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Abstract

Scene understanding using multi-modal data is neces-
sary in many applications, e.g., autonomous navigation. To
achieve this in a variety of situations, existing models must be
able to adapt to shifting data distributions without arduous
data annotation. Current approaches assume that the source
data is available during adaptation and that the source con-
sists of paired multi-modal data. Both these assumptions
may be problematic for many applications. Source data may
not be available due to privacy, security, or economic con-
cerns. Assuming the existence of paired multi-modal data
for training also entails significant data collection costs and
fails to take advantage of widely available freely distributed
pre-trained uni-modal models. In this work, we relax both
of these assumptions by addressing the problem of adapting
a set of models trained independently on uni-modal data to
a target domain consisting of unlabeled multi-modal data,
without having access to the original source dataset. Our
proposed approach solves this problem through a switching
framework which automatically chooses between two com-
plementary methods of cross-modal pseudo-label fusion —
agreement filtering and entropy weighting — based on the es-
timated domain gap. We demonstrate our work on the seman-
tic segmentation problem. Experiments across seven chal-
lenging adaptation scenarios verify the efficacy of our ap-
proach, achieving results comparable to, and in some cases
outperforming, methods which assume access to source data.
Our method achieves an improvement in mloU of up to 12%
over competing baselines. Our code is publicly available at
https://github.com/csimo005/SUMMIT.

1. Introduction

There has been a recent surge of interest in autonomous
vehicles which typically rely on a wide variety of sensors.
This has fueled the need for machine learning models ca-
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pable of processing multiple sensing modalities, commonly
referred to as multi-modal models. One problem of particu-
lar interest is 3D semantic segmentation, which has received
a lot of interest [ 12, 24, 36] driven by the introduction of new
multi-modal datasets [5, |1, 4]. Many 3D semantic segmen-
tation methods (e.g., [12, 24, 36]) fuse data across different
sensing modalities, e.g., RGB images and point clouds to ob-
tain and employ colored pointclouds [3 1], to increase perfor-
mance and robustness. As with most learning problems, the
performance of 3D semantic segmentation degrades as the
input data distribution diverges from the training set distribu-
tion [16], referred to as domain shift. This is particularly true
for autonomous navigation which can experience domain
shifts because of lighting and weather changes throughout
the day, as well as geographic changes when traveling over
large distances. Many works have sought to address this do-
main shift in the Unsupervised Domain Adaptation (UDA)
setting [14, 21, 8]. Recently, the relationship between dif-
ferent modalities has been leveraged to aid in the adaptation
process via cross-modal UDA (xMUDA) [16].

While xMUDA [16] has made significant improvements

over uni-modal UDA methods, it assumes that the source
dataset used for training (i) consists of paired multi-modal
data, and (ii) is available during adaptation to the target
domain.! However, these conditions may be hard to satisfy
in real-world scenarios:
e The first assumption is problematic because it requires
collection and annotation of large volumes of paired multi-
modal data for every sensor configuration (e.g., RGB and
depth, RGB and IR, etc), a very time-consuming operation.
Also, it fails to take advantage of the large volumes of uni-
modal data and pre-trained models that are easily accessible.
e The second assumption is problematic because sharing the
source data for adaptation may be impossible due to privacy,
security and commercial reasons. Additionally, as datasets
have grown, their transfer and storage have begun to present
non-trivial engineering challenges and financial costs.

'In this work, modality refers to a specific type of input data, such as
RGB images or point clouds, while domain refers to the underlying data
distribution, such as cities in different continents.
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Figure 1. Problem setup. Our goal is to adapt a pair of uni-modal models, which have been trained independently on a source domain, to a
target domain consisting of unlabeled, paired, multi-modal data, without access to the original source dataset. In contrast to conventional

cross-modal UDA [
is available during adaptation to the target domain.

Relaxing the first assumption of paired modalities in the
source domain remains unaddressed in cross-modal UDA.
The second assumption has been relaxed in the source-free
UDA setting [18, 2, 39, 37], but to the authors’ best knowl-
edge, no such prior works deal with multi-modal data.

In this paper, we propose Source-free adaptation of Uni-
modal Models to Multi-modal Targets (SUMMIT), relaxing
both the above assumptions (see Figure 1). Relaxation of the
two assumptions in conventional cross-modal UDA makes
our problem substantially more challenging. In the conven-
tional cross-modal UDA setting, the approach in [16] relies
on labeled paired multi-modal data in the source domain to
learn correlations across modalities. Learned correlations
are then exploited to improve transfer to the target domain.
In our setting, the correlations between modalities must be
learned on the unlabeled target data, as we are working
with uni-modal source models and do not assume access to
such labeled pairs. The lack of source data already makes the
alignment of the source and target distributions a challenging
problem. Combining it with uni-modal models on the source
side makes the overall problem even more challenging.

To address these challenges, we propose a new adaptation
framework built on pseudo-label fusion across modalities.
First, we utilize the trained uni-modal models to generate
pseudo-labels on the target data, separately for each modal-
ity. Second, these pseudo-labels are fused together across

] (left panel), we do not assume that the source dataset used for training (i) consists of paired multi-modal data, and (ii)

modalities to filter out noisy predictions. We introduce a
data-driven switching method that automatically chooses
between two complementary approaches for cross-modal
pseudo-label fusion — agreement filtering and entropy weight-
ing — based on the estimated domain gap. The fused pseudo-
labels are used to supervise the process of learning the corre-
lations across modalities allowing for cross-modal learning
to take place. Optimizing for explicit cross-modal objectives,
our framework learns the correlations across modalities even
without the presence of the source data and improves transfer
beyond standard uni-modal adaptation.

Main contributions. Our primary contributions can be sum-
marized as follows.

e We address the problem of adapting a set of models trained
independently on uni-modal data to a target domain consist-
ing of unlabeled, paired, multi-modal data, without access
to the original source dataset. This setting of great practical
importance as explained above.

e We propose a new cross-modal, source-free UDA frame-
work which fuses pseudo-labels across modalities using
information-theoretic and hypothesis testing approaches.
This helps increase robustness of the predictions and im-
plicitly allows for cross-modal correlations to be learned on
the target domain without access to source data.

e We perform extensive experiments on seven challenging
benchmarks which demonstrate that our method provides an
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improvement of up 12% over competing baselines.

2. Related Work

Unsupervised Domain Adaptation. UDA methods have
been applied to a wide variety of computer vision tasks,
including image classification [34], semantic segmenta-
tion [33] and object detection [15], in an effort to address
the data distribution shift. Most approaches try to align
the source and target data distributions, using techniques
such as maximum mean discrepancy [20] and adversarial
learning [10, 34, 25]. A separate line of work uses image
translation techniques to perform adaptation by translating
the source images to the target domain [ 14, 32]. In the case
of semantic segmentation, existing UDA methods fall pri-
marily into three categories: output space alignment, pixel-
space alignment, and pseudo-labeling. The first category
of methods aligns the output or feature distributions [33, 3].
The pixel alignment approaches use image translation tech-
niques similar to image classification [14, 7, 6, 38], while
the pseudo-labeling techniques generate pixel-wise pseudo-
labels to fine-tune the source model [28, 40, 21, 8]. Some
approaches also try to combine these strategies to perform
adaptation [23, 22, 30]. Our method is a UDA approach but
in a multi-modal and source-free setting.

Source-free Domain Adaptation. While methods men-
tioned in the previous section utilize the source data during
adaptation, there has been a surge of interest in adaptation
using only a pre-trained source model. Recent approaches
in source-free adaptation have primarily focused on the im-
age classification task. These include techniques such as
information maximization [ 18, 2], pseudo-labeling [39] and
self-supervision [37]. In the context of semantic segmenta-
tion, [19] proposed an algorithm that combines ideas from
the above methods by implementing a curriculum learning
scheme. Similar ideas are explored in [35], where the authors
additionally explore the concept of negative learning [17].
Finally, in [27], pseudo-labeling and uncertainty estimation
via dropout are used to tackle the problem. In contrast to
all these approaches which approach source-free adaptation
in a uni-modal setting, our framework performs source-free
adaptation in a multi-modal setting by exploiting the intrinsic
semantic relationships between the different modalities.

Cross-modal Domain Adaptation. Despite the keen in-
terest in multi-modal analysis, there have been few works
that attempt this in the domain adaptive scenario. Recently,
a cross-modal UDA (xMUDA) setting was proposed [16],
where modalities learn from each other through mutual cycle-
consistency to prevent the stronger modality from adopting
false predictions from the weaker one. A more recent work
[1], motivated by the fact that the availability of multi-modal
data and models is usually limited, considered adapting
source model(s) trained on some source modality to a differ-

ent target modality without access to the source data. Our
problem setting also considers that uni-modal models are
more widely available than multi-modal ones, but addresses
a different problem: adapting uni-modal models of different
modalities to a multi-modal target without source data. Criti-
cally different from [16], we do not assume the existence of
paired multi-modal training data and do not need access to
the source data during adaptation.

3. Method
3.1. Problem Setting

We address the problem of adapting a set of models
trained independently on uni-modal data to a target domain
consisting of unlabeled, multi-modal data, without access
to the original source dataset. We consider a set of source
models, each of a unique modality, trained in a supervised
manner on a set of K categories. Once these models have
been trained, the source data is discarded. We are then given
a new target domain containing unlabeled, paired, multi-
modal data, corresponding to each of the modalities present
in the source datasets. We aim to adapt the source models
to this new domain by exploiting the semantic relationships
that inherently exist between the modalities.

Throughout this work we will consider two input modal-
ities: 2D image data X 2D of dimension H x W x 3,
and 3D point cloud data X 3D of dimension N x 3 (N
is the number of points), each of which has a correspond-
ing label space }?P and }3P. The source domain Dg =
{{x2P, 2P} N52P (43D y3DYNS9PY consists of samples
22D € X%P and 3P € X3P and their corresponding la-
bels y2P € V2P and y?P € P3P, with no known associ-
ation between 22 and z3”. We assume that each source
model, M?2P . x2D 5 2D gnd M3P . 30 5 3D,
is trained with access to only a single input modality. The
models can be decomposed as M?P = f2P o ¢2P and
M3P = 3D o 3D where f2P, f3P are the respective
feature encoders and g2, g3P are the corresponding linear
classifiers. We adapt these source models to the target do-
main Dy = {z?P 3P} N consisting of paired samples

z2P € x2P and 3P € X3P, but no label information.

3.2. Framework Overview

We adapt the source models via a pseudo-labeling ap-
proach, where predictions from the source models are fused
across modalities to supervise the training on the unlabeled
target dataset. Fusing pseudo-labels allows us to create more
accurate labels for adaptation, and implicitly allows the us-
age of cross-modal correlations as part of the process.

We propose a switching framework which automatically
determines how to change between two complementary fu-
sion methods: (i) agreement filtering, and (ii) entropy
weighting. Agreement filtering utilizes the consensus be-
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Figure 2. Overview of framework. Our framework consists of two streams corresponding to the 2D and 3D inputs respectively. The
two modalities are processed by separate feature encoders f2”and £3P, with the 2D features being sampled by projecting the 3D points
onto the corresponding RGB image. The four segmentation outputs consist of the main predictions P2P, P3P and the modality translated
predictions P2P=3D p3D—=2D (yging auxiliary heads 522, §3P). The main predictions are used to compute pseudo-labels via a fusion
strategy, agreement filtering or entropy weighting. The choice of approach is decided via a switching strategy. These pseudo-labels are used

to train the framework using cross-entropy loss. On the other hand, we transfer knowledge across modalities using Dgr. (

P3D||P2D—y3D)‘

where the objective of the 2D translation head is to estimate the main 3D output and vice versa, D, (P?P|| P3P —2P),

tween predictions from the different modalities as a score to
combine and refine the pseudo-labels. On the other hand, en-
tropy weighting employs an information-theoretic approach
to fuse predictions across modalities, supplemented by a hy-
pothesis testing over class-conditional feature space statistics
to refine predictions. The optimal fusion approach is cho-
sen automatically during adaptation via a switching strategy
which utilizes meta-data derived from the source models.

Even with refined pseudo-labels, adaptation is still chal-
lenging due to the fact that semantic categories in the real-
world are usually quite imbalanced. Thus, we present a
method for estimating the class distribution, which in turn
can facilitate the learning process. Using the estimated class
distributions, the refined pseudo-labels are subsequently used
to jointly adapt the source models to the target domain. An
overview of our framework is shown in Figure 2.

3.3. Pseudo-label Fusion

The pseudo-labels obtained from the uni-modal source
models are potentially noisy due to the domain shift between
the source and the target domains. Using these directly
to conduct the adaptation process can degrade the perfor-
mance of the adapted models. Thus, we propose a switching

framework that automatically chooses between two comple-
mentary methods to fuse pseudo-labels across modalities in
order to obtain a single pseudo-label to supervise adaptation.

Agreement Filtering. In agreement filtering (AF), we imple-
ment fusion by comparing the pseudo-labels across modali-
ties and keeping only those that agree with each other. First,
we calculate pseudo-labels for each modality, by taking the
most likely prediction according to the unadapted source
model. Next, we perform an initial refinement by filtering
out any pseudo-label with a confidence score that is lower
than the median confidence value for that class, i.e.

op _ Jargmaxy MEP(#17), MEP(i®) 2 mi o
v ignore, otherwise
my, = median({M2P(2*P)|z?P € D7}) (2)

where k denotes the class index. We use the median here
since it tends to be a better indicator of the central tendency
given skewed data. Once both 2D and 3D pseudo-labels are
filtered, we combine them via an agreement filter as follows,



3)

AT ~9D 4 ~3D
ignore, P # 7;

Consequently, the new set of refined pseudo-labels contains
only highly confident labels that agree across modalities.
Certain types of bias will be specific to each modality. For
example, a model trained on image data might associate
green pixels with vegetation, but a model trained on point
clouds does not sense color and cannot share this bias. Since
we require every source model agree and each source model
is trained on a different modality, we are left with a single
common modality agnostic pseudo-label.

Entropy Weighting. Entropy weighting (EW) explores
an alternative information-theoretic method for combining
pseudo-labels. Inspired by [29], we perform an initial fusion
by linearly combining the predictions from the source mod-
els by using uncertainty weights derived from the entropy of
the output probabilities. Specifically,

p=wPP(M*P (7)) + w PH(MP (7)) @)
e—h(M?P (22P))

_ {@?D, 2P = 3P

2D _
w - e—h(MED(IED)) I e—h(M3D(13D)) {5)
w3l — 1 — 2P (6)
where h(z) = —Z‘::l Yr(z)log(¢y(x)) is the entropy

over the output space, ¢ is the softmax function, and p
denotes the merged output probabilities. The merged prob-
abilities are filtered using the class median of the merged
probability, as defined previously for individual modalities
in Eq. (1), giving a single fused pseudo-label.

Entropy Weighting Refinement. While this weighted com-
bination is useful for resolving minor disagreements between
modalities, it may also transfer noise across modalities lead-
ing to accurate pseudo-labels being rejected. In order to
recover these pseudo-labels, we integrate target dataset statis-
tics via hypothesis testing. The statistics we make use of
are the class-wise mean and standard deviation calculated
in the 2D and 3D feature spaces. We use the pseudo-labels
previously accepted by Entropy Weighting as the class labels
to calculate these statistics. The mean feature for class k in
the 2D feature space is notated as p27 and the corresponding
standard deviation as 020 and similarly we define x50 and
o3P for the 3D feature space.

Given a sample consisting of paired observations x
and z3P and the unadapted source models M?2P and M3P
we calculate a hypothesis pseudo-label using each modality
individually as

2D

kop = arg mfoZD(IZD) )

ng = argmfoSD($3D). {8)

Within the 2D feature space, we take kap as the null hy-
pothesis and ksp as the alternative hypothesis. We assume
the likelihood function of a hypothesis to be a multivariate
normal distribution parameterized by the class-wise mean
and variance. We can then perform a likelihood ratio test:

2D (. 2Dy, , 2D 2D \2
N(f (I )nu'kzgi‘ (Jkgg)z) S T {9)
N(F22(22P); i, (oker)”)

kap

We set 7 = 1 throughout our experiments and perform
a sensitivity analysis of the threshold in the supplemental
materials. We perform the same test in the 3D feature space,
however in this case we take k3p as the null hypothesis and
ko p as the alternative.

If both hypothesis tests agree on the correct hypothesis,
e.g. the 2D feature space test rejects kap in favor of ksp
and the 3D feature space test keeps the k3p, we take this as
the correct pseudo-label. If the hypothesis tests do not agree
on which hypothesis is correct, the pseudo-label is rejected.
This allows us to recover previously rejected pseudo-labels
and the entire set is used to supervise the adaptation process,
as shown in Section 3.4.

Automatic Switching Between Fusion Methods. The per-
formance of the two fusion techniques previously described
varies depending on the particulars of the adaptation task.
When the domain gap is small we expect EW to work better
since it can resolve small disagreements across modalities,
otherwise, AF is chosen since fusing discrete class labels
has less potential to transfer noise. We cannot compute the
domain gap directly, so we propose to measure it indirectly
via the agreement between modalities. We justify the use of
agreement as a proxy measure for domain gap via an empiri-
cal examination of agreement rates across various adaptation
scenarios in Section 4.2.

First, we estimate the expected rate of agreement between
the unadapted source models. Models agree with each other
either if they both predict the same correct class, or both
predict the same incorrect class. Considering only the case
where the models agree and are correct, we can lower bound
the expected agreement rate using source meta-data, more
specifically, the Top-1 accuracy of the model on the source
data. > Considering the predictions from each model to be
independent of each other, the expected agreement can be
lower bounded by the product of the Top-1 accuracies, i.e.

P(5°P = §°P) > P(§°P = y|«*P)P(3°P = y|=*P).  (10)

This is the likelihood that source models agree given the
source data distribution, which is our null hypothesis.

2The Top-1 accuracy of a model is a statistic commonly reported for
most models.
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The actual agreement rate between the source models
on the target dataset is calculated using AF, as described in
Section 3.3, and is the proportion of accepted pseudo-labels.
This gives us the likelihood that the models agree given the
target dataset distribution, which we take as the alternative
hypothesis.

We compare these two likelihoods using hypothesis ratio
testing. If the ratio between them is close to unity, then nei-
ther data distribution is more likely based on the agreement
rate. Thus, we can infer that the target data comes from a
data distribution similar to the source, and EW is chosen as
the fusion method. The more the ratio diverges from unity
the less likely the source and target datasets have a similar
distribution. Throughout our experiments we set threshold
of 0.5 to automatically switch to AF. We examine the choice
of threshold in Section 4.2

3.4. Training

Using pseudo-labels, refined using AF or EW as chosen
by our switching method, we optimize the following loss to
adapt the uni-modal models to the target domain,

Ly = Lee(P?P,§) + Lee(P?P, 7). (11)

Here, L., denotes the weighted cross-entropy loss, P20 =
P(M?2P(22P)), and P3P = p(M3P(z3P)). We use the
weighted cross-entropy in order to address potential class
imbalances during adaptation, using the estimates of the
class distribution as the weights. Note that in the source-
free setting we do not have access to labels either on the
source or on the target domain. Thus, we estimate the class
distribution by taking the mean of the output distribution of
each modality across target instances as p°° = Ep, [P*P].
We estimate p°" by averaging over the output of M Dina
similar fashion. The final estimate of the class distribution
- o =2D 3D, ~ _ po+p?

is calculated by averaging p“~ and p°~ as p = —5—.
Inspired from [16], we optimize an additional cross-modal
cycle-consistency constraint to allow information transfer
between modalities through mutual imitation, i.e.

JC::M’ — DKL(PQD”PC’.D—}QD) _,’_DKL(PBD”PQD—}SD}‘ (12)

P3D=2D 5 an output head of M3P which attempts to pre-
dict P2P and likewise P?P—=3D is a prediction of P3P by
M?P (see Figure 2). Minimizing the KL divergence Dx 1,
allows for information flow between the two models. We
combine these to get, Lyor = Lpi + ALzas, Where A is a
hyper-parameter to balance the two loss functions and is
typically set to 0.1. More training details and pseudo-code
can be found in the supplementary document.

4. Experiments

In this section, we demonstrate the ability of our proposed
framework to perform source-free adaptation of uni-modal

models to multi-modal data. Experiments across multiple
adaptation scenarios demonstrate that the pseudo-label re-
finement across modalities, in addition to the cross-modal
consistency criterion, provides a consistent improvement in
both 2D and 3D target domain performance over baselines.
Even in scenarios where the 2D and 3D source data are de-
rived from distinct domains, our framework is able to adapt
the disconnected models to multi-modal datasets effectively.
Visualizations of our segmentation results can be found in
the supplementary materials.

4.1. Experimental Setup

Datasets and Experimental Scenarios. We use three au-
tonomous vehicle datasets in our experiments, which are
organized into three different source-free cross-modal UDA
adaptation scenarios following the experimental setup de-
fined in [16]. The critical difference is that our experiments
have no access to the source data, and the source models are
trained separately. Two of the adaptation experiments are
derived from the nuScenes dataset [5]. The nuScenes dataset
gathers data in multiple cities, throughout different times of
day with multiple cameras and LIDAR. We extract approxi-
mately 34K images and the corresponding points clouds, and
define two adaptation scenarios. The first scenario takes all
image and point clouds that were gathered in the USA as the
source domain and those gathered in Singapore as the target
domain. The second scenario treats samples gathered during
the day as the source domain and those gathered during the
night as the target domain.

The third scenario considers two unrelated datasets as the
source and target domain. The source domain is the A2D2
dataset [ 1], which consists of approximately 40K images
and point clouds. The target domain is the SemanticKITTI
dataset [4], containing approximately 18K samples. The
classes provided are dissimilar, thus, they are merged into
larger super classes which are kept consistent between the
domains; the details of this process can be found in the
supplemental materials. This scenario is particularly chal-
lenging due to the different sensors used in each dataset, in
addition to the temporal and geographic shifts.

While these experiments make no explicit use of pairing
information when training the source models, there is the
possibility of implicitly learning some cross-modal corre-
lations since 2D and 3D samples are drawn from the same
split of the dataset. Thus, we propose additional experiments,
termed crossover experiments, with no corresponding data
points shared between the 2D and 3D datasets. We take the
source/target splits defined on the nuScenes dataset and use
each to train a single modality, i.e. we use images from the
USA split to train the 2D model and the point clouds from the
Singapore split to train the 3D model. The SemanticKITTI
dataset is used as the target dataset for all experiments. To
increase the overlap of class labels between nuScenes and
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Table 1. Results on primary adaptation scenarios. Our framework outperforms both the uni-modal and multi-modal source-free adaptation
baselines by a large margin across all scenarios. Note that XMUDA needs source data, and the results below are provided assuming that
the source data is available during adaptation. Despite xXMUDA requiring access to source data and models that are jointly trained on
multi-modal data, our method has comparable performance and even outperforms it in the A2D2/SemanticKITTI scenario.

USA/Singapore Day/Night A2D2/SemKITTI
Method Multimodal Source-free 2D 3D 2D+3D 2D 3D 2D+3D 2D 3D 2D+3D
No adaptation - 49.67 47.39 55.96 41.85 42.32 49.98 32.85 34.01 40.52
xMUDA v X 61.10 54.10 63.20 47.10 46.70 50.80 43.70 48.50 49.10
xMUDA SF v v 51.884+0.12  51.04+0.27 56.59+1.46 36.43+1.05 42.23+1.62 44.46+1.49 33.74+0.15 36.79+0.23 42.68+0.19
SHOT X v 52.21+0.00 48.20+0.01 58.18+0.00 34.70+0.03 40.61+0.00 40.83+0.01 33.26+0.23 36.92+0.06 42.09+0.18
SUMMIT (Ours) v v 57.92+143 52.95+0.72 61.10+1.97 44.73+0.01 44.53+0.00 50.73+0.01 44.68+0.30 48.56+0.34 49.93+0.13
Oracle 64.67 57.19 71.29 46.11 40.31 45.60 58.84 71.75 74.57

SemanticKITTI, we include additional labels for background
objects from the nuScenes-lidarseg dataset [9].

Baselines. We compare our method to (i) xMUDA [16],
which is a cross-modal adaption method, (ii) a version of
xMUDA trained with only the data available in our setting
called xXMUDA-SF, and (iii) SHOT [ | 8] which is one of the
seminal works in source-free UDA. Note that XxMUDA re-
quires source data, and the results are provided assuming that
the source data is available during adaptation. In xMUDA-
SF we remove any loss functions that work on the source
data and begin the adaptation process with independently
trained source models. The performance of xXMUDA-SF
highlights the reliance of xMUDA on paired source data. To
apply SHOT, we treat each modality as its own uni-modal
UDA problem. We use this comparison to show the poten-
tial of modeling and exploiting cross-correlations. Each of
the baseline methods uses the unrefined uni-modal pseudo-
labels. In addition, we compare with the unadapted source
models as a lower bound on performance (no adaptation),
and models adapted using oracle ground truth labels as an
upper bound (Oracle). We keep the same baselines for the
crossover experiments, but we do not compare them to the
original xXMUDA method since no source pairing informa-
tion exists, which xXMUDA neeeds. We do not compare
against multi-source source-free adaptation methods such as
[2], because they assume that each source comes from the
same modality.

Experimental Objectives. The first three adaptation scenar-
ios described above demonstrate that our method does not
need access to paired source data, compared to state-of-the-
art methods like [16], and that it can work with uni-modal
trained models as the source. Furthermore, by comparing
to existing source-free UDA methods, we will highlight the
need to explicitly model cross-modal correlations.

Through the crossover experiments, we further show the
reliance of [16] on paired data. Critically, we demonstrate
our method works with truly independent source models,
opening up the possibility of adapting pretrained uni-modal
models together to work on multi-modal data.

Implementation Details. Architectures for the 2D and 3D

models follow from [16]. Specifically, the 2D network is a
UNet architecture [26] with a ResNet34 [13] backbone. To
associate points across modalities, the point cloud is pro-
jected onto the image plane, and the corresponding features
are sampled. These are then passed through a final classifi-
cation layer to give us predictions. The 3D model uses the
official PyTorch implementation of the Sparse Convolutional
Networks UNet [12]. The source models are initially trained
on each modality independently of each other for 100K it-
erations. Once the source model is trained, we save this
model and use it as the same starting point for all adaptation
methods to ensure a fair comparison.

L requires each model to provide a secondary output
that predicts the output of the other modality. We initialize
this second output head with a copy of the weights from the
original output head. We set the A for £, s according to the
values used in [16], and the initial learning rate to le — 6.
Pseudo-labels are calculated offline before adaptation and are
kept fixed throughout the adaptation process. Each method
adapts the model for an additional 100K iterations. More
details can be found in the supplementary document.

4.2. Results

We report the results on the three primary source-free
adaptation scenarios in Table 1. We report the mIoU for each
modality, 2D and 3D, along with the average across the soft-
max output of both modalities, as 2D+3D. Unsurprisingly,
the highest performance is achieved by XMUDA, however,
this utilizes the source data during adaptation. Its source-
free counterpart, xMUDA-SF, obtains a much more modest
improvement over the unadapted source, and in many cases
leads to worse performance compared to no adaptation. This
clearly highlights the reliance of xMUDA on the pairing
information being present when training the source model.
The improvement of SHOT is more consistent than xMUDA-
SF, however since it is a uni-modal method, its improvement
is limited when compared to our method.

Our framework achieves high-performance improvements
over the source models across the board, with an improve-
ment as high as 12% over the other source-free methods. We
see this in the A2D2/SemanticKITTI experiment, with an



Table 2. Results on crossover adaptation scenarios. Differences in sensor configuration and label distribution result in all methods
experiencing a drop in performance. While our method is not an exception to this, we obtain consistent improvements of up to 12% over the

unadapted source model and other adaptation approaches.

(USA-2D,Singapore-3D)/SemKITTI

(Singapore-2D,USA-3D)/SemKITTI

(Day-2D,Night-3D)/ SemKITTI (Night-2D,Day-3D)/SemKITTI

Method Multimodal ~ Source-free 2D 3D 2D+3D 2D 3D 2D+3D 2D 3D 2D+3D 2D 3D 2D+3D
No adaptation - - 18.98 28.94 26.77 20.22 28.45 25.51 2421 28.54 29.96 16.14 26.60 20.52
xMUDA SF v v 20.02+£0.52  32.68+1.01 28.10£0.65 20.05+0.28 33.64+1.10 28.214+0.03 24.64+0.14 34.014+0.10 29.5440.17 16.134+0.03 27.974+0.03 25.88+0.03
SHOT X v 19.48+0.04 34.07+0.06 27.39+0.03 20.40+0.04 32.39+0.02 28.14+0.05 24.55+0.07 34.08+0.03 29.13+0.07 16.11£0.02 28.10+0.02 25.83+0.03
SUMMIT (Ours) v v 28.84+0.72 33.42+0.73 31.53+0.63 28.74+0.70 34.07+1.01 31.41+0.47 32.19+0.24 38.71+0.27 35.51+0.16 28.51+0.16 32.83+0.14 30.78+0.13
Oracle 55.36 68.73 69.82 56.37 67.69 70.60 58.20 67.82 70.82 56.41 68.69 69.90

Table 3. Estimated source and target agreement. The ratio be-
tween source and target agreement is used to estimate the domain
gap. In the first two cases, which are partitions of the same data,
the ratio is nearly one, so EW is selected. A lower ratio, as in the
last case, indicates a high domain gap, so AF is selected.

Table 5. We examine the interplay between AF, EW, L . We
note that both AF and EW on their own provide an improvement
across modalities and work well with the cross-modal loss. The
cross-modal loss provides the most improvement in the 2D+3D
performance.

USA/Singapore Day/Night A2D2/SemKITTI
Source Agreement 94.25 95.33 84.75
Target Agreement 88.50 87.40 26.00
Ratio 0.94 0.92 0.31

Table 4. Pseudo-label accuracy. EW consistently admits a higher
proportion of correct pseudo-labels than AF. However, in the case
of a large domain gap, such as A2D2/SemanticKITTI, EW accepts
a large amount of incorrect labels, which AF filters out.

USA/Singapore Day/Night A2D2/SemKITTI
Method Correct Incorrect Ignore Correct Incorrect Ignore Correct Incorrect Ignore
AF 87.29 0.13 12.58 88.45 0.10 1146 2376 1.73 74.51
EW 93.40 0.65 5.94 94.51 0.56 4.93 55.42 24.72 19.85

improvement of 12% on individual modalities compared to
xMUDA-SF and SHOT which provides only a few points of
improvement. On the 2D+3D we have a smaller, but still sig-
nificant, improvement of 7% over SHOT. We also note that
in several cases we are within 1% of the original XxMUDA
score, which assumes access to the source dataset.

In Table 2, we report the performance on the crossover
experiments. Note that SHOT outperforms xMUDA-SF in
several cases, indicating that in the crossover experiments,
xMUDA-SF tends to transfer more noise between the mod-
els. This may be due to lower performing source models
since this adaptation scenario goes between two different
datasets as opposed to the previous experiments where two
of the experiments transfer between partitions of a single
dataset. Our framework outperforms existing baselines, with
improvements ranging from 4%-10% over the unadapted
source. The largest improvement is on Night 2D & Day 3D,
despite the poor performance of the initial 2D source model.
In some cases the performance of SHOT on the 3D modality
approaches our performance; however, our method achieves
a stronger improvement on the 2D and 2D+3D modality,
showing that our method transfers useful information from
the 3D to the 2D modality without transferring noise.

Analysis of Automatic Switching. To gain further insight
into the performance of our switching method, we analyze

USA/Singapore Day/Night A2D2/SemKITTI
Method 2D 3D 2D+3D 2D 3D  2D+3D 2D 3D  2D+3D
No Adaptation  49.67 47.39 5596 41.85 4232 4998 3285 3401 4052
AF 5573 5325 5848 38.68 4138 3941 4492 4854  50.05
AF+L, ) 56.78 5329 5883 37.78 4136 39.10 4501 4834  49.60
EW 5732 5197 6228 4423 4461 5072 3593 43.16 4123
EW+L, 0 5747 5212 6232 4473 4453 5072 36.82 4326 4124
Oracle 64.67 57.19 7129 46.11 4031 4560 58.84 7175 @ 74.57

Table 6. We examine the interplay between agreement filtering (AF),
entropy weighting (EW), and the cross-modal loss £;s for the
crossover experiments. We note that in the crossover experiments
AF provides substantial improvements, while EW does not. Also
worth noting is that most of the performance gain comes from just
using AF, with £, s providing modest improvements.

USA-2D,Singapore-3D  Singapore-2D,USA-3D Day-2D,Night-3D Night-2D,Day-3D

Method 2D 3D 2D+3D 2D 3D  2D+3D 2D 3D 2D+3D 2D 3D 2D+3D
No adaptation 1898 28.94 2677 2022 2845 2551 2421 2854 2996 16.14 26.60 20.52
AF 29.34 3300 3186 2850 3459 3132 3176 3819 3507 28.22 326l 30.55
AF+Lo 28.02 3427 3081 2955 3291 3195 3242 3854 3567 28.63 3298 3087
EW 1639 2038 1841 1620 17.87 1722 19.61 1893  20.60 727 784 8.23

EW+L, 0 15.64 1857 1688 1626 1949 18.08 19.64 1933 20.68 7.71 797 8.60

Oracle 5536 6873 6982 5637 67.69 70.60 5820 6782 7082 5641 68.69 69.90

when particular pseudo-label fusion approaches are cho-
sen, and the resulting quality of pseudo-labels that are be-
ing selected. In Table 3 we show the source and target
agreement calculated according to the approach described
in Section 3.3, and the ratio between them on the first three
experiments. For the USA/Singapore and Day/Night ex-
periments, which are both derived by partitioning a single
dataset, we obtain a ratio close to one and EW is selected.
For the A2D2/SemanticKITTI experiment, which adapts
across datasets, the ratio drops to 0.31 which is less than our
threshold of 0.5 leading to AF being selected.

The efficacy of the switching is shown by the pseudo-label
accuracy in Table 4. In the first two cases, EW gives correct
pseudo-labels for over 90% of samples, while allowing less
than 1% of incorrect labels. In the third experiment AF
is selected and while far fewer correctly labeled samples
are accepted the amount of incorrect labels is also much
lower (< 2%), i.e., AF selects fewer, but correct, samples.
Throughout the crossover experiments, AF is selected, a full
analysis of which is included in the supplemental materials.
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Figure 3. Ground truth data for comparison with qualitative results.
Each color represents a different segmentation class.

(c) SUMMIT (Ours)
Figure 4. Qualitative results on the A2D2/SemanticKITTI experi-
ment, comparing our method to the unadapted source model and
xMUDA Source Free. Note the patches of misclassified road, which
xMUDA SF exacerbates, but our method fixes. Images are best
viewed digitally.

Ablation Study. We perform an ablation study on the adap-
tation and the crossover experiments where we examine the
performance of each of our complementary pseudo-label
fusion methods both with and without the cross-modal loss.
In Table 5 we can clearly see the majority of improve-
ments coming from the pseudo label fusion, with some
additional improvements from the cross-modal loss. We
note in the USA/Singapore and Day/Night experiments en-
tropy weighting outperforms the agreement filtering method,
due to the smaller domain gap. However, in this case,
agreement filtering still gives strong performance. In the
A2D2/SemanticKITTI agreement filtering performs better,
since there is a larger domain gap. We also note that our
switching method consistently picks the best method for
pseudo-label fusion.

In Table 6 we show the results on the crossover experi-
ments. We see that AF far outperforms EW in this setting.
Since the crossover experiments are all across datasets, the
domain gap is larger and AF is consistently selected. Most of
the performance increase still comes solely from our pseudo-
label fusion. We still see minor improvements from the
cross-modal loss, but in some cases, this comes at the ex-
pense of one of the modalities.

Qualitative Results. We visualize the output of our adap-
tation methods as well as no adaptation and xMUDA SF
baselines in Fig. 4, for the adaptation experiment, and in Fig.

(c) SUMMIT (Ours)
Figure 5. Qualitative results on the Day/Night to SemanticKITTI
crossover experiments. Once again we see XMUDA SF exacerbat-
ing misclassifications. Images are best viewed digitally.

5, for the crossover experiment. They can both be compared
to the ground truth segmentation in Fig. 3. In both figures,
we see that in the unadapted source, large portions of the
road and sidewalk are misclassified in the 2D output. We
see similar errors in the 3D and 2D+3D output. When the
source-free XMUDA adaptation is applied, we see that the
results can get worse, with even larger portions of the road
and the sidewalk being misclassified. When we apply our
method we see that most of the misclassifications are fixed,
critically the road and sidewalk are now correctly classified.
Some small portions of the building are misclassified, but
they are relatively small regions. The combined output does
fix some of the smaller misclassifications and the combi-
nation does not introduce any new errors. The images are
best viewed digitally, where they can be zoomed in. A short
video is provided in the supplementary materials.

5. Conclusion

In this paper we introduced a new multi-modal UDA
setting, Source-free Adaptation of Uni-modal Models to
Multi-Modal Targets (SUMMIT), where source models are
trained independently on each modality and source data are
not needed during adaptation. We addressed this new setting
by fusing information across modalities to improve pseudo-
labeling. We proposed a data driven switching method that
chooses between two complementary methods for fusing
pseudo-labels across modalities, which provides an improve-
ment of up to 12% over competing baselines.
Acknowledgments This work was supported in part by the
US Department of Defense Laboratory University Collabora-
tion Initiative program, National Science Foundation (Grant
No. 172434 and 1901379), National Institute for Food and
Agriculture (Award No. 2021-67022-33453) and the UC
Multi-campus Research Programs Initiative.

1247



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

Sk Miraj Ahmed, Suhas Lohit, Kuan-Chuan Peng, Michael J
Jones, and Amit K Roy-Chowdhury. Cross-modal knowledge
transfer without task-relevant source data. In ECCV, 2022. 3
Sk Miraj Ahmed, Dripta S Raychaudhuri, Sujoy Paul, Samet
Oymak, and Amit K Roy-Chowdhury. Unsupervised multi-
source domain adaptation without access to source data. In
CVPR,2021. 2,3,7

Nikita Araslanov and Stefan Roth. Self-supervised augmen-
tation consistency for adapting semantic segmentation. In
CVPR,2021. 3

Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel,
Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Semantickitti:
A dataset for semantic scene understanding of lidar sequences.
InICCV,2019. 1,6

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. In CVPR, 2020. 1, 6
Wei-Lun Chang, Hui-Po Wang, Wen-Hsiao Peng, and Wei-
Chen Chiu. All about structure: Adapting structural informa-
tion across domains for boosting semantic segmentation. In
CVPR, 2019. 3

Jaehoon Choi, Taekyung Kim, and Changick Kim. Self-
ensembling with gan-based data augmentation for domain
adaptation in semantic segmentation. In /CCV, 2019. 3
Jiahua Dong, Yang Cong, Gan Sun, Yuyang Liu, and Xi-
aowei Xu. Cscl: Critical semantic-consistent learning for
unsupervised domain adaptation. In ECCV, 2020. 1, 3
Whye Kit Fong, Rohit Mohan, Juana Valeria Hurtado, Lub-
ing Zhou, Holger Caesar, Oscar Beijbom, and Abhinav Val-
ada. Panoptic nuscenes: A large-scale benchmark for li-
dar panoptic segmentation and tracking. arXiv preprint
arXiv:2109.03805, 2021. 7

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal
Germain, Hugo Larochelle, Francois Laviolette, Mario Marc-
hand, and Victor Lempitsky. Domain-adversarial training of
neural networks. In JMLR, 2016. 3

Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi, Xavier
Ricou, Rupesh Durgesh, Andrew S Chung, Lorenz Hauswald,
Viet Hoang Pham, Maximilian Miihlegg, Sebastian Dorn,
et al. A2d2: Audi autonomous driving dataset. arXiv preprint
arXiv:2004.06320, 2020. 1, 6

Benjamin Graham, Martin Engelcke, and Laurens Van
Der Maaten. 3d semantic segmentation with submanifold
sparse convolutional networks. In CVPR, 2018. 1,7
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
-

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei A. Efros, and Trevor Dar-
rell. Cycada: Cycle-consistent adversarial domain adaptation.
In ICML, 2018. 1,3

Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih
Hung, Hung-Yu Tseng, Maneesh Singh, and Ming-Hsuan
Yang. Progressive domain adaptation for object detection. In
WACYV, 2020. 3

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

1248

Maximilian Jaritz, Tuan-Hung Vu, Raoul de Charette, Emilie
Wirbel, and Patrick Pérez. xmuda: Cross-modal unsupervised
domain adaptation for 3d semantic segmentation. In CVPR,
2020. 1,2,3,6,7

Youngdong Kim, Junho Yim, Juseung Yun, and Junmo Kim.
Ninl: Negative learning for noisy labels. In CVPR, 2019. 3
Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for
unsupervised domain adaptation. In /ICML, 2020. 2, 3,7

Yuang Liu, Wei Zhang, and Jun Wang. Source-free domain
adaptation for semantic segmentation. In CVPR, 2021. 3
Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-
dan. Learning transferable features with deep adaptation
networks. In ICML, 2015. 3

Ke Mei, Chuang Zhu, Jiaqi Zou, and Shanghang Zhang. In-
stance adaptive self-training for unsupervised domain adapta-
tion. In ECCV, 2020. 1, 3

Luigi Musto and Andrea Zinelli. Semantically adaptive image-
to-image translation for domain adaptation of semantic seg-
mentation. In BMVC, 2020. 3

Sujoy Paul, Yi-Hsuan Tsai, Samuel Schulter, Amit K Roy-
Chowdhury, and Manmohan Chandraker. Domain adaptive
semantic segmentation using weak labels. In ECCV, 2020. 3

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017. 1

Dripta S Raychaudhuri, Sujoy Paul, Jeroen Vanbaar, and
Amit K Roy-Chowdhury. Cross-domain imitation from obser-
vations. In International Conference on Machine Learning,
pages 8902-8912. PMLR, 2021. 3

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI 2015. 7

Prabhu Teja S and Francois Fleuret. Uncertainty reduction for
model adaptation in semantic segmentation. In CVPR, 2021.
3

Fatemeh Sadat Saleh, Mohammad Sadegh Aliakbarian, Math-
ieu Salzmann, Lars Petersson, and Jose M. Alvarez. Effective
use of synthetic data for urban scene semantic segmentation.
In ECCV,2018. 3

Maohao Shen, Yuheng Bu, and Gregory Wornell. On
the benefits of selectivity in pseudo-labeling for unsuper-
vised multi-source-free domain adaptation. arXiv preprint
arXiv:2202.00796, 2022. 5

M Naseer Subhani and Mohsen Ali. Learning from scale-
invariant examples for domain adaptation in semantic seg-
mentation. In ECCV, 2020. 3

Hanzhe Teng, Dimitrios Chatziparaschis, Xinyue Kan,
Amit K Roy-Chowdhury, and Konstantinos Karydis. Centroid
distance keypoint detector for colored point clouds. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pages 1196-1205, 2023. 1

Luan Tran, Kihyuk Sohn, Xiang Yu, Xiaoming Liu, and Man-
mohan Chandraker. Gotta adapt ’em all: Joint pixel and
feature-level domain adaptation for recognition in the wild.
In CVPR, 2019. 3



(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk
Sohn, Ming-Hsuan Yang, and Manmohan Chandraker. Learn-
ing to adapt structured output space for semantic segmenta-
tion. In CVPR, 2018. 3

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.
Adversarial discriminative domain adaptation. In CVPR, 2017.
3

Yuxi Wang, Jian Liang, Jun Xiao, Yuran Yang, Shuqi Mei,
and Zhaoxiang Zhang. Domain adaptive semantic segmenta-
tion without source data: Align, teach and propagate. arXiv
preprint arXiv:2106.11653,2021. 3

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. In ACM Transactions
of Graphics, 2019. 1

Haifeng Xia, Handong Zhao, and Zhengming Ding. Adaptive
adversarial network for source-free domain adaptation. In
ICCV,2021. 2,3

Yanchao Yang and Stefano Soatto. Fda: Fourier domain
adaptation for semantic segmentation. In CVPR, 2020. 3
Hao-Wei Yeh, Baoyao Yang, Pong C Yuen, and Tatsuya
Harada. Sofa: Source-data-free feature alignment for un-
supervised domain adaptation. In WACV, 2021. 2, 3

Yang Zou, Zhiding Yu, B. V. K. Vijaya Kumar, and Jinsong
Wang. Domain adaptation for semantic segmentation via
class-balanced self-training. In ECCV, 2018. 3

1249



