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A B S T R A C T

Since the brain is the human body’s primary command and control center, brain cancer is one of the
most dangerous cancers. Automatic segmentation of brain tumors from multi-modal images is important
in diagnosis and treatment. Due to the difficulties in obtaining multi-modal paired images in clinical
practice, recent studies segment brain tumors solely relying on unpaired images and discarding the available
paired images. Although these models solve the dependence on paired images, they cannot fully exploit
the complementary information from different modalities, resulting in low unimodal segmentation accuracy.
Hence, this work studies the unimodal segmentation with privileged semi-paired images, i.e., limited paired
images are introduced to the training phase. Specifically, we present a novel two-step (intra-modality and
inter-modality) curriculum disentanglement learning framework. The modality-specific style codes describe
the attenuation of tissue features and image contrast, and modality-invariant content codes contain anatomical
and functional information extracted from the input images. Besides, we address the problem of unthorough
decoupling by introducing constraints on the style and content spaces. Experiments on the BraTS2020 dataset
highlight that our model outperforms the competing models on unimodal segmentation, achieving average
dice scores of 82.91%, 72.62%, and 54.80% for WT (the whole tumor), TC (the tumor core), and ET (the
enhancing tumor), respectively. Finally, we further evaluate our model’s variable multi-modal brain tumor
segmentation performance by introducing a fusion block (TFusion). The experimental results reveal that
our model achieves the best WT segmentation performance for all 15 possible modality combinations with
87.31% average accuracy. In summary, we propose a curriculum disentanglement learning framework for
unimodal segmentation with privileged semi-paired images. Moreover, the benefits of the improved unimodal
segmentation extend to variable multi-modal segmentation, demonstrating that improving the unimodal
segmentation performance is significant for brain tumor segmentation with missing modalities. Our code is
available at https://github.com/scut-cszcl/SpBTS.
1. Introduction

Biomedical technology is crucial to human health and life. Extensive
research and application using Deep Learning (DL) in the biomedical
domain have significantly improved big medical data analysis, dis-
ease diagnosis, and prognostic programs, such as Alzheimer’s Disease
(AD) [1], Coronavirus (Covid-19) [2,3], and various tumors [4]. The
brain, the most complex human organ, is the primary command and
control center. Brain tumor incidence is an important contributor to
global mortality. According to the National Brain Tumor Foundation
(NBTF) report, in the USA, 29,000 people were diagnosed with primary
intracranial tumors, of which 13,000 died [5]. In addition, one in four
childhood cancer deaths is caused by brain tumors.
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Automatic and accurate segmentation of brain tumors is essential
for diagnosis, treatment planning, and follow-up evaluations. [6,7].
Such a segmentation process requires precisely detecting a tumor’s
location and extent. However, the tumorous shape, size, and loca-
tion uncertainty pose a unique challenge, especially in infiltrative
tumors like gliomas [8,9]. A common solution is integrating informa-
tion acquired from multi-modal paired MRI since different MRI pulse
sequences (modalities) provide complementary information on brain
tumors from multiple perspectives [10,11]. As illustrated in Fig. 1,
T1ce (contrast-enhanced T1-weighted) highlights tumors without per-
itumoral, but the image contrast of the whole peritumoral edema is
enhanced in T2 (native T2-weighted), and Flair (T2 Fluid Attenuated
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Fig. 1. Different brain tumor information of the same subject can be detected from
different sequences of brain MRI. In the Label image, the green area indicates the
whole peritumoral edema, red and blue area indicate the necrotic tumor core and the
enhancing tumor, respectively.

Fig. 2. Illustration of (a) Paired learning, (b) Unpaired learning, and (c) Privileged
semi-paired learning frameworks.

Inversion Recovery) [12,13]. Although these methods demonstrate a
romising performance, they require paired data in training and testing
Fig. 2(a)). This hinders their applicability in clinical practice when
nly unpaired or missing modality images are available.
Spurred by the abovementioned problems, a multi-modal unpaired

earning method is proposed for medical image segmentation [14,
5] (Fig. 2(b)). For instance, Yuan et al. [15] propose a two-stream
ranslation and segmentation unified attentional generative adversarial
etwork. The model is trained with unpaired data and performs predic-
ions on unpaired images by capturing and calibrating complementary
nformation from translation to improve segmentation. However, the
mage translation quality is poor without supervising the paired images,
specially for brain tumor areas. This is because the method can-
ot effectively exploit the complementary information from different
odalities, such as varying shapes of brain tumors. Therefore, such a
trategy leads to unsatisfactory unimodal segmentation performance.
In this work, we propose a privileged semi-paired learning frame-

ork, with Fig. 2(c) revealing that limited paired images are introduced
n training data. Unlike unpaired learning methods, we exploit the
omplementary information from paired images to improve unimodal
egmentation performance. Specifically, we extract modality-specific
tyle codes and modality-invariant content codes from the input images
ith a multi-task disentanglement model. For a complete decoupling,
e propose a two-step curriculum disentanglement learning strategy
hat adds constraints on the content and style spaces. Finally, we
xtend our model’s application for variable multi-modal brain tumor
egmentation through a designed fusion block.
The contributions of this paper are as follows:

• We propose a privileged semi-paired learning framework for brain
tumor segmentation. Introducing limited paired images enhances
our model’s ability to capture and exploit complementary infor-
mation between the modalities.

• We propose a two-step (intra-modality and inter-modality) cur-
riculum disentanglement learning strategy to effectively separate
the input images’ style and content.

• We qualitatively and quantitatively evaluate our method on brain
] and BraTS2018
2

tumor segmentation tasks on the BraTS2020 [16
[17] datasets. The results demonstrate our method’s superiority
over current state-of-the-art unpaired medical image segmenta-
tion methods.

• We further demonstrate the superior performance of our model on
variable multi-modal brain tumor segmentation, demonstrating
that unimodal segmentation performance is significant for brain
tumor segmentation with missing modalities.

2. Related work

The methods for multi-modal brain tumor segmentation can be
broadly separated into two categories: segmentation through paired
learning and segmentation through unpaired learning. Table 1 shows
a comparison overview between these works, including a summary of
strengths and weaknesses.

2.1. Segmentation through paired learning

Multiple imaging modalities have been widely used in medical
image segmentation due to its ability to provide complementary infor-
mation to reduce information uncertainty. During the past few years,
most researches focused on the multi-modal fusion strategies, such as
input-level fusion and layer-level fusion. These methods either concate-
nate multi-modality images as multi-channel inputs [18,19,26] or fuse
the features from different networks trained by different modalities [20,
27]. The improvement in the accuracy of brain tumor segmentation
relies on the exploitation of complementary information. However,
these methods rely on paired data in both training and test, and it
hinders their applicability in clinical practice, where only unpaired or
missing modality images are available.

Recently, to mitigate performance degradation when inferencing,
medical image segmentation with missing modality has been exten-
sively studied [28]. The most popular approach is to fuse the available
modalities in a latent space to learn a shared feature representation
for segmentation. A variable number of input modalities are mapped
to a unified representation by computing the first and second mo-
ments [22], mean function [29], or fusion block [23,24]. Moreover,
Shen et al. [25] utilize synthesized images as multi-channel inputs
to obtain shared representation for segmentation with a multi-modal
image completion and segmentation disentanglement network called
ReMIC. Furthermore, Chen et al. [30] propose a privileged knowledge
learning framework with the ‘‘Teacher Student’’ architecture. Privileged
information is transferred from a multi-modal teacher network to a
unimodal student network for unpair images. However, the method
also requires a large amount of paired images for multi-modal teacher
network training. Our method, instead, utilizes privileged semi-paired
images, where only limited paired images are available for training.

2.2. Segmentation through unpaired learning

For medical image segmentation, in order to utilize all available
data for training even when the images are unpaired, an X-shaped mul-
tiple encoder–decoder network is proposed [14]. The model extracts
modality-independent features to improve segmentation accuracy by
sharing the last layers of the encoders. Information from one modality
is captured in the shared network to improve the performance of
segmentation task on another modality. Furthermore, Yuan et al. [15]
propose a two-stream translation and segmentation network called UA-
GAN. The network captures inferred complementary information from
modality translation task to improve segmentation performance. The
above methods do not require any paired images, and utilize easily ac-
cessible unpaired images for training, instead. However, these methods
cannot integrate complementary information without paired images.
On the contrary, our method can effectively leverage complementary
information of limited number of paired images by encoding them
into a modality-invariant content space through content consistency

constraint and supervised translation for brain tumor segmentation.
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Table 1
A comparative overview between different networks.
Strategy Networks Strength Weakness

Segmentation
through paired
learning

‘‘Cascaded Anisotropic Convolutional Neural
Network’’ [18] OM-Net [19] HyperDenseNet [20]
‘‘Modality-Pairing Network’’ [10] ‘‘Cross-modality
deep feature learning for brain tumor
segmentation’’ [11] nnU-Net [21]

Fully exploit the complementary information
provided by different modalities.

Relye on paired images in both training
and test, which aggravates the problem
of data scarcity and leads to limited
application scenarios.

Segmentation with
missing modality

HeMIS [22] ‘‘Robust multimodal brain tumor
segmentation via feature disentanglement and
gated fusion’’ [23] ‘‘Latent correlation
representation learning for brain tumor
segmentation with missing mri modalities’’ [24]
ReMIC [25]

Wide applicability. Having the ability to
deal with any combinatorial subset of
available modalities with a unified model.

Utilize paired images in training.
Uniform training on all missing
scenarios indiscriminately makes it hard
to learn the most difficult unimodal
segmentation.

Segmentation
through unpaired
learning

‘‘Multi-modal learning from unpaired images’’ [14]
UAGAN [15]

Reduce data usage requirements, which
alleviates data scarcity. Improve unimodal
segmentation performance. It is critical for
expanding to missing modality scenarios.

Use only unpaired data for training.
Correlations between different modalities
cannot be learned directly.
Fig. 3. Illustration of the proposed framework. Paired images for the inter-modality learning scheme are depicted in this example. All the networks are unified, including the
content and style encoders (𝐸𝑐 , 𝐸𝑠), the translation and segmentation decoders (𝐷𝑡 , 𝐷𝑠), and the discriminator 𝐷. The data stream of images 𝑥𝑎 and 𝑥𝑏 are drawn as solid orange
rrows and dotted blue arrows, respectively. Losses are computed by the corresponding generated images and segmentation maps (orange solid box for 𝑥𝑎, blue dotted box for
𝑏). Note that image modality translation loss 𝐿𝑡𝑟𝑎𝑛

𝑖𝑛𝑡𝑒𝑟 and content consistency loss 𝐿𝑐𝑜𝑛
𝑖𝑛𝑡𝑒𝑟 are only applied to paired images in the inter-modality learning scheme.
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. Methodology

.1. Proposed model

The suggested model considers a multi-task disentanglement frame-
ork that effectively extracts modality-invariant content codes for
rain tumor segmentation by fully exploiting multi-modal complemen-
ary information from privileged semi-paired images. Content and style
odes are decoupled for the unpaired images through image reconstruc-
ion and modality translation task learning. Considering limited paired
mages containing complementary information, the model’s ability to
3

earn multi-modal correlations is enhanced by converting the modality a
ranslation task from unsupervised to supervised and applying content
onsistency constraints.
As shown in Fig. 3, we use paired images as an example to illustrate

ur framework. Given images 𝑥𝑎, 𝑥𝑏 from the same subject and different
odalities. We adopt one-hot vectors to represent their modality label
nd expands them to the same image size, denoted as 𝑚𝑎 and 𝑚𝑏. Given
he depth-wise concatenation (𝑥𝑎, 𝑚𝑎) and (𝑥𝑏, 𝑚𝑏), our goal is to train
single generator 𝐺 that can simultaneously accomplish the following
asks: (1) Reconstructing the input images 𝑥𝑎 and 𝑥𝑏 as 𝑥𝑎→𝑎 and 𝑥𝑏→𝑏,
espectively. (2) Translating 𝑥𝑎 of modality 𝑚𝑎 to the corresponding
utput image 𝑥𝑎→𝑏 of modality 𝑚𝑏, and 𝑥𝑏 of modality 𝑚𝑏 to 𝑥𝑏→𝑎
f modality 𝑚𝑎. (3) Generating brain tumor segmentation masks 𝑥𝑠𝑒𝑔𝑎

𝑠𝑒𝑔
nd 𝑥𝑏 of the input images 𝑥𝑎 and 𝑥𝑏, respectively. We denote it as
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Fig. 4. Different feature disentanglement learning schemes. (a) Style-consistent learning scheme. Style-consistent images obtained by horizontal flip (𝑥1𝑎) and elastic deformation
(𝑥2𝑎) are given in this example. (b) Paired inter-modality learning scheme. (c) Unpaired inter-modality learning scheme.
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𝐺((𝑥𝑎, 𝑚𝑎), (𝑥𝑏, 𝑚𝑏))→(𝑥𝑎→𝑎, 𝑥𝑎→𝑏, 𝑥
𝑠𝑒𝑔
𝑎 , 𝑥𝑏→𝑏, 𝑥𝑏→𝑎, 𝑥

𝑠𝑒𝑔
𝑏 ). The architecture

f our model is composed of two modules described below.
We design the generator 𝐺 with four shared networks (𝐸𝑠, 𝐸𝑐 ,

𝐷𝑠, 𝐷𝑡) based on feature disentanglement. Given the input concate-
nation (𝑥𝑎, 𝑚𝑎), the network 𝐸𝑠 generates its style code 𝑠𝑥𝑎 which is
a vector with dimension 𝑛𝑠, and the network 𝐸𝑐 generates its con-
tent code 𝑐𝑥𝑎 which is a feature map, denoted as 𝐸𝑠((𝑥𝑎, 𝑚𝑎))→𝑠𝑥𝑎
and 𝐸𝑐((𝑥𝑎, 𝑚𝑎))→𝑐𝑥𝑎 . Similarly, 𝑠𝑥𝑏 and 𝑐𝑥𝑏 are also obtained from
the input (𝑥𝑏, 𝑚𝑏), denoted as 𝐸𝑠((𝑥𝑏, 𝑚𝑏))→𝑠𝑥𝑏 and 𝐸𝑐 ((𝑥𝑏, 𝑚𝑏))→𝑐𝑥𝑏 .
Then, we perform image reconstruction, translation, and segmentation
based on these disentangled representations. For image reconstruction,
given the content code and the style code obtained from the same
input image, the decoder 𝐷𝑡 generates the corresponding reconstruction
image, denoted as 𝐷𝑡(𝑐𝑥𝑎 , 𝑠𝑥𝑎 )→𝑥𝑎→𝑎 and 𝐷𝑡(𝑐𝑥𝑏 , 𝑠𝑥𝑏 )→𝑥𝑏→𝑏. For image
translation, given the content code and the style code obtained from
different input images, the decoder 𝐷𝑡 translates the source image of
one modality (corresponding to the content code) to the target image of
the other modality (corresponding to the style code). We denoted it as
𝐷𝑡(𝑐𝑥𝑎 , 𝑠𝑥𝑏 )→𝑥𝑎→𝑏 and 𝐷𝑡(𝑐𝑥𝑏 , 𝑠𝑥𝑎 )→𝑥𝑏→𝑎. For image segmentation, given
the content code, the decoder 𝐷𝑠 generates a binary mask to identify
and highlight the tumor area of the corresponding input image, denoted
as 𝐷𝑠(𝑐𝑥𝑎 )→𝑥𝑠𝑒𝑔𝑎 and 𝐷𝑠(𝑐𝑥𝑏 )→𝑥𝑠𝑒𝑔𝑏 .

The probability distributions produced by the discriminator 𝐷 dis-
tinguish whether the generated images from 𝐺 are real or fake, and
determine which modality they are from.

3.2. Curriculum disentanglement learning

We propose a novel two-step curriculum disentanglement learning
method to leverage privileged semi-paired images for brain tumor seg-
mentation, as shown in Fig. 2(c), when limited paired images are only
available in training. Compared to previous feature disentanglement
learning models (DRIT [31], MUNIT [32]), the proposed model focuses
on effective separation of style and content. As shown in Fig. 4(c), the
previous models only use unpaired inter-modality learning scheme for
training. Unpaired images 𝑥𝑎 (from subject 𝑥 of modality 𝑎) and 𝑦𝑏
from subject 𝑦 of modality 𝑏) are mapped into the same content space
ut different style spaces. However, there are no specific constraints for
hese spaces, so the disentanglement mapping tends to incur large vari-
tions, which results in the problem of ambiguous separation between
tyle and content. Ouyang et al. [33] investigate the problem. They
equire that the content representations from the same patient with dif-
erent modalities should be as similar as possible. However, under the
onstraint, the style and other task-unrelated components (e.g., noise
nd artifacts) tend to corrupt the content representations, which fails
o reduce the ambiguity of the content and style. On the contrary, we
ontend that different modalities of a given patient essentially reflect
he inherent anatomy of the patient, which is consistent even though
ts appearance may be diverse across different modalities. Therefore, to
olve this problem, we propose a curriculum disentanglement learning
trategy with two steps:
4

(1) In the first step, as shown in Fig. 4(a), we generate two style-
onsistent images 𝑥1𝑎 and 𝑥2𝑎 from the same original image 𝑥𝑎 with
ifferent image processing methods (such as horizontal flip and elastic
eformation). We then define a style consistency loss to map the images
o the same point 𝑠𝑥𝑎 in the style space 𝑆𝑎.
(2) The second step consists of reconstruction, unsupervised/

upervised translation, and segmentation based on unpaired and paired
nter-modality learning schemes. The unpaired inter-modality learning
cheme, as shown in Fig. 4(c), maps unpaired images 𝑥𝑎 and 𝑦𝑏 obtained
rom different subjects to different points in the content space 𝐶. The
aired inter-modality learning scheme, as shown in Fig. 4(b), maps
aired images 𝑥𝑎 and 𝑥𝑏 obtained from the same subject 𝑥 to the same
oint 𝑐𝑥 in the content space 𝐶 with a content consistency loss.
Through the two steps, our proposed method can separate modality-

pecific style codes and modality-invariant content codes from the
nput images. In particular, the modality-specific style codes describe
ttenuation of tissue features and image contrast, and the modality-
nvariant content codes contain consistent inherent anatomical and
unctional information. The effective disentanglement of the two codes
s critical for brain tumor segmentation.

.3. Constructing the objective function

Our loss function consists of three parts: (1) common losses for both
urriculum disentanglement learning steps; (2) losses for intra-modality
isentanglement step; (3) losses for inter-modality disentanglement
tep. For simplicity, we only describe the losses for image 𝑥𝑎, since the
oss function for 𝑥𝑏 is the same. Algorithm. 1 summarizes the overall
rocedure of the curriculum disentanglement learning.

.3.1. Common losses
Losses for both curriculum disentanglement learning steps include

n adversarial loss, a modality classification loss, a reconstruction loss,
nd a segmentation loss.
Adversarial loss: To minimize the difference between the distribu-

ions of generated images and real images, we define the adversarial
oss as:

𝑎𝑑𝑣 =E𝑥𝑎 [log𝐷𝑠𝑟𝑐 (𝑥𝑎)] +
1
2
E𝑥𝑎→𝑎

[log(1 −𝐷𝑠𝑟𝑐(𝑥𝑎→𝑎))]

+ 1
2
E𝑥𝑎→𝑏

[log(1 −𝐷𝑠𝑟𝑐 (𝑥𝑎→𝑏))]
(1)

here 𝐷𝑠𝑟𝑐 denotes probability distributions, given by discriminator 𝐷,
f real or fake images [34]. The discriminator 𝐷 maximizes this objec-
ive to distinguish between real and fake images, while the generator
tries to generate more realistic images to fool the discriminator.
Modality classification loss: To allocate the generated image to

orrect modality, the modality classification loss is imposed to 𝐺 and 𝐷.
It contains two terms: modality classification loss of real images which
is used to optimize 𝐷, denoted as 𝐿𝑟

𝑐𝑙𝑠, and the loss of fake images used
to optimize 𝐺, denoted as 𝐿𝑓

𝑐𝑙𝑠.

𝑟
𝐿𝑐𝑙𝑠 = E𝑥𝑎 [− log𝐷𝑐𝑙𝑠(𝑚𝑎|𝑥𝑎)] (2)
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Algorithm 1 The curriculum disentanglement learning
Training input : intra-modality augmented style-consistent images (𝑥1𝑎,
2
𝑎)1, …, (𝑥1𝑎, 𝑥2𝑎)𝑖, paired inter-modality images (𝑥𝑎, 𝑥𝑏)1, …, (𝑥𝑎, 𝑥𝑏)𝑗 ,
nd unpaired inter-modality images (𝑥𝑎, 𝑦𝑏)1, …, (𝑥𝑎, 𝑦𝑏)𝑘
raining output : generator 𝐺
1: while not converged do // In the first step
2: // Style-consistent pattern
3: Updata 𝐺 and 𝐷 using Eq. (9) and Eq. (6)
4: end while
5: while not converged do // In the second step
6: // Paired inter-modality pattern
7: Updata 𝐺 and 𝐷 using Eq. (12) and Eq. (6)
8: // Unpaired inter-modality pattern
9: Updata 𝐺 and 𝐷 using Eq. (7) and Eq. (6)
0: end while
est input : unpaired images 𝑥1, …, 𝑥𝑛
est output : segmentation results 𝑥𝑠𝑒𝑔1 , …, 𝑥𝑠𝑒𝑔𝑛

1: Calculate ∀𝑟, 𝑥𝑠𝑒𝑔𝑟 ← 𝐺((𝑥𝑟, 𝑚𝑟))
2: // 𝑚𝑟 is the modality label of 𝑥𝑟

𝐿𝑓
𝑐𝑙𝑠 =

1
2
E𝑥𝑎→𝑎

[− log(𝐷𝑐𝑙𝑠(𝑚𝑎|𝑥𝑎→𝑎))]

+1
2
E𝑥𝑎→𝑏

[− log(𝐷𝑐𝑙𝑠(𝑚𝑏|𝑥𝑎→𝑏))]
(3)

where 𝐷𝑐𝑙𝑠 represents the probability distributions over modality labels
and input images [34].

Reconstruction loss: To prevent the omission of detailed informa-
tion, we employ the reconstruction loss to constrain the recovered
images:

𝐿𝑟𝑒𝑐 = E𝑥𝑎 ,𝑥𝑎→𝑎
[‖𝑥𝑎→𝑎 − 𝑥𝑎‖1] (4)

Segmentation loss: The segmentation loss is a dice loss:

𝐿𝑠𝑒𝑔 = −
2
∑𝑁

𝑖=1 𝑙
𝑖
𝑥𝑥

𝑖
𝑠𝑒𝑔

∑𝑁
𝑖=1(𝑙𝑖𝑥𝑙𝑖𝑥 + 𝑥𝑖𝑠𝑒𝑔𝑥𝑖𝑠𝑒𝑔) + 𝜖

(5)

Here, 𝑙𝑖𝑥, 𝑥𝑖𝑠𝑒𝑔 denote ground truth and prediction of voxel 𝑖, respec-
tively. The 𝜖 = 1𝑒−7 is a constant for numerical stability.

Objective functions: By combining the above losses together, our
common objective functions are as follows:

𝐿𝐷 = −𝐿𝑎𝑑𝑣 + 𝐿𝑟
𝑐𝑙𝑠 (6)

𝐿𝐺 = 𝐿𝑎𝑑𝑣 + 𝐿𝑓
𝑐𝑙𝑠 + 𝜆𝑟𝑒𝑐𝐿𝑟𝑒𝑐 + 𝜆𝑠𝑒𝑔𝐿𝑠𝑒𝑔 (7)

where 𝜆𝑟𝑒𝑐 and 𝜆𝑠𝑒𝑔 are hyperparameters to control the relative im-
portance of reconstruction loss and segmentation loss. In addition, we
use L2 norm regularization to constrain the style codes to encourage a
smooth space and minimize the encoded information [35].

3.3.2. Curriculum losses for the first step
In the first intra-modality disentanglement step, we train the model

with style-consistent learning scheme shown in Fig. 4(a). The aug-
mented images are created by the following six image processing
methods: (1) horizontal flip, (2) vertical flip, (3) rotate random angle
(0◦ ∼360◦), (4) zoom in to random ratios (0.8∼1.2), (5) elastic deforma-
tion [36], and (6) shift a random distance (0px∼20px) in all directions.
For each original image 𝑥𝑎 in training data (both paired and unpaired
image), we randomly use two methods to obtain two style-consistent
images denoted as 𝑥1𝑎 and 𝑥2𝑎. Note that original image can belong to
any modality. Let 𝑎 indexes a modality, and 𝑠 and 𝑠 denote the style
5

𝑥1𝑎 𝑥2𝑎
codes of 𝑥1𝑎 and 𝑥2𝑎, respectively. We define a style consistency loss to
constrain 𝑠𝑥1𝑎 and 𝑠𝑥2𝑎 to be similar:

𝐿𝑠𝑡𝑦
𝑖𝑛𝑡𝑟𝑎 = E(𝑠𝑥1𝑎

,𝑠𝑥2𝑎
)[‖𝑠𝑥1𝑎 − 𝑠𝑥2𝑎‖1] (8)

n the intra-modality step, the objective function to optimize 𝐷 is as in
q. (6), while the objective function to optimize 𝐺 is defined as:

𝐺𝑖𝑛𝑡𝑟𝑎
= 𝐿𝐺 + 𝜆𝑠𝑡𝑦𝐿

𝑠𝑡𝑦
𝑖𝑛𝑡𝑟𝑎 (9)

ere, 𝐿𝐺 is as in Eq. (7) and the 𝜆𝑠𝑡𝑦 is the hyperparameter to control
he contribution of 𝐿𝑠𝑡𝑦

𝑖𝑛𝑡𝑟𝑎.

.3.3. Curriculum losses for the second step
In the second inter-modality disentanglement step, the training data

nclude both paired and unpaired images from different modalities.
The objective function for 𝐷 in Eq. (6) and the objective function for
in Eq. (7) generate different content codes and different style codes

or unpaired image (𝑥𝑎, 𝑦𝑏).
For paired images (𝑥𝑎, 𝑥𝑏), they have the same content codes and

ifferent style codes, so we construct a content consistency loss to
onstrain their content codes:
𝑐𝑜𝑛
𝑖𝑛𝑡𝑒𝑟 = E(𝑐𝑥𝑎 ,𝑐𝑥𝑏 )

[‖𝑐𝑥𝑎 − 𝑐𝑥𝑏‖1] (10)

n addition, the image 𝑥𝑎→𝑏 generated from the translation task
𝑡(𝑐𝑥𝑎 , 𝑠𝑥𝑏 ) is expected to be consistent with the image 𝑥𝑏→𝑏 generated
rom the reconstruction task 𝐷𝑡(𝑐𝑥𝑏 , 𝑠𝑥𝑏 ), since that 𝑥𝑎 and 𝑥𝑏 are paired.
eanwhile, 𝑥𝑏→𝑏 is the reconstructed image of 𝑥𝑏, 𝑥𝑎→𝑏 is expected to
e consistent with 𝑥𝑏. Thus, we introduce a translation loss to further
onstrain 𝑐𝑥𝑎 and 𝑐𝑥𝑏 as:

𝑡𝑟𝑎𝑛
𝑖𝑛𝑡𝑒𝑟 = E𝑥𝑎→𝑏 ,𝑥𝑏 [‖𝑥𝑎→𝑏 − 𝑥𝑏‖1] (11)

herefore, the objective function to optimize 𝐷 is the same as in Eq. (6),
hile the objective function to optimize 𝐺 is defined as:

𝐺𝑖𝑛𝑡𝑒𝑟
= 𝐿𝐺 + 𝜆𝑐𝑜𝑛𝐿

𝑐𝑜𝑛
𝑖𝑛𝑡𝑒𝑟 + 𝜆𝑡𝑟𝑎𝑛𝐿

𝑡𝑟𝑎𝑛
𝑖𝑛𝑡𝑒𝑟 (12)

here, 𝐿𝐺 is as in Eq. (7) and the 𝜆𝑐𝑜𝑛 and 𝜆𝑡𝑟𝑎𝑛 are hyperparameters
o control the contributions of 𝐿𝑐𝑜𝑛

𝑖𝑛𝑡𝑒𝑟 and 𝐿𝑡𝑟𝑎𝑛
𝑖𝑛𝑡𝑒𝑟, respectively.

. Experiments and results

In this section, we first introduce the experimental settings, includ-
ng datasets, baseline methods, evaluation metrics, and implementation
etails. Then, we present and discuss quantitative and qualitative re-
ults of our method, including brain tumor segmentation, image trans-
ation, ablation study, influence of paired subjects, and disentanglement
valuation.

.1. Experimental settings

.1.1. Datasets
To validate the proposed model, we conduct experiments on two

idely used benchmark datasets of BraTS2020 [16] and BraTS2018
17] that consist of 369 and 285 subjects, respectively. Each subject
onsists of one segmentation mask and four modality scans: T1, T1ce,
2, Flair. The segmentation mask contains four labels, namely NCR
label 1: the necrotic tumor core), ED (label 2: the peritumoral ede-
atous/invaded tissue), NET (label 3: the non-enhancing tumor core),
nd ET (label 4: the enhancing tumor). To better represent the clinical
pplication tasks, different structures have been grouped into three
utually inclusive tumor regions: ET: the enhancing tumor, TC (Union
f labels 1, 3 and 4): the tumor core, and WT (Union of all labels):
he whole tumor. In BraTS2020, we utilize 240 subjects as semi-paired
raining data, 60 subjects as unpaired validation data, and 69 subjects
s unpaired test data. For semi-paired training data, we use 40 of 240
ubjects as paired data, while the rest as unpaired data. In BraTS2018,
e utilize 180 subjects as semi-paired training data, 50 subjects as
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Fig. 5. Image translation results (from source to target) between T1ce and Flair. Yellow boxes highlight the failed translation of brain tumors. In each image, reconstructed images
are in the left column, and translated images are in the right column.
4

4

m
t
a
m
b
t
a
t
s
m
a
T
p
i

4

t
2
m
e
n
c
t
t
o
t
e

4

i
l
d
a
t
m
d
l
g
t
o
a
i
i
a

unpaired validation data and 55 subjects as unpaired test data. For
semi-paired training data, we use 32 of 180 subjects as paired data,
while the rest as unpaired data. The specific number of subjects in
the training set, validation set, and test set are shown in Table 3. The
subjects are evenly divided between four modalities. For all images, we
resize them to 128 × 128 uniformly.

4.1.2. Baseline methods
Segmentation results are evaluated by comparing with the following

methods: (1) nnU-Net [21], which achieves the best performance in the
BraTS2020 competition. Since only limited paired images are available
in the training data and all the test data are unpaired, we implement
it as unpaired learning (Fig. 2(b)). The model is trained and tested on
four mixed modalities where images are unpaired. (2) UAGAN [15],
a recently proposed unpaired brain tumor segmentation model, is a
two-stream translation and segmentation network. Inferred comple-
mentary information are captured in the modality translation task
to improve segmentation performance. Since the model is unpaired,
we take semi-paired training data as unpaired data for training. (3)
ReMIC [25], a recently proposed image completion and segmentation
model for random missing modalities, first achieve image completion,
and then concatenate the synthesized modalities as multi-channel in-
puts to obtain shared representation for segmentation. Table 5 presents
parameters of different models. Our model is based on disentanglement
framework, so the number of parameters (173.97M) is larger than
others. Please note that, in the segmentation test, we only need to load
part of our network (the content encoder 𝐸𝑐 and segmentation decoder
𝐷𝑠), and its parameter amount is 31.03M.

4.1.3. Evaluation metrics
We evaluate segmentation performance with dice score (Dice). We

compute the metric on each modality, and report average values. In the
translation tasks, we use structural similarity (SSIM) as an evaluation
metric.

4.1.4. Implementation details
The content encoder 𝐸𝑐 and the segmentation decoder 𝐷𝑠 in the

segmentation generator is similar to the U-Net [36]. The style encoder
𝐸𝑠 and image generation decoder 𝐷𝑡 are adapted from [31]. In our
experiments, we set 𝜆𝑟𝑒𝑐 = 50, 𝜆𝑡𝑟𝑎𝑛 = 100, 𝜆𝑐𝑜𝑛 = 10, 𝜆𝑠𝑡𝑦 = 10, and
𝜆𝑠𝑒𝑔 = 100. The batch size and training epoch are 8 and 50 respectively.
We train the model with 20 epochs in the first step and 30 epochs in the
second step, which leads to convergence in practice. The dimensionality
of the style code is set to 𝑛𝑠 = 8. All models are optimized with
Adam [37], and the initial learning rates are 1𝑒−4, 𝛽1 = 0.9, and
2 = 0.999. The learning rate is fixed in the first 40 epochs, and then
inearly declines to 1𝑒−6. All images are normalized to [−1, 1] prior to
he training and testing. Our implementation is on an NVIDIA RTX 3090
24G) with PyTorch 1.8.1.
6

i

.2. Results and analyses

.2.1. Brain tumor segmentation
We first evaluate the brain tumor segmentation performance of our
odel on BraTS2020 segmentation tasks (WT: the while tumor, TC:
he tumor core, and ET: the enhancing tumor). Quantitative results
re shown in Table 2. Our model achieves the best overall perfor-
ance and outperforms the others in all cases. Compared with the
est performer of the state-of-the-art methods, our method improves
he average dice score from 81.31% to 82.91%, 69.35% to 72.62%
nd 50.64% to 54.80% on WT, TC and ET segmentation tasks, respec-
ively. In addition, we further evaluate our model on BraTS2018 WT
egmentation task. The dice score results are shown in Table 4, our
ethod achieves superior performance in most cases, and improves the
verage dice score from 83.18% to 85.51% compared with nnU-Net.
he segmentation results indicate that our method can effectively ex-
loit complementary information by leveraging privileged semi-paired
mages through the curriculum disentanglement learning model.

.2.2. Image translation
Since the Flair is the most informative modality for the segmen-

ation of WT, and T1ce is for the segmentation of TC and ET [22,
4], we discuss the results of image translation between these two
odalities in Fig. 5. Note that the translation performances are only
valuated against UAGAN and ReMIC, since there is no translation for
nU-Net. For the translation between modalities T1ce and Flair that
onvey different biological information (Fig. 1, for example) of brain
umors, our model is superior to others, particularly for the tumor areas
ranslation. Furthermore, as shown in Table 6, our model outperforms
ther methods on translation task in terms of SSIM, which suggests
hat our model can produce more realistic images, and more effectively
xploit accurate complementary information to improve segmentation.

.2.3. Ablation study
In this section, we assess the contribution of different components

n WT segmentation on BraTS2020. We denote the Content consistency
oss (Eq. (10)), the inter-modality Translation loss (Eq. (11)), Feature
isentanglement framework and Curriculum disentanglement learning
s Cc, T, F and Cd, respectively. As shown in Table 7, we describe
he ablation experiments as follows: (1) Ours w/o Cc denotes that our
odel is trained without the content consistency loss. (2) Ours w/o T
enotes that our model is trained without the inter-modality translation
oss. (3) Ours w/o F denotes that the style encoder 𝐸𝑠 and image
eneration decoder 𝐷𝑡 are deactivated. In this experiment, our model is
rained without feature disentanglement. Since Cc, 𝑇 and Cd are based
n feature disentanglement framework, these components cannot be
pplied in Ours w/o F, and we denote it as Ours w/o Cc, T, Cd, F
n Table 7. (4) Ours w/o Cd denotes that we train our model only at
nter-modality step for all 50 epochs. Table 7 shows that the best results
re achieved with all components. The performance is significantly
mproved from 78.36% (Ours w/o Cc, T, Cd, F) to 82.91%. Compared
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Table 2
Performance evaluation for the segmentation task of WT, TC and ET on BraTS2020. A better method has higher Dice (Best
highlighted in bold).
Metric Dice(%)↑

Modality T1ce T1 T2 Flair Aver

WT

nnU-Net [21] 78.36 ± 2.23 74.52 ± 0.25 84.18 ± 1.39 88.22 ± 0.29 81.31 ± 0.21
UAGAN [15] 75.56 ± 1.36 75.05 ± 2.40 82.62 ± 0.60 84.53 ± 0.23 79.44 ± 0.06
ReMIC [25] 72.18 ± 1.05 74.63 ± 0.18 76.96 ± 0.04 75.37 ± 3.59 74.78 ± 0.67
Ours 79.58 ± 1.13 77.80 ± 2.16 85.66 ± 0.35 88.58 ± 0.08 82.91 ± 0.36

TC

nnU-Net [21] 84.78 ± 1.88 53.35 ± 1.33 66.59 ± 2.70 66.63 ± 0.97 67.84 ± 0.78
UAGAN [15] 80.76 ± 0.65 58.53 ± 0.67 67.99 ± 0.65 70.13 ± 0.90 69.35 ± 0.71
ReMIC [25] 80.68 ± 3.17 53.86 ± 4.72 62.19 ± 3.16 55.14 ± 0.86 62.96 ± 2.98
Ours 85.37 ± 2.05 62.18 ± 0.71 71.68 ± 1.44 71.27 ± 2.80 72.62 ± 0.37

ET

nnU-Net [21] 82.09 ± 1.07 28.17 ± 0.30 45.08 ± 2.17 40.03 ± 5.30 48.84 ± 2.06
UAGAN [15] 75.30 ± 3.01 33.64 ± 2.74 47.19 ± 3.56 46.24 ± 5.53 50.64 ± 3.63
ReMIC [25] 74.98 ± 0.33 32.16 ± 2.26 39.22 ± 3.44 34.68 ± 0.16 45.29 ± 1.34
Ours 82.33 ± 1.04 37.47 ± 0.80 51.61 ± 3.41 47.78 ± 6.36 54.80 ± 2.50
i
o
a
a
e
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𝑠

Table 3
The dataset distribution.
Dataset Training

(paired+unpaired)
Validation Test All

BraTS2020 240 (40+200) 60 69 369
BraTS2018 180 (32+148) 50 55 285

Table 4
Performance evaluation of WT segmentation on BraTS2018.
Metric Dice(%)↑

Modality T1ce T1 T2 Flair Aver

nnU-Net [21] 84.10 76.12 85.91 86.16 83.18
UAGAN [15] 78.14 75.61 80.86 80.89 78.95
ReMIC [25] 77.97 72.69 76.75 72.23 74.89
Ours 86.56 82.65 84.93 87.86 85.51

Table 5
The parameters of different model for tumor segmentation.
nnU-Net UAGAN ReMIC Ours Ours-test

18.67M 44.73M 89.43M 173.97M 31.03M

Table 6
Quantitative evaluations on translated images.
Metric SSIM↑

Modality T1ce T1 T2 Flair Aver

UAGAN [15] 0.5153 0.4193 0.3850 0.4328 0.4382
ReMIC [25] 0.7205 0.7748 0.7579 0.7061 0.7398
Ours 0.7741 0.7701 0.7905 0.7671 0.7754

to the Dice scores of 78.36% (Ours w/o Cc, T, Cd, F) and 80.38%
(Ours w/o Cc, T, Cd), the performance improvement is due to using
F reduces the disturbance of modality-specific information. By utilizing
Cd, the segmentation accuracy increased from 80.38% (Ours w/o Cc,
T, Cd) to 81.90% (Ours w/o Cc, T), which shows the importance
f thorough decoupling. The performance degradation, from 82.91%
Ours) to 80.93% (Ours w/o Cd), can also reflect this. Compared to
he Dice scores of 82.91% (Ours), 82.32% (Ours w/o T), 82.47% (Ours
/o Cc), and 81.90% (Ours w/o Cc, T), introducing T and Cc, which
s work only for paired images, benefits the model to fully exploit
nformation between modalities. In addition, the model can also be
rained with both style-consistent learning and inter-modality learning
or 50 epochs in an end-to-end manner (Ours end-to-end). Compared
ith the two-step training scheme, the average Dice score dropped from
2.91% to 82.30%.

.2.4. Influence of paired subjects
We conduct a ratio test to investigate the effect of the paired
7

ubjects. We keep the number of training subjects fixed, and assign
Fig. 6. The ratio test for the WT segmentation task on BraTS2020. Only the header
and tail values as well as the best values are displayed. NPS: the Number of Paired
Subjects.

different numbers of subjects as paired data. As shown in Fig. 6,
ntroducing paired data in training does improve the performance of
ur model. Note that our model is still better than the state-of-the-
rt methods when the Number of Paired Subjects (NPS) equals to 0,
nd can get satisfactory results when NPS is relatively small (40, for
xample), which is a good news for clinical practice.

.2.5. Disentanglement evaluation
We qualitatively examine the effect of each dimension of style code
with latent space arithmetics [38] on 10 subjects. We set the style

code size to 𝑛𝑠 = 8 as suggested by related work [31,38]. We conduct
statistical analysis on style codes obtained from all the test images,
and the max, min and average values are 0.189, −0.678 and −0.014,
respectively. Note that, we use L2 norm regularization to constrain the
style codes. Therefore, interpolating in the range [−0.7, 0.2] covers
the possible space. We discover that image style are controlled by
the 3rd dimension. As shown in Fig. 7, images of each column are
generated by interpolating the values of the 3rd dimension with the
rest fixed. In addition, we change the value of the 3rd dimension with
others fixed, and compare the synthetic images with the corresponding
four real images. The SSIM values for T1ce, T1, T2 and Flair get the
maximum of 0.7203, 0.7017, 0.6668 and 0.6963 when the value of
the 3rd dimension is set to 0.1, −0.3, 0.0 and −0.1, respectively. The
anatomy of the brain is clearer in T1ce and T1, while the lesioned tissue
is more prominent in T2 and Flair. The former SSIM value is more
affected by structural similarity, while the latter is more affected by
image brightness and contrast. We think that the reason for generating
more similar T1ce and T1 images is that the model can accurately
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Table 7
Performance evaluation of the WT segmentation for ablation study on components. w/o means
without.
Metric Dice(%)↑

Modality T1ce T1 T2 Flair Aver

Ours w/o Cc, T, Cd, Fa 76.09 72.53 80.04 84.78 78.36
Ours w/o Cc, T, Cd 75.78 74.35 84.04 87.32 80.38
Ours w/o Cc, T 77.88 76.68 85.06 87.97 81.90
Ours w/o Cd 77.25 74.69 84.46 87.29 80.93
Ours w/o T 78.50 77.66 85.16 87.95 82.32
Ours w/o Cc 78.76 77.81 85.21 88.15 82.47
Ours end-to-end 78.27 78.44 84.62 87.85 82.30
Ours 79.58 77.80 85.66 88.58 82.91

aCc, T, F and Cd denote the Content consistency loss (Eq. (10)), the inter-modality Translation
loss (Eq. (11)), Feature disentanglement framework and Curriculum disentanglement learning,
respectively.
Table 8
Variable multi-modal brain tumor segmentation results of WT task on BraTS2020 [16]. The table shows the Dice score for different MRI modalities being
either absent (◦) or present (∙), in order of T1ce, T1, T2, Flair. A better method has higher Dice (Best highlighted in bold).
Modalities Dice(%)↑

𝑇 1𝑐𝑒 𝑇 1 𝑇 2 𝐹 𝑙𝑎𝑖𝑟 U_hemis Rmbts Lmcr ReMIC Ours Ours nnU-Net
[22] [23] [24] [25] _TF _TF_UB _Oracle[21]

∙ ◦ ◦ ◦ 72.23 74.04 52.67 72.18 79.58 81.46 –
◦ ∙ ◦ ◦ 71.03 74.22 56.70 74.63 77.80 80.47 –
◦ ◦ ∙ ◦ 82.84 78.16 79.59 76.96 85.66 86.85 –
◦ ◦ ◦ ∙ 85.07 86.24 79.26 75.37 88.58 89.52 –
∙ ∙ ◦ ◦ 76.80 78.14 69.10 71.87 82.94 83.73 –
∙ ◦ ∙ ◦ 85.33 85.24 81.99 75.80 88.47 88.98 –
∙ ◦ ◦ ∙ 87.53 88.59 83.98 71.75 90.36 90.76 –
◦ ∙ ∙ ◦ 84.84 84.05 77.37 68.48 87.69 88.23 –
◦ ∙ ◦ ∙ 86.42 87.78 84.03 70.16 89.75 90.32 –
◦ ◦ ∙ ∙ 86.64 87.94 83.74 73.32 89.16 90.32 –
∙ ∙ ∙ ◦ 85.92 85.82 80.40 73.83 88.39 89.14 –
∙ ∙ ◦ ∙ 88.10 88.84 86.79 73.56 90.28 90.78 –
∙ ◦ ∙ ∙ 88.81 89.51 86.40 74.51 90.46 90.94 –
◦ ∙ ∙ ∙ 88.40 87.30 85.90 74.53 89.94 90.39 –
∙ ∙ ∙ ∙ 88.92 89.20 87.29 76.41 90.65 90.99 92.86

Average 83.92 84.34 78.35 73.56 87.31 88.19 –
Fig. 7. Evaluation of the effect of the style codes. Images of each column are generated by interpolating the values of 3rd dimension with the rest fixed.
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extract modality-independent brain anatomical information. However,
it is hard to generate images with the same brightness and contrast as
real images.

4.2.6. Variable multi-modal brain tumor segmentation
We further evaluate the variable multi-modal brain tumor segmen-

tation performance of our model by introducing a Transformer [39]
based fusion block, called TFusion (details can be found in B). The
content codes extracted from available modalities are fused into a com-
mon content code for prediction. As shown in Table 8, U_hemis [22]
3D U-Net version), Rmbts [23] and Lmcr [24] are the networks for
ariable multi-modal brain tumor segmentation. Ours_TF denotes the
roposed model integrated with TFusion block. The results demon-
trate that our proposed model performs well on variable multi-modal
rain tumor segmentation by integrating the fusion block and achieves
ignificant improvement when some modalities are missing during
esting. In addition, we evaluate the performance of Ours_TF_UB and
nU-Net_Oracle, which are trained without missing modality as upper
ound and oracle respectively. Compared with Ours_TF_UB, Ours_TF
chieves competitive results when the paired images are limited (40
8

t

aired images for training in the experiments). Compared with nnU-
et_Oracle, Ours_TF can handle any situations with missing modalities
hile nnU-net_Oracle, which is an ad-hoc method, fails to do that.

. Discussion

Most automatic brain tumor segmentation methods use paired
ulti-modal images because images of different modalities provide
omplementary brain tumor information for more accurate segmen-
ation. However, high-quality multi-modal public datasets, such as
raTS [16], force current research to ignore the scarcity of paired
mages, which is a practical problem in the real-world clinical en-
ironment. To address this problem, the unimodal methods propose
olely relying on unpaired images for segmentation. However, these
ethods ignore the complementary information the available paired
mages provide. Therefore, this work studies brain tumor segmentation
rom privileged semi-paired images, where limited paired images are
ntroduced during training. Specifically, we focus on improving the ac-
uracy of unimodal segmentation by fully exploring the complementary
nformation between multiple modalities with limited paired images.
able 2 compares our method with other unimodal methods and reveals
hat the developed scheme achieves a higher unimodal segmentation
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accuracy than state-of-the-art methods across different segmentation
tasks and modalities.

NnU-Net [21] is the champion of the BraTS2020 challenge, demon-
strating its ability to adequately capture complementary information
when the full set of modalities is available. However, in the unimodal
segmentation tasks, its segmentation accuracy decreases due to the
absence of paired images. UAGAN [15] is the state-of-the-art uni-
modal method, which captures the modal-invariant information with
only unpaired images by introducing the translation task. However,
its segmentation performance is limited because the available paired
images are not exploited. ReMIC [25] is a classic image completion
and segmentation model for missing modalities. This method predicts
missing modalities and segments the brain tumors by exploiting the
completed modalities. However, the quality of the recovered images
directly affects the performance, especially if a single modality is
available. Therefore, Table 2 highlights that ReMIC has the worst
erformance in unimodal segmentation.
The modality-missing scenarios involve 15 image combinations of

our modalities that may be provided in actual applications. Con-
idering these situations, we propose a fusion block, TFusion, which
uses the missing multi-modal features. By integrating this block, we
btain the fused content codes for segmentation under different missing
cenarios. Table 8 presents our method’s segmentation performance on
5 possible cases, achieving higher accuracy than the missing modality
ethods. U_hemis [22] achieves 83.92% average accuracy, extracts the
eatures of each available modality, and fuses them by computing the
irst and second moments for segmentation. All available modalities
ontribute equally, and their latent correlations are neglected. The
ice score of Rmbts [23] is 84.34%, which employs a gated feature
usion block. The features extracted from the available modalities are
used automatically to exploit the correlation between multiple modal-
ties. However, they simulate the features of missing modalities with
ero values, inevitably introducing a computation bias and degrading
he performance. Furthermore, the segmentation performance of these
ethods, when trained directly for missing modalities, is unsatisfactory
n unimodal cases. In particular, Lmcr [24] attains only 52.67% and
6.70% accuracy with only T1ce and T1, respectively. We argue that
his may be because it focuses on fusing information from multi-modal
mages while neglecting to extract more beneficial information from a
ingle modality.
In modality-missing scenarios, unimodal segmentation performance

s significant, and therefore our approach starts with improving the per-
ormance of unimodal segmentation. By integrating the designed fusion
lock, we improve the segmentation performance in different multi-
odal segmentation cases while retaining the superiority of unimodal
egmentation. Therefore, we increase the average Dice score of the 15
ossible combinations from 84.34% to 87.31%. This result shows the
mportance of improving the performance of unimodal segmentation.

. Conclusion

This paper proposes a novel framework that leverages privileged
emi-paired images for multi-modal brain tumor segmentation. Specif-
cally, we develop a two-step curriculum disentanglement learning
odel that can be trained with semi-paired images and make predic-
ions with unpaired images as inputs. The two steps extract the style
nd content of the input images separately. Furthermore, with limited
aired images, we incorporate the supervised translation and content
onsistency loss to enhance the exploitation of the encoded complemen-
ary information. The quantitative and qualitative evaluations show
he superiority of our proposed model compared to the state-of-the-art
ethods.
Our work presents some limitations that inspire future research

irections. Specifically, the provided medical data is 3D. Compared to
D, it can include richer semantic information, such as hierarchical
nformation. Therefore, extending the model to the 3D data domain can
9

further promote the need for automatic brain tumor segmentation. The
fusion block (TFusion) is also based on Swin Transformer [40], which
uses a self-attention mechanism. Hence, the high GPU memory require-
ments pose a limitation. Therefore, designing a more lightweight and
efficient fusion block is a future research direction. For example, using
PoolFormer [41] to replace the Swin Transformer can be appealing. It
reduces the computational complexity by replacing the self-attention
module with an embarrassingly simple spatial pooling operator. Its
effectiveness is verified in vision tasks. Finally, our work is based
on supervised learning, while obtaining high-quality annotated data
requires professionals and is time-consuming. Given that the scarcity
of annotation data is a common problem in medical image processing,
we will further study brain tumor segmentation in a semi-supervised
and privileged semi-paired learning setting to alleviate the scarcity of
labeled data.
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Appendix A. Dataset parameters

In BraTS2020 [16] and BraTS2018 dataset [17], all modalities
(T1ce, T1, T2 and Flair) from the same subject are co-registered to a
common anatomical template SRI [42], resampled to isotropic 1 mm3

and skull-stripped following manual revision. Each modality volume
contains 155 slices with the size of 240 × 240.

Appendix B. Details of TFusion block

As shown in Fig. 8, we propose a TFusion block for variable multi-
modal brain tumor segmentation, which is a transformer based N-to-
One fusion block at the voxel level.

Let 𝐾 ⊆ {1, 2,… , 𝑆} denotes the available modality set of 𝐾,
where 𝑆 is the number of all possible modalities. The content codes
(𝑐1,… , 𝑐

|𝐾|

, |𝐾| denotes the number of available modalities) extracted
from available modalities are fused into a common content code 𝑐𝑓 for
prediction. In the TFusion block, inspired by ViT [43], the input content
codes are reshaped as a sequence of token embeddings (𝑡1,… , 𝑡

|𝐾|

) by
lattening their spatial dimensions into one dimension and combining
ith the sinusoidal position embeddings [39]. Then, the token embed-
ings are fed into the transformer encoder, which consists of blocks
-MSA and SW-MSA [40], to learn latent multi-modal correlations

𝑢1,… , 𝑢
|𝐾|

). By reshaping the correlations, we get the transformed
feature maps (𝑓1,… , 𝑓

|𝐾|

), which have the same size as the input
content codes. As shown in Fig. 9, we denote the 𝑖-th voxel of 𝑓𝑘 and 𝑚𝑘
as 𝑓 𝑖

𝑘 and 𝑚𝑖
𝑘 (𝑘 ∈ 𝐾), respectively. 𝑒 is the natural logarithm. Through

a modal-wise and voxel-level softmax function, we obtain weight maps
(𝑚1,… , 𝑚

|𝐾|

) for fusion. By element-wise multiplying input content
codes with the corresponding weight maps and summing all of them,
we can obtain a fused content code 𝑐𝑓 for prediction.

Since the sum of 𝑚𝑖
1,… , 𝑚𝑖

|𝐾|

is 1, the value range of fused content
code 𝑐𝑓 remains stable to improve the robustness of the model for
variable input modalities. Moreover, the relative sizes of 𝑓 𝑖

1,… , 𝑓 𝑖
|𝐾|

are
retained in the corresponding weights, which contain the latent multi-
modal correlation learned from transformed encoder. In particular,
when only one modality is available, all the values of the weight map
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Table 9
Performance evaluation for the segmentation task of WT, TC and ET on BraTS2020. A better method has lower ASSD (Best
highlighted in bold).
Metric ASSD (mm)↓

Modality T1ce T1 T2 Flair Aver

WT

nnU-Net [21] 2.90 ± 0.52 3.18 ± 0.21 2.10 ± 0.27 1.50 ± 0.06 2.42 ± 0.01
UAGAN [15] 3.83 ± 0.08 3.84 ± 0.58 2.77 ± 0.09 2.40 ± 0.15 3.21 ± 0.07
ReMIC [25] 3.87 ± 0.18 3.77 ± 0.09 3.48 ± 0.09 3.81 ± 0.03 3.74 ± 0.08
Ours 2.65 ± 0.04 3.00 ± 0.49 1.96 ± 0.11 1.42 ± 0.06 2.26 ± 0.08

TC

nnU-Net [21] 1.98 ± 0.63 4.72 ± 0.36 3.70 ± 0.64 3.33 ± 0.02 3.43 ± 0.08
UAGAN [15] 2.66 ± 0.20 5.13 ± 0.34 3.53 ± 0.13 3.44 ± 0.04 3.69 ± 0.06
ReMIC [25] 2.67 ± 0.36 5.71 ± 0.91 4.77 ± 0.40 5.04 ± 0.17 4.54 ± 0.46
Ours 2.03 ± 0.66 4.88 ± 0.16 3.15 ± 0.33 3.25 ± 0.64 3.33 ± 0.11

ET

nnU-Net [21] 1.12 ± 0.48 4.33 ± 0.30 3.07 ± 0.59 3.15 ± 0.57 2.92 ± 0.49
UAGAN [15] 1.64 ± 0.29 4.52 ± 0.78 3.15 ± 0.28 3.61 ± 0.88 3.22 ± 0.55
ReMIC [25] 2.01 ± 0.27 4.99 ± 0.45 4.25 ± 0.37 4.40 ± 0.16 3.92 ± 0.13
Ours 1.02 ± 0.28 3.71 ± 0.53 2.98 ± 0.41 3.73 ± 1.51 2.86 ± 0.68
Table 10
Performance evaluation of WT segmentation on BraTS2020 with different values of 𝑛𝑠.
𝑛𝑠 Dice(%)↑

T1ce T1 T2 Flair Aver

1 77.99 ± 2.70 78.30 ± 1.00 85.83 ± 0.71 88.88 ± 0.64 82.75 ± 1.26
2 78.00 ± 4.02 77.47 ± 0.93 85.44 ± 0.22 88.56 ± 0.37 82.37 ± 1.39
4 79.07 ± 4.33 78.34 ± 1.42 85.08 ± 0.35 88.34 ± 0.74 82.70 ± 1.70
8 79.58 ± 1.13 77.80 ± 2.16 85.66 ± 0.35 88.58 ± 0.08 82.91 ± 0.36
16 78.43 ± 4.52 77.73 ± 1.06 85.79 ± 0.57 88.42 ± 0.11 82.59 ± 1.56
Fig. 8. The illustration of the proposed TFusion. 𝐸𝑐 and 𝐷𝑠 are the content encoder and segmentation decoder of our model, respectively.
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Fig. 9. The illustration of modal-wise and voxel-level softmax function.

is 1, which means 𝑐𝑓 = 𝑐𝑘(𝑘 ∈ 𝐾, |𝐾| = 1). In this case, the input
ontent code remains unchanged, which maintains the performance of
he model for brain tumor segmentation with single modality.
10
It is worth noting that, TFusion block is a flexible data-dependent fu-
ion strategy. It does not need to simulate missing modalities (e.g. zero-
adding and synthetic modality).

ppendix C. Other metrics on segmentation results

We further use average symmetric surface distance (ASSD) for
valuation. The ASSD metric is introduced to evaluate the average
ymmetric surface distance.

𝑆𝑆𝐷 =
∑

𝑎∈𝐴 𝑚𝑖𝑛𝑏∈𝐵𝑑(𝑎, 𝑏) +
∑

𝑏∈𝐵 𝑚𝑖𝑛𝑎∈𝐴𝑑(𝑎, 𝑏)
𝑁𝐴 +𝑁𝐵

(13)

ere, 𝐴 and 𝐵 denote the boundary voxel set of prediction and ground
ruth volumes, and 𝑑(𝑎, 𝑏) represents the Euclidean distance between
oxel 𝑎 and 𝑏. 𝑁𝐴 and 𝑁𝐵 denote the number of voxels in 𝐴 and
. A better method has lower ASSD. The results of WT, TC and ET
egmentation on BraTS2020 are shown in Table 9. We obtain the best
average results (WT: 2.26 mm, TC: 3.33 mm, ET: 2.86 mm), i.e., lowest
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Fig. 10. Visualization of WT segmentation results and the corresponding Dice scores.
Rows: different input modalities. Columns: all the methods.

Fig. 11. Visualization of TC segmentation results and the corresponding Dice scores.
Rows: different input modalities. Columns: all the methods.

Fig. 12. Visualization of ET segmentation results and the corresponding Dice scores.
Rows: different input modalities. Columns: all the methods.

ASSD values, in all three segmentation tasks, while ReMIC performs
worst (WT: 3.74 mm, TC: 4.54 mm, ET: 3.92 mm). It is consistent
with the Dice score. Although nnU-Net outperforms our model in
some cases, our results are also competitive. For example, in the TC
segmentation with T1ce, the ASSD value of nnU-Net is 1.98 mm, while
the value of our method (2.03 mm) is slightly higher. Visualization
of segmentation results are shown in Figs. 10–12, it illustrates that
11
our model can identify more accurate details of irregular shape brain
tumors to achieve high dice scores.

Appendix D. Extra experiments for 𝒏𝒔

We experimented with different values of 𝑛𝑠 on WT segmentation
of BraTS2020. As shown in Table 10, best average dice are achieved
when the dimensionality of the style code is set to 𝑛𝑠 = 8.
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