, e.g. [3, 5, 6, 31, 55, 72], we use it in Sec. 2.1 as a framework for building
human behavior models.

After specifying the GDS, the equations for the behavior model (i.e. the local
functions for the state transition model of the GDS) are presented. This includes
methods to cluster game player behaviors so that the state transition model can be
tailored to each cluster. A Frequentist method is presented in Sec. 2.2 and a Bayesian
method is described in Sec. 2.3. These topics set the stage for the uncertainty visu-
alization methods in Sec. 3.

2.1. Discrete dynamical system model formulation

The state transition diagram in Fig. 2 captures the permissible states and transitions
of a player in a NGrAG. Given that a player is in some state o,(¢ € {1,2,...,¢}) at
time ¢, it can transition to another state o,,(m € {1,2,...,¢}) at time (¢ + 1). The
state o, = (a;,2) is a concatenation of player action a; (i € {1,2,3,4}) represented in
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Fig. 2. Four-node state transition diagram for one player or agent in a NGrAG. Each ¢;(i € {1,2,3,4}) is
given in Fig. 1(a). In a graph G(V, E) of a NGrAG, a player or agent v, € V is always in one of the states
K ={0y,09,...,0,}, where 0, = (a;,z). While there are only four a; values, the vector z (see text), which
can take thousands of values, is not displayed in this diagram for clarity. The transition probability ;;
refers to the probability of a player moving from his/her current state o, which includes action a; to a new
state 0, which includes action a; in the next time step (1s in our model).

Fig. 1(a) and a vector z of counts that will be explained in what follows. Each
transition from o, with action a; to o, with action a; is characterized by a proba-
bility 7;;. This diagram represents a (probabilistic) DDS The system is discrete in
time and in state. In particular, since the players and their interactions can be
represented as a network, the DDS can be specialized to a graph dynamical system
(GDS). Since z can take on thousands of values, we show ouly a; in Fig. 2 to convey
the essential ideas.

A graph dynamical system (GDS) [4, 65], denoted S, is a four-tuple S =
(G, K, F,W) where G is a (social) network G(V, E) with vertex (or node or agent or
player) set V' and edge set E, where n = |V| and m = |E|. An undirected edge
between v, € V and v, € V, denoted {v;,v,} € E, means that v and v, interact and
therefore can influence each other. The set K of vertex states is the set of admissible
states of a node. The state s;, of an agent vy, is assigned a value from K at each time ¢.
A sequence of local functions F = (f1, fo,..., fn), with |F| = |V, contains a local
function f;, for each v, € V. The local function f;, specifies how agent v, updates its
state s;, and will be explained below. The update scheme W is the scheme for
the order in which the f; are invoked at each time. For this work, we assume a
synchronous or parallel scheme whereby all agents update their states in parallel (i.e.
simultaneously).

Other update schemes include sequential, where each node updates its state in a
permutation order; block-sequential, which generalizes synchronous and sequential
where each block of nodes invokes their local functions synchronously and blocks are
arranged sequentially; and unfair word orderings, where some nodes do not execute
their local functions as often as other nodes [41, 56, 65].

The system state, s, also called a configuration, with s = (s, $,...,5,), is the
n-vector of all vertex states. Let IV, be the set of vertices in the closed neighborhood
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of vy, (that is, N}, is the set containing v, and all of v,’s distance-1 neighbors in G). Let
s[vi] be the sequence of states of the vertices in N;; the sequence is of length
d(vy) + 1, where d(vy,) is the degree of v, in G. Then the next state sj, of vy is
computed with the local function f;, on the current states of the vertices in its closed

neighborhood, i.e. s}, = f;,(s[v;]). Introducing time ¢ as a superscript, then the state

sgfﬂ) at time t+ 1 is computed by f, from the states s[v;] at time ¢ thusly

sy = fils o))

In the following development, the vertex state o, = (a;,2) is explained and the
local function f;, for each v, € V is developed from NGrAG data and takes the form
of 7;; as suggested in Fig. 2.

2.2. Frequentist method of modeling state transition

A Frequentist approach for quantifying uncertainty has been developed in previous
studies [47, 48] to incorporate the diverse behaviors of multiple players into the
model as shown in Fig. 3. They defined two variables z, and z,, to quantify each
player’s activity level. Number of engagements x, equals the sum of the number of
requests and the number of replies that a player sends, representing the player’s
interactions with neighbors in the game; z,, equals the number of words a player
forms in a game, representing the player’s ability to form words. According to the
hypothesis testing results of these two variables from the game data, players were
first divided into two groups: group 1 (g = 1) consisted of those with fewer than three
neighbors, while group 2 (g =2) comprised those with three or more neighbors.

Action at time t Parameter Matrix
a, BM
Clustering results
a, B(Z)
Hypothesis testing Cluster 1
results as B®
Partition
based on Tl 7 a, B®
A ster
numberof 3 nejghbors u
neighbors (group 1)
group Cluster 3
players Cluster 4
4,6,0r8 Cluster 1
neighbors Cluster 2
(group 2) Cluster 3
Cluster 4

Fig. 3. Flowchart for partitioning NGrAG data to produce state-transition models. A model of the form
of Eq. (2) is generated for each combination [g, ¢] of group g and cluster c.
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Subsequently, k-means clustering was employed to further classify the players in each
group into four clusters ¢, with individuals in the same cluster exhibiting similar
levels of activity in the game.

In order to predict a player’s next action at time ¢ + 1, four potential predictors
are identified:

(1) the count of letter requests that remain unanswered by the player at time ¢
(Zg(t));

(2) the number of letters available to the player for constructing words at time ¢
(Z1(t));

(3) the number of valid words that the player has formed up through time ¢ (Zy(¢));

(4) the number of consecutive time steps that the player has repeated an action up
through time ¢ (Z4(¢)).

Combining these four predictors with a constant, we can define the predictor
vector z(t) = (1, Zp(t), Z.(t), Zw(t), Zo(t))ty1. The dependent variable is the
transition probability

ﬂi-ZPP(XtH :Cllet :ai,z(t)), (1)

which is the conditional probability of a player selecting action a; at time ¢ + 1, given
that the player took action a; at time ¢ and has predictor vector z(t).

Then within each cluster, per Fig. 3, for a given action a; at time ¢, the player’s
next action at time ¢ + 1 is modeled using multinomial logistic regression as follows,
where 7;; is chosen as the reference level for other categories to compare

Tij Q.
log(~?) = 2(t)7BY, j=2,3,4, (2)
il
where ,Béi) = (/6’%), e /6’;? )21 is the coefficient parameter vector. The parameters

can be expressed as a matrix B = (ﬁgi),ﬁg),ﬂf))gxs for 1 =1,...,4. After de-
termining the group g (¢ = 1 or 2) and performance cluster ¢ (¢ = 1, 2, 3, or 4) by the
game network structure and the activity level, respectively, a particular model based
on Eq. (2), with parameter matrix B, is assigned to a game player to predict the
probabilities of next actions as illustrated in Fig. 2.

Note that depending on game conditions, the number of words a player has
formed can easily be up to 15 or 20 (Zy), the number of consecutive idle or thinking
times steps can easily be up to 20 (i.e. 20s) for Z, the number of letters that a player
has in hand can be from three to seven (Z;), and the number of letter requests
unanswered can be in the range [3, 7] (for Z3). Consequently, the number of values of
z can be roughly 10* (=20 x 20 x 5 x 5). This is why z was not included in Fig. 2,
focusing instead on the four actions.

2.3. Bayestian modeling method

In our previous work [59], a Bayesian framework of uncertainty quantification (UQ)
was developed to address some shortcomings of traditional UQ methods [47, 48].
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First, by using k-means clustering, the number of clusters has to be pre-
specified, which is an issue without a definitive solution. Kulis and Jordan [57]
proposed a Bayesian nonparametric model utilizing a Dirichlet Process (DP) prior,
referred to as DP-means clustering. This approach is based on the Dirichlet Process
Mixture (DPM) model under the Gaussian mixture distribution as shown in Fig. 4.

A Dirichlet Process (DP) generates a probability distribution G given the base
distribution Gy and a scale parameter «. Each ¢; (i = 1,...,n) is drawn indepen-
dently from G and is taken as the mean of the Gaussian distribution that observa-
tions followed.

Based on this DPM model, Kulis and Jordan [57] developed a DP-means clus-
tering algorithm such that if the shortest distance between a data point x; and at
least one of the existing cluster centers is less than A, then the data point will be
assigned to the closest cluster, which is the same as the conventional k-means clus-
tering method. However, if all the distances are greater than A, the algorithm will
start a new cluster with x; being the first point, as shown in Fig. 5. As a result, this
approach can automatically partition the data without requiring pre-specifying the
number of clusters, thus mitigating the problems caused by inaccurate pre-specifi-
cation in k-means clustering. After standardizing the two variables z, and z,, and
applying the DP-means clustering with a specific penalty parameter A\ = 2.5, we
further partitioned the players in the same group into four clusters as in the proce-
dures of Sec. 2.2.

Second, the Frequentist approach to fit a multinomial regression uses the maxi-
mum likelihood estimation (MLE) method [35] and relies on the asymptotic prop-
erties of MLE to conduct inferences. However, the asymptotic normal approximation

Base Distribution: G, = N(O, pI)

Dirichlet Process: G ~ DP(a, G,)

\ ‘ Prior parameter: ¢; ~ G

@, are sampled independently from G

Fig. 4. DPM model under the Gaussian mixture distribution. The base distribution Gy is assumed to be
zero-mean Gaussian with covariance a diagonal matrix pI, i.e. N'(0, pI). After drawing a distribution G
from DP, ¢, is drawn independently from G and is taken as the mean of the Gaussian distribution that
observations followed. This construction is an integral part of the DP-means clustering method.
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Fig. 5. DP-means clustering. A new cluster is formed whenever a point is further than distance A away
from every existing cluster center. In this example, x; will be the first point in a new cluster if d; > A,
it =1,2,3. In this way, the clustering method determines the number and composition of clusters of
players’ behaviors.

of MLE is not effective when the sample size is small [42, 88]. In 1993, Albert and
Chib [7] switched to the Bayesian approach and used Markov Chain Monte Carlo
(MCMC) techniques to obtain exact inferences for the parameters, thus avoiding the
limitations of MLE with small sample sizes.

The fundamental principle underlying Bayesian estimation is that even prior to
examining any data, one already possesses certain prior information regarding the
distribution from which it is derived. According to Bayes’ theorem [16], the avail-
ability of a prior distribution of parameter matrix P(B () allows the computation of
the posterior distribution

; P(y;,...,y,/BD) x P(B®
P(B(Z)lyhayn) = ( ! P(y1| )y ) ( )
s dn

x P(y,...,y,/B®) x P(B).

In our model, since the available prior information is weak, we choose Jeffreys’ prior
which is a non-informative prior that is invariant under the transformation of
parameters [49]. This prior assigns equal weight to all possible values of the para-
meters, and therefore, will not bias the posterior estimates towards any particular
value. We then quantify the uncertainty of parameters by conducting posterior
inference. MCMC techniques are frequently employed to derive samples from the
posterior distribution, which can be used for posterior inference, such as parameter
estimation, uncertainty quantification, and prediction. MCMC methods are par-
ticularly useful when the posterior distribution cannot be computed analytically, or
when the model contains a large number of parameters. The memorylessness
property of MCMC [84] can alleviate the extreme value problem caused by data
scarcity since every sample is only generated based on the previous one. These
considerations and approaches lead to the new uncertainty visualization method
in Sec. 3.
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3. Uncertainty Visualization Methods

The proposed methods for uncertainty visualization are described in this section. The
objective is to visualize the uncertainty within and across clusters, and to identify the
diverse (i.e. worst, average, and best) behaviors of players in each cluster.

3.1. Frequentist uncertainty visualization

In the state transition model, if a player’s most recent action is a;, then the deter-
mination of his/her next action is performed through the mapping of the parameter
matrix B(®) and input vector z onto a probability vector m; = (m;1, T, Tiz, Tia) T,
following Eq. (2). With the aim of examining the diverse behaviors of players within
the same cluster, we employ the asymptotic normality property of MLE to quantify
the uncertainty for parameter matrix B(). Through this approach, a range of B(®
matrices can be obtained by sampling from an asymptotic normal distribution,
thereby representing the various behaviors of players. Without loss of generality, we
omit the superscript ¢ in parameter matrix B(® and transform it to the parameter
vector 3 = (ﬂg>T, 5?”, ,Bff)T)%xl. Action idling a; is treated as a reference group,
thus ,BY) will not be included in the parameter vector. Subsequently, the asymptotic
property of MLE [80] is utilized. This property states that as sample size increases,

the maximum likelihood estimator BMLE of parameter 3 converges to a multivariate
normal distribution

~ d _

Bure — MN(B, X = I1(B) 1/")7 (3)
with mean equal to the true parameter value and variance equal to the inverse of the
Fisher information matrix I(-) [35] over the number of observations in the cluster.
The parameter 3 can be estimated by the MLE ,BMLE and covariance matrix ¥ can

be estimated by 3 = I (BMLE) ~1/n. Based on this asymptotic property, one can use
the Wald statistic [85] to construct the confidence region Sy, which is a region in

parameter space of 3 that is likely to contain the true value of the parameter with a
specified level of confidence ((1 — «) x 100%):

Pr(B € S3) = (1 — a) x 100%, (4)
(B - BMLE)TXA:_I(B - BMLE) < XZ(l - a), (5)

where x ,2,(1 — «) is the (1 — @) quantile of the Chi-squared distribution with degree

of freedom p (p =15 is the dimension of parameter vector 3) [63]. Given a B, a
probability vector can be computed for each observation by Eq. (2). By averaging
the probability vectors of all observations possessing the same initial action within a
cluster, we can obtain the mean probability vector and associated standard error for
that sampled 8. By uniformly drawing a sequence of 8 from the (1 — ) x 100%
confidence region, a corresponding sequence of mean probability vectors and their
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standard errors can be obtained. To effectively visualize the uncertainty among these
mean probability vectors, a bubble plot is created, with the center of each bubble
representing the mean probability vector for a given parameter matrix. The width of
the bubble is defined as 2 x SE(7}) and the height is defined as 2 x SE(7), where 7}
and 71 are defined in Algorithm 1, and SE(-) denotes standard error.

A key advantage of this proposed method is that we can visually analyze the
uncertainty among data. In the bubble plot, it is easy to find the best and the worst
behaviors and view the heterogeneous behaviors within each cluster. The probability
of forming words (74) in the probability vector represents the player’s ability to form
words in the game, while the probability of not being idle (1 — ;) represents the
player’s activity level. Moreover, the size of the bubble can help us visually detect the
variability among the observations. One can also quantitatively compare the activity

Algorithm 1. Frequentist Uncertainty Visualization Method

Input: A sequence of 3, (r = 1,..., R) sampled from the 95% confidence region of
8.

forrin1:Rdo
1. Based on 3, apply the n observations that possess the same initial action

within a cluster to Eq. (2) to produce n probability vectors:
70 = (P Ayt Ay AT, 1=1,...,n.

2. Calculate the mean of these probability vectors and the associated stand
error:

2 :Arl T
71-1771-2771-3771-4) )

= (SE(m), SE(3), SE(73), SE(77))"

3. Draw a bubble, which is an ellipse centered at the mean probability (7}, 1—77)
with width 2 x SE(7}) and height 2 x SE(7]).

end

Output: A bubble plot where each bubble represents the mean probability of the
next action for one sampled parameter vector ,3

Select the B, matrix with the maximum 7] as the matrix of the worst behavior,
and the one with the minimum 7] as the matrix of the best behavior. The B,
matrix of the average behavior is one that produces the mean of 7{, r =1,..., R.
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ranges of clusters with players that have the same number of neighbors to further
discover the differences between clusters within the same group (¢ =1 or 2). Note
that this visualized uncertainty quantification was not contained in the previous
work [48].

Algorithm 1 summarizes the proposed Frequentist approach of uncertainty vi-
sualization within a cluster.

3.2. Bayesian uncertainty quantification

MCMC methods can be employed to conduct sampling from the exact posterior
distribution. The Metropolis—-Hastings (MH) [43, 63] and Gibbs sampling [37]
algorithms are the two commonly used MCMC algorithms. By applying the MH
algorithm, a sequence of parameter € can be sampled from the target distribution

f(0), in which 6,,, is generated by drawing a random variable 6* from a proposal

1(0%)/9(0* \90}
’ f 0:)/9(6:16*)

For this paper, a Gaussian distribution was selected as the proposal distribution,
resulting in a random walk MH algorithm since N (6*|6,) = N (6,]6*). Without loss of

generality, we omit the superscript i in parameter matrix B(® and specify

9(B|Bi_y) = N(B;_y,(By+C~1) ™),

distribution g(6|6,) and accepting 6, ; = 6* with probability o = mln{l

where B, is the prior precision matrix, and C is the sample variance—covariance
matrix of the MLEs. We present the proposed method for visualizing uncertainty
within a cluster in the Bayesian approach using Algorithm 2.

A key advantage of our Bayesian approach is that it alleviates the extreme value
problem caused by data scarcity in the previous model [48]. When the size of the
training data in each category is unbalanced (e.g. 556 observations have final state
idle while only 4 observations have final state reply (ay) and 4 observations have final
state request (a3) in group g = 1 cluster ¢ = 2 with initial state a3), the asymptotic
normal distribution of B would have a very large variance. Thus, the estimated
parameter in B can be unexpectedly large and cause an extreme value in the
probability vector 7t and an infinite loop in state transitions in the ABM. However,
the memorylessness property of MCMC can avoid this problem since every sample is
only generated based on the previous one. For this reason, the Bayesian approach
avoids the extreme scenarios of players’ actions.

4. Visualization of Heterogeneous Behaviors

This section investigates variations in behavior across different groups, differences in
activity levels between clusters, and uncertainties within clusters, using both game
data and the models presented in Secs. 2 and 3.

Under the Bayesian framework, we utilize the MH algorithm to sample 1000 B
matrices after 1000 burn-in iterations, for each initial state in a cluster. In the
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Algorithm 2. Bayesian Uncertainty Visualization Method
Input: Initialized By = 0.
fortin1:7T do
1. Generate a sample B* from proposal distribution N(B|B;_1).
PB*|y1, -, yn)
P(Bt_1|y1, ceey yn) '

2. Calculate the acceptance ratio o« = min{1,

3 B — B~ with probability «
o B;_1 with probability 1 — a
end
We will get a sequence of T' parameter matrices. After 1000 burn-in (throwing away

some iterations at the beginning of an MCMC run), we can redefine the remaining
matrices as B,. (r =1,..., R =T — 1000).

for rin1: R do

1. Based on B,., apply the n observations that possess the same initial action
within a cluster to Eq. (2) to produce n probability vectors.

2. Calculate the mean of these probability vectors and the associated standard
error using equations in Algorithm 1.

3. Draw a bubble, which is an ellipse centered at the mean probability (7}, 1 —77)
with width 2 x SE(7}) and height 2 x SE(77).

end

Output: A bubble plot where each bubble represents the mean probability of the
next action for one sampled parameter vector B

Select the B, matrix with the maximum 7] as the matrix of the worst behavior,
and the one with the minimum 7] as the matrix of the best behavior. The B,
matrix of the average behavior is one that produces the mean of #{, r =1,..., R.

Frequentist approach, we draw 1000 samples uniformly from the 95% confidence
region of the parameter matrix. The comparison between the Bayesian approach and
the Frequentist approach is presented in what follows.

Figures 6(a) and 6(b) show the Frequentist and Bayesian bubble plots for group 2
cluster 3 with the initial state being idle (a, ), respectively. The ranges of values on
2- and y-axes are different in order to zoom in on the data. Clearly, there exists
uncertainty within the clusters. The samples that generate the best, worst, and average
behaviors have been labeled on the plots. Additionally, the size of a bubble reflects
the variability in the players and the color indicates the number of replications.
Specifically, the darker bubbles represent a greater number of samples having that
particular transition probability. In the Bayesian plot, samples are more gathered
around the maximize a posteriori (MAP) estimation (the blue bubble), while
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Fig. 6. (Color online) (a) Bubble plot of group 2, cluster 3, where the initial state is idle (a;) for the
Frequentist approach. (b) Bubble plot of group 2, cluster 3, where the initial state is idle (a;) for the
Bayesian approach. (c) Bubble plot of group 1, cluster 2, where the initial state is request (aj) for
the Frequentist approach. (d) Bubble plot of group 1, cluster 2, where the initial state is request (a3) for the
Bayesian approach. The probabilities of forming words are 0 for (c) and (d). Note that (a) and (b) have
different y-scales, as do (c) and (d). Each bubble is an ellipse centered at the mean probability (74,1 — 7])
with width 2 x SE(7}) and height 2 x SE(7]), where SE(7}) and SE(7]) are standard errors of mean to-
word probability and mean to-idle probability, respectively. The blue bubbles in Bayesian plots are the
maximize a posteriori (MAP) estimations. The bubbles indicating the worst, average, and best perfor-
mance are marked. The value in these plots is that for a given approach (Frequentist, Bayesian) and a
specified action a;, one sees immediately two of the major performance parameters of the model: proba-
bility of forming words (on which game reward is based) and probability of taking some action, at the next
time step. Also, worst, average, and best behaviors are visually comprehended, and uncertainty is quan-
tified. Finally, one can compare across approaches and actions.

Frequentist approach bubbles are more scattered and have fewer replications. This is
because in the Bayesian method, the MH sampling algorithm uses the previous
sample as the starting point for the next sample. As a result, the samples are cor-
related and tend to be more similar to each other than those from the Frequentist
method, where samples are drawn uniformly and independently.

In the same way, Frequentist and Bayesian bubble plots for group 1 cluster 2 with
the initial state being request (a3) are presented in Figs. 6(c) and 6(d), respectively.
The scales of the y-axis are different in Figs. 6(c) and 6(d). The probability of being
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non-idle ranges from 0.006 to 0.83 in the Frequentist bubble plot, while it only
ranges from 0.01 to 0.022 in the Bayesian bubble plot. This scale issue is unusual
and can be attributed to the small sample size for this initial action in this cluster.
Among 536 observations that have initial action request (a3) in group 1 cluster 2,
530 of them transit to idle (a;), while only three observations choose to reply (a,)
and three choose to request (a4) as the next action. When the sample size is small,
the MLE may have a large variance, and the distribution may not be well ap-
proximated by a normal distribution, which is assumed in many of the asymptotic
results for MLE. However, the Bayesian approach can alleviate this data scarcity
problem since it does not rely on asymptotic properties. The Bayesian approach is
more flexible and can provide more accurate estimates of the parameters even with a
small sample size. Therefore, the Bayesian bubble plot may be more reliable in this
particular case. These data were chosen to highlight differences in the two
approaches.

Figure 7 presents bubble plots of all clusters in one group. In the first row of
plots, where the initial state is idle (a,), Figs. 7(a) and 7(b) show that four clusters
in group 2 are well separated and the activity level is ascending, supporting the
rationality of clustering players by behavior. It is also seen that players in clusters 3
and 4 in the Bayesian framework have higher probabilities of forming words and
being non-idle than those using the Frequentist approach, so they are more active,
indicating a better performance of DP-means clustering than k-means clustering. In
the second row of plots, where the initial state is request (a3) in group 1, all players’
next action is idle (a;) in cluster 1. Therefore, the probability of being non-idle in
this cluster is 0, and it is not shown in the figures. In the other three clusters
(clusters 2, 3, and 4), none of the players’ next action is forming words, resulting in
probabilities of forming words being 0. To avoid overlapping, we assign a different
value of probabilities of forming words for bubbles in clusters 3 and 4 and compare
their probabilities of being non-idle. Notably, Figs. 7(c) and 7(d) have different
scales on the y-axis, demonstrating that the Bayesian approach can alleviate

data scarcity problems, as claimed earlier. Similar patterns can be observed in
Figs. 7(e) and 7(f).

5. Agent-Based Simulations of Networked Anagram Games and Results

In this section, we describe ABMs and the simulation process used to model the
NGrAG. The uncertainty deduced in Sec. 4, derived from our experimental data, is
utilized as inputs that guide the dynamic behavior of agents in our ABM simulation
in this section. In this way, the variability obtained from the real-world data can be
incorporated into the ABM simulations, thus ensuring that the behaviors of the
simulated agents can accurately reflect the observed real-world complexities. For
particular input conditions and models, we provide results for individual agents
(also referred to as nodes or players) as well as all agents, under a wide range of
conditions.
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(a) and (b) Bubble plots of group 2 where initial action is idle (a;) for Frequentist approach and

Bayesian approach, respectively. (c¢) and (d) Bubble plots of group 1 where initial action is request (a3) for
Frequentist approach and Bayesian approach, respectively. Note that in group 1 cluster 1 where initial action is
request (az), all the players’ next action is idle (a, ), so in this cluster, the probability of being non-idle is 0 and is
not shown in the figures. In the other three clusters (clusters 2, 3, and 4), none of the players’ next action is
forming words, so the probabilities of forming words are 0. We assign a different value for bubbles in clusters 3
and 4 to avoid overlapping. (e) and (f) Bubble plots of group 2 where initial action is forming words (a4) for
Frequentist approach and Bayesian approach, respectively. While Fig. 6 provided these data for one group and
cluster combination ([g, c|), this plot shows that data across all clusters can be compared.
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5.1. Simulation process and computations

First, the initial conditions of a simulation are described, followed by a description of
the simulation steps. Then the models of agent behaviors in the game are presented.
Key parameters are summarized in Table 1.

The network G(V, E) of Fig. 8 represents the possible interactions among the
seven game players. It contains five players with two neighbors each (degree d = 2)
and two agents with three neighbors each (d = 3). Each player is provided four initial
letters, and the letters are purposely specified to enable players to form words, e.g.
one player v, is given letters {i,l,m,n} and neighboring players are given comple-
mentary letters, e.g. vy is assigned letters {o,p,r,s}. In this way, differences in
models are highlighted (e.g. consider the opposite extreme where players are only
given letters like « and z and no vowels — then agents cannot form words irrespective

Table 1. Summary of parameters and their values used in simulations of NGrAGs.

Parameter Description

Networks G(V, E). The graph of Fig. 8.

Number n; of owned letters. The number of owned letters initially assigned to a player.
Initial letters LM, The set of initial n; letters assigned to a player vy.

Word corpus Cyy. The corpus of 5000 words available at www.wordfrequency.info.

According to the website, these are the 5000 most frequently
used words in English.

Player actions a. The set A of actions a is given in Fig. 1: think or idle a;, reply to
request with a letter ay, request a letter from a neighbor a;, and
form a word ay.

Duration of NGrAG t,. NGrAG duration is fixed at t, = 300s.

Group, g. There are two groups: g = 1 corresponds to nodes with degree d < 2
in the game network and g = 2 corresponds to nodes with de-
gree d > 3.

Cluster, c. For each group g, there are four clusters (c): ¢ = 1 through 4.

Group-cluster [g, c|. The group-cluster pair [g, ¢|] determines the behavior regime for
each node.

Behavior classes B. There are three behavior classes for each [g, ¢] pair: the worst class

By, the mean or average class B, and the best class Bg. These
three categories correspond to the least, average, and greatest
activity in terms of performing actions in a game.

Model approach R. There are two modeling approaches: a Frequentist approach Ry
and a Bayesian approach Rp. See Sec. 3. Each R has a separate
model for each combination of [g, ¢, B].

Game player behavior models M.  Each player in a NGrAG is assigned a behavior model M, which
consists of the quadruple M = [g, ¢, B, R].

Number of iterations njes- Each simulation is composed of ny;,s = 100 individual dynamics
instances, where each instance starts from time ¢t = 0, with
initial conditions reset, and then the dynamics of the system are
executed for ¢, discrete time steps.

Notes: The first section contains variables that are physical entities that map directly to a NGrAG. The
second section contains model parameters that prescribe node (i.e. player, agent) behaviors. The third
section contains the simulation parameter. Sections are delineated by three horizontal lines.
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5 6

Fig. 8. (Color online) Seven node (agent) game network on which simulations are run. Red (respectively,
brown) nodes are low (respectively, high) degree nodes of degree d =2 (resp., d = 3). Therefore, red
(respectively, brown) nodes are in group g =1 (respectively, g = 2).

of behavior model so there is no way to contrast model results). Each agent may
request all of its neighbors’ initial letters (but not letters that neighbors receive from
other players), as in the experiments.

One simulation is composed of 100 iterations or runs. Each iteration models one
NGrAG, from time ¢t = 0 through ¢ = 300 s, as described in Sec. 1.1 and Fig. 1. An
iteration uses discrete time steps, i.e. t € N where ¢ € [0,300], and computations are
performed at 1-s steps. Conditions at ¢ = 0's are the initial conditions above. At each
te(1,2,...,299,300), each player v, € V (simultaneously) computes the probabil-
ity of performing each of the four actions in A. That is, given the last action a;
(i € {1,2,3,4}) and z for v; at time ¢, the four 7;; (j € {1,2,3,4}) are computed
using Eq. (2). The specific action is chosen based on a Bernoulli trial. If the selected
action (i.e. form word a4, request a letter a;, or reply to a request a,) is not possible,
then the action for that agent and time step is changed to idle a;. This latter
condition can arise in multiple ways, e.g. a player may choose to request a letter from
a neighbor, but all letters have already been requested; a player may choose to reply
to a neighbor’s letter request, but may have already replied to all requests made of it
thus far. Our discrete 1-s time step interval is justified by the fact that players do not
take successive actions among request letter, reply to letter request, and form word
within 1s in the online experiments. Indeed, actions at time steps are mostly idle or
thinking.

The difference among iterations within a simulation is the stochasticity of
choosing an action for each agent at each time step via the Bernoulli trial, which over
time, can lead to different action histories of agents. The initial conditions for each of
the 100 iterations within a simulation are identical. Consequently, when we refer to
“average” results below, we mean time point-wise averages across the 100 iterations,
unless specified otherwise.

The remaining specifications for a simulation is the behavior model assigned to
each agent. A behavior model M is given by the 4-tuple M = [g, ¢, B, R]. The first
two parameters are the group g and cluster c assigned to an agent; these are described
in Sec. 2. The five agents with d = 2 in Fig. 8 are in group 1 and the two agents with
d = 3 are in group 2; the game network fixes the group of an agent. The cluster is a
free input parameter; there are four clusters per group, and an agent is generally
more active (i.e. forms more words, requests more letters, and replies to more letter
requests) as cluster number increases from 1 to 4 (e.g. see Fig. 7). We examine all
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combinations [g, ¢] in these simulations. For each [g, ¢| pair, there are three possible
behavior classes B that are also free parameters: worst, average, and best. These
three classes denote a further partitioning of each cluster into, respectively, a cate-
gory of behavior that is least active By, (in terms of taking actions request letter,
reply to request, and form word), of average activity By, and most active Bp. See
Table 1. We also evaluate all three classes in these simulations. In each simulation
reported on herein, all agents are assigned the same class. Finally, the modeling
approach R is either Bayesian Rp or Frequentist Ryp. Thus, the behavior models of
ABMs are designed and constructed from the models and results of Sec. 2 through 4.

5.2. Simulation results

In the results sections in what follows, several topics are explored: (i) variability
across iterations of one simulation; (ii) variability across heterogeneous modeling
classes worst, average, and best, both for individual iterations and for averages across
all iterations of a simulation; (iii) action probabilities as explanations for actions
taken by agents; (iv) variability in average action histories for agents with nominally
the same behavior models; (v) contrasting the heterogeneity and variability in
numbers of words formed in games generated by the Frequentist and Bayesian
approaches; and (vi) neighbor interaction effects. We also demonstrate the utility of
uncertainty visualizations in Sec. 4 for explaining simulation results. In the interest
of space, and because the Ry and Rp modeling approaches produce qualitatively
similar results, we focus mainly on the Bayesian approach results, i.e. the model
M = [g, ¢, B, Rg], although some results are provided for [g, ¢, B, Rp].

5.2.1. Effect of model stochasticity and variability in results

Figure 9 provides three plots of counts of actions for agent 3 in a simulation where
degree-2 and degree-3 agents are assigned, respectively, [g,c] = [1,3] and [2, 3]. All

0] 7] 0
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Fig. 9. Representative results for the Bayesian Rz model of anagram simulations with seven players.
Results are for agent 3. Agents 1 and 3 with d = 3 arein [g, ¢] = [2, 3] and the other agents with d = 2 are in
(g, c] = [1,3]. Within these clusters ¢, each agent is assigned the average behavior B,. The plots are action
counts for agent 3 for three of the 100 iterations or runs: (a) iteration 10, (b) iteration 30, and (c) iteration
50. Numbers of actions change across these three iterations and indeed across all iterations. All
100 iterations use the same initial conditions, so differences in results are manifestations of model sto-
chasticity. This stochasticity in the models can be viewed in Figs. 6 and 7.
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agents use B, (the average behavior class) within their respective cluster 3. The
actions are replies received (replRec), a passive action; replies sent (replSent), an
active action ay; requests received (reqRec), a passive action; requests sent (reqSent),
an active action as; and words formed, an active action a4. All 100 iterations use the
same properties and initial conditions, so that the differences in results among the
iterations are solely due to stochasticity. Results from iterations 10, 30, and 50 are
provided.

The most apparent difference among the three iterations is that the number of
words formed varies from 7 (iteration 50) to 39 (iteration 10). However, requests sent
(reqSent) also vary, from 6 to 10 (with three neighbors and four initial letters per agent,
the maximum number of requests is 12). Iteration 50 has the least requests sent, but
replies to more letter requests from its neighbors. In iteration 30, the number of
requests sent is greater than the number of replies sent, and in iteration 10, they are
equal. These results give a sense of the variability in results, for fixed conditions.

5.2.2. Variability across modeling class B for different groups and clusters

Figure 10 contains results for agent 5 of Fig. 8. All agents use the Bayesian Rp
approach for modeling, and degree-2 agents use cluster ¢ = 1 while degree-3 agents
use ¢ = 3. Results from multiple simulations are shown, where the classes are, from
left to right By, By, and By (respectively, the worst, average, and best performing
classes for the respective cluster). The first row of results provides simulation data for
one iteration (iteration 51), while the second row provides time point-wise averages
for the same actions (see legends) over all 100 iterations.

There are several interesting points. First, these are the first heterogeneous results
because we are contrasting all three behavior classes. Second, the top row demon-
strates that individual iterations for the worst (i.e. least active) class of behavior can
show greater activity than selected iterations for the best (i.e. most active) class
(formation of 10 words in Fig. 10(a), versus one word in Fig. 10(c)). However, the
average results in the second row for the same three classes indicate that the number
of words formed does increase in traversing worst to best classes of behavior, as one
would expect. The increase in average numbers of words from worst to best is from
4.0 to 6.9, a 72% increase.

Figure 11 provides results for agent 3 (a degree-3 agent) for the same simulations
reported for Fig. 10 for a degree-2 node. The collection of plots is also the same as
those in the previous figure. First, a quick comparison of the two figures indicates
that there is much more activity (in terms of numbers of actions) for this degree-3
node. While the degree plays a role (e.g. more neighbors to request letters from and
reply to with requested letters, and more letters to form words), another key dif-
ference is the cluster. The degree-2 agent 5 in Fig. 10 has assigned cluster ¢ = 1 from
group g = 1, whereas here, agent 3 is assigned [g,c] = [2,3]. From Fig. 7, it is ob-
served that cluster 3 is generally much more active than cluster 1. This highlights the
utility of uncertainty visualization to explain simulation results.
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Fig. 10. Bayesian Rz model results of anagram simulations with seven players, focusing on the results for

player 5 (a degree-2 agent). All players have behaviors assigned based on [1, 1] for degree-2 agents and [2, 3]
for degree-3 agents (agent 5 is a degree-2 player). Worst performance model By (left column): (a) worst
action histories for agent 5 in one of 100 iterations, and (d) average of worst action histories for agent 5,
averaged over 100 iterations. Average performance model B, (middle column): (b) average action histories
for agent 5 in one of 100 iterations, and (e) average of average action histories for agent 5 averaged over 100
iterations. Best performance model By (right column): (c) best action histories for agent 5 in one of 100
iterations, and (f) average of best action histories for agent 5, averaged over 100 iterations. The main point
is that when averaged over all 100 iterations, player performance (e.g. in terms of numbers of words
formed) increases in going from worst to average to best average behavior. But within each behavior class,
individual iterations can vary: the performance in (a) is better than that in (c).

Second, the first row of plots in Fig. 11 shows again that the number of formed
words (“words” in the legend) does not increase monotonically in going from worst
to best classes, just as in Fig. 10 — for these particular iterations. But also, the
character of these curves changes: in Fig. 11(a), agent 3 forms all of its words
between roughly 120 and 180s; in Fig. 11(c), agent 3 forms most of its words before
100 s and after 200's; and in Fig. 11(b), words are essentially formed after 100s. The
requests sent histories (reqSent in legends) are also different, even though the
number of requests is the same over the entire game. In particular, the best class
requests most letters late in the game (Fig. 11(c)), the average class makes requests
comparatively early in the game (Fig. 11(b)), and the worst model makes requests at
a more consistent pace (Fig. 11(a)). While these are individual iterations, the results
do highlight the variability possible in simulation results.

The averaged results over the 100 iterations in Fig. 11(d) through Fig. 11(f) show
the expected trends in numbers of words formed: they increase as the model class
becomes more active. Average numbers of words formed increases, in going from
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Fig. 11. Bayesian model results of anagram simulations with seven players, focusing on the results for
player 3. All players have behaviors assigned based on [1,1] for degree-2 agents and [2, 3] for degree-3
agents (agent 3 is a degree-3 player). Worst performance model By, (left column): (a) worst action
histories for agent 3 in one of 100 iterations, and (d) average of worst action histories for agent 3, averaged
over 100 iterations. Average performance model B, (middle column): (b) average action histories for
agent 3 in one of 100 iterations, and (e) average of average action histories for agent 3 averaged over 100
iterations. Best performance model Bp (right column): (c) best action histories for agent 3 in one of 100
iterations, and (f) average of best action histories for agent 3, averaged over 100 iterations. A main point is
the same as that in Fig. 10. Moreover, since node 3’s behavior is from cluster 3, the counts of activities are
greater than those in the previous figure.

worst By to best Bp behavior classes, from 15.7 to 29.9 words, a 90% increase in
forming words. This demonstrates the utility of refining the behavior of [g, ¢] = [2, 3]
into these classes. However, this increase in numbers of words formed is accompa-
nied, for the best class, by a slight decrease in numbers of letters requested.

5.2.3. Probability histories as explanations for action histories

Figure 12 provides average probability histories over the 100 iterations for agents 5
and 3, to help explain the results for agent 5 in Fig. 10(d) through Fig. 10(f), and for
agent 3 in Fig. 11(d) through Fig. 11(f), respectively. Like the previous figures, this
figure shows worst, average, and best classes of behavior in moving from left to right.

In all plots, the probabilities of idle (action a;) are greatest. The probabilities of
action forming words (action a4) are most often the second greatest in magnitude,
followed by requests (action az) and then replies (action a,). Although it is slightly
harder to discern for agent 5, because its cluster ¢ = 1 is generally the least active of
all clusters, the probabilities for forming words 74, for requesting letters m;3, and for
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Fig. 12. Bayesian model Rp results of anagram simulations with seven players, focusing on the proba-
bility results for agent 5 (top row) and agent 3 (bottom row). All players have behaviors assigned based on
[g.c] = [1,1] for degree-2 agents (agent 5 is a degree-2 player) and [2, 3] for degree-3 agents (agent 3 is a
degree-3 player). All probabilities are the time point-wise averages over the 100 runs of a simulation. Worst
performance model By (left column): worst probability histories averaged over 100 iterations, (a) for
agent 5, and (d) for agent 3. Average performance model B, (middle column): average probability his-
tories averaged over 100 iterations, (b) for agent 5, and (e) for agent 3. Best performance model Bp (right
column): best probability histories averaged over 100 iterations, (c) for agent 5, and (f) for agent 3.
Probabilities are greater for agent 3 (cluster 3) than for agent 5 (cluster 1), per Fig. 7, and these greater
probabilities give rise to greater activity for agent 3 (compare Fig. 11 versus Fig. 10). The uncertainty
visualizations help interpret and explain simulation results.

replying to letter requests m;5 do increase slightly in going from By, to Bp. These
trends are easier to see for agent 3 and its ¢ = 3 cluster because this cluster has
greater probabilities of actions (again see Fig. 7). The probabilities for forming
words, in particular, show increasing values with time for [2, 3], while those for [1, 1]
decrease (asymptotically) in time. The increased probability values m;y, 7, and 7y,
for agent 3, compared to those for agent 5, generate more actions for agent 3, as has
been observed.

5.2.4. Heterogeneity of agent action histories for the same behavior models

Figure 13 contains action histories for agents 4 (top row) and 1 (bottom row). The
point is to compare this top row of plots with the second row of plots in Fig. 10, as
both are degree-2 nodes in the same simulations. It is observed that almost all of the
actions for agent 4 are greater than those for node 5, across the three behavior classes
By, By, and Bp. On the other hand, comparing the bottom row of plots in Fig. 11
with the bottom row of plots in Fig. 13, it is observed that the action histories for
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Fig. 13. Bayesian model Rp average results over 100 iterations of anagram simulations with seven
players, focusing on the results for players 4 (degree-2 agent) and 1 (degree-3 player). All players have
behaviors assigned based on [1,1] for degree-2 agents and [2, 3] for degree-3 agents. Agent 4 (top row):
(a) worst By, (b) average By, and (c) best Bp behavior classes. Agent 1 (bottom row): (d) worst,
(e) average, and (f) best behavior classes. The activity counts for agent 4 are greater than those for agent 5
(both degree-2 agents); compare with Fig. 10. The activity counts for agent 1 are similar to those for
agent 3 (both degree-3 agents); compare with Fig. 11. Results show that agents with the same game player
behavior model M may produce the same action counts, but need not.

nodes 3 and 1 (both degree-3 agents) are quite similar. The conclusion is that nodes
with the same models M may exhibit the same behavior, but they need not.

5.2.5. Heterogeneity of words formed by agents for all group and cluster combinations

Figure 14 uses the same network, the average behavior class By, and the Bayesian
modeling approach Rp, for all combinations of [g, ], i.e. models M = [g, ¢, By, Rp.
Since each group g can be assigned one of four clusters ¢, the result is 16 combinations
of conditions. Each row fixes the group g = 2 cluster, and each column fixes the g = 1
cluster. In each plot, the number of words each agent generates in a simulation of
100 iterations is given as a box plot.

Data in Fig. 7 illustrate that as cluster number increases, the activity of agents
increases. Hence, we would expect the box plots to move up (in increasing y-axis
value) as we move left-to-right (increasing g = 1 cluster numbers) and as we move
top-to-bottom (increasing g = 2 cluster numbers). This is indeed the case. Also, the
rise in numbers of words formed is much greater for the g = 2 (i.e. degree-3) agents 1
and 3 than for the degree-2 agents.
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Fig. 14. Bayesian average class model M =

(n) ave, [2,4], [1,2]

(o) ave, [2,4], [1,3]

(p) ave, [2,4], [1,4]

[g, ¢, Ba, Rp] model results over 100 iterations of anagram

simulations with seven players. Each box in each plot represents the final number of words formed for each
agent at the end of the game (i.e. at t = 300s). Each plot represents different combinations of cluster (i.e.
behavior) assignment for high and low degree nodes. For the [g,c| combination under each plot, [2,¢]
represents high degree nodes and [1, ¢] represents low degree nodes. For each group, as cluster ¢ increases,
the number of words formed over the entire game generally increases. Changes in word counts across
clusters, per group, are explained by uncertainty visualizations such as those in Fig. 7.

provides data for the Frequentist model

M = [g,¢, B4, Rp]. Comparing corresponding plots of the last two figures, it is
observed that the Bayesian approach model produces more words than does the

Figure 15 analogous

Frequentist model. This is suggested by Figs. 6(a) and 6(b), where the proba-
bilities on both axes (indicating activity) are greater for the Bayesian approach
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Fig. 15. [9,¢, By, Rp| results over 100 iterations of anagram
simulations with seven players. Each box in each plot represents the final number of words formed for each
agent at the end of the game (i.e. at ¢ = 300s). Each plot represents different combinations of cluster (i.e.
behavior) assignment for high and low degree nodes. For the [g,¢] combination under each plot, [2, ]
represents high degree nodes and [1, | represents low degree nodes. For each group, as cluster c increases,
the number of words formed over the entire game generally increases. Comparing the Frequentist and
Bayesian data in Fig. 7 explains why the cluster 4 word counts for the Bayesian model in Fig. 14 are greater
than those in this figure for the Frequentist model.

than are those for the Frequentist model, and by Fig. 7, where in most cases, the
probabilities of activities are greater for the Bayesian approach. This is another
example of the utility of uncertainty visualization in reasoning about simulation
results.
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5.2.6. Neighborhood effects

The edges in a game network represent interactions between pairs of players.
The issue here is whether simulation results produce interaction effects. In Fig. 14,
interaction effects are observed for the Bayesian approach. In going from Figs. 14(i)
to 14(j), the group 1 cluster for low degree (i.e. degree-2) agents increases from 1 to 2.
The high degree (i.e. degree-3) agent model is constant. Yet, is it observed that the
numbers of words for the g = 2 agents (agents 1 and 3) increase in going from the
first plot to the second one. That is, changes in the models of neighbors of agents 1
and 3 change the behaviors of agents 1 and 3. This same effect, but more pronounced,
is observed in Figs. 14(m) and 14(n). Conversely, changing the g = 2 cluster from 1
to 2 (for agents 1 and 3) in Figs. 14(d) and 14(h) causes an increase in numbers of
words formed in g = 1 agents, even though their model is fixed in the two simula-
tions. Similar results are obtained from the Frequentist model of Fig. 15. Thus,
changing the behaviors of an agent v;’s neighbors, keeping v;’s model fixed, can
produce changes in the performance of v;, thus demonstrating that agents do in-
teract and affect each others’ behaviors.

6. Related Work

Modeling of network games and data. Modeling of network games refers to the
use of mathematical models to analyze and understand strategic interactions among
multiple agents in a networked environment. There are multiple works [48, 59, 60]
related to the proposed method. Hu et al. [48] proposed a versatile uncertainty
quantification framework for modeling behaviors of the networked anagram game
using asymptotic normal distributions for the model parameter. The paper [59]
introduces a Bayesian model for analyzing human behavior in anagram games to
alleviate the data scarcity problem appearing in [48], while [60] (the preliminary
version of this work) proposes a Bayesian approach for visualizing uncertainty and
identifying the best, average, and worst behaviors in a networked anagram game
model. This work involves a comparison of the results obtained from uncertainty
visualization using both Frequentist and Bayesian approaches. The goal of this
comparison is to evaluate the strengths and limitations of each approach and to
determine which approach is best suited for a particular modeling problem or ap-
plication. By comparing the results of the two approaches, we can gain insights into
the underlying assumptions and limitations of each approach and develop a better
understanding of how uncertainty affects models and predictions. Other games in-
corporate multiple player actions over time, e.g. [53, 61, 83]. These games, like ours,
use fixed networks. Other types of network models, for other phenomena, use
evolving networks, e.g. [26].

Our anagram game fits within the larger context of human subject games. This
research area is vast, and we do not cover it in detail here. Instead, we refer the reader
to two recent large surveys of games [51, 69]. Among the topics covered in [69] are
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different games that investigate behaviors that could be active in NGrAGs,
including tit-for-tat, trust, cooperation, and coordination. Other behaviors, that are
not part of our game, include punishment and tolerance; see [69] for details. In [51],
several subjects, such as traffic flow, crime, climate change, and epidemiology are
used as contexts to examine social behaviors. In both works, use of networks is
prominent, since they enable one to control which subjects or entities interact, as is
done here.

Estimating transition probability. A Markov chain is a frequently used math-
ematical model that describes a system that transitions between a finite number of
states over time. In a discrete-time Markov chain (also known as a stochastic pro-
cess), the system evolves in time in a series of discrete steps, and the probability of
transitioning from one state to another depends only on the current state and not on
any previous history. This property is known as the Markov property, and it is the
defining characteristic of a Markov chain [54, 66]. The maximum likelihood esti-
mation of the transition probability is easily derived as the sample proportion of
transitions from each state to all possible states of the system. Serval researchers
have examined in detail the statistical properties of these estimators and developed
tests for a series of hypotheses [9, 17]. Lee et al. [58] suggested a Bayesian estimation
that used multivariate beta distribution as the prior probability density function. If a
system is observed at infrequent time intervals, there may be missing data in the
Markov chains. In such cases, an Expectation—-Maximization (EM) algorithm can be
used to estimate the transition probabilities [28, 78, 81]. In our model, we also want
to explore covariates effects (e.g. players’ activity levels) on transition probabilities,
so the Multinomial logistic model is employed to explore the dynamics in the
NGrAGs.

Uncertainty visualization. Visualization is a powerful tool for exploring and
understanding data, and it is particularly valuable in identifying any sources of
uncertainty or variability that may exist in data [24, 25]. The effective visualization
of uncertainty is commonly recognized as a challenging task [50]. Pang et al. [67]
proposed a classification system for uncertainty visualization techniques and de-
scribed various methods for representing uncertainty. Since their work, significant
advances have been made in uncertainty visualization, and several research
papers have provided a summary of the state-of-the-art techniques and challenges in
the field [18, 19, 52, 71]. For the Bayesian approach, Gabry et al. [36] illustrated the
role of visualization in exploratory data analysis in the context of a Bayesian
workflow. House et al. [46] developed Bayesian visual analytics (BaVA) to justify
Bayesian sequential update of parameters. The objective of our work is to develop
effective visualizations that enable accurate identification of uncertainties present in
the data, as well as the heterogeneous behaviors of players. By visualizing uncer-
tainty, we can facilitate a more thorough understanding of the complexities and
limitations of the data, thus seeking to contribute to the scientific understanding of
complex systems.
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7. Discussion and Conclusion

In this paper, we introduce and assess two uncertainty visualization methods for a
complex system, i.e. multi-player games. We demonstrate the effectiveness of these
methods through a step-by-step implementation on a networked group anagram
game, where players cooperate to form words by sharing letters. The visualizations
produced by our methods provide a valuable tool for evaluating model uncertainties
and facilitating the interpretation of player behaviors. Additionally, we have de-
veloped software modules based on these models that enable the simulation of game
conditions beyond the scope of the experiments.

The visualization of uncertainty in multi-player game data holds significant value
in various aspects. On one hand, it enables game designers to gain a better under-
standing of the level of uncertainty present in the game data, aiding in identifying
areas where the game can be improved and input spaces where more (or fewer)
experiments need to be run. On the other hand, it can enhance the performance of
players by providing them with a clearer comprehension of the risks and rewards
associated with different actions, thus enabling them to be more engaged in the game
and make more informed decisions. Overall, uncertainty visualization is an impor-
tant tool for analyzing and understanding multi-player game data. It can help
players make better decisions, enhance player engagement, and aid in game devel-
opment and design.

It is worth to remark that the increase in population size might influence the
results. Specifically, a larger population size on data points will alleviate the data
imbalance issue in model estimation. Increasing the number of players in the game,
restricted by experimental budget and experimental setup (e.g. number of neighbors
each player has), could lead to heterogeneity of players’ actions and potentially
enhance the efficacy of uncertainty quantification. In the ABM simulation, a larger
number of agents often implies more complex networks and could help gain deep and
comprehensive understanding of the NGrAGs.

Further study includes modeling the feature-dependent Markov chains [11] and
higher-order Markov chains [73]. Feature-dependent Markov chains are particularly
useful in situations where the probability of transitioning between states varies
depending on specific conditions or attributes of the complex system. By incorpo-
rating these features into the model, it becomes possible to more accurately predict
the behavior of the complex system and deal with data that has missing values.
Higher-order Markov models are valuable when the accuracy of predictions can be
improved by considering a larger number of past observations.
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