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Abstract

Large language models (LLMs) have demon-
strated an impressive ability to perform arith-
metic and symbolic reasoning tasks, when pro-
vided with a few examples at test time (“few-shot
prompting”). Much of this success can be at-
tributed to prompting methods such as “chain-
of-thought”, which employ LLMs for both under-
standing the problem description by decomposing
it into steps, as well as solving each step of the
problem. While LLMs seem to be adept at this
sort of step-by-step decomposition, LLMs often
make logical and arithmetic mistakes in the solu-
tion part, even when the problem is decomposed
correctly. In this paper, we present Program-
Aided Language models (PAL): a novel approach
that uses the LLM to read natural language prob-
lems and generate programs as the intermediate
reasoning steps, but offloads the solution step to a
runtime such as a Python interpreter. With PAL,
decomposing the natural language problem into
runnable steps remains the only learning task for
the LLM, while solving is delegated to the inter-
preter. We demonstrate this synergy between a
neural LLM and a symbolic interpreter across 13
mathematical, symbolic, and algorithmic reason-
ing tasks from BIG-Bench Hard and others. In
all these natural language reasoning tasks, gener-
ating code using an LLM and reasoning using a
Python interpreter leads to more accurate results
than much larger models. For example, PAL using
CODEX achieves state-of-the-art few-shot accu-
racy on GSM8K, surpassing PaLM-540B which
uses chain-of-thought by absolute 15% top-1. !
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1. Introduction

Until as recently as three years ago, reasoning was consid-
ered to be one of the most significant challenges that large
language models (LLMs) had not yet overcome (Marcus,
2018; 2020; Garcez & Lamb, 2020). Recently, LLMs have
shown impressive success on a wide range of reasoning
tasks, including commonsense (Wei et al., 2021; Sanh et al.,
2021; Madaan et al., 2022), mathematical (Lewkowycz et al.,
2022; Wu et al., 2022; Mishra et al., 2022), and symbolic
reasoning (Yao et al., 2022; Ahn et al., 2022), using few-shot
prompting (Brown et al., 2020).

This process has been accelerated by methods that re-
quire LLMs to generate their explicit reasoning steps,
such as “chain-of-thought” (Wei et al., 2022), “scratch-
pads” (Nye et al., 2021a), and “least-to-most” (Zhou et al.,
2022) prompting. In particular, the widely used chain-of-
thought (COT) method presents the model with the explicit
intermediate steps that are required to reach the final answer.
Then, the model is expected to apply a similar decomposi-
tion to the actual test example, and consecutively reach an
accurate final answer (Ling et al., 2017; Amini et al., 2019).
Nevertheless, while LLMs can decompose natural language
problems into steps and perform simple arithmetic opera-
tions, their performance falls dramatically when dealing
with complex arithmetic (Hendrycks et al., 2021; Madaan &
Yazdanbakhsh, 2022) or large numbers (Geva et al., 2020;
Nogueira et al., 2021; Qian et al., 2022). In fact, even when
fine-tuning a PaLM-based model on 164B tokens of explicit
mathematical content, its two most common failures are
reportedly “incorrect reasoning” and “incorrect calculation”
(Lewkowycz et al., 2022).

In this paper, we propose Program-Aided Language
model (PAL): a novel approach that uses an LLM to read nat-
ural language problems and generate programs as reasoning
steps, but offloads the solution step to a Python interpreter,
as illustrated in Figure 1. This offloading leverages an LLM
that can decompose a natural language problem into pro-
grammatic steps, which is fortunately available using con-
temporary state-of-the-art LLMs that are pre-trained on both
natural language and programming languages (Brown et al.,
2020; Chen et al., 2021a; Chowdhery et al., 2022). While


http://reasonwithpal.com

PAL: Program-aided Language Models 2

Chain-of-Thought (Wei et al., 2022)

o) ~

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 tennis balls. 2 cans of 3 tennis
balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of
bread did they have left?

- /

Model Output

A: The bakers started with 200 loaves. They sold 93 in
the morning and 39 in the afternoon. So they sold 93 +
39 = 132 loaves. The grocery store returned 6 loaves. So
they had 200 - 132 - 6 = 62 loaves left.

The answer is 62.

- x /

Program-aided Language models (this work)

— Input ) \
Q: Roger has 5 tennis balls. He buys 2 more cans of

tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 tennis balls.

tennis balls = 5

2 cans of 3 tennis balls each is

bought balls = 2 * 3

tennis balls. The answer is

answer = tennis balls + bought balls

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery
store returned 6 unsold loaves. How many loaves of bread

Qid they have left? /
\

Model Output

The bakers started with 200 loaves
loaves_baked = 200
They sold 93 in the morning and 39 in the afternoon
loaves_sold morning = 93
loaves sold afternoon = 39
The grocery store returned 6 loaves.
loaves_returned = 6
The answer is
answer = loaves baked - loaves_sold morning
- loaves_sold afternoon + loaves_returned

>>> print(answer ¢

& Y,

Figure 1: A diagram illustrating PAL: Given a mathematical reasoning question, Chain-of-thought (left) generates interme-
diate reasoning steps of free-form text. In contrast, Program-aided Language models (PAL, right) generate intermediate
steps and Python code. This shifts the role of running the reasoning steps from the language model to the Python interpreter.
The final answer is obtained by running the generated reasoning chain. Chain-of-thought reasoning is highlighted in blue;

PAL steps are highlighted in gray and pink;the Python interpreter run is [JifdslifdE BN El Q: ilaReatil.

natural language understanding and decomposition require
LLM:s, solving and reasoning can be done with the external
solver. This bridges an important gap in chain-of-thought-
like methods, where reasoning chains can be correct but
produce an incorrect answer.

We demonstrate the effectiveness of PAL across 13 arith-
metic and symbolic reasoning tasks. In all these tasks,
PAL using Codex (Chen et al., 2021a) outperforms much
larger models such as PalLM-540B using chain-of-thought
prompting. For example, on the popular GSM8K bench-
mark, PAL achieves state-of-the-art accuracy, surpassing
PalLM-540B with chain-of-thought by absolute 15% top-
1 accuracy. When the questions contain large numbers, a
dataset we call GSM-HARD, PAL outperforms COT by an ab-
solute 40%. We believe that this seamless synergy between
a neural LLM and a symbolic interpreter is an essential step

towards general and robust Al reasoners.

2. Background: Few-shot Prompting

Few-shot prompting leverages the strength of large-language
models to solve a task with a set of £ examples that are pro-
vided as part of the test-time input (Brown et al., 2020;
Liu et al., 2021; Chowdhery et al., 2022), where k is usu-
ally a number in the low single digits. These input-output
examples {(z;,v;)}¥_, are concatenated in a prompt p
=(x1-y1) || (2 -y2) || ... || {xk - yx). where “-” denotes
the concatenation of an input and output, and “||”” indicate
the concatenation of different examples. During inference,
a test instance x4 is appended to the prompt, and p || Zest
is passed to the model which attempts to complete p || Z¢cst,
and thereby generate an answer ¥;.s¢. Note that such few-
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shot prompting does not modify the underlying LLM.

Wei et al. (2022) additionally augment each in-context exam-
ple with chain of thought (COT) intermediate steps. Specifi-
cally, each in-context example in the COT setup is a triplet
(x4, ti, y; ), where x; and y; are input-output pair as before,
and ¢; is a natural language description of the steps that are
needed to arrive at the output y; from the input x;. See Fig-
ure 1 for an example. With the additional “thoughts” ¢;, the

promptissetto p = (zq-t1-y1)|[{x2-ta-y2)||. . . [[{Tk te yk)-

During inference, the new question z;.,; is appended to
the prompt as before and supplied to the LLM. Crucially,
the model is tasked with generating both the thought ¢,
and the final answer y,.s;. This approach of prompting the
model to first generate a reasoning process ts.s; improves
the accuracy of the answer y;.5; across a wide range of
tasks (Wang et al., 2022a; Wei et al., 2022; Zhou et al.,
2022; Wang et al., 2022b).

3. Program-aided Language Models

In a Program-aided Language model, we propose to gen-
erate the thoughts ¢ for a given natural language prob-
lem x as interleaved natural language (NL) and program-
ming language (PL) statements. Since we delegate the
solution step to an interpreter, we do not provide the fi-
nal answers to the examples in our prompt. That is, ev-
ery in-context example in PAL is a pair (z;, t;), where
t; = [s1,82,...,sn] with each s; € NL UPL, a sequence
of tokens in either NL or PL. The complete prompt is thus p
= {21 -t1) || (w2 ta) || ... | (- ta).

Given a test instance .5, we append it to the prompt,
and p || Ztes: 1s fed to the LM. We let the LM generate a
prediction ;.s¢, which contains both the intermediate steps
and their corresponding programmatic statements.

4 N\
Roger started with 5 tennis balls.

tennis _balls = 5

2 cans of 3 tennis balls each is

bought balls = 2 * 3

tennis balls. The answer is

answer = tennis balls + bought balls

.

Figure 2: A close-up of a single example from
a PAL prompt. Chain-of-thought reasoning is
highlighted in blue, and PAL programmatic steps

are highlighted in gray and pink.

Example A close-up of the example from Figure 1 is
shown in Figure 2. While chain-of-thought only de-
composes the solution in the prompt into natural lan-

guage steps such as Roger started with 5 tennis balls and
2 cans of 3 tennis balls eachis 6, in PAL we also aug-
ment each such NL step with its corresponding pro-
grammatic statement such as tennis balls = 5 and
bought balls = 2 x 3. This way, the model learns
to generate a program that will provide the answer for the
test question, instead of relying on LLM to perform the
calculation correctly.

We prompt the language model to generate NL intermediate
steps using comment syntax (e.g. “# ” in Python)
such they will be ignored by the interpreter. We pass the
generated program t4.4; to its corresponding solver, we run
it, and obtain the final run result y;.s:. In this work we use
a standard Python interpreter, but this can be any solver,
interpreter or a compiler.

Crafting prompts for PAL  In our experiments, we lever-
aged the prompts of existing work whenever available, and
otherwise randomly selected the same number (3-6) of ex-
amples as previous work for creating a fixed prompt for
every benchmark. In all cases, we augmented the free-form
text prompts into PAL-styled prompts, leveraging program-
ming constructs such as for loops and dictionaries when
needed. Generally, writing PAL prompts is easy, and does
not require more effort than writing the initial COT prompts.

We also ensure that variable names in the prompt mean-
ingfully reflect their roles. For example, a variable that
describes the number of apples in the basket should have a
name such as num_apples_in_basket. This keeps the
generated code linked to the entities in the question. In
Section 6, we show that such meaningful variable names are
critical to the downstream performance. Notably, it is also
possible to incrementally run the PL segments and feed the
execution results back to the LLM to generate the following
blocks. For simplicity, in our experiments, we used a single,
post-hoc, execution.

This work focuses on COT-style reasoning chain, but in
Appendix J we show that PAL also improves Least-to-
Most (Zhou et al., 2022) prompts, which introduce rea-
soning chains that decompose a question into sub-questions.

4. Experimental Setup

Data and in-context examples We experiment with
three broad classes of reasoning tasks: (1) mathematical
problems (§4.1) from a wide range of datasets including
GSMS8K (Cobbe et al., 2021), SVAMP (Patel et al., 2021),
ASDIV (Miao et al., 2020), and MAWPS (Koncel-Kedziorski
etal., 2016); (2) symbolic reasoning (§4.2) from BIG-Bench
Hard (Suzgun et al., 2022); (3) and algorithmic problems
(§4.3) from BIG-Bench Hard as well. Details of all datasets
are shown in Appendix I. For all of the experiments for
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\Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left? \

money_initial = 23
bagels = 5
bagel_cost = 3

answer = money_left

money_spent = bagels x bagel_cost
money_left = money_initial - money_spent

Figure 3: Example prompt for the mathematical reasoning tasks, from the GSM8K benchmark.

Q: On the table, you see a bunch of objects arranged in a row: a purple paperclip, a pink stress ball,|
a brown keychain, a green scrunchiephone charger, a mauve fidget spinner, and a burgundy pen
'What is the color of the object directly to the right of the stress ball?

for i,

break

stress_ball_idx = None

object in enumerate (objects):

if object[0] == 'stress ball':
stress_ball_idx

# Find the directly right object
direct_right = objects[stress_ball_idx+1]
# Check the directly right object's color
answer = direct_right[1]

=1

Figure 4: An example for a PAL prompt in the COLORED OBJECTS task. For space considerations, we omit the code that

creates the list objects.

which COT prompts were available, we used the same in-
context examples as used by previous work. Otherwise, we
randomly sampled a fixed set of in-context examples, and
used the same set for PAL and COT.

Baselines We consider three prompting strategies: DI-
RECT prompting — the standard prompting approach
using pairs of questions and immediate answers (e.g.,
Answer: 11) as in Brown et al. (2020); chain-of-
thought (COT) prompting (Wei et al., 2022); and our PAL
prompting. We performed greedy decoding from the lan-
guage model using a temperature of 0. Unless stated oth-
erwise, we used CODEX (code—-davinci-002) as our
backend LLM for both PAL, DIRECT, and COT. In datasets
where results for additional base LMs, such as PaLM-540B,
were available from previous work, we included them as
COT paLM-5408-

4.1. Mathematical Reasoning

We evaluate PAL on eight mathematical word problem
datasets. Each question in these tasks is an algebra word
problem at grade-school level. An example for a question
and PAL example prompt is shown in Figure 3. We found
that using explicit NL intermediate steps does not further
benefit these math reasoning tasks, hence we kept only the
meaningful variable names in the prompt.

4.2. Symbolic Reasoning

We applied PAL to three symbolic reasoning tasks from
BIG-Bench Hard (Suzgun et al., 2022), which involve rea-
soning about objects and concepts: (1) COLORED OBJECTS
requires answering questions about colored objects on a sur-
face. This task requires keeping track of relative positions,
absolute positions, and the color of each object. Figure 4
shows an example for a question and example PAL prompt.
(2) PENGUINS describes a table of penguins and some ad-
ditional information in natural language, and the task is to
answer a question about the attributes of the penguins, for
example, “how many penguins are less than 8 years old?”.
While both PENGUINS and COLORED OBIJECT tasks re-
quire tracking objects, PENGUINS describes dynamics as
well, since the penguins in the problem can be added or
removed. Figure 17 in Appendix K.2 shows an example
for a question, a chain-of-thought prompt, and PAL prompt.
(3) DATE is a date understanding task that involves inferring
dates from natural language descriptions, performing addi-
tion and subtraction of relative periods of time, and having
some global knowledge such as “how many days are there
in February”, and performing the computation accordingly.
Appendix K.3 shows example prompts.
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three fridges. How many vegetables do I have?

Q: I have a chair, two potatoes, a cauliflower, a lettuce head, two tables, a cabbage, two onions, and

# note:
or fridges
vegetables_to_count =

'potato': 2,
'cauliflower': 1,
'lettuce head': 1,
'cabbage': 1,
'onion': 2

}

answer

I'm not counting the chair,

sum (vegetables_to_count.values())

tables,

{

Figure 5: An example for a PAL prompt in the OBJECT COUNTING task. The base LM is expected to convert the input into
a dictionary where keys are entities and values are their quantities, while filtering out non-vegetable entities. Finally, the

answer is the sum of the dictionary values.

GSM8K GSM-HARD SVAMP ASDIV SINGLEEQ SINGLEOP ADDSUB MULTIARITH
DIRECT codex 19.7 5.0 69.9 74.0 86.8 93.1 90.9 44.0
CoT uyr2-208 4.1 - 12.6 16.9 - - 18.2 10.7
CoOT LampA-137B 17.1 - 39.9 49.0 - - 52.9 51.8
COT codex 65.6 23.1 74.8 76.9 89.1 91.9 86.0 95.9
COT parLM-5408 56.9 - 79.0 73.9 92.3 94.1 91.9 94.7
CoT Minerva 540B 58.8 - - - - - - -
PAL 72.0 61.2 79.4 79.6 96.1 94.6 92.5 99.2

Table 1: Problem solve rate (%) on mathematical reasoning datasets. The highest number on each task is in bold. The results
for DIRECT and PalLM-540B are from Wei et al. (2022), the results for LaMDA and UL2 are from Wang et al. (2022b), and
the results for Minerva are from Lewkowycz et al. (2022). We ran PAL on each benchmark 3 times and report the average;

the standard deviation is provided in Table 9.

4.3. Algorithmic Tasks

Finally, we compare PAL and COT on algorithmic reason-
ing. These are tasks where a human programmer can write
a deterministic program with prior knowledge of the ques-
tion. We experiment with two algorithmic tasks: OBJECT
COUNTING and REPEAT COPY. OBJECT COUNTING in-
volves answering questions about the number of objects
belonging to a certain type. For example, as shown in Fig-
ure 5: “I have a chair, two potatoes, a cauliflower, a lettuce
head, two tables, ... How many vegetables do I have?”).
REPEAT COPY requires generating a sequence of words
according to instructions. For example, as shown in Ap-
pendix K.6: “Repeat the word duck four times, but halfway
through also say quack”).

5. Results

5.1. Math Results

Table 1 shows the following results: across all tasks,
PAL using Codex sets a new few-shot state-of-the-art top-
1 decoding across all datasets, outperforming COT cogex»

COTparm-5408, and COT nfinerva 5408 Which was fine-tuned
on explicit mathematical content.

Interestingly, COT also benefits from Codex over PaLM-
540B in some of the datasets such as ASDIV, but performs
worse than PaLM-540B in others such as SVAMP. Yet,
using PAL further improves the solve rate across all datasets.

GSM-HARD LLMs can perform simple calculations with
small numbers. However, Madaan & Yazdanbakhsh (2022)
found that 50% of the numbers in the popular GSM8K
dataset of math reasoning problems are integers between 0
and 8. This raises the question of whether LLMs can gener-
alize to larger and non-integer numbers? We constructed a
harder version of GSM8K, which we call GSM-HARD, by re-
placing the numbers in the questions of GSM8K with larger
numbers. Specifically, one of the numbers in a question
was replaced with a random integer of up to 7 digits. More
details regarding the this new dataset are provided in I.1.
On GSM-HARD (Table 1), the accuracy of DIRECT drops
dramatically from 19.7% to 5.0% (a relative drop of 74%),
the accuracy of COT drops from 65.6% to 20.1% (a relative
drop of almost 70%), while PAL remains stable at 61.5%,
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COLORED OBJECT PENGUINS DATE REPEAT COoPY OBJECT COUNTING
DIRECT codex 75.7 71.1 49.9 81.3 37.6
COT Lampa-1378 - - 26.8 - -
COT parLM-5408 - 65.1 65.3 - -
COT codex 86.3 79.2 64.8 68.8 73.0
PAL codex 95.1 93.3 76.2 90.6 96.7

Table 2: Solve rate on three symbolic reasoning datasets and two algorithmic datasets, In all datasets, PAL achieves a much
higher accuracy than chain-of-thought. Results with closed models LaMDA-137B and PaLM-540B are included if available

to public (Wei et al., 2022; Suzgun et al., 2022).

dropping by only 14.3%. The results of COT on GSM-HARD
did not improve even when we replaced its prompts with
prompts that include large numbers (Appendix B).

This shows how PAL provides not only better results on
the standard benchmarks, but is also much more robust.
In fact, since PAL offloads the computation to the Python
interpreter, any complex computation can be performed
accurately given the correctly generated program.

Large Numbers or Incorrect Reasoning? Are the fail-
ures on GSM-HARD primarily due to the inability of LLMs
to do arithmetic, or do the large numbers in the question
“confuse” the LM which generates irrational intermediate
steps? To investigate this, we evaluated the outputs gen-
erated by COT for the two versions of the same question
(with and without large numbers). We find that in 16 out
of 25 cases we analyzed, COT generates nearly identical
natural language “thoughts”, indicating that the primary fail-
ure mode is the inability to perform arithmetic accurately.
Sample outputs are provided in the Appendix, Table 13.

GSM8K majority@40

CoT ur2-208 7.3
COT Lampa-137B 27.7
COT codex 78.0
COT parLm-5408 74.4
CoT Minerva 540B 78.5
PAL codex 80.4
Table 3: Problem solve rate (%) on GSM8K using

majority@40 (Wang et al., 2022b)

Multi-sample Generation As found by Wang et al.
(2022b), chain-of-thought-style methods can be further im-
proved by sampling k& > 1 outputs, and selecting the final
answer using majority voting. We thus repeated the greedy-
decoding experiments using nucleus sampling (Holtzman
et al., 2019) with p = 0.95 and k£ = 40 as in Lewkowycz
et al. (2022) and temperature of 0.7. As shown in Table 3,
this further increases the accuracy of PAL from 72.0% to

80.4% on GSM8K, obtaining 1.9% higher accuracy than
Minerva-540B using the same number of samples.

5.2. Symbolic Reasoning & Algorithmic Tasks Results

Results for symbolic reasoning and algorithmic tasks are
shown in Table 2. In COLORED OBJECTS, PAL improves
over the strong COT by 8.8%, and by 19.4% over the stan-
dard direct prompting. In PENGUINS, PAL provides a gain
of absolute 14.1% over COT. In DATE, PAL further provides
11.4% gain over both COT codexs PaLM-5408> aNd LaMDA-137B-

The two rightmost columns of Table 2 show that PAL is
close to solving OBJECT COUNTING, reaching 96.7% and
improving over COT by absolute 23.7%. Similarly, PAL
vastly outperforms COT by absolute 21.8% on REPEAT
Copy. Surprisingly, DIRECT prompting performs better
than COT on REPEAT COPY. Yet, PAL improves over
DIRECT by 9.3% in REPEAT COPY.

©
s

Accuracy

0.6| | —@- PaL
—A— CoT

T | | | | |

[02) 13,57 16.8] [9.17)112,14f15,17{18,29f21,2324 2
Number of objects in the question

Figure 6: The solve rate on COLORED OBJECTS with re-
spect to the number of objects included in the test question.

Is PAL sensitive to the complexity of the question? We
examined how the performance of PAL and COT changes as
the complexity of the input question grows, measured as the
number of objects in the question of COLORED OBJECTS.
As shown in Figure 6, PAL outperforms COT across all
input lengths. As the number of objects in the question
increases, COT’s accuracy is unstable and drops, while PAL
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80 o= PaL 7.0

60 —A— CoT |
g 100 Relative Improvement 60.1
E 40 1
3 217

20 |-

1 19.8%

13.6%

cod(e)—cushman—OOI code-davinci-001 code-davinci-002

Figure 7: PAL with different models on GSM8K: though
the absolute accuracies with code-cushman-001
and code-davinci-001 are lower than
code-davinci-002, the relative improvement of
PAL over COT is consistent across models.

remains consistently close to 100%. More analysis on the
token-level predictions can be found in Appendix H.

6. Analysis

Does PAL work with weaker LMs? In all our experi-
ments in Section 5, PAL used the code—-davinci-002
model; but can PAL work with weaker models of code? We
compared PAL with COT when both prompting approaches
use the same weaker base LMs code-cushman—-001
and code-davinci-001. As shown in Figure 7, even
though the absolute accuracies of code-cushman-001
and code—-davinci-001 are lower, the relative improve-
ment of PAL over COT remains consistent across models.
This shows that PAL can work with weaker models, while
its benefit scales elegantly to stronger models as well.

Is PAL limited to Code-LMs?
with PAL using the text-davinci series.  Fig-
ure 8 shows the following interesting results: when
the base LM’s “code modeling ability” is weak (us-
ing text-davinci-001), COT performs better than
PAL. However, once the LM’s code modeling ability
is sufficiently high (using text-davinci-002 and
text-davinci-003), PAL outperforms COT, and PAL
text-davinci-003 performs almost as PAL code-davinci-002-
This shows that PAL is not limited to LMs of code, but it
can work with LMs that were mainly trained for natural
language, if they have a sufficiently high coding ability.

We also experimented

The base ChatGPT (gpt-3.5-turbo) appears to be
stronger than the base text-davinci-003 on GSM8K.
However as shown in Figure 8, PAL further improves even
the strong ChatGPT model by 2.8% absolute.

Is PAL better because of the Python prompt or because
of the interpreter? We experimented with generating

80

60

40

20

0

|
76.8 79-6

| |
Bacor NmpPaL

ChatGPT

text-davinci-001 text-davinci-002 text-davinci-003

Figure 8: PAL with NL LMs on GSM8K: though COT outper-
forms PAL with text-davinci-001, once the base LM is suf-
ficiently strong, PAL is beneficial with text-davinci-002
and text—-davinci-003 as well. That is, PAL is not limited
to code-LMs only.

Python code, while requiring the neural LM to “execute” it
as well, without using an interpreter, following Nye et al.
(2021a); Madaan et al. (2022). We created prompts that are
similar to PAL’s, except that they do include the final answer.
This resulted in a 23.2 solve rate on GSM8K, much lower
than PAL (72.0), and only 4.5 points higher than DIRECT.
These results reinforce our hypothesis that the main benefit
of PAL comes from the synergy with the interpreter, and
not only from having a better prompt. Additional details are
provided in Appendix B. For additional discussion on code-
prompts compared to textual-prompts, see Appendix H.

Do variable names matter? In all our experiments, we
used meaningful variable names in the PAL prompts, to ease
the model’s grounding of variables to the entities they rep-
resent. For the Python interpreter, however, variable names
are meaningless. To measure the importance of meaningful
variable names, we experimented with two prompts variants:

1. PAL_comment — the PAL prompt without intermediate
NL comments.

2. PALZY . — the PAL prompt without intermediate
NL comments and with variable names substituted
with random characters.

The results are shown in Figure 9. In COLORED OBJECTED
and DATE, removing intermediate NL comments but keep-
ing meaningful variable names (PAL _ omment) — slightly
reduces the accuracy compared to the full PAL prompt, but
it still achieves higher accuracy than the baselines COT.
Removing variable names as well (PALZJ ) further
decreases accuracy, and performs worse than COT. Since
variable names have an important part in code quality (Gel-
lenbeck & Cook, 1991; Takang et al., 1996), meaningful

variable names are only expected to ease reasoning for
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Figure 9: Ablation study of PAL prompt formats. We consider the original PAL prompt, it with natural language comments

—var

removed (PAL _comment), and further variable names replaced with random character (PALZ . ). As a reference, we also

show the COT performance (blue).

Codex, which was trained on mostly meaningful names,
as was also found by Madaan et al. (2022).

Is the generated code correct? A/l generated Python code
was syntactically correct. Less than 1% of the examples
raised an exception at runtime; among these examples, the
most common error was trying to use a variable that was
not defined before (NameError).

7. Related Work

Prompting Few-shot prompting (Brown et al., 2020) has
been shown to be an effective approach for a variety of
tasks (Liu et al., 2021) ranging from text- (Gehrmann et al.,
2021; Reif et al., 2021; Wei et al., 2021; Sanh et al., 2021)
to code-generation (Chen et al., 2021b). Methods such as
chain-of-thought prompting (COT) have further unlocked a
variety of reasoning tasks, boosting the performance of mod-
els on a variety of benchmarks. Nevertheless, all previous
approaches suffer from inaccuracy in arithmetic calculation
and incorrect reasoning (Lewkowycz et al., 2022; Hendrycks
et al., 2021; Madaan & Yazdanbakhsh, 2022). PAL avoids
these problems by offloading the calculation and some of
the reasoning to a Python interpreter, which is correct by
construction, given the right program. Further, not only
that PAL can improve the standard chain-of-thought, it can
improve least-to-most prompting (Zhou et al., 2022) as well,
as we show in Appendix J.

LMs with external tools Several prior works have
equipped neural models with specialized modules to cre-
ate effective cascades (Dohan et al., 2022). For example,
Cobbe et al. (2021) employ a calculator for arithmetic op-
erations as a post hoc processing, and Demeter & Downey
(2020) add specialized modules for generating cities and
dates. Unlike these works, PAL generates code for a Python
interpreter, which is general enough to handle both arith-
metic calculations and dates, without specialized modules

and ad-hoc fixes. Chowdhery et al. (2022) and Wei et al.
(2022) have also experimented with external calculators;
however, the calculator had improved Codex by only 2.3%
(absolute) on GSM8K and improved PaLM-540B by 1.7%,
while PAL improves Codex by 6.4% on the same bench-
mark (Section 5.1). Similarly to our work, Chowdhery et al.
(2022) have also experimented with generating Python code
for solving the GSM8K benchmark, but their experiments re-
sulted in lower accuracy than the standard PaLM-540B that
uses chain-of-thought. Pi et al. (2022) pretrain the model
on execution results of random expressions on a calculator,
instead of using the solver at test time as well. While their
model can hypothetically perform arithmetic better than
other pretrained LMs, their results on the SVAMP bench-
mark are much lower: 57.4% using a T5-11B model, while
PAL achieves 79.4% on the same benchmark without any
specialized pretraining.

Shortly after a preprint of our work was submitted to arXiv,
another related work on “program of thought prompting”
(Chen et al., 2022) was also submitted to arXiv. Their
method is conceptually similar to ours, but Chen et al. (2022)
(1) only demonstrates efficacy on mathematical problems,
whereas we demonstrate gains on symbolic and algorith-
mic benchmarks as well, and (2) chose benchmark-specific
prompt examples, while we used the same prompt exam-
ples as previous work, to disentangled the benefit of our
approach from the benefit of the choice of examples.

Semantic parsing Our work can also be seen as a very
general form of semantic parsing, where instead of parsing
into strict domain-specific languages, the model generates
free-form Python code. Some works constrain the decoder
using a Context-Free Grammar (CFG) to generate a domain-
specific meaning representation (Shin & Van Durme, 2021)
or a canonical utterance, which can be converted to a Lisp-
like meaning representation (Shin et al., 2021). Nye et al.
(2021b) first generate candidate sentences using a language
model; then, another language model (GPT-3) is used to
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derive logical constraints entailed by each candidate; these
constraints are then cross-checked with a predefined list
of facts to rank the candidates. In contrast, PAL does not
require any constraining or domain-specific representations
other than Python code. Further, LMs that were pretrained
on Python are abundant compared to other domain-specific
languages, making Python code a much more preferable rep-
resentation. Andor et al. (2019) generate task-specific arith-
metic operations for reading comprehension tasks; Gupta
et al. (2019) design neural modules such as count to deal
with arithmetic operations. PAL generalizes these works
by generating general Python programs, without the need
for defining specialized modules. The closest work to ours
technically may be Binder (Cheng et al., 2022), but it ad-
dressed mostly answering questions about tables using SQL
and SQL-like Python.

8. Conclusion

We introduce PAL, a new approach for natural language
reasoning, using programs as intermediate reasoning steps.
Differently from existing LM-based reasoning approaches,
the main idea is to offload solving and calculating to an ex-
ternal Python interpreter, instead of using the LLM for both
understanding the problem and solving. This results in a
final answer that is guaranteed to be accurate, given the cor-
rectly predicted programmatic steps. We demonstrate this
seamless synergy between an LLM and a Python interpreter
across 13 tasks from BIG-Bench Hard and other bench-
marks. In all these benchmarks, PAL outperforms larger
LLMs such as PaLM-540B which use the popular “chain-
of-thought” method and sets new state-of-the-art accuracy
on all of them. We believe that these results unlock exciting
directions for future neuro-symbolic Al reasoners. To this
end, we make all our code, data and prompts available at
http://reasonwithpal.com.
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A. Alternative Prompts without Meaningful Variable Names

a = 23
b =25

c =3
d=Db *x c
e

(a) Structured explanation with uninformative variable names (PAL - var)

Olivia has $23

= 23

number of bagels bought
=5

price of each bagel
=3

total price of bagels
= b x c

money left

=a - d

print (e)

D 3% O %% Q 3 0 3 O %

(b) Structured explanation with uninformative variable names, but useful comments (PAL - var + comms)

money_initial = 23

bagels = 5

bagel_cost = 3

money_spent = bagels * bagel_cost
money_left = money.initial - money_spent
result = money_left

print (result)

(c) PAL prompts

Figure 10: Role of text in PAL: three different reasoning steps for the question Olivia has $23. She bought five bagels for
$3 each. How much money does she have left? Uninformative variable names (left), Uninformative variable names with
useful comments (left), and PAL. Including text description

Setting CoT PAL-var PAL-var+comms PAL
Solve Rate 63.1 59.0 69.0 71.8

Table 4: Role of text: including text either as informative variable names (PAL) or comments is important (PAL - var +
comms). Uninformative variable names PAL - var cause a drastic drop in performance, indicating that just structure is not
sufficient. The corresponding prompts are shown in Figure 10.

For mathematical problems, since our standard prompts do not use much comment, we start by creating alternative prompts
where the informative variable names are replaced with single-letters (Figure 10). The results in Table 4 shows a considerable
performance drop: from an average of 71.8% to 59%. Note that the ablation where structured outputs are completely
removed in favor of purely text explanations is precisely the COT setting, which achieves a solve rate of 63%. These results
underscore the importance of text but more importantly show that combining both text and procedural statements leads to
higher performance gains—either is sub-optimal.

B. Additional analysis on Arithmetic Reasoning

GSM-hard with hard prompts The GSM-HARD experiments used prompts that were sampled from the GSM8K training
set. Will COT be helped by using larger numbers in the prompts as well? To investigate this, we create prompts where the
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numbers are changed to larger numbers, matching the distribution of numbers in GSM-HARD. The results in Table 5 shows
that even with a prompt that matches the numbers, there are only modest gains in performance. These results show that the
gains achieved by using code-based reasoning chains may not be achieved simply by using better few-shot examples for
CoT.

Regular Prompt  Prompt with Larger Numbers
CoT 23.3 23.8

Table 5: GSM-hard results, when the prompts also had examples of larger numbers.

Succinct code The programs used in few-shot examples by PAL are multi-step, and show a step-by-step breakdown of the
reasoning process. Is this breakdown necessary? Alternatively, can we return a single line expression (see Figure 11b) to
calculate the result? Results in Table 6 (4" row) shows that is not the case. With single-line expressions, the performance of
PAL falls to the level of direct prompting.

Generating the answer directly PAL first generates a reasoning chain in the form of a Python program, and passes the
generated program to a runtime to obtain an answer. Is PAL better only because of the program-style intermediate reasoning
chains, or are the improvements derived from offloading execution to the Python runtime? To investigate this, we experiment
with a variant that forces the LLM to generate the answer after generating the reasoning chain (Figure 11e). This setting
compels the LLM to condition on the generated code-based reasoning to generate an answer, simulating the runtime. The
results in Table 6 (5! row) show that the solve rate drops to near DIRECT levels. This reinforces our hypothesis that while
current LLMs can be excellent at specifying a high-level plan to solve a task—they are still incapable of executing them.

Ablation Solve Rate
DIRECT (no intermediate reasoning) 19.7
CoT 65.6
PAL 72.0
Succinct Code 47.8
LLM Simulating Runtime 23.2

Table 6: Solve rates for ablations

C. Effect of Using Language Models of Code

In our experiments, we focused on evaluating the performance of a language model for code. We aimed to investigate
whether the additional performance boost observed in our results was due to the use of models like Codex, or whether our
formulation was useful even for text-based models. To this end, we conducted additional experiments using text-based
language models. Our findings indicate that the PAL approach is not restricted to working solely with Codex, but can also
be applied to natural language (NL) models, as long as the model is sufficiently strong. Specifically, our results showed that
in the text-davinci-001 model, the use of the CoT approach resulted in better performance.

Model CoT PalL

text-davinci-001 26.5 8.6
text-davinci-002 469 65.8
text-davinci-003  65.3  69.8

Table 7: Performance on GSM8K with different language models of text
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D. Experiments with ChatGPT

We compare CoT and PalL on GSM8K with ChatGPT (gpt-turbo-3.5), a dialogue-tuned language model. We follow
the official guideline? to present few-shot examples as the example_user and the example_assistant. The results
are shown in Table 8. We find that PAL achieves stronger performance of 79.6, outperforming CoT by 2.8%.

Model CoT PalL
ChatGPT 76.8 179.6

Table 8: Performance on GSM8K with ChatGPT

E. Analyzing the Effect of Increasing Number of Samples on PAL

In Section 5.1, we show that PAL outperforms strong baselines both for a single sample and by drawing 40 samples and
using majority voting. Figure 12 illustrates the trends for cases when the number of samples drawn are between 1 and 40,
and the interpolation estimates demonstrate that PAL remains competitive throughout the number of samples.

https://github.com/openai/openai-cookbook
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def solution():
"""Shawn has five toys. For Christmas, he got two toys each from his
;  mom and dad. How many toys does he have now?"""
toys_initial = 5
mom_toys = 2
dad_toys = 2
total_received = mom_toys + dad_toys
total_toys = toys_initial + total_received
result = total_toys
return result

(a) Original Example

def solution():
return 5 + 2 + 2

(b) Succinct Code

def solution():

"""Shawn has 10312864 toys. For Christmas, he got 13267894 toys each
from his mom and dad. How many toys does he have now?"""
toys_initial = 10312864
mom_toys = 13267894
dad_toys = 13267894
total_received = mom_toys + dad_toys
total_toys = toys_initial + total_received
result = total_toys
return result

(c) Hard Examples in Prompt (PAL)

Example (
question="Shawn has 10312864 toys. For Christmas, he got 13267894
toys each from his mom and dad. How many toys does he have
now?",
thought="Shawn started with 10312864 toys. If he got 13267894 toys
each from his mom and dad, then that is 26535788 more toys.
10312864 + 26535788 = 36848652.",
answer="36848652",
),

(d) Hard Examples in Prompt (CoT)

def solution():
"""Shawn has five toys. For Christmas, he got two toys each from his
;  mom and dad. How many toys does he have now?"""
toys_initial = 5
mom_toys = 2
dad_toys = 2
total_received = mom_toys + dad_toys
total_toys = toys_initial + total_received
result = total_toys
return result
ans = 9

(e) Generating Answers Directly

Figure 11: Ablations of the original example solution for the few-shot prompting experiment.

17
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Figure 12: Comparison of solve rates between PAL and baselines as the number of samples increases from 1 to 40. Note that
the solve rates for the baselines (PaLM, COT, Minerva) are obtained through logistic interpolation of solve rates at 1 and 40
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F. Standard Deviations Across Multiple Order of Prompts

For each math reasoning task, we run inference using three random orderings of the prompts. As shown in Table 9, the
standard deviation between the results obtained from the three different seeds is minimal.

CoT PAL
Average Standard Deviation Average Standard Deviation
GSM8K 65.6 1.10 72.0 0.16
SVAMP 74.8 0.19 79.4 0.20
ASDIV 76.9 0.65 79.6 0.14
GSM-HARD 233 0.49 61.2 0.91
MAWPS-SingleEq 89.1 0.54 96.1 0.30
MAWPS-SingleOp 91.9 0.55 94.6 0.36
MAWPS-AddSub 86.0 0.62 92.5 0.34
MAWPS-MultiArith 95.9 0.51 99.2 0.48

Table 9: Standard deviations for three runs for the math reasoning datasets.

G. PAL Beyond Benchmarks

We argue that symbolic reasoning is a crucial component in solving a wide range of tasks. In this section, we demonstrate
examples of tasks that may not initially appear to require using programs as intermediate reasoning steps, but can be
improved through the use of PAL-style reasoning. We demonstrate these examples using the ChatGPT tool.? In contrast to
the in-context-learning methods we used in the main paper, here we instruct ChatGPT to perform program-aided reasoning
through one of the user utterances.

In Figure 13, in COT-style reasoning, while the reasoning chain is correct, the final answer is wrong. In contrast, PAL-style
reasoning could not only accurately extract the color of objects from the question but also produce the correct lines of code
to branch to different situations that yield their corresponding correct answers.

A more intriguing example is letting an LLM count the number of letters in the word “intriguing”. In Figure 14a, while the
step-by-step explanation appears reasonable by splitting the letters by spaces, ChatGPT does not change the answer after
this explicit reasoning and insists on the wrong answer. Explicitly instructing the model to perform step-by-step reasoning
before answering the question still yields the wrong answer. In contrast, PAL-style reasoning only takes a few lines of code,
and the execution does produce the correct answer, in this case. These examples indicate that PAL can benefit even an
ostensibly powerful model like ChatGPT.

3 .
chat.openai.com
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. Let's say our plane crashed onto an exotic island, where everything that is usually yellow
looks blue here. We know that mango and banana are all yellow, do they have the same
color on this island?

If you were on an exotic island where everything that is usually yellow looks blue, then

mangoes and bananas would not have the same color.

Mangoes are typically yellow in color, but on this island, they would look blue. Bananas are

also typically yellow in color, but on this island, they would also look blue.

Therefore, even though both mangoes and bananas are typically yellow in color, on this
island they would have a different color. Mangoes and bananas would both look blue on
this island, but they would not have the same color, as blue is a different color from yellow.

| hope this helps! Let me know if you have any other questions.

(a) In COT style reasoning, the correct intermediate reasoning chain leads to wrong answers.

. Let's say our plane crashed onto an exotic island, where everything that is
usually yellow looks blue here. We know that mango and banana are all
yellow, do they have the same color on this island? Write a Python program
to answer the question.

<3/3

color_of_mango = "blue"

color_of_banana = "blue"

if color_of_mango == color_of_banana:
print("Yes, mango and banana have the same color on this island.")
else:

print("No, mango and banana do not have the same color on this island.")

(b) In PAL, the execution of the code will produce the correct answer.

Figure 13: ChatGPT with PAL and COT to answer a user-posted question
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How many letters are in the word 'intriguing'?

The word 'intriguing' has 9 letters.

Interesting, can you explain your reasoning step by step?

Sure, here's my reasoning step by step:

1. I read the word 'intriguing'
2. | counted the number of letters in the word, which are: i, n, t, r,i,g,u,i,n, g

3. ladded the number of letters, which is 9.

So, in summary, the word 'intriguing' has 9 letters.

(a) Step-by-step reasoning struggle on counting the number of letters in the word
“intriguing” which has ten letters.

How many letters are in the word 'intriguing'? Think step by step

Start by counting the letters in the first syllable, "in" - there are 2 letters.
Next, count the letters in the second syllable, "tri" - there are 3 letters.
Then, count the letters in the third syllable, "gue" - there are 3 letters.

Finally, count the letters in the fourth syllable, "ing" - there are 3 letters.

O R O

Add up all the letters counted in each syllable: 2 + 3 + 3 + 3 = 11 letters.

(b) Explicitly instructing ChatGPT to reason step-by-step before generating answer
still leads to the wrong answer.

How many letters are in the word intriguing? You're not good at counting
stuff, so don't try. Just write a program | can run to get the answer.

Here's a simple program you can use to find out how many letters are in the
word "intriguing":

() Copy code

num_letters = len(word)

print(hum_letters)

To run this program, you will need to have a Python interpreter installed on
your computer. You can then type in the code above and run it to find the

answer.

(c) PAL takes a few lines of code and the execution could result in the correct

answer.

Figure 14: ChatGPT with PAL and COT to answer a user-posted question
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H. Closer Look into Token-level Behaviors of Different Mechanisms

Beyond empirical results, we make initial attempts to gain a deeper understanding of the behavior of LLMs with different
reasoning mechanisms by looking into the token-level log-likelihood of reasoning chains produced by COT and PAL.
We randomly selected 20 questions from the COLORED OBJECTS dataset, along with their corresponding COT and PAL
solutions. We then manually compared the two mechanisms by focusing on tokens with a low log-likelihood.

Our analysis reveals that COT often has lower confidence in tokens related to numbers and quantitative information, the
grounded position of spatial adjectives (e.g., right-most), properties such as the color of objects, and nouns that refer to the
objects. Specifically, we found that this occurred in seven, six, two, and six examples out of the 20 we examined. In contrast,
PAL uses list manipulations, such as 1en (objects), and accesses objects and their associated properties through list
indexing (e.g., object [3] [0]). We found that the LLM is typically confident in producing these programs. Furthermore,
we observed that while COT requires different expressions for the same concept in different contexts, PAL almost always
uses the same expression, which is presumably more robust. For example, when there are five objects, COT predicts “the
right-most thing is the fifth item on the list”, and “the right-most thing is the third item on the list” when the number of
objects is three. Occasionally, COT also predicts “the right-most thing is last item on the list” which does not provide more
concrete information. On the contrary, PAL confidently predicts objects [-1] consistently. The more consistent and
uniform use of expressions in PAL can be attributed to the explicit and defined nature of programming languages, which
allows for clear and accurate expressions.

1. Datasets

In the following tables (Table 10,Table 11, Table 12), we presents statistics and examples for the datasets we considered.

Dataset N Example

Reasoning about Colored Objects 2000 On the table, you see a bunch of objects arranged in a row: a purple
paperclip, a pink stress ball, a brown keychain, a green scrunchiephone
charger, a mauve fidget spinner, and a burgundy pen. What is the color
of the object directly to the right of the stress ball?

Penguins in a Table 149 Here is a table where the first line is a header and each subsequent line is
a penguin: name, age, height (cm), weight (kg) Louis, 7, 50, 11 Bernard,
5, 80, 13 Vincent, 9, 60, 11 Gwen, 8, 70, 15 For example: the age of
Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80
cm. We now add a penguin to the table: James, 12, 90, 12 How many
penguins are less than 8 years old?

Date Understanding 369 2015 is coming in 36 hours. What is the date one week from today in
MM/DD/YYYY?

Table 10: Reasoning datasets about everyday objects and concepts.

Dataset N Example

Object Counting 1000 I have a chair, two potatoes, a cauliflower, a lettuce head, two tables, a
cabbage, two onions, and three fridges. How many vegetables do I have?
Repeat Copy 32 Repeat the word duck four times, but halfway through also say quack.

Table 11: Reasoning datasets about algorithmic problems.

22



PAL: Program-aided Language Models 23

Dataset N Example

GSM8K (Cobbe et al., 2021) 1319  Olivia has $23. She bought five bagels for $3 each. How
much money does she have left?

SVAMP (Patel et al., 2021) 1000  Each pack of dvds costs 76 dollars. If there is a discount

of 25 dollars on each pack. How much do you have to pay
to buy each pack?

ASDIV (Miao et al., 2020) 2096 Ellen has six more balls than Marin. Marin has nine balls.
How many balls does Ellen have?

SINGLEOP (Koncel-Kedziorski et al., 2016) 562 If there are 7 bottle caps in a box and Linda puts 7 more
bottle caps inside, how many bottle caps are in the box?

SINGLEEQ (Koncel-Kedziorski et al., 2016) 508 Benny bought a soft drink for 2 dollars and 5 candy bars.
He spent a total of 27 dollars. How much did each candy
bar cost?

ADDSUB (Koncel-Kedziorski et al., 2016) 395 There were 6 roses in the vase. Mary cut some roses from

her flower garden. There are now 16 roses in the vase.
How many roses did she cut?

MULTIARITH (Koncel-Kedziorski et al., 2016) 600 The school cafeteria ordered 42 red apples and 7 green
apples for students lunches. But, if only 9 students wanted
fruit, how many extra did the cafeteria end up with?

Table 12: Examples from math reasoning datasets used in this work. Table from Wei et al. (2022). Datasets vary in number
of words per question, with 47 words per question in GSM8K, 21 words in SINGLEOP, and ~30 words in the other datasets.
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Question CoT: GSM CoT: GSMHard Identical?
90 single use contacts come in 1 box 90 contacts come in 1 box. Each 90 single use contacts come in 1 box.  Yes
and will last Pete 45 days. Each box  box is $100.00. So 90 contacts cost ~ So 1 box will last Pete 45 days. Each
is $100.00 and currently 10% off. $100.00. If he buys 2 boxes, then  box is $5451440 and currently 10%
If he buys 2 boxes of contact, how he will have 2 x 90 = 180 contacts.  off. So each box is $5451440 * 0.9 =
much will each pair of contacts cost? 180 contacts cost 2 x $100.00 =  $4906296. If he buys 2 boxes of con-
$200.00. So each pair of contacts tact, he will have 2 * 90 = 180 con-
costs $200.00 / 180 = $1.11. The tacts. So each pair of contacts will
answer is $1.11. cost $4906296 / 180 = $2725849.
The answer is $2725849
A chef bought 4 bags of onions. The chef bought 4 bags of onions. The chef bought 4 bags of onions. Yes
Each bag weighs 50 pounds. A  Each bag weighs 50 pounds. So the  Each bag weighs 50 pounds. So the
pound of onions cost $1.50. How  total weight is 4 * 50 = 200 pounds. total weight is 4 * 50 = 200 pounds.
much did the chef spend? A pound of onions cost $1.50. So A pound of onions cost $409201.
200 pounds of onions cost 200 *  So 200 pounds of onions cost 200 *
1.50 = 300 dollars. The answer is 409201 = $81840200. The answer
300. is $81840200.
A bag has a 5% discount. If it is The discount is 5%. So you will pay ~ The discount is 5%. So you will Yes
marked $140, how much will you  95% of the price. 95% of 140is 133. pay 95% of the price. 95% of
pay after the discount? The answer is 133. $3921772.0722 is $3730654.0682.
The answer is $3730654.0682
A basket of green food costs $25 3 baskets of green food will cost 3 A basket of green food costs No
and a basket of red food costs $18. * 25 =75 dollars. 3 baskets of red 9412763 dollars. A basket of red
If you buy 3 baskets of green food food will cost 3 * 18 = 54 dollars. food costs 18 dollars. If you buy 3
and red food, how much will you But you get $2 off for each basket baskets of green food and red food,
have to pay in total if you get $2 off ~ of red food. So you get 3 * 2 =6  you will have to pay 9412763 * 3 +
for each basket of red food? dollars off. So you pay 75 + 54 -6 18 * 3 =28238280 dollars. If you get
= 123 dollars. The answer is 123. 2 dollars off for each basket of red
food, you will have to pay 28238280
- 18 * 2 = 28238244 dollars. The an-
swer is 28238244
A bumper car rink has 12 red cars. There are 12 red cars. There are 2 The rink has 9318738 red cars. They  Yes

They have 2 fewer green cars than
they have red cars. They have 3
times the number of blue cars as they
have green cars. The rink also has
yellow cars. If the rink has 75 cars in
total how many yellow cars do they
have?

fewer green cars than red cars. So
there are 12 - 2 = 10 green cars.
There are 3 times as many blue cars
as green cars. So there are 3 * 10
=30 blue cars. There are 12 + 10 +
30 = 52 cars that are not yellow. So
there are 75 - 52 = 23 yellow cars.
The answer is 23.

have 2 fewer green cars than red cars.
So they have 9318738 - 2 =9318736
green cars. They have 3 times
the number of blue cars as green
cars. So they have 3 * 9318736
= 27956208 blue cars. The total
number of cars is 75. So the num-
ber of yellow cars is 75 - 9318738 -
9318736 - 27956208 = -55,828,829.
The answer is -55,828,829

Table 13: Analysis of generations from CODEX. Manual analysis of 25 randomly generated thoughts reveals that 16 out of
25 thoughts were identical, whereas others were close paraphrases.
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I.1. Creating GSM-HARD

While replacing numbers in the question is easy using pattern matching, a more challenging aspect is recalculating the correct
answer. GSM8K evaluation set contains 1319 samples, which is prohibitively expensive to perform manual re-calculation.
Instead, we leverage PAL to assist obtaining the correct answers. For 71% of the examples where PAL is correct on
GSMS8K, we utilize the generated program and replace the initial value with the larger values. For example, if we create
a harder version of the problem in Figure 3 by replacing $23 dollars with $15687 dollars, we correspondingly replace
money_-initial=23 to money_initial=15678. Running the program could automatically produce the correct
answer of the harder question. Notably, this annotation process assumes that a program that produces a correct answer to
a GSM8K question indicates the correctness of the program itself. While this is not guaranteed due to possible spurious
correlations, we manually checked 25 programs and found all of them are correct. For the incorrect 29% of the cases, we
run PAL again and perform nucleus sampling (Holtzman et al., 2019) with temperature 0.7, and repeat the above process if
any correct solution is found. Finally, the authors manually annotate the correct answer for 50 remaining cases that PAL was
not able to solve after 100 iterations.

Note that the GSM-HARD benchmark was created automatically, it sometimes contains negative target values or target values
that do not adhere to commonsense (e.g., John bought 3.5 apples). Unfortunately, we do not have the resources to manually
annotate all examples, so our assumption is that there is a penalty of 5%-10% drop in performance for all models and
prompting approaches that are evaluated on this benchmark. Since this penalty is similar to all approaches, we believe that
the relative comparison between different approaches is the right thing to measure.

I.2. GSM-HARD Analysis

Table 13 shows thoughts generated with COT on GSM8K and GSM-HARD. A manual analysis reveals that a majority of the
generated thoughts (16/25) were identical for GSM8K and GSM-HARD, indicating that larger numbers primarily diminish
performance due to failure of LLM to do arithmetic..
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J. Generalization of PAL to Least-to-Most Prompting

Q: Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently

— twice 30 years old, how old is Kody?

A: To answer the question "How old is Kody?", we need to know: "How old is Mohamed?",
— "How old was Mohamed four years ago?", "How old was Kody four years ago?".

(a) Least-to-Most Math Reducing Prompt

Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently twice
— 30 years old, how old is Kody?

Q: How old was Mohamed four years ago?

A: We were told that Mohamed is currently twice 30 years old, so he is currently 30 =
— 2 = 60 years old. That means that four years ago he must have been 60 - 4 = 56

< years old. The answer is 56.

Q: How old is Kody?

A: Four years ago, Kody was half as old as Mohamed, so Kody must have been 56 / 2 =
— 28 years old then. Since Kody was 28 years old four years ago, she must now be 28
— + 4 = 32 years old. The answer is 32.

(b) Least-to-Most Math Solving Prompt

# Four years ago, Kody was only half as old as Mohamed. If Mohamed is currently twice
30 years old, how old is Kody?

# How old was Mohamed four years ago?
mohamed_age_current = 30 * 2
mohamed_age_4_vyears_ago = mohamed_age_current - 4

# Final Question: How old is Kody?
kody_age_4_years_ago = mohamed_age_4_years_ago / 2
kody_age_current = kody_age_4_years_ago + 4
answer = kody_age_current

(c) PAL Math Solving Prompt

Figure 15: Prompts for Math data sets.

Previous experiments focus on the COT technique. This section examines if PAL generalizes to other prompt types. We
consider a strong alternative prompting strategy LEAST-TO-MOST (Zhou et al., 2022). LEAST-TO-MOST solves problems
in two stages, problem-reducing and problem-solving. Problem reducing stage turns the problem into sub-problems, and
the solving stage solves them sequentially. It keeps two prompts, each for an individual stage. To patch LEAST-TO-MOST
prompts with PAL, we adopt a simple and straightforward approach: we note that problem reduction requires logically
thinking in NL while solving requires the precision that PL offers. We therefore keep the original reducing prompts while
only turning solution segments in the solving scripts in PL. We show an example reducing prompt, original solving prompt,
and PAL solving prompt in Figure 15. Note that one unique property of PAL solving can naturally use previous questions’
answers as the symbol values are shared. In comparison, the original solving script needs to explicitly re-cite answers from
previous answers.

Dataset (500 examples) LEAST-TO-MOST LEAST-TO-MOST + PAL

GSM8K 67.2 72.8
SVAMP 75.2 78.2

Table 14: Results on GSM8K and SVAMP with LEAST-TO-MOST and LEAST-TO-MOST with PAL solving prompt.

For our analysis, we consider the Math data sets GSM8K, and SVAMP as Zhou et al. (2022) found Least-to-Most helps solve
complex math problems. We patch the GSM8K prompt from the Zhou et al. (2022) into PAL. Note that the other tasks in
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Zhou et al. (2022), like “concatenating last letters” from several words, require simple routines and are trivially solvable by
PAL. We experiment with subsets of 500 examples and record results in Table 14. Here we see PAL can take advantage of
the problem decomposition offered by the LEAST-TO-MOST reducing and further leverage the arithmetic capability in the
Python runtime to achieve additional performance gains.
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K. Prompts

We show here example PAL prompts we used for each data set. We show one example for each of the few-shot prompts.
The fulls prompt can be found in our released code.

K.1. Reasoning about Colored Objects

# Q: On the table, you see a bunch of objects arranged in a row: a purple paperclip,
a pink stress ball, a brown keychain, a green scrunchiephone charger, a mauve
fidget spinner, and a burgundy pen. What is the color of the object directly to
the right of the stress ball?

# Put objects into a list to record ordering

objects = []

objects += [('paperclip', 'purple')] x 1

objects += [('stress ball', 'pink')] = 1

objects += [('keychain', 'brown')] x 1

objects += [('scrunchiephone charger', 'green')] = 1

objects += [('fidget spinner', 'mauve')] * 1

objects += [('pen', 'burgundy')] * 1

# Find the index of the stress ball

stress_ball_idx = None

for i, object in enumerate (objects):

if object[0] == 'stress ball':
stress_ball idx = 1
break

# Find the directly right object
direct_right = objects[stress_ball_idx+1]
# Check the directly right object's color
direct_right_color = direct_right[1]
answer = direct_right_color

28



PAL: Program-aided Language Models

29

K.2. Penguins in a Table

"""O: Here 1is a table where the first line is a header and each subsequent line is a
penguin: name, age, height (cm), weight (kg) Louis, 7, 50, 11 Bernard, 5, 80, 13
Vincent, 9, 60, 11 Gwen, 8, 70, 15 For example: the age of Louis 1is 7, the weight
of Gwen is 15 kg, the height of Bernard is 80 cm. We now add a penguin to the
table: James, 12, 90, 12

How many penguins are less than 8 years old?

# Put the penguins into a list.

penguins = []

penguins.append(('Louis', 7, 50, 11))

penguins.append(('Bernard', 5, 80, 13))

penguins.append(('Vincent', 9, 60, 11))

penguins.append(('Gwen', 8, 70, 15))

# Add penguin James.

penguins.append(('James', 12, 90, 12))

# Find penguins under 8 years old.

penguins_under_8_years_old = [penguin for penguin in penguins if penguin[l] < 8]
# Count number of perguins under 8.
num_penguin_under_8 = len (penguins_under_8_years_old)
answer = num_penguin_under_8
Figure 17
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K.3. Date Understanding

# Q: 2015 is coming in 36 hours. What is the date one week from today in MM/DD/YYYY?
# If 2015 is coming in 36 hours, then today is 36 hours before.

today = datetime (2015, 1, 1) - relativedelta (hours=36)

# One week from today,

one_week_from_today = today + relativedelta (weeks=1)

# The answer formatted with %m/%d/%$Y is

one_week_from_today.strftime ('%m/%d/%Y")
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K.4. Math
#0: Olivia has \$23. She bought five bagels for \S$3 each. How much money does she have
left?
money_initial = 23
bagels = 5

bagel_cost = 3

money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
print (money_left)

#0: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost
2 more. How many golf balls did he have at the end of wednesday?

golf_balls_initial = 58

golf_balls_lost_tuesday = 23

golf_balls_lost_wednesday = 2

golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday -
golf_balls_lost_wednesday

print (golf_balls_left)

#0: There were nine computers in the server room. Five more computers were installed
each day, from monday to thursday. How many computers are now 1in the server room?

computers_initial = 9

computers_per_day = 5

num_days = 4 # 4 days between monday and thursday
computers_added = computers_per_day * num_days
computers_total = computers_initial + computers_added
print (computers_total)

#0: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in
the parking lot?

cars_initial = 3
cars_arrived = 2
total_cars = cars_initial + cars_arrived

print (total_cars)

#Q0: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do
they have left in total?

leah_chocolates = 32

sister_chocolates = 42
total_chocolates = leah_chocolates + sister_chocolates
chocolates_eaten = 35
chocolates_left = total_chocolates - chocolates_eaten

print (chocolates_left)

Figure 19: Prompt used for mathematical reasoning (1/2)
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#0: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops.
How many lollipops did Jason give to Denny?

jason_lollipops_initial = 20

jason_lollipops_after = 12

denny_lollipops = Jjason_lollipops_initial - jason_lollipops_after

print (denny_lollipops)

#0: There are 15 trees in the grove. Grove workers will plant trees in the grove today.

After they are done, there will be 21 trees. How many trees did the grove workers
plant today?

trees_initial = 15

trees_after = 21

trees_added = trees_after - trees_initial

print (trees_added)

#0: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How
many toys does he have now?

toys_initial = 5

mom_toys = 2

dad_toys = 2

total_received = mom_toys + dad_toys
total_toys = toys_initial + total_received
print (total_toys)

Figure 20: Prompt used for mathematical reasoning (2/2)
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K.5. Object Counting

# Q: I have a chair, two potatoes, a cauliflower, a lettuce head, two tables,
cabbage, two onions, and three fridges. How many vegetables do I have?

# note: I'm not counting the chair, tables, or fridges
vegetables_to_count = {

'potato': 2,

'cauliflower': 1,

'lettuce head': 1,

'cabbage': 1,

'onion': 2
}

print (sum(vegetables_to_count.values()))

# Q: I have a drum, a flute, a clarinet, a violin, four accordions, a piano,
trombone, and a trumpet. How many musical instruments do I have?

musical_instruments_to_count = {
'drum': 1,
'flute': 1,
'clarinet': 1,
'violin': 1,
'accordion': 4,
'piano': 1,
'trombone': 1,

'trumpet': 1
}

print (sum(musical_instruments_to_count.values()))

# Q: I have a chair, two ovens, and three tables. How many objects do I have?

objects_to_count = {
'chair': 1,
'oven': 2,
'table': 3

}

print (sum(objects_to_count.values()))

a

a

Figure 21: Prompt used for OBJECT COUNTING.
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K.6. Repeat Copy

# Q: Repeat the word duck four times, but halfway through also say quack

result = []
for i in range(l, 5):
result.append ("duck")
if 1 ==
result.append ("quack™)
print (" ".join(result))

# Q: Print boolean eleven times, but after the 3rd and 8th also say correct
result = []

for i in range(l, 12):
result.append("boolean")

if i == 3 or i == 8:
result.append("correct")
print (" ".join(result))

# Q: say java twice and data once, and then repeat all of this three times.

result = []

tmp = ["Jjava", "java", "data"]

for i in range(3):
result.extend (tmp)

print (" ".join(result))

# Q: ask a group of insects in what family? four times. after the fourth time say The
happy family

result = []
tmp = []
for i in range(l, 5):
tmp.append("a group of insects in what family?")
tmp.append ("The happy family")
result.extend (tmp)
print (" ".join(result))

Figure 22: Prompt used for REPEAT COPY.
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L. Success and Failure Modes in Symbolic Tasks

L.1. Colored Objects

# Find non-gold items to the right of the pencil
non_gold = [object for object in objects[i+l:] if object[l] !'= 'gold']

(a) Snippet of PAL doing a filter operation.

# Remove all pink objects
non_pink = [object for object in objects if object[1l] != 'pink']

# Count number of crayons
crayons = [object for object in non_pink if object[0] == 'crayon']
answer = len(crayons)

(b) Snippet of PAL composing multiple operations.

Figure 23: Example model generation snippets on Reasoning about Color Object.

By manually examining the the model outputs, we observe that PAL often performs better on questions that involve counting
objects that satisfy one or several conditions. For example, COT fails in the following example: “On the desk, you see a
bunch of items arranged in a row: a gold textbook, a purple puzzle, a teal necklace, and a silver pencil. How many non-gold
items do you see to the right of the pencil?”. With pure NL reasoning, a LLM can easily lose track of the objects and output
the wrong answer of “The number of non-gold items to the right of the pencil is two. So the answer is two.”

In comparison, PAL is able to accurately construct the object lists with correct order and attributes. Further, it can precisely
leverage the simple yet complete PL syntax: it composes routines with functional operators from elementary builtin
operation/operators. Figure 4 lists the last a few lines of the solution to the question described above generated by PAL,
which perform filtering over objects. PAL can further compose such operations across multiple reasoning steps as shown in
Figure 23b, where it first filters out all pink objects and then scans the remaining to count crayons. Other reasoning such as
“how many objects are left after filtering” can be easily tackled precisely with an runtime.

L.2. Penguins in a Table

...This question focuses on age. We know the following: Louis 1is 7 years old, Bernard
is 5 years old, Vincent is 9 years old, and Gwen is 8 years old.Now, we add James
to this table: James is 12 years old. We then delete the penguin named Bernard
from the table.The penguins that are less than 8 years old are Louis and Bernard.
There are 2 penguins less than 8 years old. So the answer is 2.

e

# Delete penguin Bernard.

penguins = [penguin for penguin in penguins if penguin[0] != 'Bernard']

# Find penguins under 8 years old.

penguins_under_8_years_old = [penguin for penguin in penguins if penguin[l] < 8]
# Count number of perguins under 8.

num_penguin_under_8 = len (penguins_under_8_years_old)

answer = num_penguin_under_38

Figure 24: Generated Snippets for one question (... We then delete the penguin named Bernard from the table. How many
penguins are less than 8 years old?) in Penguins in a Table

In this task, we found a typical failure mode of the language is its inability to stably tracks states in its past generation.
Figure 24 lists the generations of COT and PAL to the question that contains the removal of a penguin (... We then delete
the penguin named Bernard from the table. How many penguins are less than 8 years old?”). Although COT picks up the
critical information that “penguins that are less then 8 years old are Louis and Bernard”, and that “Bernard is deleted”. It
still fails to aggregate the information properly and infer that there is one penguin less then 8 left in the end. In comparison,
PAL expresses this dynamic through manipulating a penguins list by filtering out the penguin whose name is “Bernard”,
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and maintaining a penguins_under_8_years_old list. It offloads tracking exact the values (in this case, the length of
the list) to the deterministic Python runtime.

L.3. Date Understanding

Q: Jane was born on the last day of Feburary in 2001. Today is her l6-year-old
< Dbirthday. What is the date 24 hours later in MM/DD/YYYY?

A: The last day of February is the 28th, so Jane was born on 02/28/2001. Today is her
— 1l6-year old birthday, so today is 02/28/2017. So 24 hours later is 02/29/2017. So
— the answer is 02/29/2017.

# Q: Jane was born on the last day of Feburary in 2001. Today is her l6-year-old
birthday. What is the date 24 hours later in MM/DD/YYYY?

# If Jane was born on the last day of Feburary in 2001 and today is her l6-year-old
birthday, then today is 16 years later.

today = datetime (2001, 2, 28) + relativedelta(years=16)

# 24 hours later,

later = today + relativedelta (hours=24)

# The answer formatted with %m/%$d/8%Y is

later.strftime ('sm/%d/%Y")

Figure 25: Example model generation on Date Understanding.

We found this especially common when the time deltas are across the month boundary. We show an example in Figure 25.
Here with COT prompting, the LLM expresses the knowledge of the 28-day-long February, yet it still outputs 02/29/2017 as
the final answer. With PAL, the actual calendar is accurate as a program handles the operation.
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