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We introduce a novel frame-interpolation-based method for slice imputation to improve segmentation accuracy
for anisotropic 3D medical images, in which the number of slices and their corresponding segmentation labels
can be increased between two consecutive slices in anisotropic 3D medical volumes. Unlike previous inter-slice
imputation methods, which only focus on the smoothness in the axial direction, this study aims to improve the
smoothness of the interpolated 3D medical volumes in all three directions: axial, sagittal, and coronal. The
proposed multitask inter-slice imputation method, in particular, incorporates a smoothness loss function to
evaluate the smoothness of the interpolated 3D medical volumes in the through-plane direction (sagittal and
coronal). It not only improves the resolution of the interpolated 3D medical volumes in the through-plane di-
rection but also transforms them into isotropic representations, which leads to better segmentation perfor-
mances. Experiments on whole tumor segmentation in the brain, liver tumor segmentation, and prostate
segmentation indicate that our method outperforms the competing slice imputation methods on both computed
tomography (1\% Dice improvement for CT liver tumor segmentation) and magnetic resonance images volumes

(over 2\% Dice improvement for MRI prostate segmentation) in most cases.

1. Introduction

In the field of medical image processing and analysis, medical image
segmentation is a difficult but critical task. It is a crucial step in image-
guided surgery, computer-aided detection, and medical data visualiza-
tion [1-3]. Its goal is to accurately segment medical images with se-
mantic labels so that it can provide reliable meaningful information for
clinical diagnosis and pathology research. Moreover, it aims to assist
physicians in making correct diagnoses. Deep learning-based methods
for medical image segmentation have been proposed in recent years and
have demonstrated state-of-the-art performance [4-6].

For 3D medical image segmentation, deep-learning-based methods
prefer to learn features from isotropic volume data as they can provide
more anatomical details and metabolism information [7]. However, due
to hardware limitations and time costs, isotropic volumes are difficult to
obtain in clinical practice [8]. Anisotropic volumes are commonly
available in most cases. In the through-plane directions, an anisotropic
3D volume is elongated, resulting unequal resolutions in the three di-
mensions [9]. For example, it may have high resolution (HR) in the
in-plane (axial) but low resolution (LR) in the through-plane (sagittal
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and coronal) directions. Consequently, detailed structures in the
through-plane direction are unclear, which leads to a negative impact on
image analysis, visualization, and diagnosis of lesions [7].

In the field of medical image segmentation, segmentation on aniso-
tropic 3D medical volumes remains a difficult task. The main problem is
that anisotropic 3D medical volumes are too sparse to adequately fit
functional representations or provide sufficient fine-scale information to
recover the missing details [10]. Image clarity is reduced and anatom-
ical structures are significantly distorted between consecutive slices
when we directly increase apparent volume resolution, for example,
using linear interpolation (Linear) [11], as presented in Fig. 1(B).

We address the challenge described above by proposing a method to
synthesize intermediate slices between consecutive slices. 3D medical
volumes are continuous slice sequences in the dimension of space,
similar to videos, which are continuous image sequences in the dimen-
sion of time. As a result, we propose a multiple intermediate slices
interpolation method, called slice imputation (SI), to generate isotropic
3D volumes and make them suitable for segmentation, inspired by the
idea of frame interpolation [12]. The main contributions of this work are
as follows:
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e To solve the anisotropy problem of 3D medical volumes for medical
image segmentation, we use a frame interpolation method. The inter-
slice distance of the interpolated volumes can become close to the x-y
spacing distance by increasing the number of slices between every
two consecutive slices, transforming them into isotropic volumes.

e To improve slice smoothness in the through-plane direction, we

introduce a smoothness loss function to evaluate the smoothness of

3D medical volumes in the through-plane direction.

To improve the authenticity of the interpolated slices, we employ a

multitask learning mechanism. The model can use the interacting

information between the classification and distinguishing tasks to
generate more realistic slices by learning the object classifier and the
local discriminator together.

This research is a significant extension of our previous work [13].
The smoothness in the in-plane direction is the only focus of the
inter-slice image augmentation (IIA) method proposed in Ref. [13]. The
interpolated 3D volumes of IIA tend to have blurry edges in the
through-plane direction. Therefore, we utilize a smoothness loss func-
tion which can evaluate the smoothness of 3D medical volumes in the
sagittal and coronal directions. Furthermore, we adopt the multi-task
learning mechanism to learn the classification task and the dis-
tinguishing task, which helps the model make use of the correlation
information between the two tasks.

The remainder of this paper is laid out as follows: In Section 2, we go
over some related works. The SI method and its derivation are discussed
in Section 3. We describe the implementation details in Section 4, as well
as experimental results and an analysis of the algorithm’s behavior.
Section 5 performs a detailed ablation analysis of the network to validate
the effect of the local and global discriminators and determine the
optimal numbers of intermediate slices. Finally we present a conclusion
in Section 6.

2. Related work
2.1. Medical image segmentation for anisotropic volumes

In the field of medical image segmentation, deep-learning-based
medical image segmentation methods have recently achieved state-of-
the-art performance [11,14-17]. However, due to the anisotropy of
the 3D volumes, deep-learning-based methods still fall short in 3D
medical image segmentation [18]. Some recent studies focused on
addressing this anisotropy problem [19,20].

Delannoy et al. [21] proposed an end-to-end methodology dedicated
to the analysis of low-resolution and anisotropic MR images. They used a
GAN-based approach to estimate jointly an high-resolution (HR) image
and its corresponding segmentation map from an low-resolution (LR)
image. Although the proposed method performs well in segmentation
task, it requires paired LR/HR images to learn the mapping from LR
images to HR images. However, in practice, such training data are often
unavailable. Lee et al. [19] proposed to avoid down-sampling feature
maps along the z-dimension and used convolution kernels with a
particular size, which transforms the volumes into almost isotropic ones.
Based on 2D and 3D vanilla U-Nets, Isensee et al. [20] proposed a robust

(A)Original image
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and self-adapting framework. This method makes the volumes isotropic
by first down-sampling the HR axes of the anisotropic medical volumes
until they match the LR axes and then up-sampling the volumes to the
original voxel spacing. However, directly down-sampling the
higher-resolution axes of the volumes may lead to information loss,
which may lead to a negative impact on high quality segmentation. On
the contrary, our method, namely, SI, preserves information in the
original medical volumes by increasing the slices between every two
consecutive slices while transforming the volumes into isotropic ones.

2.2. Super-resolution algorithm

Super-resolution (SR) methods aim to learn complex mapping re-
lations between LR and HR images. Kim et al. [22] proposed a
deep-convolutional-network based SR method. By increasing the
network depth, this method significantly improves the accuracy of
restoration. Although deep SR methods achieve accurate restorations of
high frequency contents, effectively training a very deep SR CNN is
challenging due to the vanishing gradient problem [7]. Du et al. [7]
proposed an SR reconstruction method based on residual learning with
long and short skip connections. Deep networks’ vanishing gradient
problem can be effectively addressed with the proposed method, which
restores high-frequency details of magnetic resonance images (MRI).
Most of the existing SR algorithms, according to Lim et al. [23], treat
super-resolution of different scale factors as independent problems
without considering mutual relationships among different scales in SR.
As a result, they proposed the EDSR, an enhanced deep SR network, that
transfers knowledge from a model trained at other scales. Zhang et al.
[24] proposed a residual channel attention network (RCAN) to obtain
very deep trainable networks and adaptively learn informative
channel-wise features. Wang et al. [25] proposed a patch-free 3D med-
ical image segmentation method, which can realize HR segmentation
with LR input. The motivation of the proposed method is capturing
global context while not introducing too much extra computational cost.
They use super resolution method as an auxiliary task for the segmen-
tation task to restore the HR details lost in the down-sampling proced-
ure. To shorten the time of image reconstruction and optimize the
structure for speed, Zhang et al. [26] proposed a fast medical image
super-resolution (FMISR) method. FMISR is a combined sub-pixel con-
volutional layer and mini-network to shorten the time of
super-resolution. Furthermore, FMISR implemented hidden layers to
remain the information while training the images for improving the
quality of the reconstruction. Iglesias et al. [27] proposed a method
which can utilize LF-MRI T1l-and T2-weighted scans to generate an
image with 1 mm isotropic resolution and MPRAGE contrast. By incor-
porating a segmentation-based regularizer, the proposed method can
improve the quality of reconstruction. Yan et al. [28] introduced
microbubble image features into a Kalman tracking framework, and
made the framework compatible with sparsity-based deconvolution, in
order to address the key challenges of tracking bubbles of high con-
centration at low frame rate.

In the field of SR, generative Adversarial Networks (GANs) [29] are
also used to improve the visual quality of the generated images, called
super-resolution generative adversarial network (SRGAN) [30].

(B)Linear interpolation [19]

Fig. 1. Synthetic slices of linear interpolation (Linear) [11] in the through-plane direction.
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However, the hallucinated details of SRGAN are often accompanied with
unpleasant artifacts. For this reason, Wang et al. [31] proposed an
enhanced super-resolution generative adversarial network (ESRGAN).
They revisited the key components of SRGAN and improved the model
by introducing the residual dense block without batch normalization as
the basic network building unit.

Although the aforementioned methods perform well at reconstruct-
ing HR images from LR ones, they cannot generate corresponding seg-
mentation labels, and some of them may change the original slices. On
the contrary, SI can use bidirectional spatial transformations to generate
intermediate slices and segmentation labels between every two
consecutive slices. For this reason, SI can generate the HR volumes
without changing the original slices, and the corresponding segmenta-
tion labels can be directly generated using the bidirectional spatial
transformations.

2.3. Image augmentation based on spatial transformation

A large amount of training data is critical to the success of deep
learning. However, in the field of medical imaging, a lack of training
data is a significant challenge. Due to issues such as a lack of cases,
insufficient medical resources, and costly labeling, researchers have
turned to data augmentation to better utilize existing data [32,33]. For
medical images, data augmentation is commonly preferred using
random smooth flow fields to simulate anatomical variations [14].
Although this method can reduce overfitting and improve test perfor-
mance [34,35], the selection of transformation functions and parameter
settings tend to influence the improvement of performance [36].

Data augmentation methods based on learning spatial trans-
formations from existing data have been proposed [37,36]. Hauberg
et al. [37] aimed to improve MNIST digit classification performance
through data enhancement. It learns digit-specific spatial trans-
formations and samples training images and transformations to create
new examples. Zhao et al. [36] proposed an automatic augmentation
method that has the potential to improve the performance of brain MRI
segmentation. The set of spatial and appearance transformations be-
tween the labeled atlas and unlabeled volumes is modeled using
learning-based registration methods. It can use unlabeled images to
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synthesize diverse and realistic labeled samples by capturing anatomical
and imaging diversity. However, these methods cannot be directly
applied to our problem scenarios. The synthetic slices of these methods
cannot be interpolated into the original volumes to make them isotropic
because the slice smoothness is ignored. In our previous work [13], we
proposed a method that generates synthetic inter-slice images based on
frame interpolation and attention mechanism, called ITA. IIA makes use
of the idea of frame interpolation to generate spatial transformation
between two consecutive slices. The method can generate as many in-
termediate slices as needed by employing spatial transformations.
However, IIA only focuses on smoothness in the in-plane direction, and
it tends to perform poorly in generating 3D volumes with clear edges in
the through-plane direction. SI proposes the use of a smoothness loss
function that can evaluate the smoothness of 3D medical volumes in the
through-plane direction to generate medical volumes with significantly
clearer edges in order to improve slice smoothness in the through-plane
direction.

3. Methods

By making 3D medical volumes isotropic and clear in both the in- and
through-plane directions, we proposed a method, namely, SI, to improve
the 3D medical image segmentation accuracy. Fig. 2 presents the pro-
posed method.

SI's first step is to learn an inter-slice synthesis model, which is
presented in detail in Fig. 2(a). Between every two consecutive slices in
the through-plane direction, the model is used to generate intermediate
slices. In this step, the slices of each volume in the through-plane di-
rection are divided into multiple sets in sequence, each with N + 2 slices,

{I,}N*5, where N denotes the number of intermediate slices between two
input slices. Given two input slices I, and Iy,;, we synthesize the in-
termediate slices, {T,,}S:I, which should be as close as possible to the
ground-truth intermediate slices {I,}~ ;.

In particular, the inter-slice synthesis network generates the bidi-
rectional spatial transformations ﬁ0—>N+1 and ﬁN+1—>0~ Then the inter-
mediate spatial transformations f',Ho and I?',HNH can be approximated

by combining the bidirectional spatial transformations as follows:
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Fig. 2. An overview of the proposed method: (a) the architecture of the inter-slice synthesis model, (b) the process of synthesizing intermediate slices and their
corresponding segmentation labels, and (c) the architecture of the 3D segmentation network. N is the number of interpolated slices between two consecutive slices.
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The intermediate spatial transformations Fa._o and IT",HNH warp Iy
and Iy,1, respectively, to synthesize the inter slice T,l as follows:

n N n —~
To= (1= )80, Foco) + gt Faows 3
0 Nl gl r))+N+1g(N+1 N+1) 3

where g(-,-) denotes a backward-warping function, which is imple-
mented with bilinear interpolation [38,39].

T, and I, are further fed into the global discriminator and multitask
learning model. The multitask learning model consists of an attention
network, an object classifier, and a local discriminator. The object
classifier detects whether the input slice contains the target object,
whereas the two discriminators determine whether the slices are syn-
thetic or real. The attention network focuses on the useful parts in the
slice that help the object classifier and the local discriminator make
predictions on their tasks. The object classifier and local discriminator

Lyarp = 1o — &(Ins15 Fni1-0)lly + 1 ve1 — 8oy Fosns)|l, +

Z Hln -

are optimized together, and they share the same attention network, to
take advantage of the interacting information between the two tasks.
The second step of SI is to create synthetic slices and their associated
segmentation labels between two consecutive slices in the through-plane
direction using the learned inter-slice synthesis network. The process of
synthesizing intermediate slices and their corresponding labels is pre-
sented in Fig. 2(b). Given two consecutive input slices I and I, and their
corresponding segmentation labels Ly, and L, the learned inter-slice
synthesis network generates the intermediate spatial transformations,

?,,_,0 and ?n_,l, at positionn € (0,1). Iy, I; and Lo, L; are warped by ?n_,o
and F,_; to generate the intermediate slice and their corresponding
segmentation label, Tn and f,,, as follows:

T, =(1—n)g(lo, Fumo) +ng(l, Fuur) &)

L,=(1—n)g(Lo, Fruo) +ng(Li, Fomr) (5)

The interpolated slices are used to train the segmentation network in
the third step of SI. Fig. 2(c) depicts the segmentation networks in detail.
The synthetic slices and segmentation labels are interpolated into the
original volumes in the through-plane direction during the training of
the 3D segmentation network to convert the 3D volumes into isotropic
ones. We then train the 3D segmentation network with the isotropic
volumes and the segmentation labels. After the training process, we use
the learned inter-slice synthesis network to generate intermediate slices
for test samples and interpolate the synthetic slices into the test samples
in the through-plane direction to make them isotropic. We then remove
the output segmentation labels of the synthetic intermediate slices after
feeding the interpolated test volumes into the learned 3D segmentation
network. The model’s performance is evaluated by comparing the
remaining parts of the segmentation labels with the ground-truth.

The inter-slice synthesis network: We construct the inter-slice
synthesis network using the method proposed by Jiang et al. [12]. The
loss function of the inter-slice synthesis network is defined as follows:

= /{reclrec + j'perlper + j'warplwarp + j'.vrnumh l:mooth + ﬂz/dvladr + Alp—smoulhllp—smoulh
(6)

IO F0—>n ”
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Equation (6) is a linear combination of six terms, where a set of co-
efficients {Arec, Aper; Awarp, Asmooth, Aadv, Ap-smootn} Tegularizes the contribu-
tion of the corresponding term.

The first term of (6) is L. It is the reconstruction loss between the
real slices and the synthetic slices. The loss function of L. is defined as
follows:

IV -~
lVeC:NZi:IHI" 71"”1 (7)

The second term of (6) is L. It is the perceptual loss to measure
perceptual difference between T,, and I, which can preserve details of
the predictions and make interpolated frames sharper [12]. The loss
function of ., is defined as follows:

ber =l (T) — (1)l ®

where ¢ means the conv4_3 features of an ImageNet pre-trained VGG16
model [40].

The third term of (6) is lLyqrp. It is the warping loss, which models the
quality of the spatial transformation [12]. The loss function of Ly is
defined as follows:

IN+17?1—>n)| 1 9

Z HIM -

The fourth term of (6) iS Lgumom. It is the smoothness loss, which
encourages neighboring pixels in the in-plan direction to have similar
transformation values [12]. The loss function of Lg;mon is defined as
follows:

l:moolh = HVF0—>N+1 ”1 + HVFN+1—>0H1 (10)

The fifth term of (6) is l,q,. It is the adversarial loss, which encourage
the generator to synthesis image to confuse the discriminator. It can
improve the authenticity of the synthetic images. The loss function of [ 4,
is defined as follows:

Ly = E logLD(Atr(1,

i=1

—= Z logGD(T, 11)

where Att means the attention network, LD means the local discrimi-
nator, GD means the global discriminator.

The fifth term of (6) is lp_smoon- It is the smoothness term to
encourage adjacent pixels of the interpolated volumes in the through-
plane direction to have similar values. The loss function of Iy_smeow iS
defined as follows:

1 L w
lrp—\-moorh :m Z Z zp

=1 j=1

~ 1 (i)°)

12)

— Iy (i) + (I i+ 1))

where Iy, € {Lqginal, Icoronar} denotes the slices in the through-plane di-
rections: Lugar, the volume slices in the sagittal direction; and Icorona, the
volume slices in the coronal direction. I (i,j) denotes the value in (i, ) of
Iy, L denotes the length of I, and W denotes the width of I,,.

The global discriminator and the multitask learning model: An
attention network, an object classifier, and a local discriminator are the
components of the multitask learning model. While the object classifier
detects whether the input slices contain the target objects, the global and
local discriminators compete with the inter-slice synthesis network. The
attention network can automatically focus on the interacting
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information between the classification and the distinguishing tasks by
training the local discriminator and the object classifier simultaneously.
The loss function for the global discriminator is defined as follows:

1 & ~ 1 &
Letobai - ; log(1—GD(I,,)|) — N g logGD(1,) 13)

The loss function for the multitask learning model is defined as
follows:

Lyt = ( - % 3 log(1 —~ LD(Aw(T,))) — 1%1 3 log LD(Atz(ln))>

+ ( —% 3" . log OC (An(1,) _ziv v,y " logoC (Atz(ln))>
14

where OC denotes the object classifier network. Y, € {0,1} and ¥, €
{0,1} denote whether the real and synthetic slices contain the target

object. ¥;=1 and Y;=1 if the input original and synthetic slices
contain the target object, and ¥; = 0 and 171- = 0 otherwise.

4. Experiment

We provide both quantitative and qualitative performance evalua-
tions for SI on three 3D medical imaging datasets.

4.1. Datasets

Brain tumors segmentation (BTS) in Medical Segmentation
Decathlon [41] is the first dataset in our experiment. All scans in BTS are
co-registered to a reference atlas space using the SRI24 brain structure
template [42], resampled to isotropic voxel resolution of 1mm?® , and
skull-stripped using various methods followed by manual refinements.
We segment the whole tumors in our experiment by selecting 100 FLAIR
modal MRI data in this dataset. We use training data from 56 scans,
validation data from 14 scans, and test data from 30 scans. The second
dataset is liver tumor segmentation (LTS) in Medical Segmentation
Decathlon [41]. The LTS slices are generated by a variety of different
scanning devices with intra-slice and inter-slice distances ranging from
0.5 to 1 mm and 0.45-6.0 mm, respectively. A total of 131 portal venous
phase computed tomography (CT) scans with two annotated objects
(liver and tumor) are selected. We use 74, 18, and 39 scans as training,
validation, and test data, respectively. Prostate segmentation (PS) in
Medical Segmentation Decathlon [41] is the third dataset. PS includes
32 transverse T2-weighted scans with two annotated objects (prostate
peripheral zone and the transition zone), each with voxel resolution
0.6 x 0.6 x 4mm®. We use 17, 6, and 9 scans as training, validation, and
test data, respectively.

4.2. Evaluation

Dice score: Dice score [43] quantifies the overlap between two
segmentation labels. The formulation of the Dice score is shown as
follows:

ILNI|

Dice(L,L) =2 x (7A
L[+ |L]

> x 100% (15)

where L denotes the ground truth of the real image and L denotes the
predicted segmentation label. If the Dice score is 0, the two labels have
no overlap. With the Dice score increasing, the two labels have more
overlap. When the Dice score is 1, the two labels have completely
overlap. A better model will have a higher Dice score.

Relative absolute volume difference: The relative absolute volume
difference (RAVD) [44] reveals if a method tends to over- or under
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segment. The formulation of RAVD is defined as follows:

(L2 Rl ]

RAVD(L,L) = ( I

> x 100% (16)

A value of 0 means both volumes are identical. A better model will
have a lower RAVD.

Average symmetric surface distance: Average symmetric surface
distance (ASSD) [44] is given in millimeters and based on the surface
voxels of two segmentations L and L. The formulation of ASSD is defined
as follows:

~ 1 ~ ~
ASSD(L,L)—A< min~ ~ Hl—l“2+ l’l’lil’l1g5(L)|l—l|2>
IS()I+IS(L)] 1523(;) fest) AZA

leS(L)

a7

where S( -) denote the set of surface voxels of volumes. For each surface
voxel of L, the Euclidean distance to the closest surface voxel of Lis
calculated. In order to provide symmetry, the same process is applied
from the surface voxels of L to L. ASSD is then defined as the average of
all distances, which is 0 for a perfect segmentation. A better model will
have a lower ASSD.

Maximum symmetric surface distance: Maximum symmetric
surface distance (MSSD) [44] is given in millimeter and based on the
surface voxels of two segmentations L and L. The formulation of MSSD is
defined as follows:

MSSD(L, L) :max{max min |1 77H2,Amair min ||l 7’1\H2} (18)
1eSWes (D) les(n)'€S®

Different from ASSD, surface voxels of MSSD are determined using
Euclidean distances, and the maximum value yields MSSD. For a perfect
segmentation MSSD is 0. A better model will have a lower MSSD.

4.3. Implementation

To implement SI, we divide the training data into multiple sets in
sequence, each with N + 2 slices. We will discuss the setting of N in
Section 5.2. The first four hyper-parameters of (6) are determined ac-
cording to Ref. [13]. Furthermore, we use five-fold cross-validation to
select Aqgy and Ag_smooth- Aadv iS set to 0.050 and Ay smoorn is Set to 0.467.
As presented in Fig. 2(a), we optimize the attention network, object
classifier, and local discriminator together. Two fully connected layers
comprise the object classifier, whereas, three convolutional layers, a
fully connected layer, and a sigmoid function comprise the global and
local discriminators. Two branches make up the attention network. The
features of the slices are extracted by one convolutional layer, and the
corresponding attention masks are generated by two convolutional
layers in the other branch. The inter-slice synthesis network is trained in
30 epochs using the basic learning rate of 0.001, and the batch size is set
to 2. To optimize all of the networks in the inter-slice synthesis model,
we use Adam optimizer [45]. To better introduce the detail of hyper
parameters, we show the value of hyper parameters in SI in Table 1.

In the experiment of BTS, EDSR [23], ESRGAN [31], RCAN [24],
Linear [11], and ITA [13] are compared with our method. The first three
methods transform the LR images in the through-plane direction into HR
ones and do not generate the corresponding segmentation labels of the
synthetic slices. To leverage unlabeled slices, the 2D uncertainty aware
self-ensembling mean teacher model [46], which is a semi-supervised
segmentation model, is employed to segment the medical volumes

Table 1
Hyper parameters of SI.
Arec Aper Awarp Asmooth Aady Atp—smooth
value 2.000 0.005 1.000 1.000 0.050 0.467
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augmented by the first three methods. The 2D uncertainty aware
self-ensembling mean teacher model contains two models, the teacher
model and the student model. The backbone of the teacher and student
models is U-Net [14]. For a fair comparison, U-Net is employed to
segment the medical volumes augmented by the other methods. In the
experiments of LTS and PS, Linear [11], IIA [13] are compared with our
proposed method. All methods transform the anisotropic medical vol-
umes into isotropic ones and use nnU-Net [20] to segment the medical
volumes.

4.4. Comparison with SR algorithms

In this session, we compare our method’s performance with the
baselines on whole tumor segmentation of BTS. To make the data in BTS
anisotropic, the R-th slices of the volumes in the through-plane direction
are removed. R is defined as follows:

R={rvr%4+#0,0<r<H} (19)
where H denotes the number of slices of the volumes in the through-plan
direction.

4.4.1. Visualization performance of synthetic slices

Synthetic slices of different methods and their difference maps with
the original slices in BTS are presented in Fig. 3. The difference maps of
EDSR and ESRGAN in Fig. 3 indicate that, compared with other
methods, the synthetic slices of these methods are significantly different
from the original slices (columns 3, 5 in Fig. 3). For Linear, the synthetic
slices are less different from the original slices compared with EDSR and
ESRGAN. However, the synthetic slices of Linear have aliasing on the
edges of the object (columns 9 in Fig. 3). For RCAN, although it can
recover the slices that are similar to the ground-truth, it changes the
original slices (column 7 in Fig. 3): thus, it may cause a negative impact
on the segmentation and cannot be directly applied to our problem
scenario. By contrast, since IIA, SI w/o (without) lp_gmeom, and SI
interpolate slices into the volumes to make it isotropic, the original slices
do not change. Although ITA and ST w/0 lj_gnoom Can recover slices that
are less different from the original slices on the object’s edge, they are
unable to recover the texture of the object (columns 11, 13 in Fig. 3). For
SI, its performance of recovering on the edges and texture is better than
those of ITA and SI W/0 lyp_smoorn, Which means that the smoothness
function of SI can improve the authenticity of the synthetic slices (col-
umns 15 in Fig. 3).

4.4.2. Segmentation performance evaluations
The segmentation accuracies obtained by different methods are

presented in Table 2. In all tables, 1 denotes higher is better, whereas |
denotes lower is better. The best results are in bold, and the second-best

results are underlined. As can be seen from Table 2, all the SR algorithms

Real EDSR [16]

Sagi

Coronal

ESRGAN [17]

£ B

RCAN [18]
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Table 2
Performance on the BTS dataset for whole tumor segmentation.

Method Dice(%) t RAVD(%) | ASSD(%) | MSSD(%) |
U-Net [14] 82.91 18.97 2.97 13.68
EDSR [23] 80.25 20.87 3.09 14.83
ESRGAN [31] 81.79 19.03 3.47 16.74
RCAN [24] 82.00 19.37 3.07 14.99
Linear [11] 68.69 38.33 7.75 38.06

1A [13] 85.72 38.33 2.28 8.50
SIW/0 lp—smooth 86.36 14.71 2.14 8.35

SI 87.00 13.16 215 8.27

perform worse than U-Net. Although SR algorithms can recover slices
that are less different from the original slices, they are not suitable for
helping with segmentation, because the original slices are changed.
Moreover, the training of the SR algorithm needs LR/HR pairs; thus,
these methods cannot be trained with LR slices only. Hence, the SR al-
gorithm is not suitable for our problem scenario. Linear has the worst
performance in the experiments. One possible reason is that the distance
of the original slices is large. It’s difficult to recover the feature of the
missing slices using linear interpolation in the through-plane direction.
By contrast, IIA, SI W/0 ly_gmeom, and SI perform better than U-Net.
Because all of the three methods generate intermediate slices and labels
without changing the original slices, and can provide more labeled
training data. Furthermore, all of the three methods use the local
discriminator, which makes the methods pay more attention to the
authenticity of the target object. Thus, the segmentation model can
better learn the feature of the target object, and ultimately improve the
segmentation performance. SI W/0 lp_smoon performs better than IIA,
which means that the multitask learning mechanism is useful for
boosting segmentation performance. In Addition, due to the smoothness
loss function, SI performs better than SI w/0 ly,_gmoom Overall.

4.5. Comparison with algorithms that transform the data into isotropic
data

In this section, we compare our method’s performance with the
baselines on 3D segmentation tasks of LTS and PS. For isotropic volume,
the intervals of the in-plane and through-plane directions are equal,
namely the inter-slice distance of an isotropic volume is equal to its
intra-slice distance. To transform the interpolated volumes into isotropic
ones, the synthetic slices can be interpolated into the anisotropic volume
in the through-plane direction to reduce its intra-slice distance. In the
experiment, the number of interpolated slices between two consecutive
slices is calculated using the following equation:

D[n er
Ny = L)—J -1, (20)
Linear [19] NA[24]  SIW/O kp.smooth s
1.00
é w 0.75

0.50

0.25

* « 0.00

-0.25

—-0.50

-0.75

-1.00

Fig. 3. Synthetic slices of different methods in BTS from different directions: the in-plane (axial view), and through-plane (sagittal and coronal views) directions. The

difference maps are provided to the right of the results for better visualization.
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1A [24]

Fig. 4. Synthetic slices of different methods in LTS from different directions: the in-plane (axial view), and through-plane (sagittal and coronal views) directions.

Real Image Linear [19]

Sagittal

1A [24] Sl w/o ltp_smooth

Fig. 5. Synthetic slices of different methods in PS from different directions: the in-plane (axial view), and through-plane (sagittal and coronal views) directions.

where Dj,.r denotes the inter-slice distance of the volume; D;,,, denotes

the intra-slice distance of the volume; and |.| denotes a floor function
that outputs the greatest integer that is less than or equal to the input.

4.5.1. Visualization performance of synthetic slices

The synthetic slices of different methods in LTS and PS are presented
in Fig. 4 and Fig. 5. The synthesized slice of SIW/0 l;_gmoeon has a clearer
outline of tumor (red arrow) than Linear and IIA, as shown in the first
row of Fig. 4. The second and third rows of Figs. 4 and 5 show that ST w/
0 ly_smooth can generate volumes with clearer edges than Linear and IIA.
The results described above indicate that the multitask learning mech-
anism helps the model capture more details of the object and generate
more realistic slices. The synthesized slices of SI are less noisy than those
of the other methods in Figs. 4 and 5. This is because the smoothness loss
function of SI aims at encouraging neighboring pixels to have similar
values. The proposed method can generate slices with more spatial
smoothness in the through-plane directions by reducing noise in the
synthetic slices using the smoothness loss function. On the contrary,
since Linear, ITA, and SI W/0 ly_gmeom do not incorporate slice smooth-
ness in the through-plane direction, their synthetic slices suffer aliasing
on the edges of the object (rows 2 and 3 in Figs. 4 and 5).

Table 3

4.5.2. Segmentation performance evaluations

Table 3 and Table 4 present the 3D segmentation performance of
various methods. We also visualize the activation maps extracted by SI's
attention networks to demonstrate the effectiveness of the multitask
mechanism in SI. Fig. 6 presents the activation maps of two specific
slices. Since SI w/o ltp—smooth and SI use the same attention mecha-
nism, we only show the activation maps of SI. Tables 3 and 4 show that
in most cases, nnU-Net and Linear perform worse than IIA, SI w/o
lp—smooth» and SI. Since nnU-Net directly down-samples the HR axes of the
volumes to transform the data into isotropic ones, it fails to fully exploit
the information of the volumes. Furthermore, Linear directly increases
slices resolution, which substantially changes the anatomical structure
between consecutive slices. For most cases, SI W/0 ly_smoon performs
better than IIA, suggesting that the multitask learning mechanism helps
boosting segmentation performance. Fig. 6 demonstrates that IIA only
focuses on the local target object, but SI highlights the whole target
object (red arrows in Fig. 6). The results indicate that the multitask
learning model enables the attention network to capture more detailed
information of the slices and leads to better segmentation performances.
Overall, benefiting from the smoothness loss function, SI achieves the
best performance.

Performance of different methods over two annotated objects, namely, liver and tumor, and the mean scores of two annotated objects in LTS.

Method Dice(%) 1 RAVD(%) | ASSD(%) | MSSD(%) |

Liver Tumor Mean Liver Tumor Mean Liver Tumor Mean Liver Tumor Mean
nnU-Net [20] 94.11 55.81 74.96 6.69 49.01 27.85 3.00 13.15 8.08 60.53 60.48 60.51
Linear [11] 94.01 55.54 74.78 7.10 46.60 26.85 2.60 12.91 7.76 51.09 60.19 55.64
TIA [13] 94.30 56.88 75.79 5.76 47.22 26.49 1.97 15.41 8.69 36.76 68.70 53.23
ST W/0 lip_smooth 95.14 56.37 75.76 6.49 46.48 26.48 2.44 10.73 6.59 53.43 49.15 51.29
SI 94.57 57.38 75.98 6.14 44.55 25.35 1.95 12.69 7.32 52.09 49.59 50.84
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Table 4
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Performance over two annotated objects, namely, prostate peripheral zone (PZ) and the transition zone (TZ), and the mean scores of two annotated objects in PS.

Method Dice(%) 1 RAVD(%) | ASSD(%) | MSSD(%) |

PZ TZ Mean PZ TZ Mean PZ TZ Mean PZ TZ Mean
nnU-Net [20] 87.79 83.81 85.81 9.66 18.98 14.32 0.57 0.68 0.63 4.39 5.92 5.15
Linear [11] 89.78 84.74 87.26 8.39 17.29 12.84 0.49 0.64 0.56 3.99 6.12 5.06
IIA [13] 89.97 85.72 87.84 7.49 15.86 11.68 0.47 0.59 0.53 3.90 6.38 5.14
SI w/0 ly—smooth 89.96 86.19 88.08 7.50 15.63 11.56 0.47 0.58 0.52 3.76 5.96 4.86
SI 90.29 86.33 88.31 6.31 16.46 11.39 0.46 0.58 0.52 3.56 6.27 4.91

Annotated Image

IIA [24]

0.8

0.6

0.4

0.2

0.0

Fig. 6. Visualization of the activation map.

5. Ablation study

In this section, we perform a detailed ablation analysis of the
network to validate the effect of the local and global discriminators and
determine the optimal numbers of intermediate slices. In section 5.1, we
investigate the effect of the global and local discriminators. In section
5.2, the effect of the number of intermediate slices is studied.

5.1. Effect of GD and LD

To validate the effect of the local and global discriminators, we
conduct detailed ablation studies in LTS and PS. (1) Only the interme-
diate slice synthesis network is used, without using the two discrimi-
nators (global discriminator, GD, and local discriminator, LD). (2) To
highlight the effect of GD, the intermediate slice synthesis network is
used to battle with the GD. (3) To highlight the effect of LD, the inter-
mediate slice synthesis network is used to battle with the LD. (4) The
intermediate slice synthesis network is used to battle with both the GD
and LD.

Tables 5 and 6 show the segmentation performance under different
module configurations. As expected, SI with discriminators outperforms

Table 5

SI without any discriminators. It is worth noting that rows 2 to 4 in
Table 5 and Table 6 have lower ASSD and MSSD than row 1 in Tables 5
and 6. This shows that GD and LD are effective to help SI to generate
slices with more realistic edges. Compared with only using GD or LD,
using GD and LD simultaneously has the best performance.

5.2. Effect of the numbers of intermediate slices

We conduct four segmentation experiments using the inter-slice
synthesis network to generate different numbers of intermediate slices
between two consecutive slices to investigate the effect of intermediate
slice numbers on our method. The results are presented in Table 7 and
Table 8. Np, the number of automatically interpolated slices, is deter-
mined by the original data according to (20).

Tables 7 and 8 show that in most cases, with Ny slices added between
every two consecutive slices, our method yields the best results (row 4 in
Tables 7 and 8). This is because the distance between two consecutive
slices of different volumes is not the same, so if we interpolate a fixed
number of slices between two consecutive slices, not all the volumes
become isotropic, some may remain anisotropic. By using N as the
number of interpolated slices between two consecutive slices, SI can

The segmentation over two annotated objects, namely, liver and tumor, and the mean scores of two annotated objects in LTS for the detailed ablation studies of each

modules in our framework.

No. Module Dice(%) 1 RAVD(%) | ASSD(%) | MSSD(%) |

GD LD Liver Tumor Mean Liver Tumor Mean Liver Tumor Mean Liver Tumor Mean
1 94.27 56.26 75.27 6.49 53.51 30.00 2.79 12.20 7.50 59.77 55.72 57.75
2 v 94.30 56.27 75.29 6.40 54.86 30.63 2.62 11.07 6.85 54.43 53.47 53.95
3 v 94.35 57.51 75.93 5.98 45.50 25.74 2.10 12.23 7.17 58.22 50.75 54.59
4 v v 94.57 57.38 75.98 6.14 44.55 25.35 1.95 12.69 7.32 52.09 49.59 50.84
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Table 6
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Performance over two annotated objects, namely, prostate peripheral zone (PZ) and the transition zone (TZ), and the mean scores of two annotated objects in PS.

No. Module Dice(%) 1 RAVD(%) | ASSD(%) | MSSD(%) |
GD LD PZ TZ Mean PZ TZ Mean PZ TZ Mean PZ TZ Mean
1 89.94 83.94 86.94 7.64 20.32 13.98 0.57 0.70 0.64 7.76 7.12 7.44
2 v 90.00 84.53 87.27 6.67 18.78 12.73 0.49 0.48 0.49 3.70 6.78 5.24
3 4 90.16 84.95 87.56 6.54 18.12 12.33 0.52 0.62 0.57 3.84 6.66 5.25
4 v 4 90.29 86.33 88.31 6.31 16.46 11.39 0.46 0.58 0.52 3.56 6.27 4.91
Table 7

Performance of interpolating different numbers of intermediate slices over two annotated objects, namely, liver and tumor, and the mean scores of two annotated

objects in LTS.

Interpolated Slices Dice(%) t RAVD(%) | ASSD(%) | MSSD(%) |

Liver Tumor Mean Liver Tumor Mean Liver Tumor Mean Liver Tumor Mean
1 94.21 55.15 74.68 6.63 47.72 27.18 2.38 12.34 7.36 47.70 60.11 53.91
2 90.90 48.59 69.75 12.63 56.07 34.35 3.60 16.25 9.93 61.54 81.49 71.52
3 95.11 54.98 75.05 5.74 50.51 28.12 2.44 10.28 6.36 59.44 54.65 57.05
Ny 94.57 57.38 75.98 6.14 44.55 25.35 1.95 12.69 7.32 52.09 49.59 50.84

Table 8

Performance of interpolating different numbers of intermediate slices over two annotated objects, namely, prostate peripheral zone (PZ) and the transition zone (TZ),

and the mean scores of two annotated objects in PS.

Interpolated Slices Dice(%) t RAVD(%) | ASSD(%) | MSSD(%) |
PZ TZ Mean PZ TZ Mean PZ TZ Mean PZ TZ Mean
1 89.73 85.42 87.58 9.16 21.73 15.44 0.93 1.11 1.02 4.83 6.72 5.77
2 89.22 85.21 87.21 9.51 21.60 15.55 0.77 0.92 0.84 4.39 5.91 5.15
3 89.49 85.65 87.57 8.65 20.35 14.50 0.63 0.77 0.70 4.06 5.93 5.00
Ny 90.29 86.33 88.31 6.31 16.46 11.39 0.46 0.58 0.52 3.56 6.27 4.91
adaptively transform all the volumes into isotropic ones, which im- Acknowledgements

proves the 3D segmentation performance.
6. Conclusion

In this paper, we propose a novel multitask frame-interpolation-
based method for slice imputation whereby the number of slices and
corresponding labels is increased between two consecutive slices. SI can
generate more realistic 3D medical volumes by evaluating the smooth-
ness of the interpolated 3D medical volumes in the through-plane di-
rection with a smoothness loss function, which improves the accuracy of
3D medical image segmentation. Furthermore, SI can generate as many
intermediate slices as needed between two consecutive slices to trans-
form the 3D medical volumes into isotropic ones. The experiments
comparing with the baseline methods on BTS, LTS, and PS demonstrate
the superior performances of SI. The smoothness loss function and the
multitask learning model are shown to be effective in ablation experi-
ments. 3D segmentation networks can achieve the best performance if
the number of interpolated slices is appropriate to transform the
anisotropic 3D medical volumes into isotropic ones.

There are still a lot of works to improve the proposed method. The
performance of SI may degrade when encountering domain shift, i.e,
attempting to apply the learned models on different modalities or organs
that have different distributions from the training data.

The exploration of the above limitations leads us to future directions.
Domain adaptation can be used in our future work to model the shift
between datasets of different modalities or organs [47]. Furthermore,
for different modalities, the idea of cross-modality translation can be
applied in our model. The idea of CycleGAN [48] can be added in our
model to learn the feature of different modalities [49].
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