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Abstract

We aim to train a multi-task model such that users can
adjust the desired compute budget and relative importance
of task performances after deployment, without retraining.
This enables optimizing performance for dynamically vary-
ing user needs, without heavy computational overhead to
train and save models for various scenarios. To this end,
we propose a multi-task model consisting of a shared en-
coder and task-specific decoders where both encoder and
decoder channel widths are slimmable. Our key idea is to
control the task importance by varying the capacities of
task-specific decoders, while controlling the total computa-
tional cost by jointly adjusting the encoder capacity. This
improves overall accuracy by allowing a stronger encoder
for a given budget, increases control over computational
cost, and delivers high-quality slimmed sub-architectures
based on user’s constraints. Our training strategy involves a
novel ‘Configuration-Invariant Knowledge Distillation’ loss
that enforces backbone representations to be invariant under
different runtime width configurations to enhance accuracy.
Further, we present a simple but effective search algorithm
that translates user constraints to runtime width configu-
rations of both the shared encoder and task decoders, for
sampling the sub-architectures. The key rule for the search
algorithm is to provide a larger computational budget to
the higher preferred task decoder, while searching a shared
encoder configuration that enhances the overall MTL perfor-
mance. Various experiments on three multi-task benchmarks
(PASCALContext, NYUDv2, and CIFARI00-MTL) with di-
verse backbone architectures demonstrate the advantage of
our approach. For example, our method shows a higher
controllability by ~ 33.5% in the NYUD-v2 dataset over
prior methods, while incurring much less compute cost.

1. Introduction

Multi-task learning (MTL) often aims to solve multiple
related tasks together using a single neural network for econ-
omy of deployment [1, 2]. Humans can handle multiple tasks
with diverse trade-offs (e.g., due to availability of resources,
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Figure 1. Problem Setup. We aim to provide users precise control
on compute allocation as per their MTL performance preference,
with the ability to change these dynamically without re-training. To
accomplish this, we provide a strategy where a MTL SuperNet is
trained only once but allows crafting SubNets that can be sampled
based on the user’s MTL constraints (compute cost and task pref-
erence) at test-time. “High” task preference for task ¢ implies the
performance for task ¢ is more important than other tasks.

adaptable reaction time, etc.), however, most existing MTL
architectures are incapable of transforming themselves to
handle multiple user constraints without being retrained for
each scenario. In this paper, we address the problem of de-
signing controllable dynamic convolutional neural networks
(CNN) for MTL that can adjust jointly for two types of user
requirements, task preference and compute budget.

Real-world MTL systems are seeing growing applica-
tions ranging from autonomous cars [3] to video cameras
for traffic analysis [4], with respective task performance
preferences. For example, observe Fig. 1. A single MTL
architecture can allow two users to use the same model but
with custom task preferences based on the available compute
cost. The user with higher compute (e.g. self-driving cars)
may expect higher performance on task /, but the user with
lower compute (e.g. traffic cameras) would prefer higher
performance on task 2 given the budget. It will be extremely
inefficient to create and train MTL architectures for all such
possible variations of user requirements due to expensive de-
sign and deployment costs [5—7]. This brings forth the need
for flexible MTL architectures that allow test-time trade-offs
based on relative task importance and resource allocation.

Some prior methods have introduced dynamic MTL net-
works [8—11] in an effort to incorporate changing user task
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preferences at test-time. However, such methods do not ac-
count for changing the user’s computational budget as they
assume fixed computation cost resulting in limited applicabil-
ity. Recently, Controllable Dynamic Multi-task Architecture
(CDMA) [7] introduced a multi-stream (equal to number of
tasks) architecture to handle both changing task preferences
and compute budgets. For controllability, it adjusts branch-
ing locations in the encoder and generates encoder weights
using external hypernetworks [12] while fixing decoders.

In this paper, we propose a multi-task method called
‘Efficient Controllable Multi-Task architectures’ (ECMT)
that consists of a shared encoder and task-specific de-
coders where the channel widths of both modules are
slimmable [13]. Our key idea is to control the task im-
portance by varying the capacities of task-specific decoders
while controlling the compute budget by jointly adjusting
the encoder capacity. This is based on our observation that a
larger backbone achieves overall higher multi-task accuracy
(even with task conflicts) compared to separately trained
multiple smaller backbones. Further, in contrast to adjusting
the branching points of multiple encoder streams [7], our ap-
proach can achieve overall higher controllability by adopting
one stronger backbone for a given compute budget. Since
decoder widths affect both accuracy and computational cost
by a considerable amount, especially for dense prediction
tasks, adjustment of decoder capacities is sufficient to con-
trol the task preferences. Constraining to control the task
preference only through the decoder capacities further avoids
adversarial effects when changing the shared encoder as it
may cause different effects to each task, which is hard to
control. Finally, adjusting both decoder and encoder largely
increases the control over the computational cost.

As the training is performed only once and the encoder is
shared among tasks, ECMT optimizes the sub-architectures
by distilling [14] the encoder knowledge of the parent archi-
tecture, that is capable of handling task conflicts given its
large capacity [15—17]. In particular, it uses a novel ‘Config-
uration Invariant knowledge distillation’ (CI-KD) strategy to
make the embeddings of the shared encoder invariant to the
varying sub-architecture configuration. At test-time, ECMT
uses the joint constraints and extracts a sub-architecture by
searching for the most suitable encoder and decoder width
configuration using the proposed evolution-based algorithm
[18] designed for MTL models. The key rule for the search
algorithm is to provide a larger computational budget to the
higher preferred task decoder, while searching a shared en-
coder configuration that enhances overall MTL performance.

Interestingly, without any need for external hypernet-
works (to predict large tensor weights of the parent architec-
ture) and with a shared encoder (that allows task scalability),
ECMT demonstrates strong task preference - task accuracy
- efficiency trade-offs. Our extensive experiments on bench-
mark datasets demonstrate strong MTL controllability across

a wide range of joint preferences (e.g., an increase in Hy-
pervolume [19] of ~34% is observed when compared to
state-of-the-art [7] during testing in the NYUD-v2 dataset
[20]). To summarize, our contributions in this paper are:

1. We present a new method to sample high-performing ef-
ficient MTL sub-architectures from a single MTL SuperNet
that can satisfy both user preferences of task performance
and computational budget, dynamically without retraining.

2. Our method includes two key components:

e A training strategy to enhance the MTL performance of
sub-architectures in order to have minimal performance drop
even if user’s constraints become restricted. In particular,
it uses a CI-KD loss to transfer the encoder knowledge of
the parent model, which is capable of handling multi-task
conflicts, to the encoders of sub-models.

e A subsequent search strategy that translates the task pref-
erences to sample the task decoders for better performance
and searches for shared encoder width configuration that
supports the decoders for overall better MTL performance.

3. We show superior controllability on sampling sub-models
compared to prior methods. For example, we show a higher
controllability by ~ 33.5% in the NYU-v2 [20] (3 tasks)
dataset and ~ 55% in Pascal-Context [21] (5 tasks) dataset
over state-of-the-art method CDMA [7].

2. Related Works

Multi-task Learning (MTL). Growing demands for MTL
capable systems has led to a huge growth in methods for
designing effectual architectures that can leverage shared
feature representations [1, 2, 22] among tasks. Broadly,
either these methods (a) [23-29] provide individual encoders
(with respective decoders) for each task and optimize to
decrease the distance between the parameters (soft sharing),
or (b) optimize a single (shared) encoder for all tasks [11,
30-35] followed by individual decoders (hard sharing). A
significant number of prior works mainly focus on building
MTL strategies under static (or fixed) task preference and
compute budget. Hence, any change in these constraints
results in re-training the model from scratch. In order to save
on designing costs and stringently follow user requirements,
some prior works have presented strategies to obtain custom
MTL architectures by search mechanisms [36—43] similar
to traditional neural architecture search (NAS). Such MTL
NAS methods are designed for a single model matching only
one compute budget and are unsuitable for dynamic changing
requirements. Different from these, we aim to provide a
novel solution for MTL under dynamic (or changing) task
preference and compute budget without re-training.

Controllable MTL Neural Networks. [7, 9, 11, 32, 44]

have proposed controllable MTL architectures where a par-
ent network is trained to extract sub-architectures that fol-
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lows user’s constraints without re-training. For example,
[9, 44] presented strategies to train hypernetworks to predict
weights of a MTL SuperNet in order to match user’s chang-
ing task performance preference. A major drawback of these
approaches is that they assume a static compute budget, mak-
ing them incapable of handling dynamic compute resources.
Some prior single task learning (STL) methods such as Once-
for-all networks [5] and BigNAS [6] provide train and search
strategies for dynamic compute resources. However, by de-
sign they do not provide any recipe for incorporating user
MTL task preferences. In short, none of these aforemen-
tioned works provide all of dynamic and multi-task aspect
as ECMT. Different from [9, 32, 44], CDMA [7] presented
a method to handle multiple or joint MTL user constraints
where both task preference and compute budget constraints
are dynamic. It uses two hypernetworks to predict both net-
work architecture and parameters to match joint constraints.
Further, its parent model follows the soft-parameter sharing
MTL setup. As a result, CDMA requires additional memory
overhead due to two external hypernetworks, faces scalabil-
ity issues due to soft sharing of encoder, and doesn’t consider
the decoder in it’s search space. Better than CDMA, ECMT
uses a novel training paradigm for hard-parameter sharing
MTL architecture and uses a simple strategy to sample high
performing sub-architectures. The search space is defined
by the layer width [13, 45] and encompasses both the shared
encoder and the task decoders.

Slimmable Neural Networks. Slimmable networks [13,
45, 46] proposed a method to train STL neural networks
to support operating using different filter levels controlled
by width (or number of filters) multipliers; e.g., a width
multiplier 0.5 ‘slims’ down all the parent model layers re-
sulting in a sub-network that has 50% of filters. These width
multipliers are uniform across the architecture, and can be
tuned to match the user’s memory budget with minimal per-
formance degradation. This strategy has inspired solutions
for various STL research areas such as generative adversar-
ial networks [47], semantic segmentation [48] and others
[49, 50]. Similar to [13], [5, 6] explored different freedom
directions such as depth and kernel sizes to achieve strong
accuracy-efficiency trade-off in STL setup. While we lever-
age the idea of slimmable models, ECMT is strikingly differ-
ent from the aforementioned works as they do not support the
capability of task performance preference trade-off. Further,
[5, 6, 49, 50] have been mostly explored only for classifica-
tion tasks. ECMT is designed for MTL setup that extends
beyond classification tasks to dense prediction tasks.

3. Problem Statement

Notations. We denote data distribution as composed of
training set Dy, validation set D,,;, and testing set D,
with N tasks. Each task shares the input image = with

corresponding outputs Y = {y1, y2, ---, Yyn}. We cre-
ate a MTL parent architecture or SuperNet S composed
of a single shared encoder among tasks and N task de-
coders. & is end-to-end non-uniformly slimmable: every
layer can be tuned to have it’s own set of filters F (also
called width [13]) which is independently controlled by a
separate width ratio w € (0, 1]. Let W = [wmin, - - * ; Wmax]
be the set of possible values of width ratios with wyax (Wmin)
representing the maximum (minimum) possible values. A
sub-network or SubNet S(¢) can be created from S by set-
ting width ratios for all L layer denoted using a L-tuple
S© = (9 W9 w9y e W x W x - W. Let the
set of loss functions for the N tasks be {Lq, Lo,--- ,Ln}.
Formally, task preference indicates amount of available com-
pute budget for the given task. We denote the task preference
list be T = [ry,79, - ,7n] with ; € [0.0,1.0], where
higher value indicates higher preference. Finally, we denote
the weights of S as 6.

Problem Statement. Our goal is to train the MTL SuperNet
S that allows crafting multiple MTL SubNets S(¢) opera-
ble for a wide range of joint MTL user budgets (compute
budget Fyccr, and task preference T ycer) With minimal per-
formance drop. The SuperNet S (and the SubNets S(¢))
takes image x as input and predicts N task outputs ). To
train S, we define the following problem:

i 1
a:rgaml_n myND,,Z_:pn n (1)

Here, p,, is the weight of nt” task loss. Once S is trained, the
joint constrained search for obtaining S(¢) can be expressed
as the following problem:

i ©
o) myNDva;an (5)

s.t. compute(S(©)) < Feer,
2)
task preference(S©)) = T yeer

4. Proposed Method

During training, we solve the problem in Eq. 1 by con-
structing a SuperNet S parameterized by layer-wise width
ratios in (W (see Sec. 4.1). During inference, we solve Eq.
2 by searching for the most suitable encoder and decoder
width configuration using an evolution-based search algo-
rithm based on the joint constraints (see Sec. 4.2). The
training is performed only once, whereas the search is per-
formed for each deployment scenario.

4.1. Training the MTL SuperNet

Overview. Fig. 2-(A) provides an overview of the proposed
training pipeline. At its core, the training strategy aims to
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Figure 2. Illustration of our pipeline. Our overall pipeline to obtain MTL SubNets is presented. In (A), we present the SuperNet training
strategy where we train the MTL SuperNet collaboratively with the MTL SubNets. We propose a knowledge distillation loss to transfer the
knowledge of the largest capacity encoder, which has less task conflicts, to smaller capacity encoders of the SubNets. In (B), we demonstrate
our novel strategy to search SubNets (both the shared encoder and decoders) based on the user’s joint constraints (task preference and
available compute budget). In (C), the search algorithm can provide SubNets as per multiple user preferences.

enhance the MTL performance of the SubNets sampled from
the SuperNet in order to have minimal performance drop
even if user’s constraints become restricted. To this end, we
leverage the Sandwich Rule (SR) training [45] and make
necessary modifications for our MTL setup. In particular, it
involves a novel (width) configuration-invariant knowledge
distillation loss aimed at teaching the SubNet encoders from
the SuperNet encoder. We now discuss the pipeline in detail.

Training with the Sandwich Rule. The SR training [45]
for single-task learning (STL) requires that in each training
iteration, we update the SuperNet with the collectively accu-
mulated loss gradients of the model at b widths. We follow
[45] and choose b = 4 which includes the model at largest
width wmax, smallest width wmin, and b— 2 randomly chosen
models at non-uniform widths. Further, the STL SubNets
in SR [45] are optimized only using the predictions of the
largest width model (i.e. SuperNet). We build upon this rule
and introduce the following changes.

In contrast to the aforementioned, we enforce each SubNet
to learn the MTL data distribution directly from the available
ground-truth labels y. The training loss of collective learning
(i.e. training each SubNet as the SuperNet from ground-truth
labels) is denoted as £_,. Training SubNets with ground-
truth labels helps us avoid the following pitfall: we do not
need to train the MTL SubNets from the output predictions
of a weak parent MTL model (i.e. predictions in the initial
iterations can be weak as it is being trained from scratch).
We could tackle this by training the parent model standalone,
but this is contrary to our goal of saving on design costs of
training once. Furthermore, we could also adopt knowledge
distillation strategies proposed in prior MTL works [51, 52].
However, doing so would create additional training overhead

for STL models for each task, which is also not our end-
goal. Hence, we present a new methodology of distilling
the knowledge of the parent model S to SubNets without
using output predictions, which brings us to our proposed
encoder-based knowledge distillation (KD) loss.

Configuration Invariant KD (CI-KD) Loss. Our CI-KD
loss is an in-place distillation loss Ly4, which transfers the
encoder knowledge of S to the encoders of sub-networks
S(©). The encoder of S is capable of handling multi-task
conflicts due to its high capacity [15-17] and we aim to
teach the encoders of the smaller models from its features.
In particular, we propose to minimize distance between the
encoder features computed from parent model S and all the
ith child model involved in the sandwich setup. Now, this
loss cannot be directly estimated: the features of S’s encoder
2z and other child models z(*) are of different sizes due to the
different configurations of the SubNet encoders. To make
the shared encoder feature size configuration invariant, we
compute the average features along the channel dimensions
for all models in the Sandwich. We then minimize the mean
square error loss between these channel-averaged features of
the parent model and the b — 1 child models as follows.

b—1
1 E = i
,de = m . MSE(Z, 2{ )) (3)

Here, Z and Z(¥) are the encoder features of S and ith child
model (in the Sandwich), averaged along the channel di-
mension. Note that 2 is detached from the computational
graph as we do not intend to update the parent model with
L, 4. This distillation loss has been illustrated in Fig. 3. To
summarize, the SuperNet learning loss only includes Eq. 1,
whereas the i** SubNet learning loss includes both with Eq.
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ALGORITHM 1
ECMT training for SuperNet S.

Require: Width list (W, e.g. [0.3,0.4,---1.0].
Require: Number of models b in Sandwich Rule, e.g., b = 4.
I: fort =1,--- ,Tepoch do
Get input image  and task labels ).
Clear gradients, opt imizer. zero_grad().
Get task outputs & enc. feature z from §; J, z = S(x).
Get total loss £, using {J, ¥} in Eq. 1.
Accumulate gradients, £ .backward ().
Stop gradients of z, 2 = z.detach{().
Randomly sample (b — 1) models {S, = S(1),... & 1}
9: Add smallest width model to Sp.
10 for 5 in S}, do

11: Get task outputs & enc. feature z from S @
12: Compute loss £ = Lo+ ALy

13: Accumulate gradients, £(%) backward ().
14: end for

15: Update SuperNet weights, optimizer.step().
16: end for

1 and AL, 4 (X is the weight of the CI-KD loss). The training
algorithm is given in Algo. 1.

4.2. Searching based on Joint User Preferences

Overview. Fig. 2-(B) provides a simple method to sample
sub-networks that follow the user’s joint constraints of task
preference T ygcr and compute budget Fqor. We divide the
search into two parts. In Step 1, we sample the width ra-
tios of the task decoders based on the user’s task preference
using a simple rule proposed in Eq. 4. With the decoder
configuration fixed, we search for an optimal shared encoder
configuration in Step 2. The goal of the search is to sup-
port the sampled task decoders for better performance than
randomly choosing the configuration while satisfying the
overall compute budget. Step 2 particularly involves a MTL
accuracy predictor that provides quick feedback on the over-
all model configuration during the search cycle and saves
repeated evaluation related computations. We now expand
on each step in detail.

Step 1: Setting the task decoders. We propose to set the
width ratios of the task decoders based on the task preference
T user = {7} as they are independent for each task. In
particular, we map each 7; to the discrete uniform range of
W ~ U(wmin, Wmax )- Assuming T ~ U(0, 1) as a uniform
distribution with unit density when 0 < 7 < 1 (0 otherwise),
7; is mapped to a decoder width ratio w; as:

Wi = Wmin + (wmax - wmin)'ri “4)

Clearly, w; oc 7; i.e. the decoder of the task with higher
preference will be assigned a higher width ratio. This design
choice is motivated by the reason to allow a larger compu-
tational budget in the available user’s budget to the higher
preferred task decoder. Once all the decoders are fixed using
Eq. 4, we search for a shared encoder width configuration to
support the aforementioned width decoder configuration.

T i1 | encoder channel-dim — — o
features average |
 —— —_— | |
. 20 20"
(ith SubNet) < z b
T MSE
ai
(SuperNet) z 3 N
encoder channel-dim 20 &
features average (bb
R —— —_— %

N

Figure 3. Illustration of our Configuration Invariant Knowl-
edge Distillation (CI-KD) Loss. This loss encourages the shared
encoder features to be invariant of the :** SubNet capacity, by en-
forcing them to be close to the SuperNet’s shared encoder features.

Step 2: Searching for the shared encoder. The aim is to
sample a width ratio configuration for the shared encoder,
that supports the best performance out of the sampled de-
coders. Randomly choosing the encoder configuration is
one possible option, but it doesn’t necessarily result in the
best architecture due to our large search space. In order to
leverage the large search space designed by our non-uniform
layer setup and find a better performing model, we use an
evolution-based search algorithm [18]. The search algorithm
consists of three key components. First, we initialize a pool
P of P models (P = {S(1), 8@ ... &P}, all with the
fixed decoder configuration obtained from Step 1. Each of
these models are characterized by the same width ratio across
all encoder layers. Next, we evolve P in order to find a better
performing model than the initialized ones by leveraging the
flexibility of choosing width ratios for each layer mutually
exclusively in S(¢). We randomly choose K < L encoder
layers and change the width ratio wy, by the rule:

ak = Wk + n Sign(Fuser - F(C)) {5)

Here, F(¢) is the computational cost of S(¢) (e.g. GMACs),
Fcer is the computational budget set by the user, and sign(-)
extracts the sign of the input variable.We set n = 0.1 as
we use the design specification w; — w; = 0.1. The moti-
vation of this design choice is to push the shared encoder
configuration towards larger capacity, which are known to
handle task conﬁictﬂetter [15-17]. This evolution step cre-

ates a new model S(¢) which is added back to P. In the
end, the best performing model from the search is provided
for deployment. At all steps, we ensure that each model
P satisfies the user’s compute budget constraint. In order
to quickly evaluate the quality of models in P, we build a
subsidiary neural network R that provides a feedback on

S(€)’s approximate MTL performance. This MTL accuracy
predictor R eliminates the need for repeated cost of getting
the measured accuracy by providing a predicted accuracy.
Specifically, R is optimized to take S(¢)’s width configura-
tion as input and predict the approximate performance of this
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ALGORITHM 2
ECMT SubNet search.

Require: MTL Accuracy Predictor R, Number of search cycles Teycie
Require: Model pool size P
Require: User MTL constraints (Fyser, T user)
1I: Compute and fix decoder widths using T user using Eq. 4.
2: Initialize the model pool P with P random encoder widths, including
uniform encoder widths, that satisfy memory constraint Fy ser
Get the most preferred task 7 = max (7T user)
fort =1, -, Teyele do
Randomly choose a model S(¥) from P
Change the wid‘t‘ll_?f a randomly chosen encoder layer with Eq. 5
in S and create S¢)
Add the mutated model S(¢) to P
Delete the worst model (which results in highest loss in the pre-
ferred task 7") computed using .
9: end for
10: Return the width configuration of the best performing model in P
predicted using R.

= U O

configuration [5]. To train R, we first create K examples of
[A©), (Ly,---, Ly)] pairs by randomly sampling M Sub-
Nets with different configurations .A(¢), and computing their
task losses on Dyas. A contains the list of width ratios
computed for the shared encoder and the task decoders. In
our experiments, we choose M = 2000. The architecture of
R has been provided in Algo. 3 and training procedure is
provided in Sec. 5. Note that, we only need to collect the
data pairs and train R once, making this overhead negligible
in comparison to training S. Further, this cost remains con-
stant regardless of changing user requirements. Fig. 2-(C)
provides some examples of the resultant MTL architectures.
We summarize our proposed MTL search algorithm in Algo.
2. In Algo. 2, we call a candidate model “mutated” (in Line
7) when we change a random encoder layer (in Line 6).

5. Experiments

In this section, we demonstrate the ability of ECMT to ex-
tract efficient architectures based on a user’s joint multi-task
learning preferences. We show that our proposed framework
can scale to a large number of tasks while allowing proficient
task preference - task accuracy - efficiency trade-off with
a single MTL model. Through extensive experiments on
three datasets with various architectures, we provide new
insights to the community regarding controllable MTL ar-
chitectures which can be re-used for diverse deployment
scenarios without re-training.

Training implementation details. We use PyTorch [53] for
our implementation.

o NYUD-v2 and Pascal-Context. We follow [2] to set
the following hyperparameters. The SuperNet is trained
with Adam Optimizer [54] with learning rate 0.0001, and
weight decay 0.0001. We use a poly learning rate sched-
uler. We set the total epochs T,pocns as 100 for PASCAL-
Context/NYUD-v2. The training batch size is set to 8. The

task loss weights p,, are set as follows- NYU-v2 — Seman-
tic segmentation: 1, Depth: 1, and Surface normals: 10;
PASCAL-Context — Semantic segmentation: 1, Human parts
segmentation: 2, Saliency: 5, Edge: 50, Surface normals:
10. The training data augmentations are set from [41]. We
further add Random Erasing [55] with probability 0.5 to
the aforementioned. The shared encoder is initialized with
ImageNet [56] pre-trained weights, whereas the decoders
are trained from scratch. The CI-KD loss weight A is set
to 1 and 0.001 for NYUD-v2 and Pascal-Context, respec-
tively. W is set as [0.6,0.7,--- ,1.0] for NYUD-v2, and
[0.5,0.6, - - - ,1.0] for Pascal-Context. The input channels to
the DeepLabv3 decoder for NYUD-v2 and Pascal-Context
are set to 256 and 128, respectively.

o CIFARI100. All the task loss weights are set to 1. The
batch size is set to 256. We set the total epochs Tepocns is
set as 75. The SuperNet is trained with Adam Optimizer
[54] with learning rate 0.001, and weight decay 0.0001. The
whole SuperNet is trained from scratch. The CI-KD loss
weight X is set to 0.01. W is set as [0.2,0.3,--- ,1.0].

All experiments use 90% of training set for all datasets. All
other hyperparameters are set as per default PyTorch settings.

Evaluation criteria. Following [7], we use hypervolume
(HV) [19] to measure controllability with respect to task pref-
erences. HV helps to evaluate the preference-loss trade-off
curve (or Pareto-front [11]) among the different tasks in the
loss space [57]. Basically, HV accounts for both the quality
of the models (volume they dominate), and also the diversity,
measured in the overlap between dominated regions. Higher
value indicates better controllability assuming same memory
budget. Bold values indicate best results.

Inference implementation details. For comparisons with
CDMA and PHN for controllability, we follow CDMA’s
method of task preference sampling. In particular, we sample
task preferences 7 ~ P, where P is a Dirichlet distribu-
tion of order N with parameters [a1, a2, -+ ,an] (a; >
0). Following [7], we set a; = 0.2 ¥V i for PASCAL-
Context/ NYUD-v2, and a; = 1.0 ¥ ¢ for CIFAR100. HV is
computed across 20 task preferences following [7]. Deep-
Speed [58] is used to compute the architecture GMACs. For
any T yeer, We always aim to set the highest width for most
preferred task for best results. Hence, we min-max norm
T user before using Eq. 4. Any value € [0, 1] can be used
for each task preference (sum need not be 1). We set the
number of search cycles Teycie as 150 for CIFAR100 and 10
for NYUD-v2/Pascal-Context. We set the model population
size to 50. The search runtime is proportional to Teycje.

Datasets. We conduct our experiments using three multi-
task datasets, namely PASCAL-Context [21] (5 tasks) and
NYU-v2 [20] (3 tasks), and CIFAR-100 [59, 60] (20 tasks).
The PASCAL-Context dataset provides joint semantic seg-
mentation, human parts segmentation, saliency estimation,
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ALGORITHM 3
Pseudocode of our MTL Accuracy Predictor R.

import torch.nn as nn

# multi-task performance predictor
class AccuracyPredictor (nn.Module) :
def __ _init__ (self, input_channels: int,
< task_names: list):
super () .__init__ ()
self.model = nn.Sequential (
nn.Linear (input_channels, 100),
nn.RelLU (),
nn.Linear (100, 100),
nn.RelLU (),
nn.Linear (100, 50),
nn.ReLU ()
)

self.task_names = task_names

self.heads = nn.ModuleDict ({task:
— nn.Linear (50, 1) for task in
< self.task_names})

def forward(self, model_widths:

— torch.Tensor) :
feats = self.model (model_widths)
preds = {t_id: self.heads[t_id] (feats)
— for t_id in self.task_names}

return preds

surface normal estimation, and edge detection. The NYU-v2
dataset provides joint semantic segmentation, depth estima-
tion and surface normal estimation. The CIFAR-100 (MTL)
dataset provides a split of 20 five-way classification tasks
extracted from the original dataset. Semantic segmentation,
saliency estimation and human parts segmentation are eval-
uated using mean intersection over union (mloU). Depth
estimation and surface normals are evaluated using the root
mean square error (rmse).

Baselines. As reported in Sec. 2, CDMA [7] is our main
baseline which designs MTL architectures, jointly control-
lable with task preference and memory constraint. Further,
we compare with PHN [44] (and its variation PHN-BN
[7, 44]), which only allow task controllability. PHN uses a
hypernetwork to predict the weights of a shared backbone
based SuperNet conditioned on a task preference. Further,
we also compare with MTL-Static models trained for high-
est user constraints. It provides the upper bound of the HV
ECMT can achieve. The MTL-Static models and ECMT are
trained with 90% samples of the original training split. The
other 10% split is used to train the MTL accuracy predictor.

Architectures. Our SuperNet S consists of a shared encoder
(backbone) with IV task decoders. For dense prediction tasks
(PascalContext, NYUD-v2), we use the DeepLabv3 archi-
tecture [61] for each task, whereas we use linear layers for
classification tasks (CIFAR100-MTL). We follow CDMA

Table 1. Evaluation on NYUD-v2. Reference point for HV:
[4,4,4]. { indicates smaller compute cost (GMACs).

GMACs Control HV
Method ) Params.(}) 1)
PHN 21.02 21.04M 02.36
PHN-BN 21.02 02.23M 11.72
CDMAT 25.98 00.03M 09.53
CDMA 29.04 00.03M 12.42
MTL-Static 22.66 - 35.64
ECMT ' 10.00 00.20M 34.91
ECMT 20.00 00.20M 34.89

Table 2. Evaluation on PascalContext. Reference point for HV:
[3,3,3,3,3]. T indicates smaller compute cost (GMACsS).

GMACs Control HV
Method (1) Params.(}) (1)
PHN 06.28 21.50M 42.61
PHN-BN 06.28 03.63M 72.27
CDMAT 06.81 15.32M 73.20
CDMA 07.21 15.32M 75.52
MTL-Static 09.43 - 242.79
ECMT f 04.00 0.021M 166.75
ECMT 09.00 0.021M 166.97

and choose the backbone architectures as MobileNetV2
[62] for PASCAL-Context, ResNet34 [63] for NYUD-v2,
and ResNet9 [64] for CIFAR100-MTL. MobileNetV2 and
ResNet34 are pre-trained on ImageNet [56]. Note that, in
all cases, both the encoder and the task decoders are non-
uniformly slimmable. Following [6, 45], we do not accu-
mulate batch norm statistics while training the SuperNet as
these are ill-defined due to varying SubNet configurations.
During testing, we re-calibrate the batch norm statistics for
each SubNet without any fine-tuning of its parameters.

MTL accuracy predictor details. The MTL accuracy pre-
dictor R is a three layer feed-forward neural network sum-
marized in Algo. 3. Given a SubNet model S (©), we create
a list A(©) consisting of width ratios starting with the shared
encoder, followed by the decoder’s width ratios. A(¢) is then
fed to the R to get the predicted MTL accuracy for all N
tasks. To train R, we first create M = 2000 examples of
LA, (L1, -+, Ln)] pairs by randomly sampling M Sub-
Nets with different configurations .A(¢), and computing their
task losses on D,,,;. We train this predictor for 150 epochs
using L1-loss using the Adam optimizer with a learning rate
of 0.001. The batch size is set to 16.

5.1. Comparison with Baselines

We present the overall multi-task performance of sam-
pling sub-architectures with three different distributions
NYUD-v2 (3 tasks), Pascal-Context (5 tasks) and CIFAR-
100 (20 tasks) in Tab. 1-3. Here we compare with state-of-
the-art methods CDMA (allows compute budget controlla-
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Table 3. Evaluation on CIFAR100-MTL. Reference point for HV:

[1,1,---,1]. T indicates smaller compute cost (GMACs)
GMACs Control HV
Method
() Params.(]) @)
PHN 073.13 11.03M 0.002
PHN-BN 073.13 00.31M 0.007
CDMAT 129.23 03.10M 0.009
CDMA 174.36 03.10M 0.010
MTL-Static 072.92 - 0.0089
ECMT f 038.40 00.02M 0.0026
ECMT 072.92 00.02M 0.0082
normals_depth Leo semseg_depth semseg_normals
%100 — Ous | e - %; . ’:é’z.so T ours :.1 ------ )
,_,050 2140 A I 5200
130 o | soy

1.00 2.00 3.00 0.50 1.00 150 050 100 150 2.00

normals loss semseg loss semseg loss

Figure 4. Loss curves comparison on NYUD-v2 (3 tasks). Due to
strategy to translate task preferences to task decoders, task losses
remain low even if the preference decreases. This supports our
training paradigm to improve the performance of the smaller archi-
tectures, not done in CDMA and PHN.

bility along with task controllability), PHN and PHN-BN
(allows only task controllability). Following CDMA [7], we
report HV (reference point set according to CDMA) across
20 task preferences. Similar to CDMA, we analyze ECMT
under both small and large extremes of compute budgets
(indicated using GMACs). We also account for the external
networks used to sample sub-architectures under ‘Control
Parameters’. For PHN and CDMA, this is the cost of the hy-
pernetworks, while for ECMT, the cost pertains to the MTL
accuracy predictor R. Note that results for both CDMA
and ECMT are computed from one model while varying
compute and task preference constraints.

ECMT demonstrates high HV values compared to the ex-
isting methods, especially in NYUD-v2 and Pascal-Context.
The high HV along with lower GMACs supports our claim
that the proposed shared encoder and individual decoders
are capable of solving multi-task problems while handling
task trade-offs. For example, ECMT shows a higher HV
by ~ 33.5% in the NYUD-v2 dataset and ~ 55% in Pascal-
Context dataset, while using comparatively much less com-
pute in both the cases. We believe this strong performance is
due to our strategy to incorporate task decoders in the search
space which is ignored by CDMA. For the classification task
of CIFAR-100, ECMT achieves similar HV with lesser com-
pute cost. We believe that the impact of our task preference
translation as per Eq. 4 is smaller for CIFAR-100 given that
the decoder of the classifier (fully connected layers) is com-
putationally lighter than dense prediction decoders. Finally,
our strategy to translate the task preferences to the decoders
allows us to maintain the HV even with highly restricted
compute cost. This is highly advantageous compared to

Table 4. Ablation Study on NYUD-v2. 7;: Semantic Seg., 7a:
Human-Parts Seg., 73: Depth Est., Here, the colored row indicates
performance of largest model for reference. Bottom two rows
indicate the impact of loss £, 4 on the performance of smallest
possible models for our method. HV is computed by keeping the
budget indicated under GMAC:s for all the cases.

Learning Loss Task Performance Control
r. Lo MO Twm o no Eve
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Figure 5. Search algorithm comparison on NYUD-v2. Sematic
seg.: higher and Depth est.: lower is better. Our proposed search
algorithm provides better architectures with negligible search cost.
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Figure 6. Saving design costs. NYUD-v2 (3 tasks) with ResNet34
backbone. Our training method allows to sample multiple high
performing MTL architectures based on the user compute cost after
training only once, in contrast to static MTL/STL architectures
where the training has to be repeated for changing constraints.

PHN and CDMA, where the change in control parameters
or the compute cost deteriorates the HV.

As the HV is a function of the loss values computed over
changing task preferences, we visualize the task preference
- task loss trade-off curves in Fig. 4. Due to our strategy to
translate task preferences to task decoders, the task losses
remain low even if the task preference decreases. This is
because lower width SubNets (created due to lower task
preferences) are enhanced to perform closely to the SuperNet.
This further attests to our training paradigm to improve the
performance of the smaller MTL architectures, a feature
absent in CDMA and PHN.

5.2. Ablation Study

Effectiveness of CI-KD loss and shared encoder size. In
Tab. 4, we analyze the importance of proposed loss functions
in our SuperNet training using two different backbones. It
can be observed that the CI-KD loss L4 pushes the perfor-
mance of the smallest network towards the parent network
for both the cases. For example, for the ResNet34 backbone
SuperNet, CI-KD loss increases the semantic segmentation
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Figure 7. Marginal evaluation on NYU-v2. Our proposed method
to translate task preference to task decoders is effective in two
encoder configurations (largest, smallest). Different tasks have dif-
ferent response to encoder configuration which shows the necessity
of our search algorithm to find an optimal encoder configuration.

by almost 2 points whereas the HV increases by 1 point for
the smallest architecture with 37% less compute cost.

Effectiveness of our search strategy. Our search algorithm
is aimed to find the best shared encoder configuration that
supports the sampled task decoders based on Eq. 4. To show
its efficacy, we compare it with the strategy of choosing
the width ratios of the encoder randomly in Fig. 5 for the
NYUD-v2 dataset. We train a MTL SuperNet with the train-
ing set Dy,.. The ‘random’ search algorithm then samples
width ratios from the available width list & and chooses the
encoder configuration satisfying the user’s compute budget.
Our proposed search, on the other hand, uses the accuracy
predictor R created with the validation set D,,,; and chooses
an optimal encoder configuration that supports the decoder
for best task performance. Note that the time for our search
strategy is negligible compared to training a sub-architecture
from scratch. Further, computation overhead due to our
search algorithm is only needed when the user preferences
change and does not influence the final inference time.

Marginal task evaluation. In Fig. 7, we visualize the task
performance for ECMT when the task preference changes,
by marginalizing over preference values of the other tasks.
This is done for two extreme cases of the encoder config-
uration: by setting the encoder widths to the largest and
smallest size, respectively. Clearly, an increase in task pref-
erence leads to an increase in the task performance. This is a
direct result of our proposed method to set the decoder width
ratios according to Eq. 4. Further, it also shows that differ-
ent tasks respond differently to the encoder configurations.
For example, the task of semantic segmentation performs al-
most similarly for the task preference range [0.2, 0.8] for the
both configurations, whereas the other tasks clearly present
a bigger difference. This shows the necessity of our search
algorithm to find a better encoder configuration. Fig. 7 also
shows the accuracy-compute trade-off available per task.

Savings on design costs. Along with the aforementioned
advantages of task performance tradeoff, our training method
in Sec. 4 allows to sample multiple high performing MTL
architectures while training only once. This saves expensive
training costs and allows multiple deployments from one
model. We demonstrate this feature of ECMT in Fig. 6 for

! shared . shared
y encoder ){‘ encoder

VoY Y Y

i
Case 1: 7, =[0.3,0.4,0.

0.3] Case 2: 7., =[1.0,0.0,0.0]

Figure 8. Illustration of our task preference translation. We visu-
alize the width ratios computed for the task decoders for NYUD-v2
(3 tasks). Note that we normalize the task preference using max-
min normalization before computing the decoder widths.

NYUD-v2 (3 task) dataset for ResNet34 backbone. Here,
the static MTL and STL architectures can only be used for
a fixed compute budget. In contrast, ECMT can operate
with variable compute costs and gracefully degrade in per-
formance with decreasing budget. Note that one can further
enhance the MTL performance of our parent architecture
using state-of-the-art methods summarized in [1, 2].

Qualitative examples. We visualize some examples of the
task decoder widths computed using the task preferences
from Eq. (4) in Fig. 8. Each block represents the task
decoder with its selected width ratio for the given T ¢
The design choice of W for NYUD-v2 is [0.6, 0.7, - - , 1.0].

6. Conclusions

We tackle the problem of multi-task architecture deploy-

ment based on user joint preferences (task performance and
available compute). The core challenge is to train the multi-
task architecture once but permit instant customization of
the network for diverse preferences. We propose to train non-
uniformly slimmable MTL architectures parameterized by
layer wise width configurations, resulting in a large space of
MTL architectures. At inference, we use an evolution-based
search algorithm to sample precise MTL sub-architectures
based on the joint preferences. In contrast to prior control-
lable MTL methods solely focused on encoders and provid-
ing poor task scalability, our method uses a shared encoder
and the task decoders as part of search space. We show the
effectiveness of our method on various multi-task settings,
providing large search space for sampling efficient MTL
models covering a wide range of MTL preferences.
Limitations and Future Works. Our work has the follow-
ing limitations that presents new opportunities for interesting
future works. ECMT has only been explored for CNN based
architectures and should be investigated for transformer
based models. Further, the task relativity should be con-
sidered when extracting a sub-network as it is considered an
important factor in MTL.
Acknowledgements. This work was a part of Abhishek Aich’s
internship at NEC Labs America. This work was also partially
supported by NSF grant 1724341. We would like to thank the
authors of [5] for providing the implementations related to accuracy
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