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Abstract—Wireless Federated Learning (FL) is a framework
that enables a server to collaboratively train a learning model
with distributed users via wireless channels without sharing
users’ training data. However, due to the engineering-inversion
attack, users’ data privacy leakage during the training process
is a crucial concern. Differential privacy (DP) techniques are
commonly applied to deal with this issue. This approach, however,
can cause degradation in the learning utility. This paper proposes a
privacy-preserving differentially private FL algorithm that applies
time-varying noise variance perturbation. Taking advantage of
the existing wireless channel noises, we jointly design DP noise
variances and users’ transmit power to address privacy and learn-
ing utility tradeoffs in the wireless FL. In addition, the number
of FL iterations is optimized by minimizing the upper bound
on the learning error. We conduct simulations to demonstrate
the effectiveness of our approach in terms of DP guarantee and
learning utility.

Index Terms—Federated learning, differential privacy, time-
varying noise variance, noise perturbation and power control,
convergence analysis.

I. INTRODUCTION

Federated learning (FL) is an emerging decentralized ma-
chine learning (ML) framework that allows multiple distributed
users to collaboratively train a learning model [1]-[5]. It
operates through a series of iterations with a central server
distributing a global learning model and each user training
the global model on its local data to obtain a local model
update. Unlike conventional centralized learning framework
that requires uploading an extensive amount of data to the
central server, only local model updates are uploaded from
the distributed users to the central server [1]. FL has been
thought of as an efficient ML approach in terms of reducing
communication overhead while providing data privacy [1].

Recent findings, however, have shown that model updates
in FL can lead to severe privacy breaches [6], [7], motivating
recent research endeavors [8], [9] in privacy-preserving wireless

The work of T. Kim was supported in part by the National Science Founda-
tion (NSF) under Grant CNS2212565, CNS2225577, ITE2226447, the Office
of Naval Research (ONR) under Grant N000142112472, and the NSF and
Office of the Under Secretary of Defense (OUSD) — Research and Engineering,
ITE2326898, as part of the NSF Convergence Accelerator Track G: Securely
Operating Through 5G Infrastructure Program.

FL approaches. A common idea is adding artificial noises to
the local model updates prior to sending them to the central
server [9]-[12]. The artificially-added DP noise can ensure that
no specific local data point can be reverse-engineered from the
model updates, thus safeguarding the privacy of users’s data. In
particular, there is a trade-off between privacy guarantee and
learning accuracy performance that depends on the artificial
DP noise variances. The larger the DP noise variances are, the
higher the privacy guarantee is, but they lower the learning
utility.

To balance the trade-off between learning accuracy and
privacy guarantee, a time-varying noise perturbation mechanism
is proposed in [13]. Compared to the conventional differentially
private FL approaches [9], [10], [12] that apply the same
noise variance, the DP noise variance in [13] is adaptively
changed at every FL iteration. As the FL proceeds, smaller
DP noise variances are applied to maintain a DP guarantee
without sacrificing learning performance. The approach in [13]
made the ideal assumption that the local model updates are
transmitted through noiseless communication channels to the
central server.

Unlike [9]-[13], noisy wireless channels between the central
server and distributed users were considered in [14]-[16]. The
common methods in [14]-[16] are decreasing the signal-to-
noise ratio (SNR) of local model update links, which have the
equivalent effect as increasing the DP noise variances. This
method, however, impairs transmission quality in model update
links, leading to learning accuracy degradation.

This paper proposes a differentially private wireless FL
method that applies time-varying noise perturbation to strike
a tradeoff between privacy and communication quality. We
consider the wireless channel noise in our proposed algorithm.
We characterize its DP performance guarantee by jointly de-
signing the DP noise variances and the users’ transmit power,
while maintaining the minimum SNR performances in the
local model update links. We analyze the convergence of the
proposed algorithm and derive an upper bound of the expected
learning error. We optimize the number of FL iterations by
minimizing the derived upper bound. Simulations are conducted
to demonstrate the benefits of the proposed method.



Notation: A bold lowercase letter a is a column vector. The
a”, a(i), and ||al| are, respectively, the transpose, ith entry, and
2-norm of a. |.A| denotes the cardinality of set .A. I denotes an
identity matrix with appropriate dimensions. For x,y € R"*!,
(x,y) denotes their inner product. E[-] denotes the expectation

operator.

II. SYSTEM MODEL AND ALGORITHM
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Fig. 1: Wireless differentially private FL system

We consider a wireless FL system with a central server and
N distributed users, as illustrated in Fig 1, to collaboratively
train a global learning model w* € R?¥! via wireless channels
through 7" FL iterations. The w* is defined by

w* = argmin F(w), ()
where F(w) = ZnN:1 F,(w) is the global loss function and
F,(w) is the local loss function at the nth user, for n € N' =
{1,2,..., N}. The nth user utilizes its data set D,, to locally
train the global model in each FL iteration, where |D,,| = D,
forn € N.

We assume that the server in Fig. 1 is exposed to a malicious
entity, who may attempt to obtain the users’s local data points
in {D,}. To cope with the privacy threat due to the malicious
entity at the server, we propose a differentially private FL
algorithm, which is described in Algorithm 1. In Step 1, the
central server randomly initializes a global model wy when
t = 0 to begin T' FL iterations (Step 2). In Step 3, the server
sends the global model w; € R4*1 as shown in Fig. 1, to
a random subset of users K C N, where |K| = K and K
is uniformly realized, for ¢ = 1,2,--- 7. Next, in Step 5,
the kth user updates the received model through E iterations
of local stochastic gradient descent (localSGD) updates with
data set Dy, to attain w,(f;), for k € K. Specifically, w,(fz =
w,(:t_l) - ntﬁFk(w,(:t_l)), for e = 1,2,..., E, where VFj(-)
denotes the stochastic gradient of Fj(-), n; is the learning rate
at the ¢th FL iteration, and W](fz = w;. Unlike the previous
works [10], [13] that apply the same learning rate for all 7" FL

iterations, the learning rate {r;} are adaptively changed in this
work to accelerate the convergence of Algorithm 1. In Steps
6 and 7, the model difference vy ; = w,(ﬁ — wy is computed

and clipped by a constant C' to obtain uy; = ci Vg, so that
L} [11], [13]. Herein,

P v

the clipping operator facilitates the”trkéfiﬂung stability and DP
privacy guarantee analysis [17]. Then, the a DP Gaussian noise
z; is added to (/puy s to get Wt = \/PUy ¢ + Z¢, as presented
in Step 8, where p is the transmit power for the model update
link and z; has zero-mean and covariance afI. In Step 10, the
perturbed model differences {wy, .} are transferred to the server
via noisy wireless channels to create the (¢ + 1)th global model
Wil = Wi + 7 > pexc(Wee + 1), where ny is the additive
Gaussian noise in the channel with zero-mean and covariance
€21. To ensure an (€,0)-DP guarantee and communication
quality in the model update links, the DP noise variance {o?}
and transmit power p are jointly designed in Section III.

[up.c]| < C, where cj,; = min {1

Algorithm 1 Differentially private FL with time-varying noise
variances
Require: K, {n:}, T, ¢, 6, and C
Output: wrp

1: Initialization: wy and ¢t = 0

2: while ¢t < T do

3: Send w; to users in a random subset of users X C N
while £ € K do

Local model update: w,(f;)

= localSGD(wy, 1, E)
Compute model difference: vy, ; = w,(f;) — Wy
Clipping: uj; = ¢kt Vi,t
Adding DP noise and update: Wy ; = \/pux; + z

end while

10:  Model aggregation: w1 = Wy + % ZkeK(VAVk,t +ny)

1: t=t+1

12: end while
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III. JOINT DP NOISE VARIANCES AND TRANSMIT POWER
OPTIMIZATION

In this section, we present a joint optimization approach to
design the DP noise variances {07} and transmit power p. We
first define the concept of neighbor datasets.

Definition 1. Two data sets A and A’ are neighbors if they
differ by only one data point.

We now define (e, d)-DP [8], for € > 0 and ¢ € (0, 1].
Definition 2. ((¢,0)-DP) A randomized mechanism M : X —

R satisfies (e, §)-DP if for any two neighbor data sets A, A" €
X and for any subset of output S C R it holds that

Pr[M(A) € §] < e Pr[M(A’) € S] + 4. (2)

The (€, §)-DP definition provides a rigorous approach to quan-
tify the privacy guarantee of a randomized mechanism M. The
condition in (2) implies that the smaller ¢ and §, the more
difficult to obtain the individual data point in A even though



the malicious entity has the knowledge about its neighbor A’
(8]

To facillate the (e,d)-DP analysis, we define the ¢5-
sensitivity Ay of a function f [8]:

Ay = max 1 £(A) = fF(A)], 3)

where f(-) is a function defined in A and A’. Using [10,
Lemma 1], the sensitivity of Algorithm 1 is given by

C
ap= Y22 4)

Next, the (e,d)-DP performance of Algorithm 1 is charac-
terized in the following lemma.

Lemma 1. For € > 0, the Algorithm 1 achieves the (e, §)-DP
such that

1>6>0, @)
where & = exp(h(w)), h(w) = *(2‘0;:1)2’
____ND*

KC?2p3 [, ﬁ

The proof of Lemma 1 can be found in the supplement
document [18, Appendix A].

and w =

We note that the DP noise variances {07} and transmit power
p are restricted by the total transmit power v at each user,
ie, 07 + p < v, Vt. It is desirable to design {07} and p
to minimize 6. At the same time, we also want to achieve
a minimum required SNR value 6, (e.g., required quality of
service) at every model update link. These aspects are addressed
in the following problem:

min exp(h(w)), (62)
p{o?}
subject to 0<o?+p< vV, (6b)
p
0 < ———,Vt, 6¢
‘T o+ g (©0
0<p,0< oy, Ve, (6d)

where the constraint (6b) indicates the power constraint per
iteration and the constraint (6d) indicates the required SNR
performance 6, in the model update link.

Since exp(-) in (6a) is a monotonically increasing function,
the problem in (6) is equivalent to

min h(w), (7a)
p{ot}
subject to (6b)-(6d). (7b)

The problem in (7) is non-convex due to the coupling between
p and {0}, which is difficult to solve directly. A conventional
approach to deal with this difficulty is to find a stationary
solution by solving the Karush—Kuhn-Tucker (KKT) conditions
[19], which is complicated when the number of constraints
in (7) (3T + 1) becomes large. Instead of using the KKT
conditions, we propose an approximate solution based on the
shape of the function h(w). It is not difficult to observe that
h(w) = —W is a unimodal function with respect to
w > 0. Therefore, it is sufficient to solve (7) by finding the

maximum and minimum values of w subject to (7b). We have
the following proposition to characterize the solution of (7).

Proposition 1. We define w; = min, (o2} W and wy =
max, (521w subject to (7b), which are achieved by
{p1,{071}} and {ps, {07 ,}}, respectively. Assume that w; =
argmin{h(wi ), h(wz2)}, where I = 1 if h(wz) > h(w;y) and
| = 2, otherwise. Then, the optimal solution {p*, {c7*}} to (7)
is given by {7, {02,}}.

The w; and ws in Proposition 1 can be obtained by applying
numerical search approaches.

IV. CONVERGENCE ANALYSIS

Given the optimal solution p and {07} found in Section III,
we establish the convergence of Algorithm 1 by analyzing the
upper bound of expected learning error E[||w; — w*||?] at the
tth FL iteration.

We first present standard assumptions. in analyzing the
convergence of FL [20].

Assumption 1. (L-smooth [21]) The local objective function
F,(-) is convex, differentiable, and L-smooth, Vn € N,
ie., |[VF,(x) — VF,(y)|| < L||x — y|, Vx,y. We have a
standard property of a L-smooth function, F,(y) < F,(x) +
(VE.(x),y = %) + 5y — x|

Assumption 2. (u-strong convex [21]) The loss function F,(-)
is p-strong convex, (VF,(x) — VF,(y),x —y) > ullx—y|?
Vn e N.

Assumption 3. The stochastic gradient at each user is un-
biased E[VF,(x)] = VF,(x) and has bounded variance
E[|[VE.(x)[?] < 0%, Vn e N.

Lemma 2. ( [22, Lemma F.1]) Suppose X is an unbiased
estimator of x. We define b(x,() as the bias of cliTping

operation min{1; ”Tg”}i, which is given by b(x,C) = ||x —

min{1; ﬁ}i“ Then, we have b(x, C) < %, for p > 1.

Given the latter assumptions, we readily characterize the
upper bound of learning error of Algorithm 1. We begin
with establishing intermediate bounds, which are useful to
our analysis. We define wy;1q = w; + %22;1 u,,; and
Wil = %Zﬁ;lwﬁ), for t = 0,...,7 — 1. Applying
Cauchy-Schwarz inequality to E[||w;y1 — w*||?] = E[||[wy11 —

Wil + Wep1 — Wit + Wepr — w|?] yields
E[lwis1 — w*[*] < 3E[||wit1 — Wepa|]
+ 3E[[Weg1 — Weg [|°] + 3E[[Wer — w7

®)

In the following, the goal is to upper bound the three terms
on the right-hand side (r.h.s.) of (8), which are presented in
Lemmas 3-5, respectively.

Lemma 3. Suppose 1y < min{ﬁ, £3}. The following upper
bound holds,

El|®err —w*[°] < (14 Nog) (1 — pupe) PEl | we — w*||*]+
E(E - 1)2L20J2¢ ,  E%0%n?

N en; 5 + E*(E — 1)L%0%en}.

€))



Lemma 4. Suppose 1, < min{ﬁ,
bound holds,

+=}. The following upper

_ _ 1
El|We1 — Wi [?] < ° (QEZLQnEE[HWt - w7
(10)

+2E%05n; + 2(E — I)EZLQU?enf).

Lemma 5. Suppose 7; < min{ - %7 72 }- The following upper
bound holds,

- w?

+2E2(rj2cnf +2(FE — 1)E2L2U?enf) + max

Ellwesr = West|?] < a(2E2L207E] | w,
1D

0,K’

where a = (p+1+p—;gl>(%+2).

The proofs of Lemmas 3-5 are relegated to the supplemental
document [18, Appendices B-D].
Incorporating (9)-(11) into (8) yields

w*||?] + ma 4, Vt,

where mq ; = 3(1 + Nnt)(l - ;mt) + (& + 6a)E?L*n} and
may = 3E(E—1)L2 L en?+32°2 1 1 3E2(B—1)[20%eni+
6Egaf77t + S(E - 1)E2L20fe77t + 604E20f77t + 6a(E —
) E?L?o%en} + 3(max; 55%), for n; < min{g, {5}. From
the upper bound in (12), we have the following theorem that
characterizes the upper bound of the expected learning error
E[[jw: — w*[?].

Theorem 1. Assume tg,

Ellwerr — w*[[?] < maE[[[w, — (12)

4

such that MNto WEto

Y ERNTEY }

Inin FL> 17 Bao AN 15((S and define n; =
E 7, for t > ¢o. The expected learning error of Algorithm 1 at
the tth learning iterations is upper bounded, V¢ > ¢¢, by
t M,y
E(llwe — w*|*] < E[[[we, — w*] + Mo + 5
t E2u?t
M, 13)
+ EApAge

2
where My = 3(max; 7). M1 48B(E — 1)2L?% e +
24E%0? + L E%% + 960E%03, and My = 192E%(E —
1)L%c%en} + 22(E — 1)E*L?0je + 384a(E — 1) E*L?a7e.
The proof of Theorem 1 can be found in the supplemental
material [18, Appendix E].

On the ths. of (13), LE[||ws, — w*||?], 5oy, and giip
are independent of the DP and channel noises. We note that
these values converge to 0 as t tends to infinity. However,
the term tM, on the r.h.s. of (13) depends on the DP and
wireless channel noises and it diverges as ¢ increases. This
observation implies that the Algorithm 1 may diverge due to
the accumulating DP and communication noises as the FL
proceeds. Therefore, it is necessary to stop Algorithm 1 after
certain FL iterations ¢*. To characterize ¢t*, we minimize the
r.h.s. of (13) with respect to ¢

to 112 M, Ms
t* = argmln? E[||we, — w*||7] + t Mo + VR + Fo0E
(14)

It is not difficult to see that the problem (14) is convex. Hence,
t* can be characterized by equating the first-order derivative
equation to be zero.

V. SIMULATION

We evaluate the learning accuracy of the proposed algorithm
terminated at the optimal number of learning iterations t*
determined by (14).

Perfect communication FL[1], T = 19
2.01 Algorithm 1, t* =9
Benchmark [13], t* =14
1.51
("]
1]
[e]
-
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0.51 N\ —
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Fig. 2: Training loss of Algorithm 1 with ¢* = 9, benchmark
[13] with ¢* = 14, and the perfect communication FL [1] with
T =19.
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Fig. 3: Training accuracy of Algorithm 1 with ¢t* = 9,

benchmark [13] with t* = 14, and the perfect communication

FL [1] with T = 19.

We set the total number of users N = 100, the number of
selected users in each learning iteration ' = 10, the number of
local SGD epochs E = 10, and the clipping threshold C' = 10.
The (¢, d)-DP requirements are ¢ = 10 and § = 0.001. We use
the MNIST dataset [23] for model training, containing 60000
training and 10000 testing data samples of handwritten digits
from O to 9. We train a feed-forward neural network using
Algorithm 1 that consists of three fully-connected networks.



Fig. 2 illustrates the training loss of Algorithm 1, benchmark
[13], and perfect communication FL [1]. It should be noted
that the perfect communication FL does not guarantee any
data privacy in model updates and does not take into account
communication noises {n;} in the model updates. Compared to
the benchmark [13], the proposed approach achieves a smaller
training loss with ¢t* = 9 determined by (14). On the other hand,
the benchmark requires t* = 14 iterations to achieve a close
training loss performance to that of Algorithm 1. This implies
that the Algorithm 1 requires fewer communication overhead
than the benchmark [13].

Fig. 3 illustrates the testing accuracy performance of the
learning models in Fig. 2. It can be seen in Fig. 3 that the
proposed approach achieves the 87% testing accuracy perfor-
mance in t* = 9 iterations while the benchmark [13] requires
t* = 14 to achieve the similar performance. The proposed
approach attains a lower testing accuracy performance than the
perfect communication due to the DP noise introduced into the
model update.

VI. CONCLUSION

A differentially private FL algorithm has been proposed
to jointly address the privacy-preserving and communication
quality. To provide a privacy guarantee while maintaining the
communication quality in the model update link, we jointly
optimized the time-varying DP noise variances and transmit
power subject to the minimum SNR requirements. The con-
vergence behavior of the proposed algorithm was analyzed.
Based on the convergence analysis, the number of FL iterations
is optimized to minimize the learning error of the proposed
algorithm. Through simulations, we show the advantages of
the proposed algorithm.
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