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A B S T R A C T   

We introduce a novel frame-interpolation-based method for slice imputation to improve segmentation accuracy 
for anisotropic 3D medical images, in which the number of slices and their corresponding segmentation labels 
can be increased between two consecutive slices in anisotropic 3D medical volumes. Unlike previous inter-slice 
imputation methods, which only focus on the smoothness in the axial direction, this study aims to improve the 
smoothness of the interpolated 3D medical volumes in all three directions: axial, sagittal, and coronal. The 
proposed multitask inter-slice imputation method, in particular, incorporates a smoothness loss function to 
evaluate the smoothness of the interpolated 3D medical volumes in the through-plane direction (sagittal and 
coronal). It not only improves the resolution of the interpolated 3D medical volumes in the through-plane di
rection but also transforms them into isotropic representations, which leads to better segmentation perfor
mances. Experiments on whole tumor segmentation in the brain, liver tumor segmentation, and prostate 
segmentation indicate that our method outperforms the competing slice imputation methods on both computed 
tomography (1\% Dice improvement for CT liver tumor segmentation) and magnetic resonance images volumes 
(over 2\% Dice improvement for MRI prostate segmentation) in most cases.   

1. Introduction 

In the field of medical image processing and analysis, medical image 
segmentation is a difficult but critical task. It is a crucial step in image- 
guided surgery, computer-aided detection, and medical data visualiza
tion [1–3]. Its goal is to accurately segment medical images with se
mantic labels so that it can provide reliable meaningful information for 
clinical diagnosis and pathology research. Moreover, it aims to assist 
physicians in making correct diagnoses. Deep learning-based methods 
for medical image segmentation have been proposed in recent years and 
have demonstrated state-of-the-art performance [4–6]. 

For 3D medical image segmentation, deep-learning-based methods 
prefer to learn features from isotropic volume data as they can provide 
more anatomical details and metabolism information [7]. However, due 
to hardware limitations and time costs, isotropic volumes are difficult to 
obtain in clinical practice [8]. Anisotropic volumes are commonly 
available in most cases. In the through-plane directions, an anisotropic 
3D volume is elongated, resulting unequal resolutions in the three di
mensions [9]. For example, it may have high resolution (HR) in the 
in-plane (axial) but low resolution (LR) in the through-plane (sagittal 

and coronal) directions. Consequently, detailed structures in the 
through-plane direction are unclear, which leads to a negative impact on 
image analysis, visualization, and diagnosis of lesions [7]. 

In the field of medical image segmentation, segmentation on aniso
tropic 3D medical volumes remains a difficult task. The main problem is 
that anisotropic 3D medical volumes are too sparse to adequately fit 
functional representations or provide sufficient fine-scale information to 
recover the missing details [10]. Image clarity is reduced and anatom
ical structures are significantly distorted between consecutive slices 
when we directly increase apparent volume resolution, for example, 
using linear interpolation (Linear) [11], as presented in Fig. 1(B). 

We address the challenge described above by proposing a method to 
synthesize intermediate slices between consecutive slices. 3D medical 
volumes are continuous slice sequences in the dimension of space, 
similar to videos, which are continuous image sequences in the dimen
sion of time. As a result, we propose a multiple intermediate slices 
interpolation method, called slice imputation (SI), to generate isotropic 
3D volumes and make them suitable for segmentation, inspired by the 
idea of frame interpolation [12]. The main contributions of this work are 
as follows: 
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• To solve the anisotropy problem of 3D medical volumes for medical 
image segmentation, we use a frame interpolation method. The inter- 
slice distance of the interpolated volumes can become close to the x-y 
spacing distance by increasing the number of slices between every 
two consecutive slices, transforming them into isotropic volumes.  

• To improve slice smoothness in the through-plane direction, we 
introduce a smoothness loss function to evaluate the smoothness of 
3D medical volumes in the through-plane direction.  

• To improve the authenticity of the interpolated slices, we employ a 
multitask learning mechanism. The model can use the interacting 
information between the classification and distinguishing tasks to 
generate more realistic slices by learning the object classifier and the 
local discriminator together. 

This research is a significant extension of our previous work [13]. 
The smoothness in the in-plane direction is the only focus of the 
inter-slice image augmentation (IIA) method proposed in Ref. [13]. The 
interpolated 3D volumes of IIA tend to have blurry edges in the 
through-plane direction. Therefore, we utilize a smoothness loss func
tion which can evaluate the smoothness of 3D medical volumes in the 
sagittal and coronal directions. Furthermore, we adopt the multi-task 
learning mechanism to learn the classification task and the dis
tinguishing task, which helps the model make use of the correlation 
information between the two tasks. 

The remainder of this paper is laid out as follows: In Section 2, we go 
over some related works. The SI method and its derivation are discussed 
in Section 3. We describe the implementation details in Section 4, as well 
as experimental results and an analysis of the algorithm’s behavior. 
Section 5 performs a detailed ablation analysis of the network to validate 
the effect of the local and global discriminators and determine the 
optimal numbers of intermediate slices. Finally we present a conclusion 
in Section 6. 

2. Related work 

2.1. Medical image segmentation for anisotropic volumes 

In the field of medical image segmentation, deep-learning-based 
medical image segmentation methods have recently achieved state-of- 
the-art performance [11,14–17]. However, due to the anisotropy of 
the 3D volumes, deep-learning-based methods still fall short in 3D 
medical image segmentation [18]. Some recent studies focused on 
addressing this anisotropy problem [19,20]. 

Delannoy et al. [21] proposed an end-to-end methodology dedicated 
to the analysis of low-resolution and anisotropic MR images. They used a 
GAN-based approach to estimate jointly an high-resolution (HR) image 
and its corresponding segmentation map from an low-resolution (LR) 
image. Although the proposed method performs well in segmentation 
task, it requires paired LR/HR images to learn the mapping from LR 
images to HR images. However, in practice, such training data are often 
unavailable. Lee et al. [19] proposed to avoid down-sampling feature 
maps along the z-dimension and used convolution kernels with a 
particular size, which transforms the volumes into almost isotropic ones. 
Based on 2D and 3D vanilla U-Nets, Isensee et al. [20] proposed a robust 

and self-adapting framework. This method makes the volumes isotropic 
by first down-sampling the HR axes of the anisotropic medical volumes 
until they match the LR axes and then up-sampling the volumes to the 
original voxel spacing. However, directly down-sampling the 
higher-resolution axes of the volumes may lead to information loss, 
which may lead to a negative impact on high quality segmentation. On 
the contrary, our method, namely, SI, preserves information in the 
original medical volumes by increasing the slices between every two 
consecutive slices while transforming the volumes into isotropic ones. 

2.2. Super-resolution algorithm 

Super-resolution (SR) methods aim to learn complex mapping re
lations between LR and HR images. Kim et al. [22] proposed a 
deep-convolutional-network based SR method. By increasing the 
network depth, this method significantly improves the accuracy of 
restoration. Although deep SR methods achieve accurate restorations of 
high frequency contents, effectively training a very deep SR CNN is 
challenging due to the vanishing gradient problem [7]. Du et al. [7] 
proposed an SR reconstruction method based on residual learning with 
long and short skip connections. Deep networks’ vanishing gradient 
problem can be effectively addressed with the proposed method, which 
restores high-frequency details of magnetic resonance images (MRI). 
Most of the existing SR algorithms, according to Lim et al. [23], treat 
super-resolution of different scale factors as independent problems 
without considering mutual relationships among different scales in SR. 
As a result, they proposed the EDSR, an enhanced deep SR network, that 
transfers knowledge from a model trained at other scales. Zhang et al. 
[24] proposed a residual channel attention network (RCAN) to obtain 
very deep trainable networks and adaptively learn informative 
channel-wise features. Wang et al. [25] proposed a patch-free 3D med
ical image segmentation method, which can realize HR segmentation 
with LR input. The motivation of the proposed method is capturing 
global context while not introducing too much extra computational cost. 
They use super resolution method as an auxiliary task for the segmen
tation task to restore the HR details lost in the down-sampling proced
ure. To shorten the time of image reconstruction and optimize the 
structure for speed, Zhang et al. [26] proposed a fast medical image 
super-resolution (FMISR) method. FMISR is a combined sub-pixel con
volutional layer and mini-network to shorten the time of 
super-resolution. Furthermore, FMISR implemented hidden layers to 
remain the information while training the images for improving the 
quality of the reconstruction. Iglesias et al. [27] proposed a method 
which can utilize LF-MRI T1-and T2-weighted scans to generate an 
image with 1 mm isotropic resolution and MPRAGE contrast. By incor
porating a segmentation-based regularizer, the proposed method can 
improve the quality of reconstruction. Yan et al. [28] introduced 
microbubble image features into a Kalman tracking framework, and 
made the framework compatible with sparsity-based deconvolution, in 
order to address the key challenges of tracking bubbles of high con
centration at low frame rate. 

In the field of SR, generative Adversarial Networks (GANs) [29] are 
also used to improve the visual quality of the generated images, called 
super-resolution generative adversarial network (SRGAN) [30]. 

Fig. 1. Synthetic slices of linear interpolation (Linear) [11] in the through-plane direction.  
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However, the hallucinated details of SRGAN are often accompanied with 
unpleasant artifacts. For this reason, Wang et al. [31] proposed an 
enhanced super-resolution generative adversarial network (ESRGAN). 
They revisited the key components of SRGAN and improved the model 
by introducing the residual dense block without batch normalization as 
the basic network building unit. 

Although the aforementioned methods perform well at reconstruct
ing HR images from LR ones, they cannot generate corresponding seg
mentation labels, and some of them may change the original slices. On 
the contrary, SI can use bidirectional spatial transformations to generate 
intermediate slices and segmentation labels between every two 
consecutive slices. For this reason, SI can generate the HR volumes 
without changing the original slices, and the corresponding segmenta
tion labels can be directly generated using the bidirectional spatial 
transformations. 

2.3. Image augmentation based on spatial transformation 

A large amount of training data is critical to the success of deep 
learning. However, in the field of medical imaging, a lack of training 
data is a significant challenge. Due to issues such as a lack of cases, 
insufficient medical resources, and costly labeling, researchers have 
turned to data augmentation to better utilize existing data [32,33]. For 
medical images, data augmentation is commonly preferred using 
random smooth flow fields to simulate anatomical variations [14]. 
Although this method can reduce overfitting and improve test perfor
mance [34,35], the selection of transformation functions and parameter 
settings tend to influence the improvement of performance [36]. 

Data augmentation methods based on learning spatial trans
formations from existing data have been proposed [37,36]. Hauberg 
et al. [37] aimed to improve MNIST digit classification performance 
through data enhancement. It learns digit-specific spatial trans
formations and samples training images and transformations to create 
new examples. Zhao et al. [36] proposed an automatic augmentation 
method that has the potential to improve the performance of brain MRI 
segmentation. The set of spatial and appearance transformations be
tween the labeled atlas and unlabeled volumes is modeled using 
learning-based registration methods. It can use unlabeled images to 

synthesize diverse and realistic labeled samples by capturing anatomical 
and imaging diversity. However, these methods cannot be directly 
applied to our problem scenarios. The synthetic slices of these methods 
cannot be interpolated into the original volumes to make them isotropic 
because the slice smoothness is ignored. In our previous work [13], we 
proposed a method that generates synthetic inter-slice images based on 
frame interpolation and attention mechanism, called IIA. IIA makes use 
of the idea of frame interpolation to generate spatial transformation 
between two consecutive slices. The method can generate as many in
termediate slices as needed by employing spatial transformations. 
However, IIA only focuses on smoothness in the in-plane direction, and 
it tends to perform poorly in generating 3D volumes with clear edges in 
the through-plane direction. SI proposes the use of a smoothness loss 
function that can evaluate the smoothness of 3D medical volumes in the 
through-plane direction to generate medical volumes with significantly 
clearer edges in order to improve slice smoothness in the through-plane 
direction. 

3. Methods 

By making 3D medical volumes isotropic and clear in both the in- and 
through-plane directions, we proposed a method, namely, SI, to improve 
the 3D medical image segmentation accuracy. Fig. 2 presents the pro
posed method. 

SI’s first step is to learn an inter-slice synthesis model, which is 
presented in detail in Fig. 2(a). Between every two consecutive slices in 
the through-plane direction, the model is used to generate intermediate 
slices. In this step, the slices of each volume in the through-plane di
rection are divided into multiple sets in sequence, each with N + 2 slices, 
{In}

N+1
n=0 , where N denotes the number of intermediate slices between two 

input slices. Given two input slices In and IN+1, we synthesize the in

termediate slices, { În}
N
n=1, which should be as close as possible to the 

ground-truth intermediate slices {In}
N
n=1. 

In particular, the inter-slice synthesis network generates the bidi
rectional spatial transformations F̂0→N+1 and F̂N+1→0. Then the inter
mediate spatial transformations F̂n→0 and F̂n→N+1 can be approximated 
by combining the bidirectional spatial transformations as follows: 

Fig. 2. An overview of the proposed method: (a) the architecture of the inter-slice synthesis model, (b) the process of synthesizing intermediate slices and their 
corresponding segmentation labels, and (c) the architecture of the 3D segmentation network. N is the number of interpolated slices between two consecutive slices. 
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F̂n→0 = −
(

1 −
n

N + 1

) n
N + 1

F̂0→N+1 +
n

N + 1
2
F̂N+1→0 (1)  

F̂n→N+1 =
(

1 −
n

N + 1

)2
F̂0→N+1 −

(
1 −

n
N + 1

) n
N + 1

F̂N+1→0 (2) 

The intermediate spatial transformations F̂n→0 and F̂n→N+1 warp I0 

and IN+1, respectively, to synthesize the inter slice ̂In as follows: 

Î 0 =
(

1 −
n

N + 1

)
g(I0, F̂n→0) +

n
N + 1

g(IN+1, F̂n→N+1) (3)  

where g(⋅, ⋅) denotes a backward-warping function, which is imple
mented with bilinear interpolation [38,39]. 

În and In are further fed into the global discriminator and multitask 
learning model. The multitask learning model consists of an attention 
network, an object classifier, and a local discriminator. The object 
classifier detects whether the input slice contains the target object, 
whereas the two discriminators determine whether the slices are syn
thetic or real. The attention network focuses on the useful parts in the 
slice that help the object classifier and the local discriminator make 
predictions on their tasks. The object classifier and local discriminator 

are optimized together, and they share the same attention network, to 
take advantage of the interacting information between the two tasks. 

The second step of SI is to create synthetic slices and their associated 
segmentation labels between two consecutive slices in the through-plane 
direction using the learned inter-slice synthesis network. The process of 
synthesizing intermediate slices and their corresponding labels is pre
sented in Fig. 2(b). Given two consecutive input slices I0 and I1, and their 
corresponding segmentation labels L0 and L1, the learned inter-slice 
synthesis network generates the intermediate spatial transformations, 
F̂n→0 and F̂n→1, at position n ∈ (0, 1). I0, I1 and L0, L1 are warped by F̂n→0 

and F̂n→1 to generate the intermediate slice and their corresponding 
segmentation label, ̂In and L̂n, as follows: 

Î n = (1 − n)g(I0, F̂n→0) + ng(I1, F̂n→1) (4)  

L̂n = (1 − n)g(L0, F̂n→0) + ng(L1, F̂n→1) (5) 

The interpolated slices are used to train the segmentation network in 
the third step of SI. Fig. 2(c) depicts the segmentation networks in detail. 
The synthetic slices and segmentation labels are interpolated into the 
original volumes in the through-plane direction during the training of 
the 3D segmentation network to convert the 3D volumes into isotropic 
ones. We then train the 3D segmentation network with the isotropic 
volumes and the segmentation labels. After the training process, we use 
the learned inter-slice synthesis network to generate intermediate slices 
for test samples and interpolate the synthetic slices into the test samples 
in the through-plane direction to make them isotropic. We then remove 
the output segmentation labels of the synthetic intermediate slices after 
feeding the interpolated test volumes into the learned 3D segmentation 
network. The model’s performance is evaluated by comparing the 
remaining parts of the segmentation labels with the ground-truth. 

The inter-slice synthesis network: We construct the inter-slice 
synthesis network using the method proposed by Jiang et al. [12]. The 
loss function of the inter-slice synthesis network is defined as follows: 

l = λreclrec + λperlper + λwarplwarp + λsmoothlsmooth + λadvladv + λtp−smoothltp−smooth

(6) 

Equation (6) is a linear combination of six terms, where a set of co
efficients {λrec, λper, λwarp, λsmooth, λadv, λtp−smooth} regularizes the contribu
tion of the corresponding term. 

The first term of (6) is lrec. It is the reconstruction loss between the 
real slices and the synthetic slices. The loss function of lrec is defined as 
follows: 

lrec =
1
N

∑N

i=1
‖Î n − In‖1 (7) 

The second term of (6) is lper. It is the perceptual loss to measure 
perceptual difference between În and In, which can preserve details of 
the predictions and make interpolated frames sharper [12]. The loss 
function of lper is defined as follows: 

lper = ‖φ( Î) − φ(In)‖2 (8)  

where φ means the conv4_3 features of an ImageNet pre-trained VGG16 
model [40]. 

The third term of (6) is lwarp. It is the warping loss, which models the 
quality of the spatial transformation [12]. The loss function of lwarp is 
defined as follows:   

The fourth term of (6) is lsmmoth. It is the smoothness loss, which 
encourages neighboring pixels in the in-plan direction to have similar 
transformation values [12]. The loss function of lsmmoth is defined as 
follows: 

lsmooth = ‖∇F0→N+1‖1 + ‖∇FN+1→0‖1 (10) 

The fifth term of (6) is ladv. It is the adversarial loss, which encourage 
the generator to synthesis image to confuse the discriminator. It can 
improve the authenticity of the synthetic images. The loss function of ladv 

is defined as follows: 

ladv =
−1
N

∑N

i=1
logLD(Att( Î n)) −

1
N

∑N

i=1
logGD(Î n) (11)  

where Att means the attention network, LD means the local discrimi
nator, GD means the global discriminator. 

The fifth term of (6) is ltp−smooth. It is the smoothness term to 
encourage adjacent pixels of the interpolated volumes in the through- 
plane direction to have similar values. The loss function of ltp−smooth is 
defined as follows: 

ltp−smooth =
1

LW
∑L

i=1

∑W

j=1

((
Itp(i, j − 1) − Itp(i, j)

)2
+

(
Itp(i + 1, j) − Itp(i, j)

)2)

(12)  

where Itp ∈ {Isagittal, Icoronal} denotes the slices in the through-plane di
rections: Isagittal, the volume slices in the sagittal direction; and Icoronal, the 
volume slices in the coronal direction. Itp(i, j) denotes the value in (i, j) of 
Itp, L denotes the length of Itp and W denotes the width of Itp. 

The global discriminator and the multitask learning model: An 
attention network, an object classifier, and a local discriminator are the 
components of the multitask learning model. While the object classifier 
detects whether the input slices contain the target objects, the global and 
local discriminators compete with the inter-slice synthesis network. The 
attention network can automatically focus on the interacting 

lwarp = ‖I0 − g(IN+1, FN+1→0)‖1 + ‖IN+1 − g(I0, F0→N+1)‖1 +
1
N

∑N

i=1
‖In − g(I0, F̂0→n)‖1 +

1
N

∑N

i=1
‖In − g(IN+1, F̂1→n)‖1 (9)   
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information between the classification and the distinguishing tasks by 
training the local discriminator and the object classifier simultaneously. 

The loss function for the global discriminator is defined as follows: 

lglobal =
−1
N

∑N

i=1
log(1 − GD(Î n)|) −

1
N

∑N

i=1
logGD(In) (13) 

The loss function for the multitask learning model is defined as 
follows: 

lmul =

(

−
1
N

∑N

i=1
log(1 − LD(Att(Î n))) −

1
N

∑N

i=1
log LD(Att(In))

)

+

(

−
1
N

∑N

i=1
Ŷ n log OC (Att( Î n)) −

1
N

Yn

∑N

i=1
log OC (Att(In))

)

(14)  

where OC denotes the object classifier network. Yn ∈ {0, 1} and Ŷn ∈

{0, 1} denote whether the real and synthetic slices contain the target 
object. Yi = 1 and Ŷ i = 1 if the input original and synthetic slices 
contain the target object, and Yi = 0 and Ŷ i = 0 otherwise. 

4. Experiment 

We provide both quantitative and qualitative performance evalua
tions for SI on three 3D medical imaging datasets. 

4.1. Datasets 

Brain tumors segmentation (BTS) in Medical Segmentation 
Decathlon [41] is the first dataset in our experiment. All scans in BTS are 
co-registered to a reference atlas space using the SRI24 brain structure 
template [42], resampled to isotropic voxel resolution of 1mm3 , and 
skull-stripped using various methods followed by manual refinements. 
We segment the whole tumors in our experiment by selecting 100 FLAIR 
modal MRI data in this dataset. We use training data from 56 scans, 
validation data from 14 scans, and test data from 30 scans. The second 
dataset is liver tumor segmentation (LTS) in Medical Segmentation 
Decathlon [41]. The LTS slices are generated by a variety of different 
scanning devices with intra-slice and inter-slice distances ranging from 
0.5 to 1 mm and 0.45–6.0 mm, respectively. A total of 131 portal venous 
phase computed tomography (CT) scans with two annotated objects 
(liver and tumor) are selected. We use 74, 18, and 39 scans as training, 
validation, and test data, respectively. Prostate segmentation (PS) in 
Medical Segmentation Decathlon [41] is the third dataset. PS includes 
32 transverse T2-weighted scans with two annotated objects (prostate 
peripheral zone and the transition zone), each with voxel resolution 
0.6 × 0.6 × 4mm3. We use 17, 6, and 9 scans as training, validation, and 
test data, respectively. 

4.2. Evaluation 

Dice score: Dice score [43] quantifies the overlap between two 
segmentation labels. The formulation of the Dice score is shown as 
follows: 

Dice(L, L̂) = 2 ×

(
|L ∩ L̂|

|L| + |L̂|

)

× 100% (15)  

where L denotes the ground truth of the real image and L̂ denotes the 
predicted segmentation label. If the Dice score is 0, the two labels have 
no overlap. With the Dice score increasing, the two labels have more 
overlap. When the Dice score is 1, the two labels have completely 
overlap. A better model will have a higher Dice score. 

Relative absolute volume difference: The relative absolute volume 
difference (RAVD) [44] reveals if a method tends to over- or under 

segment. The formulation of RAVD is defined as follows: 

RAVD(L, L̂) =

(
|L̂| − |L|

|L|

)

× 100% (16) 

A value of 0 means both volumes are identical. A better model will 
have a lower RAVD. 

Average symmetric surface distance: Average symmetric surface 
distance (ASSD) [44] is given in millimeters and based on the surface 
voxels of two segmentations L and L̂. The formulation of ASSD is defined 
as follows: 

ASSD(L, L̂)=
1

|S(L)| + |S(L̂)|

(
∑

l∈S(L)

min̂
l∈S(̂L)

‖l − l̂‖2 +
∑

l̂∈S(̂L)

minl∈S(L)‖l − l̂‖2

)

(17)  

where S( ⋅) denote the set of surface voxels of volumes. For each surface 
voxel of L, the Euclidean distance to the closest surface voxel of L̂ is 
calculated. In order to provide symmetry, the same process is applied 
from the surface voxels of L̂ to L. ASSD is then defined as the average of 
all distances, which is 0 for a perfect segmentation. A better model will 
have a lower ASSD. 

Maximum symmetric surface distance: Maximum symmetric 
surface distance (MSSD) [44] is given in millimeter and based on the 
surface voxels of two segmentations L and ̂L. The formulation of MSSD is 
defined as follows: 

MSSD(L, L̂) = max
{

max
l∈S(L)

min
l̂∈S(̂L)

‖l − l̂‖2, max
l̂∈S(̂L)

min
l∈S(L)

‖l − l̂‖2

}

(18) 

Different from ASSD, surface voxels of MSSD are determined using 
Euclidean distances, and the maximum value yields MSSD. For a perfect 
segmentation MSSD is 0. A better model will have a lower MSSD. 

4.3. Implementation 

To implement SI, we divide the training data into multiple sets in 
sequence, each with N + 2 slices. We will discuss the setting of N in 
Section 5.2. The first four hyper-parameters of (6) are determined ac
cording to Ref. [13]. Furthermore, we use five-fold cross-validation to 
select λadv and λtp−smooth. λadv is set to 0.050 and λtp−smooth is set to 0.467. 
As presented in Fig. 2(a), we optimize the attention network, object 
classifier, and local discriminator together. Two fully connected layers 
comprise the object classifier, whereas, three convolutional layers, a 
fully connected layer, and a sigmoid function comprise the global and 
local discriminators. Two branches make up the attention network. The 
features of the slices are extracted by one convolutional layer, and the 
corresponding attention masks are generated by two convolutional 
layers in the other branch. The inter-slice synthesis network is trained in 
30 epochs using the basic learning rate of 0.001, and the batch size is set 
to 2. To optimize all of the networks in the inter-slice synthesis model, 
we use Adam optimizer [45]. To better introduce the detail of hyper 
parameters, we show the value of hyper parameters in SI in Table 1. 

In the experiment of BTS, EDSR [23], ESRGAN [31], RCAN [24], 
Linear [11], and IIA [13] are compared with our method. The first three 
methods transform the LR images in the through-plane direction into HR 
ones and do not generate the corresponding segmentation labels of the 
synthetic slices. To leverage unlabeled slices, the 2D uncertainty aware 
self-ensembling mean teacher model [46], which is a semi-supervised 
segmentation model, is employed to segment the medical volumes 

Table 1 
Hyper parameters of SI.   

λrec λper λwarp λsmooth λadv λtp−smooth 

value 2.000 0.005 1.000 1.000 0.050 0.467  
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augmented by the first three methods. The 2D uncertainty aware 
self-ensembling mean teacher model contains two models, the teacher 
model and the student model. The backbone of the teacher and student 
models is U-Net [14]. For a fair comparison, U-Net is employed to 
segment the medical volumes augmented by the other methods. In the 
experiments of LTS and PS, Linear [11], IIA [13] are compared with our 
proposed method. All methods transform the anisotropic medical vol
umes into isotropic ones and use nnU-Net [20] to segment the medical 
volumes. 

4.4. Comparison with SR algorithms 

In this session, we compare our method’s performance with the 
baselines on whole tumor segmentation of BTS. To make the data in BTS 
anisotropic, the R-th slices of the volumes in the through-plane direction 
are removed. R is defined as follows: 

R = {r ∨ r%4 ∕= 0, 0 ≤ r < H} (19)  

where H denotes the number of slices of the volumes in the through-plan 
direction. 

4.4.1. Visualization performance of synthetic slices 
Synthetic slices of different methods and their difference maps with 

the original slices in BTS are presented in Fig. 3. The difference maps of 
EDSR and ESRGAN in Fig. 3 indicate that, compared with other 
methods, the synthetic slices of these methods are significantly different 
from the original slices (columns 3, 5 in Fig. 3). For Linear, the synthetic 
slices are less different from the original slices compared with EDSR and 
ESRGAN. However, the synthetic slices of Linear have aliasing on the 
edges of the object (columns 9 in Fig. 3). For RCAN, although it can 
recover the slices that are similar to the ground-truth, it changes the 
original slices (column 7 in Fig. 3): thus, it may cause a negative impact 
on the segmentation and cannot be directly applied to our problem 
scenario. By contrast, since IIA, SI w/o (without) ltp−smooth, and SI 
interpolate slices into the volumes to make it isotropic, the original slices 
do not change. Although IIA and SI w/o ltp−smooth can recover slices that 
are less different from the original slices on the object’s edge, they are 
unable to recover the texture of the object (columns 11, 13 in Fig. 3). For 
SI, its performance of recovering on the edges and texture is better than 
those of IIA and SI w/o ltp−smooth, which means that the smoothness 
function of SI can improve the authenticity of the synthetic slices (col
umns 15 in Fig. 3). 

4.4.2. Segmentation performance evaluations 
The segmentation accuracies obtained by different methods are 

presented in Table 2. In all tables, ↑ denotes higher is better, whereas ↓ 
denotes lower is better. The best results are in bold, and the second-best 
results are underlined. As can be seen from Table 2, all the SR algorithms 

perform worse than U-Net. Although SR algorithms can recover slices 
that are less different from the original slices, they are not suitable for 
helping with segmentation, because the original slices are changed. 
Moreover, the training of the SR algorithm needs LR/HR pairs; thus, 
these methods cannot be trained with LR slices only. Hence, the SR al
gorithm is not suitable for our problem scenario. Linear has the worst 
performance in the experiments. One possible reason is that the distance 
of the original slices is large. It’s difficult to recover the feature of the 
missing slices using linear interpolation in the through-plane direction. 
By contrast, IIA, SI w/o ltp−smooth, and SI perform better than U-Net. 
Because all of the three methods generate intermediate slices and labels 
without changing the original slices, and can provide more labeled 
training data. Furthermore, all of the three methods use the local 
discriminator, which makes the methods pay more attention to the 
authenticity of the target object. Thus, the segmentation model can 
better learn the feature of the target object, and ultimately improve the 
segmentation performance. SI w/o ltp−smooth performs better than IIA, 
which means that the multitask learning mechanism is useful for 
boosting segmentation performance. In Addition, due to the smoothness 
loss function, SI performs better than SI w/o ltp−smooth overall. 

4.5. Comparison with algorithms that transform the data into isotropic 
data 

In this section, we compare our method’s performance with the 
baselines on 3D segmentation tasks of LTS and PS. For isotropic volume, 
the intervals of the in-plane and through-plane directions are equal, 
namely the inter-slice distance of an isotropic volume is equal to its 
intra-slice distance. To transform the interpolated volumes into isotropic 
ones, the synthetic slices can be interpolated into the anisotropic volume 
in the through-plane direction to reduce its intra-slice distance. In the 
experiment, the number of interpolated slices between two consecutive 
slices is calculated using the following equation: 

NA =

⌊
Dinter

Dintra

⌋

− 1, (20) 

Fig. 3. Synthetic slices of different methods in BTS from different directions: the in-plane (axial view), and through-plane (sagittal and coronal views) directions. The 
difference maps are provided to the right of the results for better visualization. 

Table 2 
Performance on the BTS dataset for whole tumor segmentation.  

Method Dice(%) ↑ RAVD(%) ↓ ASSD(%) ↓ MSSD(%) ↓ 

U-Net [14] 82.91 18.97 2.97 13.68 
EDSR [23] 80.25 20.87 3.09 14.83 
ESRGAN [31] 81.79 19.03 3.47 16.74 
RCAN [24] 82.00 19.37 3.07 14.99 
Linear [11] 68.69 38.33 7.75 38.06 
IIA [13] 85.72 38.33 2.28 8.50 
SI w/o ltp−smooth 86.36 14.71 2.14 8.35 
SI 87.00 13.16 2.15 8.27  
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where Dinter denotes the inter-slice distance of the volume; Dintra denotes 
the intra-slice distance of the volume; and ⌊.⌋̇ denotes a floor function 
that outputs the greatest integer that is less than or equal to the input. 

4.5.1. Visualization performance of synthetic slices 
The synthetic slices of different methods in LTS and PS are presented 

in Fig. 4 and Fig. 5. The synthesized slice of SI w/o ltp−smooth has a clearer 
outline of tumor (red arrow) than Linear and IIA, as shown in the first 
row of Fig. 4. The second and third rows of Figs. 4 and 5 show that SI w/ 
o ltp−smooth can generate volumes with clearer edges than Linear and IIA. 
The results described above indicate that the multitask learning mech
anism helps the model capture more details of the object and generate 
more realistic slices. The synthesized slices of SI are less noisy than those 
of the other methods in Figs. 4 and 5. This is because the smoothness loss 
function of SI aims at encouraging neighboring pixels to have similar 
values. The proposed method can generate slices with more spatial 
smoothness in the through-plane directions by reducing noise in the 
synthetic slices using the smoothness loss function. On the contrary, 
since Linear, IIA, and SI w/o ltp−smooth do not incorporate slice smooth
ness in the through-plane direction, their synthetic slices suffer aliasing 
on the edges of the object (rows 2 and 3 in Figs. 4 and 5). 

4.5.2. Segmentation performance evaluations 
Table 3 and Table 4 present the 3D segmentation performance of 

various methods. We also visualize the activation maps extracted by SI’s 
attention networks to demonstrate the effectiveness of the multitask 
mechanism in SI. Fig. 6 presents the activation maps of two specific 
slices. Since SI w/o ltp−smooth and SI use the same attention mecha
nism, we only show the activation maps of SI. Tables 3 and 4 show that 
in most cases, nnU-Net and Linear perform worse than IIA, SI w/o 
ltp−smooth, and SI. Since nnU-Net directly down-samples the HR axes of the 
volumes to transform the data into isotropic ones, it fails to fully exploit 
the information of the volumes. Furthermore, Linear directly increases 
slices resolution, which substantially changes the anatomical structure 
between consecutive slices. For most cases, SI w/o ltp−smooth performs 
better than IIA, suggesting that the multitask learning mechanism helps 
boosting segmentation performance. Fig. 6 demonstrates that IIA only 
focuses on the local target object, but SI highlights the whole target 
object (red arrows in Fig. 6). The results indicate that the multitask 
learning model enables the attention network to capture more detailed 
information of the slices and leads to better segmentation performances. 
Overall, benefiting from the smoothness loss function, SI achieves the 
best performance. 

Fig. 4. Synthetic slices of different methods in LTS from different directions: the in-plane (axial view), and through-plane (sagittal and coronal views) directions.  

Fig. 5. Synthetic slices of different methods in PS from different directions: the in-plane (axial view), and through-plane (sagittal and coronal views) directions.  

Table 3 
Performance of different methods over two annotated objects, namely, liver and tumor, and the mean scores of two annotated objects in LTS.  

Method Dice(%) ↑ RAVD(%) ↓ ASSD(%) ↓ MSSD(%) ↓ 

Liver Tumor Mean Liver Tumor Mean Liver Tumor Mean Liver Tumor Mean 

nnU-Net [20] 94.11 55.81 74.96 6.69 49.01 27.85 3.00 13.15 8.08 60.53 60.48 60.51 
Linear [11] 94.01 55.54 74.78 7.10 46.60 26.85 2.60 12.91 7.76 51.09 60.19 55.64 
IIA [13] 94.30 56.88 75.79 5.76 47.22 26.49 1.97 15.41 8.69 36.76 68.70 53.23 
SI w/o ltp−smooth 95.14 56.37 75.76 6.49 46.48 26.48 2.44 10.73 6.59 53.43 49.15 51.29 
SI 94.57 57.38 75.98 6.14 44.55 25.35 1.95 12.69 7.32 52.09 49.59 50.84  
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5. Ablation study 

In this section, we perform a detailed ablation analysis of the 
network to validate the effect of the local and global discriminators and 
determine the optimal numbers of intermediate slices. In section 5.1, we 
investigate the effect of the global and local discriminators. In section 
5.2, the effect of the number of intermediate slices is studied. 

5.1. Effect of GD and LD 

To validate the effect of the local and global discriminators, we 
conduct detailed ablation studies in LTS and PS. (1) Only the interme
diate slice synthesis network is used, without using the two discrimi
nators (global discriminator, GD, and local discriminator, LD). (2) To 
highlight the effect of GD, the intermediate slice synthesis network is 
used to battle with the GD. (3) To highlight the effect of LD, the inter
mediate slice synthesis network is used to battle with the LD. (4) The 
intermediate slice synthesis network is used to battle with both the GD 
and LD. 

Tables 5 and 6 show the segmentation performance under different 
module configurations. As expected, SI with discriminators outperforms 

SI without any discriminators. It is worth noting that rows 2 to 4 in 
Table 5 and Table 6 have lower ASSD and MSSD than row 1 in Tables 5 
and 6. This shows that GD and LD are effective to help SI to generate 
slices with more realistic edges. Compared with only using GD or LD, 
using GD and LD simultaneously has the best performance. 

5.2. Effect of the numbers of intermediate slices 

We conduct four segmentation experiments using the inter-slice 
synthesis network to generate different numbers of intermediate slices 
between two consecutive slices to investigate the effect of intermediate 
slice numbers on our method. The results are presented in Table 7 and 
Table 8. NA, the number of automatically interpolated slices, is deter
mined by the original data according to (20). 

Tables 7 and 8 show that in most cases, with NA slices added between 
every two consecutive slices, our method yields the best results (row 4 in 
Tables 7 and 8). This is because the distance between two consecutive 
slices of different volumes is not the same, so if we interpolate a fixed 
number of slices between two consecutive slices, not all the volumes 
become isotropic, some may remain anisotropic. By using NA as the 
number of interpolated slices between two consecutive slices, SI can 

Table 4 
Performance over two annotated objects, namely, prostate peripheral zone (PZ) and the transition zone (TZ), and the mean scores of two annotated objects in PS.  

Method Dice(%) ↑ RAVD(%) ↓ ASSD(%) ↓ MSSD(%) ↓ 

PZ TZ Mean PZ TZ Mean PZ TZ Mean PZ TZ Mean 

nnU-Net [20] 87.79 83.81 85.81 9.66 18.98 14.32 0.57 0.68 0.63 4.39 5.92 5.15 
Linear [11] 89.78 84.74 87.26 8.39 17.29 12.84 0.49 0.64 0.56 3.99 6.12 5.06 
IIA [13] 89.97 85.72 87.84 7.49 15.86 11.68 0.47 0.59 0.53 3.90 6.38 5.14 
SI w/o ltp−smooth 89.96 86.19 88.08 7.50 15.63 11.56 0.47 0.58 0.52 3.76 5.96 4.86 
SI 90.29 86.33 88.31 6.31 16.46 11.39 0.46 0.58 0.52 3.56 6.27 4.91  

Fig. 6. Visualization of the activation map.  

Table 5 
The segmentation over two annotated objects, namely, liver and tumor, and the mean scores of two annotated objects in LTS for the detailed ablation studies of each 
modules in our framework.  

No. Module Dice(%) ↑ RAVD(%) ↓ ASSD(%) ↓ MSSD(%) ↓ 

GD LD Liver Tumor Mean Liver Tumor Mean Liver Tumor Mean Liver Tumor Mean 

1   94.27 56.26 75.27 6.49 53.51 30.00 2.79 12.20 7.50 59.77 55.72 57.75 
2 ✓  94.30 56.27 75.29 6.40 54.86 30.63 2.62 11.07 6.85 54.43 53.47 53.95 
3  ✓ 94.35 57.51 75.93 5.98 45.50 25.74 2.10 12.23 7.17 58.22 50.75 54.59 
4 ✓ ✓ 94.57 57.38 75.98 6.14 44.55 25.35 1.95 12.69 7.32 52.09 49.59 50.84  

Z. Wu et al.                                                                                                                                                                                                                                      



Computers in Biology and Medicine 147 (2022) 105667

9

adaptively transform all the volumes into isotropic ones, which im
proves the 3D segmentation performance. 

6. Conclusion 

In this paper, we propose a novel multitask frame-interpolation- 
based method for slice imputation whereby the number of slices and 
corresponding labels is increased between two consecutive slices. SI can 
generate more realistic 3D medical volumes by evaluating the smooth
ness of the interpolated 3D medical volumes in the through-plane di
rection with a smoothness loss function, which improves the accuracy of 
3D medical image segmentation. Furthermore, SI can generate as many 
intermediate slices as needed between two consecutive slices to trans
form the 3D medical volumes into isotropic ones. The experiments 
comparing with the baseline methods on BTS, LTS, and PS demonstrate 
the superior performances of SI. The smoothness loss function and the 
multitask learning model are shown to be effective in ablation experi
ments. 3D segmentation networks can achieve the best performance if 
the number of interpolated slices is appropriate to transform the 
anisotropic 3D medical volumes into isotropic ones. 

There are still a lot of works to improve the proposed method. The 
performance of SI may degrade when encountering domain shift, i.e, 
attempting to apply the learned models on different modalities or organs 
that have different distributions from the training data. 

The exploration of the above limitations leads us to future directions. 
Domain adaptation can be used in our future work to model the shift 
between datasets of different modalities or organs [47]. Furthermore, 
for different modalities, the idea of cross-modality translation can be 
applied in our model. The idea of CycleGAN [48] can be added in our 
model to learn the feature of different modalities [49]. 
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