
P a n o r a m as f r o m  P h ot o ns

S a c h a J u n g er m a n †

s j u n g e r m a n @ w i s c . e d u

At ul I n gl e §

i n g l e 2 @ p d x . e d u

M o hit  G u pt a †

m o h i t g @ c s . w i s c . e d u

† U ni v ersit y of  Wis c o nsi n- M a dis o n § P ortl a n d St at e  U ni v ersit y

A bst r a ct

S c e n e r e c o nstr u cti o n i n t h e pr es e n c e of hi g h-s p e e d  m o-
ti o n a n d l o w ill u mi n ati o n is i m p ort a nt i n  m a n y a p pli c a-
ti o ns s u c h as a u g m e nt e d a n d virt u al r e alit y, dr o n e n a vi g a-
ti o n, a n d a ut o n o m o us r o b oti cs. Tr a diti o n al  m oti o n esti m a-
ti o n t e c h ni q u es f ail i n s u c h c o n diti o ns, s uff eri n g fr o m t o o
m u c h bl ur i n t h e pr es e n c e of hi g h-s p e e d  m oti o n a n d str o n g
n ois e i n l o w-li g ht c o n diti o ns. Si n gl e- p h ot o n c a m er as h a v e
r e c e ntl y e m er g e d as a pr o misi n g t e c h n ol o g y c a p a bl e of c a p-
t uri n g h u n dr e ds of t h o us a n ds of p h ot o n fr a m es p er s e c o n d
t h a n ks t o t h eir hi g h s p e e d a n d e xtr e m e s e nsiti vit y.  U nf ort u-
n at el y, tr a diti o n al c o m p ut er visi o n t e c h ni q u es ar e n ot  w ell
s uit e d f or d e ali n g  wit h t h e bi n ar y- v al u e d p h ot o n d at a c a p-
t ur e d b y t h es e c a m er as b e c a us e t h es e ar e c orr u pt e d b y e x-
tr e m e  P oiss o n n ois e.  H er e  w e pr es e nt a  m et h o d c a p a bl e
of esti m ati n g e xtr e m e s c e n e  m oti o n u n d er c h all e n gi n g c o n-
diti o ns, s u c h as l o w li g ht or hi g h d y n a mi c r a n g e, fr o m a
s e q u e n c e of hi g h-s p e e d i m a g e fr a m es s u c h as t h os e c a p-
t ur e d b y a si n gl e- p h ot o n c a m er a.  O ur  m et h o d r eli es o n it-
er ati v el y i m pr o vi n g a  m oti o n esti m at e b y gr o u pi n g a n d a g-
gr e g ati n g fr a m es aft er-t h e-f a ct, i n a str ati fi e d  m a n n er.  We
d e m o nstr at e t h e cr e ati o n of hi g h- q u alit y p a n or a m as u n d er
f ast  m oti o n a n d e xtr e m el y l o w li g ht, a n d s u p er-r es ol uti o n
r es ults usi n g a c ust o m si n gl e- p h ot o n c a m er a pr ot ot y p e.  F or
c o d e a n d s u p pl e m e nt al  m at eri al s e e o ur pr oj e ct  w e b p a g e .

1. I nt r o d u cti o n

A c c ur at e r e c o v er y of  m oti o n fr o m a s e q u e n c e of i m a g es
is o n e of t h e  m ost f u n d a m e nt al t as ks i n c o m p ut er visi o n,
wit h n u m er o us a p pli c ati o ns i n r o b oti cs, a u g m e nt e d r e alit y,
us er i nt erf a c es, a n d a ut o n o m o us n a vi g ati o n.  W h e n s u c c ess-
f ull y esti m at e d,  m oti o n i nf or m ati o n c a n b e us e d t o l o c at e
a n d tr a c k t h e c a m er a or diff er e nt o bj e cts i n t h e s c e n e [ 7 ],
p erf or m  m oti o n- a w ar e vi d e o c o m pr essi o n [ 1 9 ] or st a bili z a-
ti o n [2 2 ], r el at e  m ulti pl e s e ns ors,  m er g e i nf or m ati o n a cr oss
diff er e nt vi e w p oi nts, a n d e v e n r e c o nstr u ct cit y-s c al e 3 D
m o d els usi n g o nl y i m a g es fr o m t h e  w e b [ 1 , 3 4 , 2 8 ].

I m a g e s e q u e n c es c a n b e us e d t o esti m at e diff er e nt ki n ds
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of  m oti o n r a n gi n g i n c o m pl e xit y a n d d e gr e es of fr e e d o m,
fr o m gl o b al  m oti o n  m o d els, s u c h as si m pl e tr a nsl ati o ns,
pr oj e cti v e  w ar ps, or 3 D ( 6- D o F) c a m er a p os e, t o n o n-ri gi d,
l o c al  m oti o n  m o d els s u c h as o pti c al fl o w.  H o w e v er, r e-
g ar dl ess of t h e  m oti o n  m o d el, tr a diti o n al  m et h o ds c a n n ot
r e c o v er  m oti o n t h at is si m pl y t o o f ast f or t h e c a m er a t o c a p-
t ur e.  T his is es p e ci all y c h all e n gi n g  w h e n c a pt uri n g s c e n es
i n l o w-li g ht c o n diti o ns —t h e c a m er a  will c o m p e ns at e b y i n-
cr e asi n g t h e e x p os ur e, t h er e b y i ntr o d u ci n g  m oti o n bl ur, as
s e e n i n Fi g. 1 ( a), or i n cr e asi n g t h e g ai n (I S O), t h er e b y i n-
tr o d u ci n g n ois e [1 4 ]. F u n d a m e nt all y, t h e i m a g e d e gr a d ati o n
ass o ci at e d  wit h f ast er  m oti o n or a d ar k er s c e n e c a us es tr a-
diti o n al  m oti o n esti m ati o n  m et h o ds t o f ail.

O n e  w a y t o h a n dl e f ast  m oti o n is b y usi n g s p e ci ali z e d
hi g h-s p e e d c a m er as.  H o w e v er, s u c h c a m er as ar e n ot o nl y
b ul k y a n d c ostl y b ut als o s uff er fr o m e xtr e m el y l o w si g n al-
t o- n ois e r ati o d u e t o b ot h l o w si g n al v al u es a n d hi g h r e a d o ut
n ois e, at l e ast a n or d er of  m a g nit u d e hi g h er t h a n c o n v e n-
ti o n al  C M O S c a m er as1 .  T his r e q uir es t h e s c e n es t o b e  w ell
ill u mi n at e d, oft e n i n a c o ntr oll e d s etti n g, f urt h er li miti n g
t h eir s c o p e a n d  wi d es pr e a d a d o pti o n.

F ort u n at el y, t h er e is a n e m er gi n g cl ass of s e ns ors c all e d
si n gl e- p h ot o n c a m er as,  w hi c h ar e c a p a bl e of hi g h-s p e e d
i m a gi n g i n l o w-li g ht c o n diti o ns. Si n gl e- p h ot o n c a m er as
b as e d o n si n gl e- p h ot o n a v al a n c h e di o d e ( S P A D) t e c h n ol-
o g y [ 6 ] pr o vi d e e xtr e m e s e nsiti vit y, ar e c h e a p t o  m a n uf a c-
t ur e, a n d ar e i n cr e asi n gl y b e c o mi n g c o m m o n pl a c e, r e c e ntl y
g etti n g d e pl o y e d i n c o ns u m er d e vi c es s u c h as i P h o n es.  T h e
k e y b e n e fit of S P A Ds is t h at t h e y d o n ot s uff er fr o m r e a d-
n ois e, e n a bli n g c a pt ur es at h u n dr e ds of t h o us a n ds of fr a m es
p er s e c o n d e v e n i n e xtr e m el y l o w fl u x,  w hil e b ei n g li mit e d
o nl y b y t h e f u n d a m e nt al p h ot o n n ois e.

Alt h o u g h si n gl e- p h ot o n c a m er as c a n c a pt ur e s c e n e i n-
f or m ati o n at u n pr e c e d e nt e d s e nsiti vit y a n d s p e e d, e a c h i n-
di vi d u al c a pt ur e d fr a m e is bi n ar y v al u e d: a pi x el is “ o n ” if
at l e ast o n e p h ot o n is d et e ct e d d uri n g t h e e x p os ur e ti m e a n d
“ off ” ot h er wis e.  T his bi n ar y i m a gi n g  m o d el pr es e nts u ni q u e
c h all e n g es.  Tr a diti o n al i m a g e r e gistr ati o n t e c h ni q u es r el y
o n f e at ur e- b as e d  m at c hi n g, or dir e ct o pti mi z ati o n usi n g dif-
f er e n c es b et w e e n pi x el i nt e nsiti es, b ot h of  w hi c h r el y o n
i m a g e gr a di e nts t o c o n v er g e t o a s ol uti o n. I n di vi d u al bi n ar y

1 F or e x a m pl e, t h e P h a nt o m v 2 6 4 0 h as r e a d n ois e u p t o 5 8 e − .
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Fi g ur e 1. Si n gl e p h ot o n p a n o r a m as: ( a)  O ur si n gl e- p h ot o n c a m er a pr ot ot y p e c a n c a pt ur e bi n ar y fr a m es at , fr a m es p er s e c o n d.
C o n v e nti o n al pr o c essi n g t e c h ni q u es t h at a v er a g e t h e r a w i m a g e fr a m es str u g gl e d u e t o e xtr e m e  m oti o n bl ur. ( b)  O ur pr o p os e d  m et h o d
r e c o v ers a hi g h- q u alit y s c e n e r e c o nstr u cti o n b y it er ati v el y r e fi ni n g a  m oti o n esti m at e a n d r e- a g gr e g ati n g t h e r a w p h ot o n d at a. ( c)  A n
e x a m pl e hi g h-s p e e d p a n or a m a r e c o nstr u ct e d fr o m si n gl e- p h ot o n fr a m es i n  m er el y h alf a s e c o n d t ot al c a pt ur e ti m e.

i m a g es s uff er fr o m s e v er e n ois e a n d q u a nti z ati o n ( o nl y h a v-
i n g 1- bit  w ort h of i nf or m ati o n p er pi x el), a n d ar e i n h er e ntl y
n o n- diff er e nti a bl e,  m a ki n g it c h all e n gi n g, if n ot i m p ossi-
bl e, t o a p pl y c o n v e nti o n al i m a g e r e gistr ati o n a n d  m oti o n
esti m ati o n t e c h ni q u es dir e ctl y o n bi n ar y fr a m es.  A g gr e g at-
i n g s e q u e n c es of bi n ar y fr a m es o v er ti m e i n cr e as es si g n al
( Fi g. 1 ( a)) b ut c o m es at t h e c ost of p ot e nti all y s e v er e  m o-
ti o n bl ur, cr e ati n g a f u n d a m e nt al n ois e- vs- bl ur tr a d e off.

We pr es e nt a t e c h ni q u e c a p a bl e of esti m ati n g r a pi d  m o-
ti o n fr o m a s e q u e n c e of hi g h-s p e e d bi n ar y fr a m es c a pt ur e d
usi n g a si n gl e- p h ot o n c a m er a.  O ur k e y i nsi g ht is t h at t h es e
bi n ar y fr a m es c a n b e a g gr e g at e d i n p ost- pr o c essi n g i n a
m oti o n- a w ar e  m a n n er s o t h at  m or e si g n al a n d bit- d e pt h ar e
c oll e ct e d,  w hil e si m ult a n e o usl y  mi ni mi zi n g  m oti o n bl ur.
As s e e n i n Fi g. 1 ( b), o ur  m et h o d it er ati v el y i m pr o v es t h e
i niti al  m oti o n esti m at e, ulti m at el y e n a bli n g s c e n e r e c o n-
str u cti o n u n d er r a pi d  m oti o n a n d l o w li g ht a n d c o n diti o ns.

S c o p e a n d  C a p a biliti es: We d e m o nstr at e t h e r e c o v er y of
gl o b al pr oj e cti v e  m oti o n ( h o m o gr a p h y), e n a bli n g t h e c a p-
t ur e of hi g h-s p e e d p a n or a m as  wit h s u p er-r es ol uti o n a n d
hi g h d y n a mi c r a n g e c a p a biliti es.  As s h o w n i n Fi g. 1 ( c),
o ur al g orit h m c a n r e c o nstr u ct a hi g h- q u alit y p a n or a m a, c a p-
t ur e d i n l ess t h a n a s e c o n d o v er a  wi d e fi el d- of- vi e w,  w hil e

si m ult a n e o usl y s u p er-r es ol vi n g d et ails s u c h as t e xt fr o m a
l o n g dist a n c e ( 1 3 0 0 m).  T h e i d e as pr es e nt e d i n t his p a p er
c o ul d als o b e us e d t o e n h a n c e r e c e nt o n e-s h ot l o c al  m oti o n
c o m p e ns ati o n  w or k [ 2 7 , 3 5 , 2 0 ] as t h e y ar e c o m pl e m e nt ar y.
Li mit ati o ns: Alt h o u g h si n gl e- p h ot o n c a m er a t e c h n ol o g y is
r a pi dl y e v ol vi n g, t o d a y’s S P A D arr a ys s uff er fr o m li mit a-
ti o ns s u c h as l o w fill-f a ct ors, l o w s p ati al r es ol uti o n, a n d l a c k
of hi g h- q u alit y c ol or filt ers.  T his li mits t h e vis u al q u alit y of
t h e e x p eri m e nt al r es ults s h o w n h er e. F ort u n at el y, gi v e n t h e
tr e n d t o w ar ds hi g h er r es ol uti o n S P A D arr a ys [3 1 ] a n d t h e
i n cr e asi n g c o m m er ci al a v ail a bilit y of t his t e c h n ol o g y [3 2 ],
t h es e ar e n ot f u n d a m e nt al li mit ati o ns.

2.  R el at e d  W o r k

I m a g e Stit c hi n g: M er gi n g  m ulti pl e i m a g es t o g et h er t o cr e-
at e a l ar g e c o h esi v e i m a g e, r ef err e d t o as a p a n or a m a or  m o-
s ai c, is a cl assi c al pr o bl e m i n c o m p ut er visi o n. It c o nsists
of t w o  m ai n st e ps, n a m el y i m a g e r e gistr ati o n, a n d  m er g-
i n g.  T o r e gist er i m a g es,  m ost a p pr o a c h es eit h er r el y o n
c o m p uti n g i m a g e f e at ur es, s u c h as SI F T f e at ur es [ 2 5 ], or
dir e ct o pti mi z ati o n of t h e  w ar ps, s u c h as t h e  L u c as- K a n a d e
al g orit h m [ 2 6 ] or v ari a nts t h er e of [3 ].  O n c e f e at ur es ar e e x-
tr a ct e d, it is p ossi bl e t o  m at c h t h e m b et w e e n i m a g es t o c o m-
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pute the warps that relate one image to another [5]. More
recent techniques use learning-based methods to extract fea-
tures [24] allowing them to match cross-domain images
such as satellite and map images [41]. Unfortunately, the
presence of extreme Poisson noise causes traditional stitch-
ing approaches to fail for high-speed binary frames.

Structure from Motion (SfM): SfM techniques estimate
both the 3D geometry of the environment and the location
of the camera simultaneously. Most SfM pipelines (e.g.,
COLMAP [34]) use feature-based approaches to match
frames. Others have extended the optimization-based ap-
proaches of Lucas-Kanade to 3D pose estimation [4, 9].
While these methods can be robust to some types of noise,
such as Gaussian, salt and pepper, and speckle [33], they all
rely on computing image gradient either as part of the opti-
mization process or as part of the feature extraction process
and thus are not well suited for noisy and quantized high-
speed images such as binary images.

Burst Photography and Denoising: Techniques that re-
move image noise can be used as a pre-processing step to
aid the feature matching or direct optimization process. For
instance, blind denoisers [8] or state-of-the-art deep video
denoising networks [38] could be used. The burst process-
ing of binary frames is also possible [27] but relies on mo-
tion compensation to denoise images which can be expen-
sive as it requires computing optical flow on each frame.
For many scenes, computing optical flow is unnecessary as
motion might be primarily dominated by ego-motion. We
propose an iterative approach that refines a global motion
estimate and enables high-quality scene recovery while be-
ing computationally less burdensome than optical flow ap-
proaches that use patch-based processing.

Event-based Processing: Event cameras (dynamic vision
sensors) superficially resemble high-speed binary frames:
they produce high frequency, low-bit depth observation of a
scene and have been used for fast tracking [21] and odom-
etry [16]. However, event cameras suffer from high sen-
sor noise and event clutter caused by camera motion [13]
leading many works to use a fusion approach, combining
events with conventional camera frames. Our method fo-
cuses on intensity frames, whether captured from a single
photon camera or other sensing modality.

3. Image Formation via Virtual Exposures
Consider a series of images captured by a camera as

the scene and/or camera undergoes motion. Suppose our
goal is to register a pair of consecutive images, under a
given motion model (local or global). In ideal imaging
conditions (sufficient light, relatively small motion), con-
ventional motion estimation and registration techniques per-
form robustly. This is demonstrated in Fig. 2 (a), where a
SIFT-based feature matching technique is able to find reli-

Figure 2. Registration Accuracy vs. Noise and Blur: Conven-
tional feature matching techniques, such as exhaustively matched
SIFT features shown here, work well with low noise, and low mo-
tion blur frames. The number of successful feature matches drops
off at higher noise and blur levels.

able matches across images. However, in settings involv-
ing low-light and rapid motion, the number of successful
feature matches drop, resulting in erroneous motion estima-
tion. This is due to the fundamental noise-vs-blur trade-
off—the captured images either have strong noise or large
motion blur, depending on the exposure length used, both of
which prevent reliable feature detection and image registra-
tion (Fig. 2 (b-d)). More generally, this trade-off limits the
performance of several computer vision and imaging tech-
niques that require motion estimation across a sequence of
images [15, 23]. Is there a way to overcome this trade-off?
Mitigating Blur-Noise Trade-off via Virtual Exposures:
Conventional cameras integrate the scene’s radiance during
an exposure, and produce a single image. Under the chal-
lenging conditions described above, this image may be too
noisy or blurred, depending on the exposure duration. Sup-
pose instead, we were able to record the arrival time of each
photon during an exposure, creating a 3D photon cube (
and spatial dimensions, and an extra photon arrival time
dimension) [10, 11]. This information is richer than what a
conventional camera image can afford us, but what can we
do with it? While we can reconstruct a conventional cam-
era image by simply summing over the time slices of the
photon cube, we can combine this photon data in multiple
ways post hoc. We could apply arbitrary transformations to
each time slice before collapsing it into one or more final
images. We refer to this idea of aggregating photon infor-
mation after-the-fact as virtual exposures. In contrast, once
a conventional image has been captured, undoing the effect
of motion artifacts is severely ill-posed.
Stratified Temporal Re-Sampling: Our key insight, en-
abled by the concept of virtual exposures, is that we can
compensate for motion at the level of individual photon ar-
rivals to create high-fidelity aggregate frames, which in turn
can be used to further refine the motion estimates. Virtual
exposures are created by re-sampling the photon-cube post-
capture, allowing arbitrary, fluid, and even overlapping ex-
posures, enabling us to resolve higher speed motion.
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Figure 3. Motion Estimation using Stratified Temporal Re-Sampling: Perfect scene reconstruction can be achieved if the scene motion

is precisely known. (a) We cannot recover a motion estimate from the raw photon data as it is binary-valued, extremely noisy, and non-

differentiable. An initial motion estimate (blue line) is obtained using locally averaged groups of frames (shaded regions). (b) This blur

causes the registration algorithm to produce noisy motion estimates (black error bars) from which we can update our estimated motion

trajectory. (c) With this new trajectory, the apparent motion is smaller (shaded area), leading to higher-quality virtual exposures. We can

also sample new virtual exposures as needed, here we show new frames centered around the midpoints of previous frames. (d) These lead

to improved motion estimates. The estimated motion trajectory converges to the true motion over several iterations.

An abstract example of this concept is illustrated in

Fig. 3. We start with an initial set of virtual exposures,

which are simply aggregate frames with no motion com-

pensation akin to a sequence of short exposures from a con-

ventional camera. From these, we estimate a coarse motion

trajectory using an off-the-shelf motion model. Although

conventional techniques will output potentially erroneous

estimates, we propose an iterative approach, where these

motion estimates are used to spatiotemporally warp the un-

derlying photon data and re-combine it into less blurry im-

ages. This is repeated to create additional virtual exposures

until convergence, resulting in improved motion estimates.

How to Capture Photon Cubes? Thus far, we assumed

having access to a continuous-time stream of photons that

contains precise timing and location information. In prac-

tice, we approximate this photon stream with a camera ca-

pable of high-speed temporal sampling. While several high-

speed sensing technologies exist today, we focus on single-

photon avalanche diode (SPAD) sensors. In the following,

we describe their unique image formation model that en-

ables high-speed photon-level sensing, which can emulate

virtual exposures whose signal-to-noise ratio (SNR) is lim-

ited only by the fundamental limits of photon noise.

SPAD Image Formation Model: For a static scene with

a radiant flux (photons/second) of φ, during an exposure

time τ , the probability of observing k incident photons on a

SPAD camera pixel follows a Poisson distribution:

P (k) =
(φτ)ke−φτ

k!
. (1)

After each photon detection, the SPAD pixel enters a dead
time during which the pixel circuitry resets. During this

dead time, the SPAD cannot detect additional photons. The

SPAD pixel output during this exposure τ is binary-valued

and follows a Bernoulli distribution given by2:

P (k = 0) = e−φτ , P (k = 1) = 1− e−φτ . (2)

Emulating Virtual Exposures: Given n binary observa-

tions Bi of a scene, we can capture a virtual exposure using

the following maximum likelihood estimator [40]:

φ̂ = −1

τ
ln

(
1− 1

n

n∑
i=1

Bi

)
. (3)

Different virtual exposures can be emulated by varying the

starting index i and the number n of binary frames. The

granularity and flexibility of these virtual exposures is lim-

ited only by the frame rate of the SPAD array, which reaches

up to ∼ 100kfps, enabling robust motion estimation at ex-

tremely fine time scales. Furthermore, SPAD arrays have

negligible read noise and quantization noise, leading to sig-

nificantly higher SNR as compared to conventional images

captured over the same exposures.

2Source of noise such as dark counts and non-ideal quantum efficiency

can be absorbed into the value of φ.
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Figure 4. Simulated Panoramas: (left) We show a ground truth panorama, and a zoomed-in section of it, as well as one created with
realistic blurry RGB frames and another created under the same conditions using binary frames. Reliable reconstruction using traditional
RGB frames is impossible due to large motion blur, however, we can compensate for fine-grain motion using binary frames resulting in
perfect reconstruction. (middle) The baseline fails in low light, this scene is darker than the left one. (right) Our method works even
with less light. The baseline reconstruction fails as each conventional image is dominated by read noise.

4. Stratified Estimation of High-Speed Motion

While the ideas presented in Section 3 are applicable to
a wide range of motion models, we focus on image ho-
mographies, a global motion model. We propose a modu-
lar technique for homography estimation from photon cube
data, which is capable of localizing high-speed motion even
in ultra-low light settings. As an example application, we
demonstrate panoramic reconstruction from photon cubes
by using the estimated homographies to warp binary frames
onto a common reference frame. Given a temporal sequence
of binary frames , we compute and iteratively re-
fine image homographies and the resulting reconstruction
through the following steps:

Re-sample: Sample binary frames across the photon
cube which will be merged together.
Merge: Merge the sampled frames using the current
per-frame homography estimate.
Locate: Apply an off-the-shelf motion estimation algo-
rithm to the merged frames.
Interpolate: Interpolate the estimated homographies to
the granularity of individual binary frames.

With successive iterations of the above method, the
homography estimates are refined. Once convergence is

reached, the per-frame estimated warps are used to assem-
ble the final panorama.

Re-sample: The entire sequence of binary frames is re-
sampled and grouped into subsets that are later aligned and
merged. We use midpoint sampling as the grouping strat-
egy. Given a group size of , during the first iteration,
we split the binary frames into non-overlapping
groups. A single frame within each group is chosen to be
the reference frame whose warp is later estimated in the
“Locate” step. Initially, we choose the center frame of
each group to be the reference frame. In subsequent iter-
ations, the binary frame sequence is re-sampled to create
new groups consisting of frames that are chosen such that
they are centered between the previous iteration’s groups.
This introduces overlapping groups and ensures a progres-
sively denser sampling of the motion trajectory. Fig. 6 il-
lustrates what happens if we omit this crucial step—regions
where the motion trajectory is more complex exhibit blur
and ghosting artifacts.

This stratified re-sampling approach is crucial for deal-
ing with the motion blur and noise tradeoff. The number
of frames ( ) per group plays an important role in dealing
with this tradeoff: a larger value of helps counteract Pois-
son noise but also causes motion blur. In practice, if SPAD
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Fi g ur e 5. M ulti-l e v el r e fi n e m e nt of p a n o r a m a: We s h o w a p a n or a m a cr e at e d b y n ai v el y a v er a gi n g a dj a c e nt fr a m es, i n gr o u ps of 1 0 0 0
( b as eli n e), a n d t w o it er ati o ns of o ur m et h o d als o usi n g a gr o u p si z e of m = 1 0 0 0 ( o urs, 1 a n d 2). Bl urri er r e gi o ns s u c h as t h e t o w er (r e d
i ns et) b e c o m e s h ar p er a n d t h e b uil di n g ( bl u e i ns et) is r e c o nstr u ct e d wit h o ut dist orti o n aft er o nl y t w o it er ati o ns.

Fi g ur e 6. C o nst a nt n u m b e r of g r o u ps wit h o ut r es a m pli n g: Wit h o ut
a d di n g n e w virt u al e x p os ur es at e a c h l e v el, t h e m oti o n tr aj e ct or y esti m at es
ar e u nr eli a bl e, r es ulti n g i n bl ur a n d g h osti n g artif a cts.

bi n ar y fr a m es ar e a v ail a bl e at ∼ 1 0 0 k H z, s etti n g m ≈ 2 5 0-
7 5 0 a c hi e v es hi g h- q u alit y r es ults a cr oss diff er e nt m oti o n
s p e e ds a n d li g ht l e v els, wit h hi g h er v al u es b ett er s uit e d f or
e xtr e m el y l o w li g ht, a n d l o w er v al u es f or f ast m oti o n. S e e
s u p pl e m e nt ar y m at eri al f or d et ails o n t h e as y m pt oti c b e h a v-
i or of t his gr o u pi n g p oli c y, a n d t h e i m p a ct of t h e c h oi c e of
t h e r ef er e n c e fr a m e f or e a c h gr o u p.

M e r g e: T h e fr a m es wit hi n e a c h gr o u p ar e w ar p e d a n d
m er g e d. T h e w ar p o p er ati o n is a p pli e d l o c all y wit hi n e a c h
gr o u p. A p pl yi n g t h es e w ar ps l o c all y wit h r es p e ct t o t h e
gr o u p’s c e nt er fr a m e (i nst e a d of a gl o b al r ef er e n c e fr a m e)
is criti c al; it e ns ur es t h at t h e fr a m es wit hi n e a c h gr o u p o nl y
n e e d t o b e w ar p e d b y s m all a m o u nts. T h e w ar p e d fr a m es
ar e t h e n m er g e d usi n g E q. ( 3 ) a n d t o n e- m a p p e d t o s R G B.

L o c at e: T h e p air wis e w ar ps b et w e e n m er g e d fr a m es ar e es-
ti m at e d usi n g a n off-t h e-s h elf m et h o d. A n y drift i ntr o d u c e d
i n t his st e p is c orr e ct e d d uri n g s u bs e q u e nt it er ati o ns.

I nt e r p ol at e: T h e “ L o c at e ” st e p esti m at es h o m o gr a p hi es
a cr oss gr o u ps of m er g e d bi n ar y fr a m es. I n t his st e p, w e i n-
t er p ol at e t h es e esti m at e d h o m o gr a p h y m atri c es a cr oss ti m e
t o g et t h e fi n e-s c al e w ar ps l at er us e d t o w ar p i n di vi d u al bi-
n ar y fr a m es . A n at ur al w a y t o i nt er p ol at e h o m o gr a p hi es
is usi n g a g e o d esi c i nt er p ol ati o n [1 2 ]. I n pr a cti c e, a n e x-
t e n d e d L u c as- K a n a d e f or m ul ati o n [3 ] is m or e r o b ust si n c e it
a v oi ds c o m p uti n g m atri x i n v ers es a n d is n u m eri c all y m or e
st a bl e. We p erf or m c u bi c i nt er p ol ati o n o n t h e ei g ht fr e e p a-
r a m et ers, p i , of t h e 3 × 3 h o m o gr a p h y m atri x:

H =




1 + p 1 p 3 p 5

p 2 1 + p 4 p 6

p 7 p 8 1



 . ( 4)

T h e r es ulti n g i nt er p ol at e d h o m o gr a p hi es ar e a bl e t o r e-
s ol v e e xtr e m el y hi g h-s p e e d m oti o n at t h e gr a n ul arit y of i n-
di vi d u al bi n ar y fr a m es ( ∼ 1 0 0 k H z), t h us si g ni fi c a ntl y mit-
i g ati n g t h e n ois e- bl ur tr a d e off.

C o m p ut ati o n al C o nsi d e r ati o ns: I nst e a d of t h e pr o p os e d
r e-s a m pli n g m et h o d, o n e c o ul d cr e at e virt u al e x p os ur es
c e nt er e d ar o u n d e a c h ti m e i nst a n c e, i n a sli di n g wi n d o w
m a n n er, a n d r e gist er t h os e. T his w o ul d n ot o nl y b e c o m-
p ut ati o n all y e x p e nsi v e, as o n e w o ul d n e e d t o c o nstr u ct ( a n d
e xtr a ct f e at ur es fr o m) h u n dr e ds of t h o us a n ds of a g gr e g at e
fr a m es, b ut w o ul d als o pr o d u c e bl urr y r es ults as t h e r e g-
istr ati o n pr o c ess will b e s e nsiti v e t o t h e bl ur i ntr o d u c e d
i n e a c h a g gr e g at e fr a m e. T h e it er ati v e n at ur e of t h e pr o-
p os e d m et h o d all o ws f or pr o gr essi v el y b ett er l o c ali z ati o n as
at e a c h it er ati o n, t h e m er g e d fr a m es ar e pr o gr essi v el y l ess
bl urr y. T his is s h o w n i n Fi g. 3 ( d) as t h e err or b ars o n e x-
isti n g p oi nts g et s m all er i n t h e s e c o n d it er ati o n. T h us, t h e
n ai v e sli di n g- wi n d o w a p pr o a c h w o ul d als o n e e d t o b e it er-
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Fi g ur e 7. S u p e r- r es ol uti o n o n e x p e ri m e nt al d at a: B y i nt er p ol ati n g h o m o gr a p hi es o v er a d diti o n al virt u al e x p os ur es, o ur  m et h o d c a n
s u p er-r es ol v e t h e s e ns or’s n ati v e r es ol uti o n ( ) b y .  D et ails s u c h as t e xt o n t h e b uil di n g (r e d, gr e e n i ns ets) a n d fi n er str u ct ur es
s u c h as tr e e br a n c h es ( bl u e i ns et) ar e s u p er-r es ol v e d.

at e d u p o n, yi el di n g a c o m pl e xit y of O ( ), f or pr o c essi n g
fr a m es o v er  wi n d o ws of si z e ( ass u mi n g t h e n u m b er of

it er ati o ns st a ys c o nst a nt). I n c o ntr ast, o ur it er ati v e  m et h o d
h as a n as y m pt oti c r u nti m e of O ( ), pr o vi di n g si g ni fi-
c a nt s p e e d u p o v er t h e sli di n g- wi n d o w a p pr o a c h.

5.  E x p e ri m e nts a n d  R es ults

5. 1. S et u p: Si m ul ati o ns a n d  H a r d w a r e

We d e m o nstr at e o ur t e c h ni q u e i n si m ul ati o n a n d t hr o u g h
r e al- w orl d e x p eri m e nts usi n g a S P A D h ar d w ar e pr ot ot y p e.

Si m ul ati o n  D et ails: We si m ul at e a S P A D arr a y c a pt uri n g a
p a n or a mi c s c e n e b y st arti n g  wit h hi g h-r es ol uti o n p a n or a mi c
i m a g es d o w nl o a d e d fr o m t h e i nt er n et.  We cr e at e c a m er a
tr aj e ct ori es a cr oss t h e s c e n e s u c h t h at t h e S P A D’s fi el d of
vi e w ( F O V) s e es o nl y a s m all p orti o n of t h e p a n or a m a at a
ti m e.  At e a c h ti m e i nst a nt of t h e tr aj e ct or y,  w e si m ul at e a bi-
n ar y fr a m e fr o m t h e F O V of t h e gr o u n d tr ut h i m a g e b y first
u n d oi n g t h e s R G B t o n e  m a p pi n g t o o bt ai n li n e ar i nt e nsit y
esti m at es, a n d t h e n a p pl yi n g  E q. ( 2 ) t o si m ul at e t h e bi n ar y
p h ot o n str e a m.  R G B i m a g es ar e si m ul at e d b y a v er a gi n g t h e
gr o u n d tr ut h li n e ar i nt e nsiti es o v er a c ert ai n e x p os ur e a n d
a d di n g  G a ussi a n n ois e [ 1 4 ].

H a r d w a r e  P r ot ot y p e: F or r e al e x p eri m e nts,  w e us e t h e
S wiss S P A D [ 3 9 ] t o c a pt ur e bi n ar y fr a m es ( Fi g. 1 ( a)).  T h e
s e ns or h as a us a bl e r es ol uti o n of 2 5 4 4 9 6 pi x els. It d o es
n ot h a v e  mi cr o-l e ns es, or a c ol or filt er arr a y, a n d t h e fill
f a ct or is 1 0 5 % wit h 1 6 8 pi x el pit c h.  D es pit e t h es e li m-
it ati o ns, it is c a p a bl e of c a pt uri n g bi n ar y fr a m es at 1 0 0 k H z.
I m pl e m e nt ati o n  D et ails: We us e  O p e n C V’s r e gistr ati o n
al g orit h m b as e d o n SI F T a n d  R A N S A C h o m o gr a p h y fit-
ti n g t o  m at c h virt u al e x p os ur es.  O ur i m pl e m e nt ati o n t a k es
r o u g hl y t e n  mi n ut es p er it er ati o n t o pr o c ess 1 0 0 fr a m es.
W hil e f a ct ors s u c h as r es ol uti o n a n d  wi n d o w si z e ( )  will
aff e ct r u nti m e, o ur i m pl e m e nt ati o n is t hr ottl e d b y t h e u n-

d erl yi n g r e gistr ati o n al g orit h m  w hi c h r e c o m p ut es f e at ur es
at e v er y l e v el. F urt h er o pti mi z ati o ns a n d f e at ur e c a c hi n g
w o ul d gr e atl y i m pr o v e r u nti m e.

5. 2.  R es ults a n d  C a p a biliti es

F ast  M oti o n  R e c o v e r y: Fi g. 4 (l eft) s h o ws a n e x a m pl e
p a n or a m a r e c o nstr u cti o n i n a c h all e n gi n g s c e n ari o  w h er e
t h e c a m er a  m o v es al o n g a n ar bitr ar y tr aj e ct or y a cr oss t h e
f ull F O V.  C o n v e nti o n al p a n or a m a r e c o nstr u cti o n t e c h ni q u es
f ail, e v e n if t h er e is s uf fi ci e nt li g ht i n t h e s c e n e, b e c a us e i n-
di vi d u al fr a m es s uff er fr o m e xtr e m e  m oti o n bl ur,  m a ki n g it
dif fi c ult t o fi n d r eli a bl e f e at ur e  m at c h es.  B y it er ati v el y cr e-
ati n g st a g g er e d virt u al e x p os ur es, o ur  m et h o d c a n r es ol v e
m oti o n t h at  w o ul d ot h er wis e b e e ntir el y c o nt ai n e d  wit hi n a
si n gl e e x p os ur e of a c o n v e nti o n al c a m er a i m a g e.  O bs er v e
t h at o ur a p pr o a c h is c a p a bl e of r e c o v eri n g a n e ar- p erf e ct
m oti o n tr aj e ct or y,  w hi c h, as s e e n i n t h e z o o m e d-i n cr o ps,
f urt h er e n a bl es hi g h- fi d elit y s c e n e r e c o nstr u cti o n.

L o w  Li g ht  R o b ust n ess: Fi g. 4 ( c e nt er) s h o ws t h e c h al-
l e n gi n g s c e n ari o  w h er e t h e c a m er a p a ns a cr oss a d ar k
s c e n e.  H er e, t h e c o n v e nti o n al  R G B  m et h o d f ails b e c a us e
n o  m at c h es ar e f o u n d i n t h e e xtr e m el y n ois y  R G B fr a m es.
T h e sit u ati o n g ets  w ors e i n Fi g. 4 (ri g ht)  w h er e l o w li g ht
is a c c o m p a ni e d b y e xtr e m el y f ast c a m er a  m oti o n. I n t his
e xtr e m el y l o w fl u x r e gi m e, t h e  R G B i m a g e is d o mi n at e d b y
r e a d n ois e a n d c a us es f e at ur e r e gistr ati o n t o f ail. I n c o ntr ast,
o ur a p pr o a c h pr o d u c es hi g h- q u alit y r e c o nstr u cti o ns.

Gl o b all y  C o nsist e nt  M at c hi n g: A k e y iss u e  w h e n gl o b al
m oti o n is esti m at e d pi e c e b y pi e c e is t h at of drift: a n y err or
i n t h e p air wis e r e gistr ati o n pr o c ess a c c u m ul at es o v er ti m e.
T his p h e n o m e n o n is cl e arl y visi bl e i n t h e  R G B p a n or a m a
i n Fi g. 4 (l eft) — n ot o nl y d o es t h e esti m at e d  m oti o n tr aj e c-
t or y (r e d) drift a w a y fr o m t h e gr o u n d tr ut h ( bl a c k), b ut t h e
p a n or a m a g ets str et c h e d as c o m p ar e d t o t h e gr o u n d tr ut h
p a n or a m a o utli n e ( bl a c k d ott e d li n e).  T his drift g ets c or-
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Fi g ur e 8. A p pli c ati o n t o c o n v e nti o n al hi g h-s p e e d c a m e r as: ( a)  We us e P h otr o n’s I n fi ni c a m as o ur hi g h-s p e e d c a m er a  m o u nt e d  wit h
si mil ar o pti cs as o ur S P A D c a m er a pr ot ot y p e. ( b) I n di vi d u al i m a g e fr a m es fr o m t h e c o m m er ci al hi g h-s p e e d c a m er a ar e e xtr e m el y n ois y
a n d s h o w c o m pr essi o n artif a cts e v e n  w h e n c a pt uri n g fr a m es at sl o w er  m oti o n a n d r u n ni n g at f ps. P a n or a m a r e c o nstr u cti o n usi n g
s u c h fr a m es f ails d u e t o a l a c k of r eli a bl e f e at ur e  m at c h es a cr oss fr a m es. ( c)  Usi n g a l e ns  wit h a l ar g er a p ert ur e ( f / . i nst e a d of f / . )
t h e fr a m e q u alit y dr a m ati c all y i m pr o v es.  H o w e v er, d es pit e t h e I n fi ni c a m’s hi g h r es ol uti o n of a n d sl o w er  m oti o n, t h e t e xt o n
t h e si g n is still bl urr y c o m p ar e d t o t h e S P A D c a m er a r es ult i n Fi g. 1 ( c). ( d) I n t his hi g h er fl u x r e gi m e,  w e c a n r e c o nstr u ct a p a n or a m a (t h e
v erti c al b a n d artif a cts ar e r e fl e cti o ns fr o m t h e  wi n d o w), al b eit a bl urr y o n e as e a c h i n di vi d u al fr a m e is bl urr y.  T his d e m o nstr at es t h at  w hil e
o ur  m et h o d  w or ks  wit h hi g h-s p e e d c a m er as, it is i d e all y s uit e d f or si n gl e- p h ot o n i m a gi n g.

r e ct e d  wit h t h e pr o p os e d  m et h o d d u e t o t h e it er ati v e r e fi n e-
m e nt of b ot h t h e  m oti o n esti m at e a n d t h e r es ulti n g r e c o n-
str u cti o n. Fi g. 5 d e m o nstr at es s u c h it er ati v e r e fi n e m e nt us-
i n g r e al S P A D c a pt ur es  wit h o ur h ar d w ar e pr ot ot y p e.  As
w e i n cr e as e t h e n u m b er of it er ati o ns, t h e gl o b al s h a p e of
t h e p a n or a m a g ets r e cti fi e d.  T h e pr o gr essi v e i m pr o v e m e nt
of i n di vi d u al a g gr e g at e fr a m es is s h o w n i n Fi g. 1 ( b).

S u p e r- R es ol uti o n a n d  Ef fi ci e nt  R e gist r ati o n: D u e t o
d e ns e t e m p or al s a m pli n g, a n d t h e r es ulti n g fi n e- gr ai n e d h o-
m o gr a p h y esti m at es, t h e pr o p os e d  m et h o d e n a bl es s u p er-
r es ol uti o n i n t h e r e c o nstr u ct e d p a n or a m as.  T his is a c hi e v e d
b y a p pl yi n g a s c ali n g tr a nsf or m t o t h e esti m at e d h o m o-
gr a p hi es b ef or e t h e  m er gi n g st e p.  T his s c ali n g tr a nsf or m
str et c h es t h e gri d of pi x els i nt o a l ar g er gri d, r es ulti n g i n
s u p er-r es ol uti o n. F urt h er, t o s a v e o n c o m p ut e a n d  m e m or y
c osts, t his s c ali n g f a ct or c a n b e gr a d u all y i ntr o d u c e d a cr oss
it er ati o ns. F or e x a m pl e, if t h e g o al is t o s u p er-r es ol v e b y a
s c al e of 4 ,  w e c o ul d s c al e t h e esti m at e d  w ar ps b y a f a ct or
of t w o o v er t w o it er ati o ns. It is als o p ossi bl e t o us e s c ali n g
f a ct ors t h at ar e s m all er t h a n o n e i n t h e i niti al it er ati o ns of
t h e pi p eli n e.  T his c a n b e d o n e t o cr e at e l ar g e-s c al e p a n or a-
m as, s u c h as t h e o n e i n Fi g. 1 ( c),  w hil e  m ai nt ai ni n g l o w
c o m p ut ati o n al a n d  m e m or y f o ot pri nts.  A n e x p eri m e nt al r e-
s ult  wit h s u b- pi x el r e gistr ati o n is s h o w n i n Fi g. 7 .

Hi g h  D y n a mi c  R a n g e: Si n gl e p h ot o n c a m er as h a v e r e-
c e ntl y b e e n d e m o nstr at e d t o h a v e hi g h d y n a mi c r a n g e

( H D R) c a p a biliti es [1 8 , 1 7 , 2 ].  B y p erf or mi n g hi g h-
a c c ur a c y h o m o gr a p h y esti m ati o n a n d r e gistr ati o n, t h e pr o-
p os e d  m et h o d is a bl e t o  m er g e a l ar g e n u m b er of bi n ar y
m e as ur e m e nts fr o m a gi v e n s c e n e p oi nt, t h us a c hi e vi n g
H D R. Fi g. 9 s h o ws a r e al- w orl d e x a m pl e of  H D R o n a s e-
q u e n c e of bi n ar y fr a m es c a pt ur e d at ni g ht.

E xt e nsi o n t o  Hi g h- S p e e d  C a m e r as: T h e str ati fi e d r e-
s a m pli n g a p pr o a c h c a n b e e xt e n d e d t o ot h er hi g h-s p e e d
i m a gi n g  m o d aliti es t h at all o w f ast s a m pli n g.  T h e o nl y as-
s u m pti o n is t h at i n di vi d u al fr a m es c o nt ai n  mi ni m al  m oti o n
bl ur a n d c a n b e c o m bi n e d i n s u c h a  w a y t h at b o osts S N R
a n d all o ws f or f e at ur e  m at c hi n g.  We d e m o nstr at e t his us-
i n g a c o m m er ci all y a v ail a bl e hi g h-s p e e d c a m er a ( P h otr o n
I n fi ni c a m) i n Fi g. 8 ( a).  T his c a m er a c a pt ur es 1 0 0 0 f ps at
its f ull r es ol uti o n of 1 2 4 6 1 0 2 4 ,  wit h hi g h er fr a m e r at es
a v ail a bl e f or l o w er r es ol uti o ns.  All fr a m es ar e c o m pr ess e d
o n t h e c a m er a a n d a c c ess t o r a w fr a m es is n ot p ossi bl e. If
t h e s c e n e is t o o d ar k all us ef ul i nf or m ati o n  will b e c orr u pt e d
b y c o m pr essi o n artif a cts, f urt h er i m p e di n g t h e cr e ati o n of
virt u al e x p os ur es as c o m pr essi o n a n d fr a m e a g gr e g ati o n d o
n ot c o m m ut e.  T his p h e n o m e n o n c a n b e s e e n i n Fi g. 8 ( b),
it o c c urs  w h e n usi n g t h e s a m e o pti c al s et u p as t h e o n e us e d
wit h o ur S P A D pr ot ot y p e ( 7 5 m m f o c al l e n gt h, 5 6 ), e v e n
wit h a  m u c h l o n g er e x p os ur e ti m e ( w hi c h c orr es p o n ds t o
5 0 0 f ps).  T o g et s uf fi ci e nt si g n al t o o v er c o m e t h es e li mit a-
ti o ns  w e i n cr e as e d t h e a p ert ur e t o all o w t h e c a m er a t o c a p-
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Fi g ur e 9. Hi g h d y n a mi c r a n g e i m a g e st a bili z ati o n: B y ali g ni n g
a l ar g e n u m b er of e xtr e m el y d ar k bi n ar y fr a m es,  w e c a n st a bili z e
t h e hi g h-fr e q u e n c y c a m er a s h a k e  w hi c h c a us es t h e a v er a g e i m a g e
t o b e  w as h e d o ut, a n d f ait hf ull y r e c o nstr u ct t his ni g ht-ti m e s c e n e,
r e c o v eri n g d et ail i n b ot h t h e d ar k a n d bri g ht r e gi o ns.

Fi g ur e 1 0. A rti fi ci al fli c k e r, a f ail u r e c as e: T h e fli c k eri n g of
str e et li g hts d u e t o t h e p o w er gri d’s alt er n ati n g c urr e nt c a n b e o b-
s er v e d  w h e n usi n g hi g h fr a m e r at es.  T his fli c k eri n g vi ol at es t h e
bri g ht n ess c o nst a n c y ass u m pti o n us e d b y  m ost r e gistr ati o n al g o-
rit h ms a n d t h us l e a ds t o a r e c o nstr u cti o n f ail ur e.

t ur e 4 m or e li g ht. Fi g. 8 ( c) s h o ws a s a m pl e fr a m e c a pt ur e d
at 5 0 0 f ps  wit h t his n e w s et u p.  D es pit e t h e sl o w er  m oti o n
( 2 sl o w er t h a n s e e n i n Fi g. 1 ( c)) a n d t h e  m u c h l ar g er
r es ol uti o n of t h e I n fi ni c a m, s c e n e d et ails s u c h as t e xt a p-
p e ar bl urr e d.  T h es e fr a m es c a n b e ass e m bl e d i nt o a l ar g er
p a n or a m a usi n g o ur al g orit h m ( Fi g. 8 ( c)), al b eit,  wit h s o m e
r esi d u al bl ur.

Alt h o u g h hi g h-s p e e d s a m pli n g e n a bl es t h e cr e ati o n of
virt u al e x p os ur es, t h e r e c o nstr u cti o n q u alit y d et eri or at es i n
c h all e n gi n g c o n diti o ns d u e t o b ot h t h e hi g h r e a d n ois e a n d
t h e r el ati v el y l o w er s a m pli n g r at e of hi g h-s p e e d c a m er as,
t h us s u g g esti n g t h at t h e pr o p os e d t e c h ni q u es ar e i d e all y
s uit e d f or si n gl e- p h ot o n i m a gi n g.

6.  Li mit ati o ns a n d  F ut u r e  O utl o o k

B ri g ht n ess  C o nst a n c y  F ail u r e :  As s e e n i n Fi g. 1 0 , o ur
h ar d w ar e pr ot ot y p e is f ast e n o u g h t o d et e ct a n d e v e n  m e a-
s ur e t h e fli c k eri n g of arti fi ci al li g hti n g d u e t o t h e el e ctri c
gri d.  W hil e t his c a n b e us e d t o c at e g ori z e li g ht s o ur c es a n d
m e as ur e t h e gri d’s l o a d [ 3 6 ], it c a n als o c a us e t h e u n d erl yi n g
r e gistr ati o n al g orit h m t o f ail as t h e bri g ht n ess c o nst a n c y as-
s u m pti o n is vi ol at e d.  T his  m a y b e  miti g at e d usi n g s p ati all y

Fi g ur e 1 1. Hi g h-s p e e d 3 D p os e esti m ati o n usi n g  C O L M A P:
N ai v el y a v er a gi n g a dj a c e nt bi n ar y fr a m es fr o m a si n gl e p h ot o n
c a m er a e n a bl es b ett er 3 D r e c o nstr u cti o n a n d p os e r e c o v er y t h a n
w h at is p ossi bl e  wit h a hi g h-s p e e d or c o n v e nti o n al c a m er a.  A
pr o misi n g f ut ur e r es e ar c h dir e cti o n is t o a p pl y t h e str ati fi e d r e-
s a m pli n g i d e as p ut f or w ar d i n t his p a p er t o p os e esti m ati o n.

v ar yi n g virt u al e x p os ur es (l o n g er e x p os ur es i n r e gi o ns  wit h
n o n- c o nst a nt bri g ht n ess).

B e y o n d t h e  Pl a n a r S c e n e  Ass u m pti o n :  T h e a p pli c ati o ns
s h o w n i n t his p a p er us e a h o m o gr a p h y- b as e d  m oti o n  m o d el
w hi c h c h ar a ct eri z es gl o b al c a m er a  m oti o n u n d er t h e pl a-
n ar s c e n e ass u m pti o n.  A n i m p ort a nt n e xt st e p is t o e xt e n d
t h es e i d e as t o 3 D s c e n es  wit h gl o b al  m oti o n, s u c h as 6- D o F
p os e esti m ati o n. Fi g. 1 1 s h o ws t h at t h e hi g h t e m p or al s a m-
pli n g pr o vi d e d b y usi n g si n gl e p h ot o n c a m er as i m pr o v es
C O L M A P’s [ 3 4 ] p os e esti m ati o n a n d s p ars e r e c o nstr u cti o n
w h e n si m pl y a v er a gi n g n ei g h b ori n g fr a m es.  H o w c a n t his
i niti al p os e esti m at e b e us e d t o r e fi n e o ur r e c o nstr u cti o n ?
We dis c uss t w o p ossi bl e 3 D- c o nsist e nt a g gr e g ati o n  m et h-
o ds b el o w  w hi c h ar e pr o misi n g f ut ur e r es e ar c h dir e cti o ns.

I m pli cit 3 D  R e p r es e nt ati o ns: O n e  w a y t o p erf or m t h e
str ati fi e d 3 D a g gr e g ati o n of bi n ar y fr a m es n e e d e d t o c o n-
v er g e t o a hi g h- q u alit y p os e esti m at e  w o ul d b e t o a d a pt t h e
r e c e nt  w or k d o n e o n i m pli cit r e pr es e nt ati o ns [2 9 , 3 0 , 3 7 ] t o
w or k  wit h bi n ar y i m a g es.  H o w e v er n u m er o us c h all e n g es
r e m ai n s u c h as i) h o w t o a d a pt t h e r e n d eri n g  m o d el t o n o n-
diff er e nti a bl e i m a g e d at a, ii) h o w t o tr ai n a n d u p d at e t his
r e pr es e nt ati o n i n a n o nli n e  m a n n er, a n d iii) h o w t h e st o c h as-
ti c n at ur e of bi n ar y fr a m es  will aff e ct t h e cr e ati o n a n d r e-
fi n e m e nt of a gl o b all y c o nsist e nt 3 D r e pr es e nt ati o n.

D e ns e  M oti o n  M o d els: A  m or e g e n er al  m oti o n  m o d el,
s u c h as o pti c al fl o w, c o ul d b e a p pli e d pi x el- wis e t o all o w
f or r o b ust, 3 D- c o nsist e nt bi n ar y fr a m e a g gr e g ati o n  wit h o ut
r es orti n g t o a t hr e e- di m e nsi o n al r e pr es e nt ati o n.  A r e c e nt
w or k [ 2 7 ] h as a p pli e d o pti c al fl o w t o bi n ar y fr a m es  wit h
t h e g o al of r e c o nstr u cti n g hi g h- q u alit y i m a g es as o p p os e d
t o r e c o v eri n g 3 D str u ct ur e a n d  m oti o n.  T his  m et h o d esti-
m at es p er-fr a m e o pti c al fl o w i n a si n gl e s h ot,  m e a ni n g t h at
a p pl yi n g o ur str ati fi e d al g orit h m i n t his s c e n ari o c o ul d l e a d
t o i m pr o v e d r e c o nstr u cti o n a n d fi n e- gr ai n p os e esti m at es.
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