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Abstract

Single-photon 3D cameras can record the time-of-
arrival of billions of photons per second with picosecond
accuracy. One common approach to summarize the pho-
ton data stream is to build a per-pixel timestamp histogram,
resulting in a 3D histogram tensor that encodes distances
along the time axis. As the spatio-temporal resolution of the
histogram tensor increases, the in-pixel memory require-
ments and output data rates can quickly become impracti-
cal. To overcome this limitation, we propose a family of lin-
ear compressive representations of histogram tensors that
can be computed efficiently, in an online fashion, as a ma-
trix operation. We design practical lightweight compres-
sive representations that are amenable to an in-pixel imple-
mentation and consider the spatio-temporal information of
each timestamp. Furthermore, we implement our proposed
framework as the first layer of a neural network, which en-
ables the joint end-to-end optimization of the compressive
representations and a downstream SPAD data processing
model. We find that a well-designed compressive repre-
sentation can reduce in-sensor memory and data rates up
to 2 orders of magnitude without significantly reducing 3D
imaging quality. Finally, we analyze the power consump-
tion implications through an on-chip implementation.

1. Introduction
3D cameras based on single-photon avalanche diode

technology (SPAD) are becoming increasingly popular for a
wide range of applications that require high-resolution and
low-power depth sensing, ranging from autonomous vehi-
cles [1] to consumer smartphones [2]. Kilo-to-megapixel
resolution SPAD pixel arrays [27, 28] have the capability of
capturing the time-of-arrival of billions of individual pho-
tons per frame with extremely high (picosecond) time reso-
lution [31]. Unfortunately, this extreme sensitivity and high
speed comes at a cost — the raw timestamp data causes a
severe bottleneck between the image sensor and the image
signal processor (ISP) that processes this data (Fig. 1(a)).
This data bottleneck severely limits the wider use of high-
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Figure 1. Resolving SPAD data bottleneck with learned com-
pression. (a) Conventional SPAD-based 3D cameras stream raw
photon timestamps or summary histograms off the image sensor
which causes a data bottleneck between the image sensor and
the on-camera image and signal processing (ISP) module. (b)
Our method applies a lightweight, on-sensor compressive coding
scheme to the photon timestamp data which is later decoded at the
ISP, resolving the data bandwidth limitation.

resolution SPAD arrays in 3D sensing applications.
One common approach to avoid transferring individual

photon timestamps is to build a histogram in each pixel.
This results in a 3D histogram tensor that is transferred off-
sensor for processing. Although this may be practical at low
spatio-temporal resolutions (e.g., 64x32 pixels with 16 time
bins [15]), it requires higher in-sensor memory. Moreover,
the data rates of this histogram tensor representation also
scale rapidly with the spatio-temporal resolution and max-
imum depth range. For example, a megapixel SPAD-based
3D camera operating at 30 fps that outputs a histogram ten-
sor with a thousand 8-bit bins per pixel would require an
unmanageable data transfer rate of 240 Gbps.

To overcome the above limitations, we seek to design
compressive representations of 3D histogram tensors. In
order to reduce the data rates output by the SPAD cam-
era, the compact representation needs to be built in-pixel
or inside the focal plane array (FPA). This is illustrated in
Fig. 1(b). Due to the limited in-pixel memory and compute,
the compressive representation needs to be built in a stream-
ing manner, with minimal computations per photon. Photon
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histogram tensors are very different from conventional RGB
images/video data. Therefore, traditional compression al-
gorithms such as MPEG are not directly applicable.

We propose a family of compressive representations for
3D histogram tensors that can be computed in an online
fashion with limited memory and compute. They are based
on the linear spatio-temporal projection of each photon
timestamp, which can be expressed as a simple matrix op-
eration. Instead of constructing per-pixel timestamp his-
tograms, a compressive encoding maps its spatio-temporal
information into a compressive histogram. To exploit lo-
cal spatio-temporal correlations, a single compressive his-
togram is built for a local 3D histogram block as illus-
trated in Fig. 2. Instead of building and storing the full
3D histogram tensor in-sensor, multiple compressive his-
tograms are built and transferred off-sensor for processing,
effectively reducing the required in-sensor memory and data
rates. Recent works proposed a similar compression frame-
work based on compressive histograms [13] or sketches
[36]. In Sec. 4, we show that these prior works can be
viewed as special cases of our proposed framework.

In this paper, we explore the design space of spatio-
temporal compressive encodings and analyze the trade-offs
between different design choices. Furthermore, we present
a method to integrate our compression framework with
data-driven SPAD data processing methods using convolu-
tional neural networks (CNNs), which enables end-to-end
optimization of the compressive encoding and a SPAD data
processing CNN. We demonstrate the feasibility of com-
pressive histograms through an on-chip implementation.

For our experimental evaluation, we integrate the
compressive histograms framework with a state-of-the-art
learning-based denoising model for SPAD-based 3D imag-
ing [32]. Our results show that the jointly optimized com-
pressive encoding and CNN can consistently reduce data
rates up to 2 orders of magnitude in a wide range of sig-
nal and noise levels. Moreover, for a given compression
level, it can increase 3D imaging accuracy over previous
hand-designed compressive histograms that only exploit
temporal information [13, 36], especially in low signal-to-
background ratio (SBR) scenarios and at higher compres-
sion rates. Furthermore, we show that learned compres-
sive histograms can perform comparably and sometimes
even outperform a theoretical SPAD sensor design where
the full 3D histogram tensor is stored in-sensor and only
per-pixel depths are transferred off-sensor. Finally, we an-
alyze the power consumption of a compressive histogram
implemented on the UltraPhase SPAD processing chip [4].

2. Related Work

Compressive histograms, also called sketches, are an
emerging framework for online in-sensor compression of
SPAD timestamp data [13, 41, 36, 33]. A coarse histogram
is one common compressive histogram approach [13] to re-

duce data rates and in-pixel memory [15, 8, 18]. Despite
their practical hardware implementation, coarse histograms
achieve sub-optimal depth accuracy compared to compres-
sive histograms based on Fourier [36, 37, 13] and Gray [13]
codes. One limitation of these approaches is that the com-
pressive representation only exploits the temporal informa-
tion of the incident timestamp, and disregards the spatial
redundancy. In this work, we generalize the compressive
histogram framework to utilize the spatio-temporal infor-
mation of each timestamp. Moreover, instead of relying
on hand-designed coded projections, in this paper we learn
them as the first layer of a CNN.

Shared In-Pixel Histograms: One common design is to
have multiple neighboring SPAD pixels have a single shared
memory where all timestamps are aggregated into a coarse
histogram (e.g., 4 × 4 [18, 15], 3 × 3 [20]). This approach
throws away the local spatial information (i.e., pixel loca-
tion) of the detected photon timestamps. A compressive
histogram is well-suited for these shared memory designs
because it can be shared among multiple SPAD pixels and
preserves spatial information through the coded projection.

Neural Sensors and Pixel Processor Arrays: Pixel pro-
cessor arrays (PPAs) are an emerging sensing technology
that embeds processing electronics inside each pixel [9].
This new sensing paradigm begins processing the image
at the focal plane array, which allows it to reduce the sen-
sor data rates by transmitting only the relevant information,
and consequently, it increases the sensor’s throughput [9]
which can enable computer vision at 3,000 fps [6, 7]. PPAs
have also become building blocks of novel computational
imaging systems optimized end-to-end for HDR imaging
[25, 39], motion deblurring [30], video compressive sensing
[25], and light field imaging [43]. A compressive histogram
relies on a similar in-pixel processing paradigm. Similar to
previous works, we jointly optimize the sensor parameters
(i.e., the compressive histogram) and the processing algo-
rithm (i.e., the CNN), but to our knowledge, this work is the
first to use this approach for SPAD data compression.

3. Single-Photon 3D Histogram Tensors
SPAD-based 3D cameras consist of a SPAD sensor and

a pulsed laser that illuminates the scene. The photon flux
signal arriving at pixel, p, can be written as:

Φp(t) = aph(t− 2dp/c) + Φbkg
p = Φsig

p (t) + Φbkg
p , (1)

where ap is the amplitude of the returning signal accounting
for laser power, reflectivity, and light fall-off; h(t) is the
system’s impulse response function (IRF) which accounts
for pulse waveform and sensor IRF; dp is the distance to

the point imaged by p; c is the speed of light; and Φbkg
p

is the constant photon flux due to background illumination
(e.g., sunlight). This model assumes direct-only reflections
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Fi g ur e 2. C o m p r essi v e Hist o g r a m F o r m ati o n. Hist o gr a m t e ns ors, H , ar e a 3 D s p ati o-t e m p or al gri d w h os e el e m e nts st or e t h e n u m b er
of p h ot o ns t h at arri v e d wit hi n a s h ort ti m e i nt er v al. ( a) I n S P A D- b as e d 3 D i m a gi n g, t h e t e m p or al a xis of H e n c o d es dist a n c es. ( b) A
hist o gr a m bl o c k, H b , c a n b e e x pr ess e d as t h e s u m of J o n e- h ot e n c o di n g t e ns ors, w h er e e a c h t e ns or r e pr es e nts a p h ot o n ti m est a m p. ( c) A
c o m p a ct r e pr es e nt ati o n of H b c a n b e b uilt b y a p pl yi n g K li n e ar pr oj e cti o ns (i. e., d ot pr o d u ct) wit h pr e- d esi g n e d c o di n g t e ns ors. ( d) T h e
c o m pr essi v e hist o gr a m, will b e a v e ct or wit h K el e m e nts w h os e c o m pr essi o n c a p a cit y is gi v e n b y M t ·M r ·M c

K
.

w hi c h is a v ali d a p pr o xi m ati o n, i n p arti c ul ar, f or s c a n ni n g-
b as e d T o F 3 D i m a gi n g s yst e ms [ 3 ].

T C S P C- b as e d S P A D c a m er as m e as ur e Φ p (t) b y b uil d-
i n g a p er- pi x el ti mi n g hist o gr a m, w h er e t h e it h hist o gr a m
bi n r e c or ds t h e n u m b er of p h ot o ns t h at arri v e d i n a ti m e i n-
t er v al of l e n gt h ∆ , w hi c h f oll o ws a P oiss o n pr o c ess P :

Φ i, p = P ( Φ si g
i, p + ∆ Φ b k g

p ). ( 2)

T h e p uls e r e p etiti o n p eri o d, τ , d et er mi n es t h e m a xi m u m
ti m est a m p v al u e a n d t h e l e n gt h of t h e hist o gr a m v e ct or
Φ p = ( Φ i, p ) N t − 1

i = 0 , w h er e N t = τ / ∆ . T h er ef or e, o n e
ass u m pti o n b uilt i nt o Φ p , is t h at n o si g n al p h ot o ns h a d a
ti m est a m p l ar g er t h a n τ , w hi c h m e a ns t h at t h e m a xi m u m
dist a n c e t h at Φ p c a n e n c o d e is d m a x = c τ

2 . F urt h er m or e,
w e ass u m e t h at pil e- u p dist orti o ns ar e mi ni mi z e d t hr o u g h
v ari o us S P A D d at a a c q uisiti o n t e c h ni q u es [ 1 1 , 1 5 , 1 6 , 1 2 ].

T his pr o c ess g e n er at es a N t × N r × N c 3 D hist o gr a m

t e ns or, H = ( Φ p )
( N r − 1 , Nc − 1 )
p = ( 0 ,0 ) . I n c h all e n gi n g 3 D i m a gi n g

s c e n ari os wit h hi g h b a c k gr o u n d ill u mi n ati o n, b uil di n g H
off-s e ns or r e q uir es tr a nsf erri n g t h o us a n ds of p h ot o n ti m es-
t a m ps p er- pi x el l e a di n g t o d at a r at es of h u n dr e ds of G B/s i n
a m e g a pi x el s e ns or. M or e o v er, b uil di n g a n d st ori n g a hi g h-
r es ol uti o n H i n-s e ns or w o ul d r e q uir e si g ni fi c a nt m e m or y
( 1 G B f or a m e g a pi x el S P A D c a m er a wit h 1 0 0 0 ti m e bi ns
p er- pi x el), a n d tr a nsf erri n g it w o ul d c o nti n u e t o l e a d t o i m-
pr a cti c al d at a r at es of t e ns of G B/s o n a S P A D- b as e d 3 D
c a m er a o p er ati n g at 3 0f ps. O v er all, a pr a cti c al S P A D- b as e d
3 D c a m er a w o ul d b uil d a n d st or e a c o m p a ct r e pr es e nt ati o n
of H i n-s e ns or a n d t h e n tr a nsf er it t o a pr o c essi n g c hi p ( e. g.,
F P G A, I S P, e m b e d d e d c o m p ut er) w h er e it is pr o c ess e d.

4. S p ati o-t e m p o r al C o m p r essi v e Hist o g r a ms

A n at ur al a p pr o a c h t o c o m pr ess H t h at e x pl oits its l o-
c al c orr el ati o ns d u e t o s m o ot h d e pt hs a n d p h ot o n fl u x, is t o
b uil d a c o m pr essi v e r e pr es e nt ati o n of a l o c al 3 D hist o gr a m

bl o c k as ill ustr at e d i n Fi g. 2 . T o a v oi d st ori n g or tr a nsf er-
ri n g t h e p h ot o n ti m est a m p str e a m, t h e c o m pr essi v e r e pr e-
s e nt ati o n is b uilt as e a c h ti m est a m p arri v es. I n t his s e cti o n,
w e pr es e nt a n o nli n e c o m pr essi o n fr a m e w or k f or hist o gr a m
bl o c ks b as e d o n t h e c o d e d pr oj e cti o n of p h ot o n ti m est a m ps.

L et H b b e t h e b t h hist o gr a m bl o c k of H wit h di m e n-
si o ns M t × M r × M c , w h er e M t ≤ N t , M r ≤ N c , a n d
M c ≤ N c . First, w e o bs er v e t h at H b c a n b e e x pr ess e d as
t h e s u m of J o n e- h ot e n c o di n g t e ns ors, e a c h r e pr es e nti n g
o n e p h ot o n d et e cti o n wit hi n H b ( Fi g. 2 b). S p e ci fi c all y, l et
t b, j b e a M t × M r × M c o n e- h ot e n c o di n g t e ns or r e pr es e nt-
i n g t h e j t h p h ot o n ti m est a m p d et e ct e d i n hist o gr a m bl o c k
H b , w h os e el e m e nts ar e all 0 e x c e pt f or tb, j,l, p ′ = 1 , w h er e

l = ⌊
T j m o d ( ∆ M t )

∆ ⌋ , T j is t h e ti m est a m p v al u e, a n d p ′ is
t h e pi x el w h er e t h e ti m est a m ps w as d et e ct e d. Usi n g t his
r e pr es e nt ati o n w e c a n writ e H b as f oll o ws:

H b =
J − 1

j = 0

t b, j . ( 3)

H b c a n b e c o m pr ess e d i n a n o nli n e f as hi o n t hr o u g h t h e li n-
e ar pr oj e cti o n of e a c h ti m est a m p t e ns or; e x pr ess e d as t h e i n-
n er pr o d u ct wit h K pr e- d esi g n e d c o di n g t e ns ors , C k , wit h
di m e nsi o ns M t × M r × M c , as i n Fi g. 2 . M at h e m ati c all y,

Y b, k = C k · H b =
J − 1

j = 0

C k · t b, j =
J − 1

j = 0

C k,l, p ′ , ( 4)

w h er e · d e n ot es el e m e nt- wis e m ulti pli c ati o n, a n d l a n d p ′

ar e t h e i n di c es w h er e t b, j,l, p ′ = 1 .  We d e fi n e Y b =

(Y b, k )
K − 1
k = 0 as t h e c o m pr essi v e hist o gr a m of H b . C o m pr es-

si v e hist o gr a ms, as d e fi n e d i n [ 1 3 , 3 6 ], ar e a s p e ci al c as e of
E q. 4 w h er e C c o m pr ess es i n di vi d u al hist o gr a ms a n d disr e-
g ar ds s p ati al i nf or m ati o n (i. e., M t = N t , M r = 1 , M c = 1 ) N ot e
t h at e a c h ti m est a m p i n E q. 4 is pr o c ess e d ef fi ci e ntl y o n-
t h e- fl y aft er e a c h p h ot o n d et e cti o n t hr o u g h a si m pl e l o o k u p
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o p er ati o n. M or e o v er, i n di vi d u al hist o gr a m bl o c ks or ti m es-
t a m ps ar e n e v er e x pli citl y st or e d or tr a nsf err e d off-s e ns or.

4. 1. P r a cti c al C o di n g Te ns o r D esi g n

C o m pr essi v e hist o gr a ms, w h e n i m pl e m e nt e d as i n E q. 4 ,
i ntr o d u c e a n i n-s e ns or m e m or y o v er h e a d b e c a us e, i n a d di-

ti o n t o st ori n g Y b , C n e e ds t o b e st or e d i n-s e ns or f or ef-
fi ci e nt l o o k u p o p er ati o ns. T h er ef or e, a pr a cti c al c o m pr es-
si v e si n gl e- p h ot o n c a m er a i m pl e m e nt ati o n w o ul d r el y o n
p ar a m et er- ef fi ci e nt c o di n g t e ns ors t h at mi ni mi z e t his o v er-
h e a d. H er e, w e pr es e nt t w o str at e gi es t o d esi g n pr a cti c al
c o di n g t e ns ors t h at ar e e v al u at e d i n S e c. 6 .

T h e m e m or y o v er h e a d m a k es c ert ai n c o di n g t e ns or d e-
si g ns i m pr a cti c al. C o nsi d er a s et of c o di n g t e ns ors t h at o p-
er at e o n t h e f ull hist o gr a m t e ns or, i. e., H b = H .I n t his
c as e, t h e n u m b er of el e m e nts i n C will e x c e e d t h e n u m b er
of el e m e nts of H . C o ns e q u e ntl y, alt h o u g h t h e d at a r at es ar e
r e d u c e d i n t his s c e n ari o si n c e K < (N t · N r · N c ), t h e i n-
s e ns or m e m or y r e q uir e d e x c e e ds t h e si z e of t h e hist o gr a m
t e ns or. T o cir c u m v e nt t his iss u e, w e pr o p os e t w o c o m pl e-
m e nt ar y str at e gi es t o d esi g n li g ht w ei g ht c o di n g t e ns ors: l o-
c al bl o c k- b as e d a n d s e p ar a bl e.

L o c al Bl o c k- b as e d C o di n g Te ns o rs: As w e r e d u c e t h e
si z e of t h e hist o gr a m bl o c k, H b , r e pr es e nt e d b y a c o m-
pr essi v e hist o gr a m, t h e si z e of t h e c o di n g t e ns ors d e cr e as es.
T h er ef or e, c o m pr essi n g l o c al hist o gr a m bl o c ks is n ot o nl y
b e n e fi ci al d u e t o l o c al s p ati o-t e m p or al r e d u n d a n ci es, b ut
als o b e c a us e t h es e l o c al c o di n g t e ns ors h a v e f e w er p ar a m e-
t ers. O n e e x a m pl e of l o c al bl o c k- b as e d c o di n g t e ns ors ar e
t h e o n es us e d i n t e m p or al c o m pr essi v e hist o gr a ms [1 3 , 3 6 ]
w h er e H b is a p er- pi x el hist o gr a m.

S e p a r a bl e C o di n g Te ns o rs: O n e a p pr o a c h t o d esi g ni n g
li g ht w ei g ht c o di n g t e ns ors is t o m a k e t h e m s e p ar a bl e al o n g
t h e t e m p or al a n d s p ati al di m e nsi o ns.  T his a p pr o a c h is
us e d i n p ar a m et er- ef fi ci e nt C N N m o d els t h at us e s e p ar a-
bl e d e pt h- wis e c o n v ol uti o n al l a y ers [ 1 7 ] t o r e d u c e m o d el
si z e. F or m all y, w e c a n writ e a s e p ar a bl e c o di n g t e ns or as
t h e o ut er pr o d u ct of t w o s m all er t e ns ors:

C k = C t e m p or al
k ⊗ C s p ati al

k , ( 5)

w h er e C t e m p or al
k is a M t × 1 × 1 t e ns or, a n d C s p ati al

k is a
1 × M r × M c t e ns or. T his d esi g n is als o m oti v at e d b y t h e
diff er e n c es b et w e e n t h e t e m p or al a n d s p ati al c orr el ati o ns
e n c o u nt er e d i n hist o gr a m bl o c ks. I n a d diti o n t o l o c al c orr e-
l ati o ns pr es e nt i n b ot h di m e nsi o ns, t h e t e m p or al di m e nsi o n
als o e x hi bits l o n g-r a n g e c orr el ati o ns d u e t o t h e b a c k gr o u n d

ill u mi n ati o n offs et (Φ b k g
p ) i n e v er y hist o gr a m bi n. T h er e-

f or e, E q. 5 m a y b e a bl e t o r e pr es e nt t his pri or b y e n c o di n g
t h e t e m p or al a n d s p ati al i nf or m ati o n i n d e p e n d e ntl y.

O n e ass u m pti o n m a d e i n o ur m e m or y o v er h e a d a n al ysis
is t h at a c o m pr essi v e S P A D- b as e d 3 D c a m er a o nl y n e e ds t o
st or e a si n gl e C t h at is s h ar e d a cr oss t h e f ull s e ns or, w hi c h
c a n b e i m pl e m e nt e d i n t w o g e n er al w a ys. O n e a p pr o a c h
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Fi g ur e 3. C o n v ol uti o n al C o m p r essi v e Hist o g r a m L a y e r. ( a)
B uil di n g a c o m pr essi v e hist o gr a m f or e a c h bl o c k i n t h e hist o gr a m
t e ns or, c a n b e vi e w e d as a p pl yi n g K stri d e d c o n v ol uti o n al filt ers
w h os e w ei g hts ar e t h e c o di n g t e ns ors. T h e c o m pr ess e d hist o gr a m
t e ns or will b e K N t

M t
× N r

M r
× N c

M c
t e ns ors. ( b) T o lift t h e c o m pr ess e d

hist o gr a m t e ns or b a c k t o its ori gi n al d o m ai n a n u n filt er e d b a c k pr o-
j e cti o n o p er ati o n c a n b e a p pli e d o n e a c h c o m pr essi v e hist o gr a m
w hi c h d e c o d es a si n gl e bl o c k. T h e d e c o d e d hist o gr a m t e ns or c a n
t h e n b e ass e m bl e d b y c o n c at e n ati n g all t h e d e c o d e d bl o c ks.

c o ul d distri b ut e C a cr oss t h e l o c al m e m or y of all pi x els a n d
t h e n all o w c o m m u ni c ati o n a cr oss pi x els as i n P P As [6 ]. A
s e c o n d a p pr o a c h c o ul d st or e C i n a gl o b al m e m or y t h at c a n
b e a c c ess e d b y all pi x els w hi c h c o ul d b e e n a bl e d i n 3 D-
st a c k e d S P A D c a m er as [ 4 4 ]. Fi n all y, s o m e of t h e c o di n g
t e ns or d esi g ns e x pl or e d i n t his p a p er h a v e as f e w as 6 4 0
p ar a m et ers. I n t his c as e, e v e n if C is st or e d f or e v er y 4 × 4
gr o u p of pi x els, t h e i n-s e ns or m e m or y is still r e d u c e d b y
2 0 × c o m p ar e d t o st ori n g a 1 0 2 4 bi n p er- pi x el hist o gr a m.

4. 2. C o n v ol uti o n al C o m p r essi v e Hist o g r a m L a y e r

A c o m pr essi v e hist o gr a m is b uilt f or e a c h hist o gr a m
bl o c k. T h er ef or e, m ulti pl e c o m pr essi v e hist o gr a ms ar e us e d
t o e n c o d e t h e c o m pl et e hist o gr a m t e ns or. I n t his w a y, t h e
c o di n g t e ns ors c a n b e vi e w e d as a s et of 3 D c o n v ol uti o n al
filt ers, w hi c h c a n b e i m pl e m e nt e d as t h e first l a y er of a 3 D
C N N. F or si m pli cit y, w e ass u m e t h at hist o gr a m bl o c ks d o
n ot o v erl a p, a n d t h er ef or e, t h e stri d e of t h e c o n v ol uti o n al
filt ers will e q u al t h eir di m e nsi o ns. Fi g. 3 ( a) ill ustr at es t his
c o n v ol uti o n al c o m pr essi v e hist o gr a m e n c o di n g.

U nf ort u n at el y, t h e c o m pr ess e d hist o gr a m t e ns or r e pr e-
s e nt ati o n is n ot dir e ctl y c o m p ati bl e wit h 3 D C N Ns t h at h a v e
b e e n d esi g n e d f or S P A D- b as e d 3 D i m a gi n g ( e. g., [ 3 2 , 2 1 ]).
T o t his e n d, e a c h c o m pr essi v e hist o gr a m is lift e d b a c k t o t h e
ori gi n al 3 D d o m ai n t hr o u g h a n u n filt er e d b a c k pr oj e cti o n:

H b =
K − 1

k = 0

C k Y b, k . ( 6)
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Here Ĥb is the decoded compressive histogram for block
b, which is the weighted linear combination of the cod-
ing tensors. The decoded histogram blocks are then con-
catenated and given as input to the processing 3D CNN.
Fig. 3(b) illustrates this decoding step. The decoding step
in Eq. 6 will occur off-sensor, after the compressive his-
tograms have been moved to the camera compute module
which has access to larger memory and computational re-
sources than sensor module. One benefit of using the unfil-
tered backprojection as the upsampling operator is that if all
coding tensors are mutually orthogonal, in the limit when
K approaches the size of Hb (i.e., no compression), then
Ĥb ≈ Hb. This suggests that at compresion rates close to
unity, an appropriately trained compressive histogram layer
should be approximately equal to an identity transformation
applied to Hb.

To summarize, a compressive histogram layer comprises
an encoding/compression step followed by a decoding step,
which uses the coding tensors as the convolutional filters.
This layer can be appended to the beginning of any CNN
that has been designed to process 3D histogram tensors. Fi-
nally, the coding tensors can be jointly optimized with the
downstream CNN in an end-to-end manner.

5. Datasets and Implementation
In this section, we describe the datasets used for model

training and testing, and also provide implementation de-
tails for the compressive histogram layer and the 3D CNN
used for the experiments.

5.1. Datasets

For training, we generate a synthetic SPAD measurement
dataset containing different scenes at a wide range of illumi-
nation settings. We use a similar synthetic data generation
pipeline used in previous learning-based SPAD-based 3D
imaging works [21, 32, 40]. Using Eq. 2, SPAD measure-
ments can be simulated given an RGB-D image, the pulse
waveform (h(t)), and the average number of detected signal
and background photons per pixel. Please refer to the sup-
plement for a detailed overview of the simulation pipeline.

Simulated Training Dataset: We use the RGB-D images
from the NYU v2 dataset [38]. The simulated histograms
have Nt = 1024 bins and a ∆ = 80ps bin size (12.3m
depth range). The pulse waveform used has a full-width
half maximum (FWHM) of 400ps obtained from [21]. For
each scene, we randomly set the average number of signal
and background photons detected per pixel to [2, 5, or 10]
and [2, 10, 50], respectively. With appropriate normaliza-
tion, the models generalize to other photon levels despite
being trained on this photon-starved dataset. A total of
16,628 histogram tensors with dimensions 1024× 64× 64
are simulated and split into a training and a validation set
with 13,851 and 2,777 examples, respectively.

Simulated Test Dataset: For testing we use 8 RGB-D im-
ages from the Middlebury stereo dataset [35]. The simu-
lated histograms have Nt = 1024 bins and a ∆ = 100ps
bin size (15.3m depth range). The pulse waveform used is
a Gaussian pulse with an FWHM of 318ps (σ = 135ps). A
total of 128 test histogram tensors are generated by simu-
lating each scene with the following average number of de-
tected signal/background photons: 2/2, 2/5, 2/50, 5/2, 5/10,
5/50, 10/2, 10/10, 10/50, 10/200, 10/500, 10/1000, 50/50,
50/200, 50/500, and 50/1000.
Real-world Experimental Data: To evaluate the general-
ization of the proposed models, we downloaded raw his-
togram tensor captured in [21] with a line-scanning SPAD-
based 3D camera prototype. Please refer to the supplemen-
tary document for details on this dataset.

5.2. Training and Implementation
To simplify training, the input to all models is a 3D

histogram tensor, even though compressive histograms can
work directly on streams of photon timestamps (Eq. 4).
Compressive Histogram Layer: The encoder is imple-
mented as a 3D convolution with a stride equal to the filter
size, whose learned filters are the coding tensors, Ck. We
constraint Ck to be zero-mean along the time dimension.
The unfiltered backprojection decoder is implemented as a
3D transposed convolution with a stride equal to its filter
size.To help the CNN model generalize to different photon
count levels we apply zero-normalization along the channel
dimension (i.e., K) to the inputs (Ŷb) and the weights (C) of
the transposed convolution, also known as layer-norm [5].
This normalization is also commonly used in depth decod-
ing algorithms [14, 13, 26].
Depth Estimation 3D CNN: To estimate depths from the
decoded histogram tensor we use the 3D deep boosting
CNN model proposed by [32] for single-photon 3D imag-
ing, without the non-local block. Similar to [21, 32] we use
the pixel-wise KL-divergence between the output histogram
tensor and a normalized true histogram tensor as our objec-
tive, and estimate depths using a softargmax.
Training: At each training iteration we randomly sample
patches of size 1024×32×32. We train all models using the
ADAM optimizer [19] with β1 = 0.9, β2 = 0.999, batch
size of 4, and a learning rate of 0.001 that decays by 0.9
after every epoch. We train all models for 30 epochs with
periodical checkpoints, and for a given model we choose
the checkpoint that achieves the lowest root mean squared
error (RMSE) on the validation set.

6. Experiments and Results
In this section, we present the performance at vari-

ous compression levels for different coding tensor designs
jointly optimized with the depth estimation CNN described
in Sec. 5. A coding tensor design is determined by the
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Figure 4. Compression vs. Test Set Metrics. The two left-most plots show the mean absolute error computed over the test set as we
increase compression. Similarly, the two right-most plots show the mean percent of pixels whose absolute depth errors were < 10mm. The
simulated test set images were divided into low (SBR ≤ 0.1) and high (SBR > 0.1) SBR groups to be able to disentangle the impact of
SBR on the performance of each model. The dashed lines show the peak and no compression baselines whose compression levels do not
vary. Each line corresponds to a fixed coding tensor design for which we vary K to control the compression level. Moreover, each point
for a given compression level corresponds to a single set of coding tensors jointly optimized with the depth estimation 3D CNN.

dimensions of Ck (i.e., Mt × Mr × Mc), the size of the
compressive histogram (i.e., K), and if Ck is separable.

6.1. Baselines and Performance Metrics

We compare against the following baselines:
• Temporal Truncated Fourier C [36, 13]: A compres-

sive histogram that uses coding tensors with dimensions
1024×1×1 and whose weights are set using the first K/2
frequencies of the Fourier matrix. In the supplement, we
compare against additional Fourier-based C [13].

• Temporal Coarse Histogram C: Here C is a box down-
sampling operator along the temporal dimensions which
produces a coarse histogram with K bins.

• No Compression Oracle: In this baseline, we assume the
ideal scenario where the histogram tensor is transferred
off-sensor and processed with the depth estimation 3D
CNN. Similar to [32], we train this model with an initial
learning rate of 10−4 and total variation regularization.

• Peak Compression Oracle: This baseline implements
an ideal SPAD camera with sufficient in-sensor memory
to store the histogram tensor and sufficient computation
power to compute per-pixel depths through an “argmax”
along the time axis. To process the noisy 2D depth im-
ages with the 3D CNN, we generate a 3D grid where all
elements are zero except for one element per spatial loca-
tion whose index is proportional to the depth. This model
is trained like the no-compression oracle.

Similar to our proposed approach, all compressive his-
togram baselines described here, implemented their C as
a compressive histogram layer, with fixed weights, whose
outputs are processed by the depth estimation 3D CNN.

Evaluation Metrics: The 3D imaging performance of each
model is summarized using two metrics: (1) the mean ab-
solute depth error (MAE), (2) and the percent of pixels with

absolute depth errors that are lower than 10mm. To under-
stand the performance under these metrics we divide the test
set into different SBR ranges and report the metrics for each
range individually. We also visualize the overall dataset per-
formance as scatter plots (e.g., Fig. 7) where each point
shows the MAE for a given test scene and their color hue
represents the mean SBR of the scene. Outliers with an
MAE larger than 50mm are not visible in the plot, however,
they are included in the calculation of the statistics. Finally,
when comparing different compressive histogram strategies
the compression ratio is fixed. The compression ratio (CR)
is the ratio of the block size and the length of the compres-
sive histogram (i.e., CR = (Mt ·Mr ·Mc·)/K).

6.2. 3D Imaging Performance

Compression vs. Performance: Fig. 4 shows the perfor-
mance of compressive histograms as a function of the com-
pression ratio. The learned coding tensors consistently out-
perform the temporal Fourier-based C. At low SBR and
CR > 100, it becomes essential for the learned coding ten-
sors to utilize spatio-temporal information (i.e., green and
red lines). Moreover, the proposed models can outperform
the peak compression oracle for CR ≤ 64. Overall, learned
spatio-temporal coding tensors provide robust performance
that degrades gracefully as compression increases.
Importance of Learned Coding Tensors: Fig. 5 compares
the depth reconstructions of compressive histograms with
coding tensors that were optimized (ours) against coding
tensors that were fixed and not optimized throughout train-
ing. The extreme quantization in coarse histograms causes
large systematic depth errors. Random unoptimized cod-
ing tensors consistently produce lower-quality depth recon-
structions. A well-designed coding tensor based on Fourier
codes can produce reasonable depth reconstructions at 64x
compression, however, at 128x compression, scene details
become blurred. The proposed learned coding tensors are
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Figure 5. Importance of Learned Coding Tensors. Depth reconstructions at 64x (top) and 128x (bottom) compression for compressive
histogram models whose coding tensors were hand-designed (coarse histogram and Fourier-based), learned (proposed), and not learned
(randomly initialized). The simulated scene had an SBR=0.1, where the mean signal and background photon levels were [50, 500].
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Figure 6. What if we could compute depths in-pixel? Depth
reconstructions at high and low SBR with mean signal and back-
ground photon levels of [10, 10] and [10, 1000], respectively. The
compressive histograms have a compression of 64.

able to generate high-quality reconstructions comparable to
the no-compression oracle. Overall, optimizing the coding
tensors can provide non-trivial performance gains.
What if we could compute depths in-pixel? Fig. 6 com-
pares the depth reconstruction quality of two learned coding
tensors at 64x compression with the peak compression ora-
cle described in Sec. 6.1. At high SBR, all methods recover
the fine and coarse scene details. At low SBR the peak com-
pression oracle fails to reconstruct high-level scene struc-
tures such as the rings in the red box, while the learned cod-
ing tensors better preserve these coarse and fine details.

6.3. Exploring the Coding Tensor Design Space

When does spatio-temporal coding help? Fig. 7 shows
the effect of increasing the spatial dimension of C, at 64x
compression. At high SBR, all methods have similar MAE,
but, coding tensors with smaller spatial dimensions better
preserve fine details (e.g., sticks). On the other hand, at low
SBR, coding tensors with larger spatial dimensions preserve
high-level details such as the pot handle. This difference is
also observed in the scatter plot where the mean and median
of the 256× 1× 1C do not match which indicates multiple
low SBR scenes with high MAE.
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Figure 7. When do spatio-temporal coding tensors help? Each
scatter plot point corresponds to the MAE of a test scene. The
images directly below each model correspond to the depth recon-
structions for two test examples at high and low SBR levels whose
mean signal and background photons per pixel are [10, 10] and
[10, 1000], respectively. For a fixed compression level, the spatial
block size of each model is increased from left to right and K is
adjusted to maintain the same compression level. The coding ten-
sors for all models in this plot are learned and separable.

How does reducing the size of C affect performance?
Fig. 8 shows the effect of reducing the size of C at 128x
compression. The coding tensors size is reduced by train-
ing models with separable coding tensors that operate on
smaller histogram blocks. The performance difference be-
tween full and separable coding tensors (1024 × 4 × 4) is
negligible. As we further reduce the number of parameters
in C, the overall performance degrades. Coding tensors
with fewer parameters that operate on smaller histogram
blocks tend to produce blurrier reconstructions. This can
be observed in the red box where the coding tensors with
less than 10,000 parameters blurs the spikes. Nonetheless,
as discussed in Sec. 4.1, a parameter-efficient C is desirable
due to the limited in-sensor memory. Ultimately, a practical
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Figure 8. How does Reducing Size of C Affect Performance?.
Each scatter plot point corresponds to the MAE of a test scene.
The images directly below each model correspond to the depth
reconstructions for two test scenes at high and low SBR levels
whose mean signal and background photons per pixel are [10, 10]
and [10, 1000], respectively. The size of C is reduced from left to
right by making it separable or reducing the Mt.

compressive SPAD-based 3D camera design requires deter-
mining the trade-off between parameter efficiency and 3D
imaging quality, which may depend on the application.

6.4. Evaluation on Real-world Data

Fig. 9 shows the depth reconstructions at 256x compres-
sion of multiple compressive histograms and the no com-
pression baseline on the real-world experimental data from
[21]. In low SBR scenes, such as the outdoor capture of
the ball falling down stairs (first row), Truncated Fourier
blurs the staircase edges, while the learned spatio-temporal
C preserved these details. Compared to the no compression
oracle, compressive histogram models produce less smooth
depth images with some small artifacts. This suggests that
the compressive histogram models could benefit from a spa-
tial regularizer such as the one used when training the no
compression oracle. Additional results and details on this
evaluation are available in the supplement.

6.5. On-chip Implementation and Power Analysis

To validate the feasibility of compressive histograms, we
implement them on the UltraPhase chip which has a 3 × 6
processor core array [4]. At this time, UltraPhase has not
been 3D stacked on a SPAD sensor, thus we only evaluate
its compute and data readout power consumption. Fig. 10
shows the power dissipated by UltraPhase when processing
photon timestamps with different methods and transferring
data off-sensor. Although compressive histograms dissipate
more power on computation (blue), this is less than 0.3% of
the overall power consumption, which is dominated by data
readout. Due to limited memory in UltraPhase (4096 bits
per core), our method learns Cspatial and uses Fourier codes

High-resolution
Intensity Image

Truncated Fourier
1024	×	1	×	1	𝐂!

𝐾 = 4

Learned Separable
256	×	2	×	2	𝐂!
𝐾 = 4 (Ours)
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No Compression

Learned Separable
256	×	4	×	4	𝐂!
𝐾 = 16 (Ours)

Figure 9. Depth Reconstructions of Real-world SPAD Data at
256x Compression. Depth reconstructions of different scenes
captured with a SPAD-based 3D camera prototype [21].
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Figure 10. Compute vs. Data Readout Power. Average power
dissipated by 2x2 SPADs processing 500 timestamps per depth
frame and operating at 30 depth frames per second. Compute
power is obtained from the implementation on the UltraPhase
SPAD processors [4]. Readout power is estimated from the out-
put data rate assuming the readout scheme of the SwissSPAD2
[42]. Coarse histograms use 8-bit precision, while compressive
histograms use 16-bit precision. Note the difference in blue and
orange scales.

for Ctemporal due to their memory efficient implementation.
We also quantize C to 8 bits and find no degradation in
performance. Refer to the supplement for additional details.

7. Discussion
SPAD-based 3D cameras encounter a data bottleneck be-

tween the SPAD array and the compute module when trans-
ferring the photon timestamps. A histogram tensor can help
summarize timestamps at low resolutions, but as megapixel
SPAD arrays become available, histogram tensors also lead
to a data bottleneck. To overcome this limitation we pro-
posed compressive histograms as a compact representation
that can be built on-the-fly, as each photon is detected. As
a consequence, compressive histograms can reduce the in-
sensor memory and data rates because neither the photon
data stream nor a histogram tensor needs to be stored or
transferred. Our results show that high-quality depth in-
formation can be recovered from a learnt compressive his-
togram representation that is up to 2 orders of magnitude
smaller than a histogram tensor representation.
Practical compressive histogram operating points: The
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learned separable 256x4x4 and 256x2x2 C, achieved a
good balance between parameter efficiency vs. reconstruc-
tion quality, and require on the order of 10-100kbits of
memory. In an UltraPhase-like chip this would require dis-
tributing C among at least 8x8 cores (4kbits per core). If
the temporal dimension is fixed to Fourier-based Ctemporal

such as the ones from [13, 36], the number of parameters
can be reduced by 10-40x (see Suppl. Sec. 3.3) which en-
ables storing C on a per-pixel basis and made the Ultra-
Phase evaluation possible. Overall, for a 1MP SPAD sensor
with 1000 bins per-pixel, compressive histograms that can
provide more than 50x compression would result in practi-
cal data rates of ∼ 0.6GB/s which USB 3.2 can support.

Trade-off space: Compressive histograms establish a
trade-off between reconstruction fidelity, data bandwidth,
and in-sensor compute and memory resources. For a fixed
bandwidth, a coarse histogram requires arguably the low-
est in-sensor resources but leads to poor reconstructions.
Fourier-based histograms can improve reconstruction fi-
delity, at the expense of increased in-sensor computation
and memory. The proposed generalization of compressive
histograms allows further increasing reconstruction accu-
racy, at the expense of additional in-sensor memory over
Fourier-based methods. Ultimately, the correct trade-off for
a given scenario will be determined by power, application,
and hardware constraints.

Although compressive histograms require more in-
sensor computation than coarse histograms, our method
presents a practical solution from a power consumption and
a real-time application perspective. Power consumption is
primarily determined by data rates. Fig. 10 and Suppl.
Fig. 4 shows that despite compressive histograms dissipat-
ing 100x more processing power than coarse histograms,
their overall power consumption is still lower even when
data rates are only reduced by 2x. The processing time for
building compressive histograms is ∼0.5ms (Suppl. Fig. 5).
From a real-time (i.e., 30 FPS) or a high-speed application
standpoint, this additional processing time is nearly negligi-
ble since it is overlapped with acquisition/exposure time.

From a hardware perspective, the importance of reducing
the memory overhead of C depends on resolution. In low-
resolution SPAD cameras, memory-efficient C are essen-
tial because they are stored among a single or a few pixels.
The proposed method allowed integrating memory-efficient
Fourier codes with learned spatial codes, which were im-
plemented on the 2x2 pixels of UltraPhase (Suppl. Sec. 2).
As resolution increases and C is shared among more pixels,
the memory overhead reduces, and less parameter-efficient
C with increased reconstruction fidelity can be considered.

Bias in Learned C: In the supplement, we show that cod-
ing tensors with Mt = Nt develop a depth range bias.
These coding tensors learn to zero out photons coming from
distances that are less common in the dataset since they are
usually background/noise photons. Interestingly, learned

coding tensors with Mt < Nt avoid this bias and generalize
to depths that are less common in the training set.

Generalization: There are multiple generalization axes in-
cluding signal and ambient light levels, sensor and laser pa-
rameters (e.g., resolution, pulse waveform), and scene re-
sponse complexity (e.g., depth range, indirect reflections).
Our evaluation has probed some of them. Specifically, our
training set only included a subset of the signal and am-
bient light levels that the test set contained. Furthermore,
the model was trained and tested on histogram tensors with
different resolutions. Finally, the dataset bias investigation
showed that models with Nt ≤ 256 generalized well to less
prevalent depths during training (Suppl. Sec. 1).

We further discuss the model’s ability to generalize in
other scenarios. For instance, all learned models (includ-
ing baselines) are unlikely to generalize well to wider laser
pulses, because if the model is trained with a narrow pulse
width, it learns to extract signal information from high fre-
quencies which will only contain noise in the wider pulse.
Similarly, these learned models may generalize to narrower
pulse widths. Furthermore, we anticipate a learned C with
the properties described in [13] to be robust to diffuse indi-
rect reflections but may require data augmentation to gener-
alize to other light transport scenarios.

Why not compute depths in-sensor? SPAD-based 3D
cameras with large in-pixel memory could store per-pixel
histograms and reduce data rates by computing depths in-
pixel (i.e., peak compression oracle). Our results show that
compressive histogram can provide similar reconstruction
quality and outperform this method at low SBR without re-
quiring the storage of the full histogram tensor in-sensor.

Additional Coding Tensor Designs: Although we find
promising empirical results for the coding tensor repre-
sentations described in this paper, the optimal set of cod-
ing tensors will depend on the exact hardware specifica-
tions (e.g, in-pixel memory, system bandwidth) and scene-
dependent parameters (e.g., SBR, geometry, albedo). Addi-
tional lightweight C designs could rely on other factoriza-
tion techniques and weight quantization.

Task-specific Compressive Histograms: Histogram ten-
sors are used in other active single-photon imaging modal-
ities such as fluorescence lifetime microscopy [34], non-
line-of-sight [10, 23, 29], and diffuse optical tomography
[22, 45, 24]. Our framework could be used to find compres-
sive representations optimized for these applications.

Acknowledgments: This work was supported by the De-
partment of Energy and National Nuclear Security Admin-
istration (DE-NA0003921), Air Force (FA9550-21-1-0341),
Swiss National Science Foundation (200021 166289), and
NSF Awards 1846884 (A.V.), 1943149 (M.G.), 2107060
(M.G.), 2138471 (A.I.). U.S. DOE full legal disclaimer:
https://www.osti.gov/stip/about/disclaimer.

10764



References
[1] How multi-beam flash lidar works.

https://ouster.com/blog/
how-multi-beam-flash-lidar-works/. Ac-
cessed: 2022-03-07. 1

[2] The iphone 12 - lidar at your finger-
tips. https://www.forbes.com/
sites/sabbirrangwala/2020/11/12/
the-iphone-12lidar-at-your-fingertips/
?sh=580b8bab3e28. Accessed: 2022-03-07. 1

[3] Supreeth Achar, Joseph R Bartels, William L Whittaker,
Kiriakos N Kutulakos, and Srinivasa G Narasimhan. Epipo-
lar time-of-flight imaging. ACM Transactions on Graphics
(TOG), 36(4):37, 2017. 3

[4] Andrei Ardelean. Computational imaging spad cameras.
page 164, 2023. 2, 8

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 5

[6] Laurie Bose, Jianing Chen, Stephen J Carey, Piotr Dudek,
and Walterio Mayol-Cuevas. A camera that cnns: Towards
embedded neural networks on pixel processor arrays. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1335–1344, 2019. 2, 4

[7] Laurie Bose, Piotr Dudek, Jianing Chen, Stephen J Carey,
and Walterio W Mayol-Cuevas. Fully embedding fast con-
volutional networks on pixel processor arrays. In European
Conference on Computer Vision, pages 488–503. Springer,
2020. 2

[8] Francesco Mattioli Della Rocca, Hanning Mai, Sam W
Hutchings, Tarek Al Abbas, Kasper Buckbee, Andreas Tsi-
amis, Peter Lomax, Istvan Gyongy, Neale AW Dutton, and
Robert K Henderson. A 128× 128 spad motion-triggered
time-of-flight image sensor with in-pixel histogram and
column-parallel vision processor. IEEE Journal of Solid-
State Circuits, 55(7):1762–1775, 2020. 2

[9] Piotr Dudek, Thomas Richardson, Laurie Bose, Stephen
Carey, Jianing Chen, Colin Greatwood, Yanan Liu, and
Walterio Mayol-Cuevas. Sensor-level computer vision with
pixel processor arrays for agile robots. Science Robotics,
7(67):eabl7755, 2022. 2

[10] Daniele Faccio, Andreas Velten, and Gordon Wetzstein.
Non-line-of-sight imaging. Nature Reviews Physics,
2(6):318–327, 2020. 9

[11] Anant Gupta, Atul Ingle, and Mohit Gupta. Asynchronous
single-photon 3d imaging. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 7909–7918,
2019. 3

[12] Anant Gupta, Atul Ingle, Andreas Velten, and Mohit Gupta.
Photon-flooded single-photon 3d cameras. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6770–6779, 2019. 3

[13] Felipe Gutierrez-Barragan, Atul Ingle, Trevor Seets, Mo-
hit Gupta, and Andreas Velten. Compressive single-photon
3d cameras. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 17854–
17864, 2022. 2, 3, 4, 5, 6, 9

[14] Felipe Gutierrez-Barragan, Syed Azer Reza, Andreas Velten,
and Mohit Gupta. Practical coding function design for time-
of-flight imaging. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1566–
1574, 2019. 5

[15] Istvan Gyongy, Sam W Hutchings, Abderrahim Halimi,
Max Tyler, Susan Chan, Feng Zhu, Stephen McLaughlin,
Robert K Henderson, and Jonathan Leach. High-speed 3d
sensing via hybrid-mode imaging and guided upsampling.
Optica, 7(10):1253–1260, 2020. 1, 2, 3

[16] Felix Heide, Steven Diamond, David B Lindell, and Gordon
Wetzstein. Sub-picosecond photon-efficient 3d imaging us-
ing single-photon sensors. Scientific reports, 8(1):1–8, 2018.
3

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 4

[18] Sam W Hutchings, Nick Johnston, Istvan Gyongy, Tarek
Al Abbas, Neale AW Dutton, Max Tyler, Susan Chan,
Jonathan Leach, and Robert K Henderson. A reconfigurable
3-d-stacked spad imager with in-pixel histogramming for
flash lidar or high-speed time-of-flight imaging. IEEE Jour-
nal of Solid-State Circuits, 54(11):2947–2956, 2019. 2

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[20] Oichi Kumagai, Junichi Ohmachi, Masao Matsumura,
Shinichiro Yagi, Kenichi Tayu, Keitaro Amagawa, Tomohiro
Matsukawa, Osamu Ozawa, Daisuke Hirono, Yasuhiro Shi-
nozuka, et al. A 189x600 back-illuminated stacked spad di-
rect time-of-flight depth sensor for automotive lidar systems.
In 2021 IEEE International Solid-State Circuits Conference
(ISSCC), volume 64, pages 110–112. IEEE, 2021. 2

[21] David B Lindell, Matthew O’Toole, and Gordon Wetzstein.
Single-photon 3d imaging with deep sensor fusion. ACM
Trans. Graph., 37(4):113–1, 2018. 4, 5, 8

[22] David B Lindell and Gordon Wetzstein. Three-dimensional
imaging through scattering media based on confocal diffuse
tomography. Nature communications, 11(1):1–8, 2020. 9

[23] Xiaochun Liu, Sebastian Bauer, and Andreas Velten. Pha-
sor field diffraction based reconstruction for fast non-line-of-
sight imaging systems. Nature communications, 11(1):1–13,
2020. 9

[24] Ashley Lyons, Francesco Tonolini, Alessandro Boccol-
ini, Audrey Repetti, Robert Henderson, Yves Wiaux, and
Daniele Faccio. Computational time-of-flight diffuse opti-
cal tomography. Nature Photonics, 13(8):575–579, 2019. 9

[25] Julien NP Martel, Lorenz K Mueller, Stephen J Carey, Pi-
otr Dudek, and Gordon Wetzstein. Neural sensors: Learning
pixel exposures for hdr imaging and video compressive sens-
ing with programmable sensors. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 42(7):1642–1653,
2020. 2

[26] Parsa Mirdehghan, Wenzheng Chen, and Kiriakos N Kutu-
lakos. Optimal structured light à la carte. In Proceedings
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