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Abstract

We aim to train a multi-task model such that users can
adjust the desired compute budget and relative importance
of task performances after deployment, without retraining.
This enables optimizing performance for dynamically vary-
ing user needs, without heavy computational overhead to
train and save models for various scenarios. To this end,
we propose a multi-task model consisting of a shared en-
coder and task-specific decoders where both encoder and
decoder channel widths are slimmable. Our key idea is to
control the task importance by varying the capacities of
task-specific decoders, while controlling the total computa-
tional cost by jointly adjusting the encoder capacity. This
improves overall accuracy by allowing a stronger encoder
for a given budget, increases control over computational
cost, and delivers high-quality slimmed sub-architectures
based on user’s constraints. Our training strategy involves a
novel ‘Configuration-Invariant Knowledge Distillation’ loss
that enforces backbone representations to be invariant under
different runtime width configurations to enhance accuracy.
Further, we present a simple but effective search algorithm
that translates user constraints to runtime width configu-
rations of both the shared encoder and task decoders, for
sampling the sub-architectures. The key rule for the search
algorithm is to provide a larger computational budget to
the higher preferred task decoder, while searching a shared
encoder configuration that enhances the overall MTL perfor-
mance. Various experiments on three multi-task benchmarks
(PASCALContext, NYUDv2, and CIFAR100-MTL) with di-
verse backbone architectures demonstrate the advantage of
our approach. For example, our method shows a higher
controllability by ∼ 33.5% in the NYUD-v2 dataset over
prior methods, while incurring much less compute cost.

1. Introduction
Multi-task learning (MTL) often aims to solve multiple

related tasks together using a single neural network for econ-
omy of deployment [1, 2]. Humans can handle multiple tasks
with diverse trade-offs (e.g., due to availability of resources,

Figure 1. Problem Setup. We aim to provide users precise control
on compute allocation as per their MTL performance preference,
with the ability to change these dynamically without re-training. To
accomplish this, we provide a strategy where a MTL SuperNet is
trained only once but allows crafting SubNets that can be sampled
based on the user’s MTL constraints (compute cost and task pref-
erence) at test-time. “High” task preference for task i implies the
performance for task i is more important than other tasks.

adaptable reaction time, etc.), however, most existing MTL
architectures are incapable of transforming themselves to
handle multiple user constraints without being retrained for
each scenario. In this paper, we address the problem of de-
signing controllable dynamic convolutional neural networks
(CNN) for MTL that can adjust jointly for two types of user
requirements, task preference and compute budget.

Real-world MTL systems are seeing growing applica-
tions ranging from autonomous cars [3] to video cameras
for traffic analysis [4], with respective task performance
preferences. For example, observe Fig. 1. A single MTL
architecture can allow two users to use the same model but
with custom task preferences based on the available compute
cost. The user with higher compute (e.g. self-driving cars)
may expect higher performance on task 1, but the user with
lower compute (e.g. traffic cameras) would prefer higher
performance on task 2 given the budget. It will be extremely
inefficient to create and train MTL architectures for all such
possible variations of user requirements due to expensive de-
sign and deployment costs [5–7]. This brings forth the need
for flexible MTL architectures that allow test-time trade-offs
based on relative task importance and resource allocation.

Some prior methods have introduced dynamic MTL net-
works [8–11] in an effort to incorporate changing user task
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preferences at test-time. However, such methods do not ac-
count for changing the user’s computational budget as they
assume fixed computation cost resulting in limited applicabil-
ity. Recently, Controllable Dynamic Multi-task Architecture
(CDMA) [7] introduced a multi-stream (equal to number of
tasks) architecture to handle both changing task preferences
and compute budgets. For controllability, it adjusts branch-
ing locations in the encoder and generates encoder weights
using external hypernetworks [12] while fixing decoders.

In this paper, we propose a multi-task method called
‘Efficient Controllable Multi-Task architectures’ (ECMT)
that consists of a shared encoder and task-specific de-
coders where the channel widths of both modules are
slimmable [13]. Our key idea is to control the task im-
portance by varying the capacities of task-specific decoders
while controlling the compute budget by jointly adjusting
the encoder capacity. This is based on our observation that a
larger backbone achieves overall higher multi-task accuracy
(even with task conflicts) compared to separately trained
multiple smaller backbones. Further, in contrast to adjusting
the branching points of multiple encoder streams [7], our ap-
proach can achieve overall higher controllability by adopting
one stronger backbone for a given compute budget. Since
decoder widths affect both accuracy and computational cost
by a considerable amount, especially for dense prediction
tasks, adjustment of decoder capacities is sufficient to con-
trol the task preferences. Constraining to control the task
preference only through the decoder capacities further avoids
adversarial effects when changing the shared encoder as it
may cause different effects to each task, which is hard to
control. Finally, adjusting both decoder and encoder largely
increases the control over the computational cost.

As the training is performed only once and the encoder is
shared among tasks, ECMT optimizes the sub-architectures
by distilling [14] the encoder knowledge of the parent archi-
tecture, that is capable of handling task conflicts given its
large capacity [15–17]. In particular, it uses a novel ‘Config-
uration Invariant knowledge distillation’ (CI-KD) strategy to
make the embeddings of the shared encoder invariant to the
varying sub-architecture configuration. At test-time, ECMT
uses the joint constraints and extracts a sub-architecture by
searching for the most suitable encoder and decoder width
configuration using the proposed evolution-based algorithm
[18] designed for MTL models. The key rule for the search
algorithm is to provide a larger computational budget to the
higher preferred task decoder, while searching a shared en-
coder configuration that enhances overall MTL performance.

Interestingly, without any need for external hypernet-
works (to predict large tensor weights of the parent architec-
ture) and with a shared encoder (that allows task scalability),
ECMT demonstrates strong task preference - task accuracy
- efficiency trade-offs. Our extensive experiments on bench-
mark datasets demonstrate strong MTL controllability across

a wide range of joint preferences (e.g., an increase in Hy-
pervolume [19] of ∼34% is observed when compared to
state-of-the-art [7] during testing in the NYUD-v2 dataset
[20]). To summarize, our contributions in this paper are:

1. We present a new method to sample high-performing ef-
ficient MTL sub-architectures from a single MTL SuperNet
that can satisfy both user preferences of task performance
and computational budget, dynamically without retraining.

2. Our method includes two key components:

• A training strategy to enhance the MTL performance of
sub-architectures in order to have minimal performance drop
even if user’s constraints become restricted. In particular,
it uses a CI-KD loss to transfer the encoder knowledge of
the parent model, which is capable of handling multi-task
conflicts, to the encoders of sub-models.
• A subsequent search strategy that translates the task pref-
erences to sample the task decoders for better performance
and searches for shared encoder width configuration that
supports the decoders for overall better MTL performance.

3. We show superior controllability on sampling sub-models
compared to prior methods. For example, we show a higher
controllability by ∼ 33.5% in the NYU-v2 [20] (3 tasks)
dataset and ∼ 55% in Pascal-Context [21] (5 tasks) dataset
over state-of-the-art method CDMA [7].

2. Related Works
Multi-task Learning (MTL). Growing demands for MTL
capable systems has led to a huge growth in methods for
designing effectual architectures that can leverage shared
feature representations [1, 2, 22] among tasks. Broadly,
either these methods (a) [23–29] provide individual encoders
(with respective decoders) for each task and optimize to
decrease the distance between the parameters (soft sharing),
or (b) optimize a single (shared) encoder for all tasks [11,
30–35] followed by individual decoders (hard sharing). A
significant number of prior works mainly focus on building
MTL strategies under static (or fixed) task preference and
compute budget. Hence, any change in these constraints
results in re-training the model from scratch. In order to save
on designing costs and stringently follow user requirements,
some prior works have presented strategies to obtain custom
MTL architectures by search mechanisms [36–43] similar
to traditional neural architecture search (NAS). Such MTL
NAS methods are designed for a single model matching only
one compute budget and are unsuitable for dynamic changing
requirements. Different from these, we aim to provide a
novel solution for MTL under dynamic (or changing) task
preference and compute budget without re-training.
Controllable MTL Neural Networks. [7, 9, 11, 32, 44]
have proposed controllable MTL architectures where a par-
ent network is trained to extract sub-architectures that fol-
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lowsuser’sconstraintswithoutre-training. Forexample,
[9,44]presentedstrategiestotrainhypernetworkstopredict
weightsofaMTLSuperNetinordertomatchuser’schang-
ingtaskperformancepreference.Amajordrawbackofthese
approachesisthattheyassumeastaticcomputebudget,mak-
ingthemincapableofhandlingdynamiccomputeresources.
Somepriorsingletasklearning(STL)methodssuchasOnce-
for-allnetworks[5]andBigNAS[6]providetrainandsearch
strategiesfordynamiccomputeresources.However,byde-
signtheydonotprovideanyrecipeforincorporatinguser
MTLtaskpreferences.Inshort,noneoftheseaforemen-
tionedworksprovideallofdynamicandmulti-taskaspect
asECMT.Differentfrom[9,32,44],CDMA[7]presented
amethodtohandlemultipleorjointMTLuserconstraints
wherebothtaskpreferenceandcomputebudgetconstraints
aredynamic.Itusestwohypernetworkstopredictbothnet-
workarchitectureandparameterstomatchjointconstraints.
Further,itsparentmodelfollowsthesoft-parametersharing
MTLsetup.Asaresult,CDMArequiresadditionalmemory
overheadduetotwoexternalhypernetworks,facesscalabil-
ityissuesduetosoftsharingofencoder,anddoesn’tconsider
thedecoderinit’ssearchspace.BetterthanCDMA,ECMT
usesanoveltrainingparadigmforhard-parametersharing
MTLarchitectureandusesasimplestrategytosamplehigh
performingsub-architectures.Thesearchspaceisdeined
bythelayerwidth[13,45]andencompassesboththeshared
encoderandthetaskdecoders.

SlimmableNeuralNetworks.Slimmablenetworks[13,
45,46]proposedamethodtotrainSTLneuralnetworks
tosupportoperatingusingdifferentilterlevelscontrolled
bywidth(ornumberofilters)multipliers;e.g.,awidth
multiplier0.5‘slims’downalltheparentmodellayersre-
sultinginasub-networkthathas50%ofilters.Thesewidth
multipliersareuniformacrossthearchitecture,andcanbe
tunedtomatchtheuser’smemorybudgetwithminimalper-
formancedegradation.Thisstrategyhasinspiredsolutions
forvariousSTLresearchareassuchasgenerativeadversar-
ialnetworks[47],semanticsegmentation[48]andothers
[49,50].Similarto[13],[5,6]exploreddifferentfreedom
directionssuchasdepthandkernelsizestoachievestrong
accuracy-eficiencytrade-offinSTLsetup. Whilewelever-
agetheideaofslimmablemodels,ECMTisstrikinglydiffer-
entfromtheaforementionedworksastheydonotsupportthe
capabilityoftaskperformancepreferencetrade-off.Further,
[5,6,49,50]havebeenmostlyexploredonlyforclassiica-
tiontasks.ECMTisdesignedfor MTLsetupthatextends
beyondclassiicationtaskstodensepredictiontasks.

3.ProblemStatement

Notations. Wedenotedatadistributionascomposedof
trainingsetDtr,validationsetDval,andtestingsetDte

withN tasks. Eachtasksharestheinputimagexwith

correspondingoutputsY ={y1,y2,···,yN}. Wecre-
atea MTLparentarchitectureorSuperNetScomposed
ofasinglesharedencoderamongtasksandN taskde-
coders.Sisend-to-endnon-uniformlyslimmable:every
layercanbetunedtohaveit’sownsetofiltersF (also
calledwidth[13])whichisindependentlycontrolledbya
separatewidthratioω∈(0,1].Letω=[ωmin,···,ωmax]
bethesetofpossiblevaluesofwidthratioswithωmax (ωmin)
representingthemaximum(minimum)possiblevalues.A
sub-networkorSubNetS(ζ)canbecreatedfromSbyset-
tingwidthratiosforallLlayerdenotedusingaL-tuple

S(ζ)=⟨ω
(ζ)
1 ,ω

(ζ)
2 ,···,ω

(ζ)
L ⟩∈ω×ω×···ω.Letthe

setoflossfunctionsfortheN tasksbe{L1,L2,···,LN}.
Formally,taskpreferenceindicatesamountofavailablecom-
putebudgetforthegiventask. Wedenotethetaskpreference
listbeτ=[τ1,τ2,···,τN]withτi ∈ [0.0,1.0],where
highervalueindicateshigherpreference.Finally,wedenote
theweightsofSasθ.

ProblemStatement.OurgoalistotraintheMTLSuperNet
Sthatallowscraftingmultiple MTLSubNetsS(ζ)opera-
bleforawiderangeofjoint MTLuserbudgets(compute
budgetFuser,andtaskpreferenceτuser)withminimalper-
formancedrop. TheSuperNetS(andtheSubNetsS(ζ))
takesimagexasinputandpredictsN taskoutputsY.To
trainS,wedeinethefollowingproblem:

argmin
θ

E
x,Y∼Dtr

N

n=1

ρnLn θ (1)

Here,ρnistheweightofnthtaskloss.OnceSistrained,the
jointconstrainedsearchforobtainingS(ζ)canbeexpressed
asthefollowingproblem:

min
S(ζ)

E
x,Y∼Dval

N

n=1

ρnLn S(ζ)

s.t.compute(S(ζ))≤Fuser,

taskpreference(S(ζ))=τuser

(2)

4.Proposed Method

Duringtraining,wesolvetheprobleminEq.1bycon-
structingaSuperNetSparameterizedbylayer-wisewidth
ratiosinω(seeSec.4.1).Duringinference,wesolveEq.
2bysearchingforthemostsuitableencoderanddecoder
widthconigurationusinganevolution-basedsearchalgo-
rithmbasedonthejointconstraints(seeSec.4.2). The
trainingisperformedonlyonce,whereasthesearchisper-
formedforeachdeploymentscenario.

4.1.Trainingthe MTLSuperNet

Overview. Fig.2-(A)providesanoverviewoftheproposed
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Figure2.Illustrationofourpipeline.OuroverallpipelinetoobtainMTLSubNetsispresented.In(A),wepresenttheSuperNettraining
strategywherewetraintheMTLSuperNetcollaborativelywiththeMTLSubNets. Weproposeaknowledgedistillationlosstotransferthe
knowledgeofthelargestcapacityencoder,whichhaslesstaskconlicts,tosmallercapacityencodersoftheSubNets.In(B),wedemonstrate
ournovelstrategytosearchSubNets(boththesharedencoderanddecoders)basedontheuser’sjointconstraints(taskpreferenceand
availablecomputebudget).In(C),thesearchalgorithmcanprovideSubNetsaspermultipleuserpreferences.

enhancetheMTLperformanceoftheSubNetssampledfrom
theSuperNetinordertohaveminimalperformancedrop
evenifuser’sconstraintsbecomerestricted.Tothisend,we
leveragetheSandwichRule(SR)training[45]andmake
necessarymodiicationsforourMTLsetup.Inparticular,it
involvesanovel(width)coniguration-invariantknowledge
distillationlossaimedatteachingtheSubNetencodersfrom
theSuperNetencoder. Wenowdiscussthepipelineindetail.

TrainingwiththeSandwichRule. TheSRtraining[45]
forsingle-tasklearning(STL)requiresthatineachtraining
iteration,weupdatetheSuperNetwiththecollectivelyaccu-
mulatedlossgradientsofthemodelatbwidths. Wefollow
[45]andchooseb=4whichincludesthemodelatlargest
widthωmax,smallestwidthωmin,andb−2randomlychosen
modelsatnon-uniformwidths.Further,theSTLSubNets
inSR[45]areoptimizedonlyusingthepredictionsofthe
largestwidthmodel(i.e.SuperNet). Webuilduponthisrule
andintroducethefollowingchanges.

Incontrasttotheaforementioned,weenforceeachSubNet
tolearntheMTLdatadistributiondirectlyfromtheavailable
ground-truthlabelsy.Thetraininglossofcollectivelearning
(i.e.trainingeachSubNetastheSuperNetfromground-truth
labels)isdenotedasLco.TrainingSubNetswithground-
truthlabelshelpsusavoidthefollowingpitfall:wedonot
needtotraintheMTLSubNetsfromtheoutputpredictions
ofaweakparentMTLmodel(i.e.predictionsintheinitial
iterationscanbeweakasitisbeingtrainedfromscratch).
Wecouldtacklethisbytrainingtheparentmodelstandalone,
butthisiscontrarytoourgoalofsavingondesigncostsof
trainingonce.Furthermore,wecouldalsoadoptknowledge
distillationstrategiesproposedinpriorMTLworks[51,52].
However,doingsowouldcreateadditionaltrainingoverhead

forSTLmodelsforeachtask,whichisalsonotourend-
goal. Hence,wepresentanewmethodologyofdistilling
theknowledgeoftheparentmodelStoSubNetswithout
usingoutputpredictions,whichbringsustoourproposed
encoder-basedknowledgedistillation(KD)loss.

ConigurationInvariantKD(CI-KD)Loss. OurCI-KD
lossisanin-placedistillationlossLkd,whichtransfersthe
encoderknowledgeofStotheencodersofsub-networks
S(ζ).TheencoderofSiscapableofhandlingmulti-task
conlictsduetoitshighcapacity[15–17]andweaimto
teachtheencodersofthesmallermodelsfromitsfeatures.
Inparticular,weproposetominimizedistancebetweenthe
encoderfeaturescomputedfromparentmodelSandallthe
ithchildmodelinvolvedinthesandwichsetup.Now,this
losscannotbedirectlyestimated:thefeaturesofS’sencoder
zandotherchildmodelsz(i)areofdifferentsizesduetothe
differentconigurationsoftheSubNetencoders.Tomake
thesharedencoderfeaturesizeconigurationinvariant,we
computetheaveragefeaturesalongthechanneldimensions
forallmodelsintheSandwich. Wethenminimizethemean
squareerrorlossbetweenthesechannel-averagedfeaturesof
theparentmodelandtheb−1childmodelsasfollows.

Lkd=
1

b−1

b−1

i

MSE(z,z(i)) (3)

Here,zandz(i)aretheencoderfeaturesofSandithchild
model(intheSandwich),averagedalongthechanneldi-
mension. Notethatzisdetachedfromthecomputational
graphaswedonotintendtoupdatetheparentmodelwith
Lkd.ThisdistillationlosshasbeenillustratedinFig.3.To
summarize,theSuperNetlearninglossonlyincludesEq.1,
whereastheith
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ALGORITHM1
ECMTtrainingforSuperNetS.

Require: Widthlistω,e.g.[0.3,0.4,···1.0].
Require: NumberofmodelsbinSandwichRule,e.g.,b=4.

1:fort=1,···,Tepochdo
2: GetinputimagexandtasklabelsY.
3: Cleargradients,optimizer.zerograd().

4: Gettaskoutputs&enc.featurezfromS;Y,z=S(x).

5: GettotallossLcousing{Y,Y}inEq.1.

6: Accumulategradients,Lco.backward().

7: Stopgradientsofz,z=z.detach().
8: Randomlysample(b−1)models{Sb=S(1),···,S(b−1)}.
9: AddsmallestwidthmodeltoSb.

10: forS(i)inSbdo
11: Gettaskoutputs&enc.featurezfromS(i)

12: ComputelossL(i)=Lco+λLkd.

13: Accumulategradients,L(i).backward().
14: endfor
15: UpdateSuperNetweights,optimizer.step().
16:endfor

1andλLkd(λistheweightoftheCI-KDloss).Thetraining
algorithmisgiveninAlgo.1.

4.2.SearchingbasedonJointUserPreferences

Overview. Fig.2-(B)providesasimplemethodtosample
sub-networksthatfollowtheuser’sjointconstraintsoftask
preferenceτuserandcomputebudgetFuser. Wedividethe
searchintotwoparts.InStep1,wesamplethewidthra-
tiosofthetaskdecodersbasedontheuser’staskpreference
usingasimpleruleproposedinEq.4. Withthedecoder
conigurationixed,wesearchforanoptimalsharedencoder
conigurationinStep2.Thegoalofthesearchistosup-
portthesampledtaskdecodersforbetterperformancethan
randomlychoosingtheconigurationwhilesatisfyingthe
overallcomputebudget.Step2particularlyinvolvesaMTL
accuracypredictorthatprovidesquickfeedbackontheover-
allmodelconigurationduringthesearchcycleandsaves
repeatedevaluationrelatedcomputations. Wenowexpand
oneachstepindetail.

Step1:Settingthetaskdecoders.Weproposetosetthe
widthratiosofthetaskdecodersbasedonthetaskpreference
τuser ={τi}

N
i astheyareindependentforeachtask.In

particular,wemapeachτitothediscreteuniformrangeof
ω∼U(ωmin,ωmax).Assumingτ∼U(0,1)asauniform
distributionwithunitdensitywhen0≤τ≤1(0otherwise),
τiismappedtoadecoderwidthratioωias:

ωi=ωmin +(ωmax −ωmin)τi (4)

Clearly,ωi∝ τii.e.thedecoderofthetaskwithhigher
preferencewillbeassignedahigherwidthratio.Thisdesign
choiceismotivatedbythereasontoallowalargercompu-
tationalbudgetintheavailableuser’sbudgettothehigher
preferredtaskdecoder.Onceallthedecodersareixedusing
Eq.4,wesearchforasharedencoderwidthconigurationto
supporttheaforementionedwidthdecoderconiguration.

Figure3.IllustrationofourConigurationInvariantKnowl-
edgeDistillation(CI-KD)Loss.Thislossencouragestheshared
encoderfeaturestobeinvariantoftheithSubNetcapacity,byen-
forcingthemtobeclosetotheSuperNet’ssharedencoderfeatures.

Step2:Searchingforthesharedencoder.Theaimisto
sampleawidthratioconigurationforthesharedencoder,
thatsupportsthebestperformanceoutofthesampledde-
coders. Randomlychoosingtheencoderconigurationis
onepossibleoption,butitdoesn’tnecessarilyresultinthe
bestarchitectureduetoourlargesearchspace.Inorderto
leveragethelargesearchspacedesignedbyournon-uniform
layersetupandindabetterperformingmodel,weusean
evolution-basedsearchalgorithm[18].Thesearchalgorithm
consistsofthreekeycomponents.First,weinitializeapool
PofPmodels(P={S(1),S(2),···,S(P)}),allwiththe
ixeddecoderconigurationobtainedfromStep1.Eachof
thesemodelsarecharacterizedbythesamewidthratioacross
allencoderlayers.Next,weevolvePinordertoindabetter
performingmodelthantheinitializedonesbyleveragingthe
lexibilityofchoosingwidthratiosforeachlayermutually
exclusivelyinS(ζ). WerandomlychooseK <Lencoder
layersandchangethewidthratioωkbytherule:

ωk=ωk+ηsign(Fuser−F(ζ)) (5)

Here,F(ζ)isthecomputationalcostofS(ζ)(e.g.GMACs),
Fuseristhecomputationalbudgetsetbytheuser,andsign(·)
extractsthesignoftheinputvariable.Wesetη=0.1as
weusethedesignspeciicationωi−ωj=0.1.Themoti-
vationofthisdesignchoiceistopushthesharedencoder
conigurationtowardslargercapacity,whichareknownto
handletaskconlictsbetter[15–17].Thisevolutionstepcre-

atesanewmodelS(ζ)whichisaddedbacktoP.Inthe
end,thebestperformingmodelfromthesearchisprovided
fordeployment. Atallsteps,weensurethateachmodel
Psatisiestheuser’scomputebudgetconstraint.Inorder
toquicklyevaluatethequalityofmodelsinP,webuilda
subsidiaryneuralnetworkR thatprovidesafeedbackon

S(ζ)’sapproximateMTLperformance.ThisMTLaccuracy
predictorReliminatestheneedforrepeatedcostofgetting
themeasuredaccuracybyprovidingapredictedaccuracy.
Speciically,RisoptimizedtotakeS(ζ)’swidthconigura-
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ALGORITHM2
ECMTSubNetsearch.

Require: MTLAccuracyPredictorR,NumberofsearchcyclesTcycle

Require: ModelpoolsizeP
Require: UserMTLconstraints(Fuser,τuser)

1:Computeandixdecoderwidthsusingτuser usingEq.4.
2:InitializethemodelpoolPwithPrandomencoderwidths,including

uniformencoderwidths,thatsatisfymemoryconstraintFuser

3:GetthemostpreferredtaskT=max(τuser)
4:fort=1,···,Tcycledo

5: RandomlychooseamodelS(i)fromP
6: ChangethewidthofarandomlychosenencoderlayerwithEq.5

inS(i)andcreateS(ζ)

7: AddthemutatedmodelS(ζ)toP
8: Deletetheworstmodel(whichresultsinhighestlossinthepre-

ferredtaskT)computedusingR.
9:endfor

10:ReturnthewidthconigurationofthebestperformingmodelinP
predictedusingR.

coniguration[5].TotrainR,weirstcreateK examplesof
[A(ζ),(L1,···,LN)]pairsbyrandomlysamplingM Sub-
NetswithdifferentconigurationsA(ζ),andcomputingtheir
tasklossesonDval.A(ζ)containsthelistofwidthratios
computedforthesharedencoderandthetaskdecoders.In
ourexperiments,wechooseM =2000.Thearchitectureof
RhasbeenprovidedinAlgo.3andtrainingprocedureis
providedinSec.5.Notethat,weonlyneedtocollectthe
datapairsandtrainRonce,makingthisoverheadnegligible
incomparisontotrainingS.Further,thiscostremainscon-
stantregardlessofchanginguserrequirements.Fig.2-(C)
providessomeexamplesoftheresultantMTLarchitectures.
WesummarizeourproposedMTLsearchalgorithminAlgo.

2.InAlgo.2,wecallacandidatemodel“mutated”(inLine
7)whenwechangearandomencoderlayer(inLine6).

5.Experiments

Inthissection,wedemonstratetheabilityofECMTtoex-
tracteficientarchitecturesbasedonauser’sjointmulti-task
learningpreferences. Weshowthatourproposedframework
canscaletoalargenumberoftaskswhileallowingproicient
taskpreference-taskaccuracy-eficiencytrade-offwith
asingle MTLmodel. Throughextensiveexperimentson
threedatasetswithvariousarchitectures,weprovidenew
insightstothecommunityregardingcontrollable MTLar-
chitectureswhichcanbere-usedfordiversedeployment
scenarioswithoutre-training.

Trainingimplementationdetails. WeusePyTorch[53]for
ourimplementation.

•NYUD-v2andPascal-Context. Wefollow[2]toset
thefollowinghyperparameters. TheSuperNetistrained
withAdamOptimizer[54]withlearningrate0.0001,and
weightdecay0.0001. Weuseapolylearningratesched-
uler. WesetthetotalepochsTepochsas100forPASCAL-
Context/NYUD-v2.Thetrainingbatchsizeissetto8.The

tasklossweightsρnaresetasfollows-NYU-v2→ Seman-
ticsegmentation:1,Depth:1,andSurfacenormals:10;
PASCAL-Context→ Semanticsegmentation:1,Humanparts
segmentation:2,Saliency:5,Edge:50,Surfacenormals:
10.Thetrainingdataaugmentationsaresetfrom[41]. We
furtheraddRandomErasing[55]withprobability0.5to
theaforementioned.Thesharedencoderisinitializedwith
ImageNet[56]pre-trainedweights,whereasthedecoders
aretrainedfromscratch.TheCI-KDlossweightλisset
to1and0.001forNYUD-v2andPascal-Context,respec-
tively.ωissetas[0.6,0.7,···,1.0]forNYUD-v2,and
[0.5,0.6,···,1.0]forPascal-Context.Theinputchannelsto
theDeepLabv3decoderforNYUD-v2andPascal-Context
aresetto256and128,respectively.

•CIFAR100. Allthetasklossweightsaresetto1.The
batchsizeissetto256. WesetthetotalepochsTepochsis
setas75.TheSuperNetistrainedwithAdamOptimizer
[54]withlearningrate0.001,andweightdecay0.0001.The
wholeSuperNetistrainedfromscratch.TheCI-KDloss
weightλissetto0.01.ωissetas[0.2,0.3,···,1.0].

Allexperimentsuse90%oftrainingsetforalldatasets.All
otherhyperparametersaresetasperdefaultPyTorchsettings.

Evaluationcriteria. Following[7],weusehypervolume
(HV)[19]tomeasurecontrollabilitywithrespecttotaskpref-
erences.HVhelpstoevaluatethepreference-losstrade-off
curve(orPareto-front[11])amongthedifferenttasksinthe
lossspace[57].Basically,HVaccountsforboththequality
ofthemodels(volumetheydominate),andalsothediversity,
measuredintheoverlapbetweendominatedregions.Higher
valueindicatesbettercontrollabilityassumingsamememory
budget.Boldvaluesindicatebestresults.

Inferenceimplementationdetails.Forcomparisonswith
CDMAandPHNforcontrollability,wefollowCDMA’s
methodoftaskpreferencesampling.Inparticular,wesample
taskpreferencesτ∼Pτ,wherePτisaDirichletdistribu-
tionoforderN withparameters[α1,α2,···,αN](αi>
0). Following[7], wesetαi =0.2∀iforPASCAL-
Context/NYUD-v2,andαi=1.0∀iforCIFAR100.HVis
computedacross20taskpreferencesfollowing[7].Deep-
Speed[58]isusedtocomputethearchitectureGMACs.For
anyτuser,wealwaysaimtosetthehighestwidthformost
preferredtaskforbestresults. Hence,wemin-maxnorm
τuserbeforeusingEq.4.Anyvalue∈[0,1]canbeused
foreachtaskpreference(sumneednotbe1). Wesetthe
numberofsearchcyclesTcycleas150forCIFAR100and10
forNYUD-v2/Pascal-Context. Wesetthemodelpopulation
sizeto50.ThesearchruntimeisproportionaltoTcycle.

Datasets. Weconductourexperimentsusingthreemulti-
taskdatasets,namelyPASCAL-Context[21](5tasks)and
NYU-v2[20](3tasks),andCIFAR-100[59,60](20tasks).
ThePASCAL-Contextdatasetprovidesjointsemanticseg-
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ALGORITHM 3
Pseudocode of our MTL Accuracy Predictor R.

import torch.nn as nn

# ----- multi-task performance predictor
class AccuracyPredictor(nn.Module):

def __init__(self, input_channels: int,
task_names: list):↪→

super().__init__()
self.model = nn.Sequential(

nn.Linear(input_channels, 100),
nn.ReLU(),
nn.Linear(100, 100),
nn.ReLU(),
nn.Linear(100, 50),
nn.ReLU()

)
self.task_names = task_names

self.heads = nn.ModuleDict({task:
nn.Linear(50, 1) for task in
self.task_names})

↪→

↪→

def forward(self, model_widths:
torch.Tensor):↪→

feats = self.model(model_widths)
preds = {t_id: self.heads[t_id](feats)

for t_id in self.task_names}↪→

return preds

surface normal estimation, and edge detection. The NYU-v2
dataset provides joint semantic segmentation, depth estima-
tion and surface normal estimation. The CIFAR-100 (MTL)
dataset provides a split of 20 five-way classification tasks
extracted from the original dataset. Semantic segmentation,
saliency estimation and human parts segmentation are eval-
uated using mean intersection over union (mIoU). Depth
estimation and surface normals are evaluated using the root
mean square error (rmse).
Baselines. As reported in Sec. 2, CDMA [7] is our main
baseline which designs MTL architectures, jointly control-
lable with task preference and memory constraint. Further,
we compare with PHN [44] (and its variation PHN-BN
[7, 44]), which only allow task controllability. PHN uses a
hypernetwork to predict the weights of a shared backbone
based SuperNet conditioned on a task preference. Further,
we also compare with MTL-Static models trained for high-
est user constraints. It provides the upper bound of the HV
ECMT can achieve. The MTL-Static models and ECMT are
trained with 90% samples of the original training split. The
other 10% split is used to train the MTL accuracy predictor.
Architectures. Our SuperNet S consists of a shared encoder
(backbone) with N task decoders. For dense prediction tasks
(PascalContext, NYUD-v2), we use the DeepLabv3 archi-
tecture [61] for each task, whereas we use linear layers for
classification tasks (CIFAR100-MTL). We follow CDMA

Table 1. Evaluation on NYUD-v2. Reference point for HV:
[4, 4, 4]. † indicates smaller compute cost (GMACs).

Method GMACs
(↓)

Control
Params.(↓)

HV
(↑)

PHN 21.02 21.04M 02.36
PHN-BN 21.02 02.23M 11.72
CDMA† 25.98 00.03M 09.53
CDMA 29.04 00.03M 12.42
MTL-Static 22.66 - 35.64
ECMT † 10.00 00.20M 34.91
ECMT 20.00 00.20M 34.89

Table 2. Evaluation on PascalContext. Reference point for HV:
[3, 3, 3, 3, 3]. † indicates smaller compute cost (GMACs).

Method GMACs
(↓)

Control
Params.(↓)

HV
(↑)

PHN 06.28 21.50M 42.61
PHN-BN 06.28 03.63M 72.27
CDMA† 06.81 15.32M 73.20
CDMA 07.21 15.32M 75.52
MTL-Static 09.43 - 242.79
ECMT † 04.00 0.021M 166.75
ECMT 09.00 0.021M 166.97

and choose the backbone architectures as MobileNetV2
[62] for PASCAL-Context, ResNet34 [63] for NYUD-v2,
and ResNet9 [64] for CIFAR100-MTL. MobileNetV2 and
ResNet34 are pre-trained on ImageNet [56]. Note that, in
all cases, both the encoder and the task decoders are non-
uniformly slimmable. Following [6, 45], we do not accu-
mulate batch norm statistics while training the SuperNet as
these are ill-defined due to varying SubNet configurations.
During testing, we re-calibrate the batch norm statistics for
each SubNet without any fine-tuning of its parameters.
MTL accuracy predictor details. The MTL accuracy pre-
dictor R is a three layer feed-forward neural network sum-
marized in Algo. 3. Given a SubNet model S(ζ), we create
a list A(ζ) consisting of width ratios starting with the shared
encoder, followed by the decoder’s width ratios. A(ζ) is then
fed to the R to get the predicted MTL accuracy for all N
tasks. To train R, we first create M = 2000 examples of
[A(ζ), (L1, · · · ,LN )] pairs by randomly sampling M Sub-
Nets with different configurations A(ζ), and computing their
task losses on Dval. We train this predictor for 150 epochs
using L1-loss using the Adam optimizer with a learning rate
of 0.001. The batch size is set to 16.

5.1. Comparison with Baselines

We present the overall multi-task performance of sam-
pling sub-architectures with three different distributions
NYUD-v2 (3 tasks), Pascal-Context (5 tasks) and CIFAR-
100 (20 tasks) in Tab. 1-3. Here we compare with state-of-
the-art methods CDMA (allows compute budget controlla-
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Table 3. Evaluation on CIFAR100-MTL. Reference point for HV:
[1, 1, · · · , 1]. † indicates smaller compute cost (GMACs)

Method GMACs
(↓)

Control
Params.(↓)

HV
(↑)

PHN 073.13 11.03M 0.002
PHN-BN 073.13 00.31M 0.007
CDMA† 129.23 03.10M 0.009
CDMA 174.36 03.10M 0.010
MTL-Static 072.92 - 0.0089
ECMT † 038.40 00.02M 0.0026
ECMT 072.92 00.02M 0.0082

Figure 4. Loss curves comparison on NYUD-v2 (3 tasks). Due to
strategy to translate task preferences to task decoders, task losses
remain low even if the preference decreases. This supports our
training paradigm to improve the performance of the smaller archi-
tectures, not done in CDMA and PHN.

bility along with task controllability), PHN and PHN-BN
(allows only task controllability). Following CDMA [7], we
report HV (reference point set according to CDMA) across
20 task preferences. Similar to CDMA, we analyze ECMT
under both small and large extremes of compute budgets
(indicated using GMACs). We also account for the external
networks used to sample sub-architectures under ‘Control
Parameters’. For PHN and CDMA, this is the cost of the hy-
pernetworks, while for ECMT, the cost pertains to the MTL
accuracy predictor R. Note that results for both CDMA
and ECMT are computed from one model while varying
compute and task preference constraints.

ECMT demonstrates high HV values compared to the ex-
isting methods, especially in NYUD-v2 and Pascal-Context.
The high HV along with lower GMACs supports our claim
that the proposed shared encoder and individual decoders
are capable of solving multi-task problems while handling
task trade-offs. For example, ECMT shows a higher HV
by ∼ 33.5% in the NYUD-v2 dataset and ∼ 55% in Pascal-
Context dataset, while using comparatively much less com-
pute in both the cases. We believe this strong performance is
due to our strategy to incorporate task decoders in the search
space which is ignored by CDMA. For the classification task
of CIFAR-100, ECMT achieves similar HV with lesser com-
pute cost. We believe that the impact of our task preference
translation as per Eq. 4 is smaller for CIFAR-100 given that
the decoder of the classifier (fully connected layers) is com-
putationally lighter than dense prediction decoders. Finally,
our strategy to translate the task preferences to the decoders
allows us to maintain the HV even with highly restricted
compute cost. This is highly advantageous compared to

Table 4. Ablation Study on NYUD-v2. T1: Semantic Seg., T2:
Human-Parts Seg., T3: Depth Est., Here, the colored row indicates
performance of largest model for reference. Bottom two rows
indicate the impact of loss Lkd on the performance of smallest
possible models for our method. HV is computed by keeping the
budget indicated under GMACs for all the cases.

Learning Loss GMACs Task Performance Control
Lco Lkd T1 (↑) T2 (↓) T3 (↓) HV (↑)

– – 22.66 36.03 26.82 0.63 34.86
✓ ✗ 30.35 28.86 0.70 32.87
✓ ✓

08.39 32.38 28.52 0.67 33.81

Figure 5. Search algorithm comparison on NYUD-v2. Sematic
seg.: higher and Depth est.: lower is better. Our proposed search
algorithm provides better architectures with negligible search cost.

Figure 6. Saving design costs. NYUD-v2 (3 tasks) with ResNet34
backbone. Our training method allows to sample multiple high
performing MTL architectures based on the user compute cost after
training only once, in contrast to static MTL/STL architectures
where the training has to be repeated for changing constraints.

PHN and CDMA, where the change in control parameters
or the compute cost deteriorates the HV.

As the HV is a function of the loss values computed over
changing task preferences, we visualize the task preference
- task loss trade-off curves in Fig. 4. Due to our strategy to
translate task preferences to task decoders, the task losses
remain low even if the task preference decreases. This is
because lower width SubNets (created due to lower task
preferences) are enhanced to perform closely to the SuperNet.
This further attests to our training paradigm to improve the
performance of the smaller MTL architectures, a feature
absent in CDMA and PHN.

5.2. Ablation Study

Effectiveness of CI-KD loss and shared encoder size. In
Tab. 4, we analyze the importance of proposed loss functions
in our SuperNet training using two different backbones. It
can be observed that the CI-KD loss Lkd pushes the perfor-
mance of the smallest network towards the parent network
for both the cases. For example, for the ResNet34 backbone
SuperNet, CI-KD loss increases the semantic segmentation
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Figure 7. Marginal evaluation on NYU-v2. Our proposed method
to translate task preference to task decoders is effective in two
encoder configurations (largest, smallest). Different tasks have dif-
ferent response to encoder configuration which shows the necessity
of our search algorithm to find an optimal encoder configuration.

by almost 2 points whereas the HV increases by 1 point for
the smallest architecture with 37% less compute cost.

Effectiveness of our search strategy. Our search algorithm
is aimed to find the best shared encoder configuration that
supports the sampled task decoders based on Eq. 4. To show
its efficacy, we compare it with the strategy of choosing
the width ratios of the encoder randomly in Fig. 5 for the
NYUD-v2 dataset. We train a MTL SuperNet with the train-
ing set Dtr. The ‘random’ search algorithm then samples
width ratios from the available width list ω and chooses the
encoder configuration satisfying the user’s compute budget.
Our proposed search, on the other hand, uses the accuracy
predictor R created with the validation set Dval and chooses
an optimal encoder configuration that supports the decoder
for best task performance. Note that the time for our search
strategy is negligible compared to training a sub-architecture
from scratch. Further, computation overhead due to our
search algorithm is only needed when the user preferences
change and does not influence the final inference time.

Marginal task evaluation. In Fig. 7, we visualize the task
performance for ECMT when the task preference changes,
by marginalizing over preference values of the other tasks.
This is done for two extreme cases of the encoder config-
uration: by setting the encoder widths to the largest and
smallest size, respectively. Clearly, an increase in task pref-
erence leads to an increase in the task performance. This is a
direct result of our proposed method to set the decoder width
ratios according to Eq. 4. Further, it also shows that differ-
ent tasks respond differently to the encoder configurations.
For example, the task of semantic segmentation performs al-
most similarly for the task preference range [0.2, 0.8] for the
both configurations, whereas the other tasks clearly present
a bigger difference. This shows the necessity of our search
algorithm to find a better encoder configuration. Fig. 7 also
shows the accuracy-compute trade-off available per task.

Savings on design costs. Along with the aforementioned
advantages of task performance tradeoff, our training method
in Sec. 4 allows to sample multiple high performing MTL
architectures while training only once. This saves expensive
training costs and allows multiple deployments from one
model. We demonstrate this feature of ECMT in Fig. 6 for

Figure 8. Illustration of our task preference translation. We visu-
alize the width ratios computed for the task decoders for NYUD-v2
(3 tasks). Note that we normalize the task preference using max-
min normalization before computing the decoder widths.

NYUD-v2 (3 task) dataset for ResNet34 backbone. Here,
the static MTL and STL architectures can only be used for
a fixed compute budget. In contrast, ECMT can operate
with variable compute costs and gracefully degrade in per-
formance with decreasing budget. Note that one can further
enhance the MTL performance of our parent architecture
using state-of-the-art methods summarized in [1, 2].
Qualitative examples. We visualize some examples of the
task decoder widths computed using the task preferences
from Eq.(4) in Fig. 8. Each block represents the task
decoder with its selected width ratio for the given τ user.
The design choice of ω for NYUD-v2 is [0.6, 0.7, · · · , 1.0].

6. Conclusions
We tackle the problem of multi-task architecture deploy-

ment based on user joint preferences (task performance and
available compute). The core challenge is to train the multi-
task architecture once but permit instant customization of
the network for diverse preferences. We propose to train non-
uniformly slimmable MTL architectures parameterized by
layer wise width configurations, resulting in a large space of
MTL architectures. At inference, we use an evolution-based
search algorithm to sample precise MTL sub-architectures
based on the joint preferences. In contrast to prior control-
lable MTL methods solely focused on encoders and provid-
ing poor task scalability, our method uses a shared encoder
and the task decoders as part of search space. We show the
effectiveness of our method on various multi-task settings,
providing large search space for sampling efficient MTL
models covering a wide range of MTL preferences.
Limitations and Future Works. Our work has the follow-
ing limitations that presents new opportunities for interesting
future works. ECMT has only been explored for CNN based
architectures and should be investigated for transformer
based models. Further, the task relativity should be con-
sidered when extracting a sub-network as it is considered an
important factor in MTL.
Acknowledgements. This work was a part of Abhishek Aich’s
internship at NEC Labs America. This work was also partially
supported by NSF grant 1724341. We would like to thank the
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